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Abstract

This thesis presents the explorative research into gesture recognition
on unsegmented three-dimensional accelerometer data. The application
context is interactive dance and music performance. Repetition of ges-
ture is used to distinguish between gesture and non-gesture. Repetition
is detected using an algorithm for pitch detection which is adapted for
multi-dimensional time-series called YIN-MD. Three template based ges-
ture recognition algorithms are compared on accuracy performance in
different contexts and how they relate to this specific project. Parame-
ter optimization of the YIN-MD algorithm is performed and pre- and post
processing methods are applied to optimize the detection accuracy for this
project. From the three algorithms GVF, DTW and DTW-PS, the last one
is evaluated as the most promising for this project due to high accuracy
performance and phase invariance.



”I see the hands as a part of the brain, not as a lower instrument of the
brain. Of course, you can see the hand as a transmitter and sensor, but in
the consciousness of the performance, the hand is the brain.”

- Michel Waisvisz
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Chapter 1

Introduction

During the last decades, music, dance and performance arts have been changing rapidly
due to technical innovations. In any of these types of performances, human motion
is an important aspect. The technical innovations have enabled artists to use human
motion in a performance, analyze them through different technologies and translate
these motions into other modalities to enhance the experience and consciousness of
movement. The possible techniques for this are widespread: from computer vision and
motion capturing to biometric signal processing and wearable motion sensors.

In the field of expressive applications there are a number of distinct fields. On of
these fields is on Digital Music Instruments (DMI), where the focus of the applications
is to create sounds and give the user control over this sound [40, 9, 16]. These systems
usually consist of a hardware component and a software component. The hardware is
the physical musical instrument with which a musician interacts. The software compo-
nent is all about the parameter mapping and the sound design. The other field is about
Interactive Performance (IP) systems. In this field the primary focus of the movement
is not on controlling the system as with a DMI. The primary focus of the movement
may be a dance choreography, movements of a musician playing a musical instrument
or movements as part of a theater piece. The system is used to augment the performers
expressiveness by controlling secondary performance elements like sound, music and
light effects [7, 52]. In these interactive performances, there is often a close coupling
between the development of of the artistic piece end the development of the technolo-
gies. The experience and performance of the performers guide the development of
the technologies, while current sensory control mechanisms and sound design setups
influence the performers.

Wearable accelerometer sensors are used in systems to derive movement data and
use it as input for IP, DMI’s or other applications. Employed techniques with ac-
celerometer sensors include direct feature mapping [7], gesture recognition [38, 10,
58, 46], rhythmic analysis [23, 32] and pose reconstruction [27, 59]. A great advantage
of wearable sensors is that they do not restrict the performer in their movement possi-
bilities: accelerometers are small. Another advantage is that they are widely available.
There is a three-axis accelerometer in every mobile smartphone as well as a gyroscope
and a magnetometer. There are also dedicated movement capture products, like Notch

7



8 CHAPTER 1. INTRODUCTION

(a) Notch device (b) MetaWear device (c) Sense/Stage MiniBee

Figure 1.1: Three different commercial wearable sensor platforms

[4] and MetaWear by MbientLab [3]. These packages are mostly focused on com-
munication with smartphone applications and gaming and sports applications. Marije
Baalmans’s Sense/Stage platform [8] consists of small, wearable sensor boards that
communicate wireless with a PC. The platform is based on Arduino [2] and therefor
easily extendable with any type of sensor or actuator.

1.1 MetaBody
This thesis project is part of the five year EU culture program project MetaBody [18].
MetaBody, Media Embodiment Tkhne and Bridges of Diversity, is a research and arts
project into cultural diversity, non-verbal communication, embodied expression. It is
a critique on the homogenization of perceptions, affects and expressions by modern
information technologies.

MetaBody will develop ”new concept of perception, cognition and affect of intra-
corporeal sensation irreducible localizable points and trajectories to measurable coor-
dinates of space-time or form-pattern.”

