Improving DreamerV2 by Identifying Irrelevant Environmental Features
dc.contributor.advisor | Ambrogioni, L. | |
dc.contributor.advisor | Gerven, van, M.A.J. | |
dc.contributor.author | Voort, van der , Noah | |
dc.date.issued | 2022-06-20 | |
dc.description.abstract | This thesis introduces DreamerV3. A modified version of the model-based reinforcement learning algorithm DreamerV2. The thesis outlines the shortcomings of DreamerV2 and motivates the proposed solution. The performance of DreamerV3 is tested on the Atari Video Pinball environment and a modified Atari Pong environment. A significant performance increase over DreamerV2 is demonstrated in the modified Pong environment, but no performance increase is attained for the Video Pinball environment. | |
dc.identifier.uri | https://theses.ubn.ru.nl/handle/123456789/16005 | |
dc.language.iso | en | |
dc.thesis.faculty | Faculteit der Sociale Wetenschappen | |
dc.thesis.specialisation | specialisations::Faculteit der Sociale Wetenschappen::Artificial Intelligence::Bachelor Artificial Intelligence | |
dc.thesis.studyprogramme | studyprogrammes::Faculteit der Sociale Wetenschappen::Artificial Intelligence | |
dc.thesis.type | Bachelor | |
dc.title | Improving DreamerV2 by Identifying Irrelevant Environmental Features |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- Voort, van der, N. s-1001198-Thesis-2022.pdf
- Size:
- 1.1 MB
- Format:
- Adobe Portable Document Format