Would You Cross a River that is Only 4 Foot Deep on Average? A simulation study of worst-case Bayesian approximability.
Would You Cross a River that is Only 4 Foot Deep on Average? A simulation study of worst-case Bayesian approximability.
Keywords
No Thumbnail Available
Authors
Date
2012-07-05
Language
en
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
In cognitive science, many cognitive functions are currently being modelled using
Bayesian (or probabilistic) models. These models often give good descriptive fit
to performance data obtained in the lab. Yet, the Bayesian modelling framework
faces a theoretical problem: many Bayesian computations are known to be NPhard,
and thus it is unclear how the computations postulated by Bayesian models
can be tractable for resource-bounded minds/brains like our own.
A common proposal by Bayesian modellers in cognitive science has been to suggest
that the problem of intractability can be overcome by assuming that human
minds/brains use approximation algorithms to approximate (NP-hard) Bayesian
computations. In this paper we investigate this proposal using computer simulations
of a particular approximation algorithm (Gibbs sampling) for a particular
Bayesian model (Blokpoel, Kwisthout, van der Weide, & van Rooij, 2010) as a
case study. We will show that, even though approximation may look like a solution
at first glance, further investigation proves this assumption wrong.
Description
Citation
Faculty
Faculteit der Sociale Wetenschappen