The MetaBody will be an architecture traveling to different cities in Europe in the
final year of the project. This MetaBody laboratory will be an interactive architecture,
constantly transforming and evolving influenced by the bodies that interact with it and
the specific environment. The MetaBody lab will host performances, installations,
residencies with local artists, workshops and educational projects.

1.2 Research goals and Outline
This thesis project will research into the possibilities of using accelerometers to be
used as sensor for extracting motion data from performing artists such as dancers and
musicians. This data can be used in performances for real-time expressive control. The
project consist of two parts: the development of a specific interaction pattern based on
wearable accelerometer sensor control and theoretical research required to develop the
interaction.

The core idea of the interaction is to trigger different types of sounds by performing
different types of gestures, but only when these gestures are repeated. Usually in ges-
ture recognition, the start and end of a meaningful gesture is marked by the performer
with a button. In this interaction, a meaningful gesture is marked by repetition.
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Figure 1.2: A schematic representation of the interaction pattern developed in this
project

Figure 1.2 shows a schematic representation of the interaction pattern that was
developed in this project. The initialization of the interaction is done by gesture of
the performer, which is captured using wearable accelerometer sensors on the wrists.
This sensor data is send to a computer. Multiple software components derive different
types of information from this sensor data. One component is implemented for gesture
recognition, one for detection of repetition and extra components are implemented for
additional expressive control.

To implement this interaction pattern, a number of research questions have to be
answered first:

1. Explore the current possibilities for gestural control using wearable accelerome-
ter sensors.

2. Create an expressive application using only accelerometer based interactions.

3. Can we use repetition of gesture to reliably distinguish between gesture and non-
gesture?

(a) Can we use repetition of gesture to reliably distinguish between gesture and
non-gesture?

(b) Does the type of repeated gesture influence detectability of repetition?

(c) Do different users need different parameter setting?

4. What are the current possibilities in accelerometer based hand gesture classifica-
tion?

(a) How do algorithms compare on specific performance properties and which
algorithm is best fitted for this project?
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(b) Can we do inter-user gesture classification using accelerometer sensors?

(c) How do different gesture sets influence classification accuracy?

The first part of this thesis will give an overview of existing theories and techniques
on gestural analysis. Section 2.1 will outline a number of taxonomies and theories
about gesture and gestural control from different backgrounds. This theoretical back-
ground will give a better understanding of what the term gesture means. Section 2.2
will be a short survey on different modalities in gestural analysis and corresponding
applications in expressive control. In section 3 we will zoom in on the accelerometer
sensor as input modality for gestural control and explain some techniques for inter-
preting the sensor data. In section 3.3 we will focus on the development of different
gesture classification techniques up until the current state of the art. In section 4 hard-
ware setup of this specific project will be presented along with some methods used in
the two experimental chapters. Chapter 5 presents the evaluation work on the imple-
mented YIN-MD algorithm and chapter 6 presents comparative research on different
gesture classification algorithms. In chapter 7 we describe the development of a Digital
Musical Instrument to demonstrate the control possibilities with accelerometer sensors.

For this project, two original methods were developed: (1) YIN-MD and (2) DTW-
PS. YIN-MD is an algorithm for repetition detection and is described in section 3.2.1.
It is a modification of an algorithm for pitch detection in audio signals called YIN
[17]. DTW-PS is an extension of a Dynamic Time Warping based K-Nearest Neighbor
classifier. DTW-PS is focused on this project as it operates with the assumption that
the start and end point of the gesture are the same, as this project focuses on repeated
gesture.



Chapter 2

Gestural control

To be able to understand what gestures can be for expressive control, we first need
to take a step back and see how we can approach the performance and analysis of
gesture. Different notions of what gesture is and how we define it, change how we
want to analyze it. In this section, a number of different perspectives on gesture are
described. First, section 2.1 will describe a number of perspectives and taxonomies
on gesture, found in the literature. These different perspective come from different
backgrounds, so it is important to realize which notion of gesture is used when going
through literature. Section 2.2 describes a number of techniques for the analysis of
gesture and some of their applications.

2.1 Gesture taxonomies
People move (i.e. gesture) everyday, for a lot of different reasons. Some of these move-
ments are made conscious, a lot of them are also made unconscious. Movements are
made express something, communicate information, or maybe without explicit inten-
tion. Movements may be performed natural, and without thinking, and other move-
ments may be learned or trained.

Because gesture is everywhere in people’s lives, there are a lot of people concerned
with gesture from a different perspective, analyzing and looking at gestures with dif-
ferent goals and interests. A number of these perspectives will be discussed here.

2.1.1 Language and gesture

Zhao [63], who looks at gestures in relation to speech, compared six well known tax-
onomies which all describe more or less the same categories, but with different names
and slightly different descriptions. I will use the names proposed by McNeill and Levy
[39] as their taxonomy is the only one that incorporates all the categories.

iconic gestures
picture the semantic content of speech

11
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metaphoric gestures
picture an abstract idea rather than a concrete object or event

beat gestures
mark the rhythm and pace of speech

symbolic gestures
standerdized gestures, complete within themselves without speech

deictic gestures
point at people or spatialized things

cohesive gestures
emphasize continuities, can consist of iconics, metaphorics or even beats

butterworth gestures
arise in response to speech failure

The taxonomy described here is related to psycholinguistics and used to explain
how speaking and gesturing are two products from the same cognitive process. The
gestures and their interpretations are often culture dependent.

2.1.2 HCI and gesture
Karam [30] also described a taxonomy of gesture, but from an HCI point of view. In
her taxonomy there is a lot more focus on the context of the gesture such as the specific
computer application and the control modalities with which the gestures are performed.
In describing the different types of gestures, she uses partly the same terminology as
Zhao does, but additionally, the gestures are put in a HCI context.

Deictic gesture involve pointing in order to identify directions, objects, actions, and
have been used on 2-dimensional screens as long as there has bean a mouse and is still
used on touch screen devices as well as in 3-dimensional applications.

Gesticulation, which was called iconic gestures by Zhao, is not gesturing with inde-
pendent meaning. Gesticulation refers to the hand gestures people make during verbal
communication and must thus be analyzed in combination with speech recognition
which is not used in every day applications but is certainly researched [45].

Manipulative gestures refer to a type of gestures that manipulate or involve real or
virtual objects, they are independent from verbal language and are not discussed by
Zhao. Manipulative gestures can be ”dragging” an object on a 2-dimensional screen
with a mouse, but also rotate or move a tangible interface object that refers to a virtual
object in a virtual reality space.

Semaphoric (or symbolic) gestures are specific gestural forms that have a specific
meaning. Good examples are the well known swiping, pinching, and rotating utilized
on many smartphones and tablets. Semaphoric gestures can be either static or dy-
namic. A static gesture would be a specific pose with a specific meaning, holding your
computer mouse on an icon often presents you a help message. A dynamic gesture in-
corporates movement, for instance, dragging your mouse over a number of icons often
selects this group of icons.
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Sign language can be seen as a form of semaphoric gestures, as it also involves a
fixed set of gestures with corresponding meanings. However, due to the connection
with linguistics, the high number of different gestures and the incorporation of gram-
matical structure, it is often treated as a different category.

2.1.3 Music and gesture
Another perspective on gesture, which gets us more in the field of artistic expression,
are the musical gestures described by Jensenius et al. [28]. In his theory there are four
categories of musical gesture.

Sound producing gestures are gestures that are directly related to sound production
or sound modification. Hitting a drum and plucking a string are examples of sound
production whereas moving back and forth ones finger on a guitar neck in order to
create a vibrato effect would be sound modification.

Communicative gesture are used by performers to communicate with each other, or
for instance the gestures of a conductor to the performing musicians.

Sound facilitating gestures are all the gestures that performers make in addition to
the sound producing gestures. A piano players do not only move their fingers, but also
move their hands and upper body along with their fingers.

Sound accompanying gestures are gestures that follow the music rather than pro-
duce or control it. The most prevalent type of sound accompanying gesture would be
dance, which in itself has many different forms.

This taxonomy incorporates the fact that beyond functional, communicative gesture
and expressive, unconscious gesture, there are aesthetics in gestures which play a role
in performance arts.

2.1.4 Dance and gesture
There are many ways to look at gesture from a dancer’s perspective. Dance is, in a
way, the art of gesture. In this section I will give a short introduction in a part of
the terminology as used in Laban movement analysis (LMA) [43]. LMA is a tool for
describing, interpreting and notating human movement. I will describe two methods
of LMA that are used to describe motion or gesture. The effort system and the use of
crystals.

The effort is a system used for describing characteristics of movements. There are
four dimensions in effort, each of them having two extremes. Three of the dimensions
are shows in figure 2.1 In space, a movement can either be direct to a goal or indirectly
moving towards a goal. The weight of a movement can either be strong or weak. A
movement takes time. This time can either be sudden or sustained. The flow of every
movement is either bound or free. Every movement can be described using these four-
dimensional space. Floating for instance is a light, sustained, flexible and indirect
movement. Pressing is a strong, sustained, direct and directed movement.

Laban also devised a set of geometrical figures to be used as guidelines for move-
ments. He called these geometrical figures crystals (see figure 2.2). The idea was for
dancers to imagine themselves in these crystals and follow the line of the crystals, reach
for the extremes of the crystals and follow the planes that build up the crystals. These
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Figure 2.1: Three of the four effort dimensions with on the corners of the cube eight
movements that correspond to that position in the three-dimensional space

Figure 2.2: The shapes of the five crystals

five shapes are: the cube, the tetrahedron, the octahedron, the dodecahedron and the
icosahedron.

2.1.5 Expression and gesture

One other way to approach gesture for expressive control is to look at a person in a
specific context or task, see what types of gestures this person is naturally doing and
using these to control expressive parameters [20]. In a project with a violin, the hyper-
violin, he analyzes the position of the left hand of the violin player, the orientation
of the bow and the distribution of the weight over the two feet of the violin player
to spatialize the sound over eight different speaker. Such an expressive interface can
influence a performance, but the performer does not necessarily have to focus on doing
the right gestures: the control gestures are natural for a violin player.

In a similar project, computer vision techniques were used to track the the size and
openness of the mouth of an actress while speaking [19]. The shape of her mouth was
controlling sound effects that were applied to her voice. A screenshot of the software
is shown in figure 2.3. Her lips are blue, because this gave the strongest contrast with
her face and thus gave the most reliable control.
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Figure 2.3: A screenshot from the software used for analyzing the actress and control-
ling the sound effects

2.2 Modalities for gestural control
For motion and gesture to be used by a computer for expressive control, it needs to be
sensed first. An extensive overview of types of control paradigms is presented by Mi-
randa And Wanderley [40]. Many ways of sensing gesture have been developed. Every
way of sensing gesture puts different kinds of possibilities and limitations on the total
system. Multiple ways of sensing are often combined to achieve more reliable control
or different levels of control. Pallàs-Areny and Webster [44] described a number of
characteristics for specifying any type of sensor. Some of these characteristics are:

Accuracy: how close approaches the measurement the actual measurand.

Resolution: the smallest difference of the measurand that can be detected, both tem-
poral as spatial.

Linearity: the curve with which the measurement deviates from the measurand.

Repeatability: the similarity of results on short-term repetitions by the same person
under similar conditions.

Reproducibility: the similarity of results on long-term repetitions by different people
under different conditions.

Speed of response: the speed with which the measurement responds to a change in
the the measurand.

In this section some techniques for sensing gesture will be described, some of the
advantages and disadvantages will be noted and some examples of applications where
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these techniques were used will also be described. Tanaka [57] proposed to catego-
rize DMI’s in two categories: physical and non-physical DMI’s. I propose to divide
the non-physical interaction category in two more specific categories: motion capture
based interaction and wearable sensor based interaction. The distinction is that motion
capture systems get their input from one or more camera’s and/or sensors. This requires
the performer to stay in the line of vision of these camera’s. Wearable sensors are not
subject to these limitations. Some of the described sensors lie somewhere between two
of these categories. Performance setups or systems often combine multiple modalities
for a wider range of control.

2.2.1 Physical interaction
Physical control modalities include interaction interfaces where the user actually has to
touch the interface in order to interact with it. Manning [37] (again focusing on DMI’s)
classifies this category in four sub-categories: (1) Augmented musical instruments, (2)
instrument-like gestural controllers, (3) instrument-inspired gestural controllers, and
(4) alternate gestural controllers.

Doati’s Hyper-Violin [20], described in section 2.1.5 would be classified as an Aug-
mented musical instrument. Augmented musical instruments include traditional acous-
tical or electrical musical instruments augmented with sensors or control elements to
control effects or additional sounds. The Hyper-Violin is played like any other violin,
but the hand movements and weight distribution of the violin player causes additional
effects.

In 1984, one year after the release of the MIDI protocol, Michel Waisvisz was the
first artist to build an experimental, gestural interface to control digital synthesizers.
The Hands [31, 61] were wooden frames that could be worn on the two hands, with
sensors for finger positions, rotation and proximity (see figure 2.4). One could almost
categorize this instrument as a motion capture instrument rather than a physical inter-
action instrument due to the fact that almost all sound control is done trough gesture.

Figure 2.4: The hands by Michel Waisvisz

Anyx Ashanti’s Beatjazz instrument [6] is one of the third category: an instru-
ment inspired gestural controller. His instrument consists of two hand controllers
equipped with accelerometers for gestural control, pressure sensitive pads configured
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to be played as saxophone fingering and other expressive control, a mouthpiece for
saxophone-like improvisation and several other interactions. The instrument was cre-
ated based on the idea of melodic playing like on a saxophone, but the instrument
(which is still being developed) looks and sounds nothing like one. The instrument is
not limited to melodic playing, but also triggering, drumming and looping.

Figure 2.5: Onyx Ashanti with his Beatjazz instrument

A different type of approach for instrument development was taken by Alberto
Boem, inventor of Sculpton [11]. Sculpton is a tangible object designed to enable
the user to literally sculpt the sound by sculpting the object. Figure 2.6 shows the
interaction with a Sculpton module. The Sculpton was not based on the concept of
existing musical instruments, but on the abstract idea of sculpting a sound through
sculpting an object.

Figure 2.6: Interaction with Sculpton without and with cover.

2.2.2 Motion capture
The notion of using human motion without physical contact to an instrument for musi-
cal expressions is not a new one: the Theremin, invented in 1920 by the Russian Lon
Theremin the first known instrument that was played by hand gesture without physical
contact to the instrument. The Theremin (figure 2.7) consists of one oscillator and two
antennas. The proximity between the two antennas and the player’s hands is sensed and
translated to the pitch and volume of the oscillator. Recent versions of the Theremin,
such as the Moog Ethervox, translate the hand positions to MIDI messages, thereby
enabling musicians to play any MIDI equipped synthesizer using hand gestures.
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Figure 2.7: Lon Theremin playing his instrument

The Theremin was to the first technique for motion tracking, but in a very limited
sense: only the proximity to the two antennas was tracked. The most common way of
motion tracking nowadays is much more complex: optical motion tracking using cam-
eras. There are many systems using different techniques, ranging from single cameras
to combinations of multiple camera’s and depth sensors.

Various complex, fast and high-resolution systems for motion capture applications
were developed by Qualisys. Some of the systems use markers worn on the body for
reliable full-body tracking and multiple cameras to capture motion in any direction.
These systems are rather expensive and thereby not often used for artistic, expressive
applications, but they are used for psychological research in body movement during
musical expression [48].

An affordable but good system for simple expressive applications is the Microsoft
Kinect. It is equipped with an RGB camera and a depth sensor which enable users to
do multiple person skeleton tracking as well as face tracking. The spatial resolution as
well as the temporal resolution are not very good, but enough to track body position
and pose. One downside is that it may be difficult to track partly occluded bodies,
self occluding bodies or distinguish between the front or back from a person. Another
downside is that the resolution is to low to track details like hand posture while tracking
the full body.

The Kinect is used by Imogen Heap [41] to track her position on stage during her
music performance. Dieter Vandoren uses a setup with three Kinect sensors in his
performance Integration.04 [60]. The Kinect sensors are positioned in a triangle, all
three the sensors pointing to the center. Data from the three sensors is integrated into
one three-dimensional model by determining which of the three sensors has the most
reliable perspective on the performer.

Another approach to motion tracking was developed by Ruud Barth [9] which fo-
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cused on hand gesture, inspired by the Theremin. His system aimed to enable high reso-
lution, two-dimensional, mid-air hand gestural control. His setup included a glove with
two LED lights on the index finger and thumb and an infrared sensor found on a Wi-
imote game controller. The system was able to accurately detect the two-dimensional
position of the two fingers and whether the two fingers where pinched together or not.
This was used in several musical instruments.

A system which also focuses on hand tracking is the Leap Motion. The Leap Mo-
tion is a device with two infrared cameras and three LED lights, able to accurately
track the position and movements of two hands and ten fingers. There is again the
problem of occlusion and the small range (about 1x1x1 foot, right above the sensor).
But due to the high resolution and low latency, it can be effectively used as expressive
controller, as done by Anton Maskeliade [1]. Meskeliade uses different hand gestures
and postures to control musical effects in a setup combined with hardware controllers.

2.2.3 Wearable sensors
All the optical motion capture systems have one thing in common: external, statically
places sensors track the dynamically moving bodies within their range. Usually, a
two- or three-dimensional space model is created, and the position of a body is tracked
within that virtual space. Wearable sensor technology takes a completely different
approach to gestural interaction. There are many types of sensors, most of them can be
as small as a couple of millimeters, and these sensors can be placed all over a human
body to turn this body into a gestural controller. But, whereas with the optical motion
capture systems, the space is an instrument which is played by the human body, with
the wearable sensors, it is the body itself which is turned into a musical instrument.

In principle, any type of sensor can be used as a sensor for expressive control. In
this section I will discuss a number of them:

• Accelerometer

• Gyroscope

• Magnetometer

• Flex sensor

• Xth Sense

The accelerometer is a sensor which, as the name implies, senses acceleration.
Proper acceleration to be exact, rather than coordinate acceleration. This means that
even when the sensor is not moving and not accelerating, earth’s gravitational force
will be measured as acceleration and when in free fall, the sensor will measure zero.
This makes the sensor very applicable when trying to analyze motion. There are one-,
two- and three-dimensional accelerometer sensors. In most devices, three-dimensional
sensors are used. Accelerometers can be used to track the amount of movement [41, 7]
and to recognize movement patterns [34, 10, 13].

Gyroscopes, which are often used in combination with accelerometers, measure
angular velocity. Using this angular velocity and a balance position, gyroscopes can be
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used to measure the orientation of an object. The orientation of an object can also be
determined with an accelerometer, but only when the object is not moving. Movement
or acceleration do not influence the measurement of a gyroscope. Gyroscopes are
therefor useful when an accurate tracking of orientation is required [41].

The magnetometer is the third orientation related device. The most common ap-
plication of such a sensor is to use it as a digital compass. It is useful in expressive
applications if the orientation or direction of an object relative to the earth or another
object is required [41].

Flex sensors are flat, flexible sensors over which the resistance increases as the
sensor is bended further. The sensors are often used in gloves to track the position of
individual fingers [60, 41]. It can also be used in other parts of clothing to measure
the angular position of for instance the arms, legs and neck without the use of optical
sensors.

One wearable sensor which is designed specifically as a wearable sensor for music
and performance arts is Marco Donnarumma’s Xth Sense: a biophysical sensor with
custom software [21]. The whole project, both hardware and software, is open source.
It is created ”... not to interface the human body to an interactive system, but rather
to approach the former as an actual and complete musical instrument”. The Xth Sense
sensors capture the low-frequency vibrations produced by the performer’s body. These
vibrations are translated to an audible frequency range and gesture related features are
extracted which can be used as control parameters.



Chapter 3

Accelerometer Interaction

From the wearable sensors that were mentioned in section 2.2.3, accelerometer sensors
were chosen to use for this project. In the first place, because accelerometers have
been proven to be useful for gesture recognition related application. Gyroscopes and
magnetometers may be usable as well and may even be more effective for specific
type of gestures. If a person wears an accelerometer on the hand, a simple horizontal
turning of the hand will not be measured whereas a gyroscope would measure this
gesture. Though for most types of gestures, accelerometers will be effective.

Many devices nowadays are equipped with an accelerometer. Of course, the Wi-
imote which is very affordable and easy to integrate with a personal computer has been
around for several years. But also mobile devices like smartphones and tablet comput-
ers often house an accelerometer as well as a gyroscope and other sensors. Being able
to incorporate software like the one in this project in hardware that people already own,
makes it more accessible and affordable which can only be a good thing.

This chapter will be focused on the first research question regarding accelerome-
ters:

1. Explore the current possibilities for gestural control using wearable accelerome-
ter sensors.

In order to gain more insight in the possibilities of the use of data from accelerome-
ters worn on the body for expressive control, a number of different types of interactions
will be discussed. These different interaction types will be ordered on increasing com-
plexity. The different interaction types that will be discussed are:

• Basic interaction

– Continuous orientation

– Discrete orientation

– Peak accelerations

– Energy

– Gesture synchronization

21
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• Gesture repetition and tempo

• Gesture recognition

The first five interaction types are computationally rather simple. They only require
a direct mapping of a mathematical feature derived from the sensor data to an expres-
sive parameter (possibly through dynamic scaling [7] or some other post processing).
Tempo detection and gesture recognition, on the other hand, require more sophisticated
techniques such as statistical machine learning, template matching or other means of
gesture modeling.

3.1 Basic interaction types
As stated before, the following interaction types are measured through rather simple
calculation, rather than complex algorithmic procedures. Some of the interaction are
calculated using simply the current sensor readings Xt = {xt, yt, zt}. Here, xt, yt and
zt are the sensor readings of the three sensor axis at time t. Some of the interactions
are calculated using the last n sensor readings. These sensor readings then have to
be stored in a buffer B = {Xt−n+1, Xt−n+2, ..., Xt}. Changing the value for n then
changes the behavior of the function output. In general, larger values for n results
in more gradual, less sensitive function output, whereas smaller values for n result in
higher timing accuracy.

3.1.1 Continuous orientation
The first interaction type is interaction by continuous orientation. Different poses from
users can be detected using accelerometers worn on the body by calculating the three-
dimensional orientation of the sensor in relation to earth’s gravity. Accelerometer sen-
sors sense acceleration, so even if it is not moving, the sensor will sense the gravi-
tational force of the earth. When using a three-axis accelerometer, the angle of this
gravitational acceleration between the different axis can be calculated in order to de-
rive the orientation of the accelerometer. The following equation is used to calculate
three different tilt values for three different combinations of axis.

tiltxyt = atan2(xt, yt)

In applications this can be used for expressive control by mapping the tilt of a
certain axis to an expressive parameters and letting changes of orientation of the sensor
(on a limb for instance) control a parameter.

3.1.2 Discrete orientation
Whereas continuous control over parameters can have very expressive results, some-
times discrete events are more approriate. Such as selecting a mode of operation or
holding and releasing a specific state. By dividing the range of values of the contin-
uous control into a number of discrete ranges, a different type of control is created.
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When worn on the hands, discrete events can include 6 discrete orientations: hand
palm up, down, left, right, and finger up and down.

When wearing two sensors, one on each hand, the interaction pattern can even be
made more complex. For instance: when two hands have the same orientation, use this
orientations for continuous control, otherwise, use the six discrete orientations for the
two hands independently.

3.1.3 Peak acceleration

Another type of discrete event is the peak acceleration: a quick movement or rotation of
the sensor. It can be used to trigger events with precise timing. In a musical application,
this event is precise enough to play notes of an instrument. The formula to determine
the occurrence of this event on any time t is fairly simple:

peak acceleration ∈ 1, 0 = abs(mag(Xt)−mag(Xt−1)) > threshold

where mag(t) is the magnitude of the acceleration on one 3-dimensional sensor:

mag(Xt) = sqrt(x2t + y2t + z2t )

As every movement start with a positive acceleration and stops with a negative ac-
celeration, the presented function may result in two events for a single movement. This
problem can be solved by smoothing the sensor readings. However, that also results in
two fast, consecutive movements being merged in one event. Therefor, using a gyro-
scope sensor for this type of interaction works better, when using the same function.

3.1.4 Energy

The fourth interaction type that is detectable by accelerometer sensors is the energy,
the total amount of movement. Accelerometers only measure acceleration, so the start
and endpoints of every movement of the sensor show an increased response of the
sensor. Measuring the amount of movements can be done for every axis individually
or for the three axis combined. For one axis the energy is calculated as the variance of
acceleration of the last n sensor readings. Again, for the three-dimensional energy, the
individual energy values are combined by calculating the magnitude.

In applications this measure can be used to follow the amount of energy exerted
by a performer. This may for instance control the intensity of certain sound or light
effects. By changing the number n, the response time of this interaction can be altered.
With a very small n, the response is very direct. Short periods of motion result in short
periods of high response of the measure. Higher values for n result in a more gradual
change of the response enabling the performer to gradually build up the intensity.

One important aspect of this measure is that it does not actually measure the amount
of displacement of the sensor, but really the amount of acceleration. Multiple short
movements have a stronger effect on the measure than a single long movement.
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3.1.5 Gesture synchronization

The four described interaction types, all use a single three-dimensional sensor. Syn-
chronization of gesture is an interaction type that incorporates interaction between mul-
tiple sensors. One performer may wear two sensor (e.g. one on each hand) to control
some effect or instrument. Or two performers may both wear a sensor on the same
hand, so the synchronization between them is measured.

Determining the measure of synchronization between two sensors is done by cal-
culating the covariance the two sensor’s output over the last n data samples. There are
two ways of combining the individual axis and the two sensors: (1) first calculate the
three-dimensional energy per sensor, and then calculate the covariance, or (2) calculate
the covariance between sensors on the three axis, and then calculate the magnitude. In
the first case, the sensors do not have to move in the same direction in the same ori-
entation, to induce synchronization. In the second case, this orientation and direction
does matter.

3.2 Gesture repetition
In a lot of artistic fields, especially music, repetition plays a fundamental role. Every
repetition has a tempo, which has also been used as control mechanism in expressive
applications. Tempo detection can be done by first transforming the signal into a sym-
bolic representation [32], but this would lose too much information to detect gesture
repetition. For pitch detection from a raw sound signal, there are three possible tech-
niques at hand: comb filters [53], Fourier analysis and auto-correlation [17]. The last
one seemed to be the easiest to extend to tempo detection from three-dimensional ac-
celerometer data due to the few tunable parameters.

3.2.1 YIN-MD

The auto-correlation based pitch detection method called YIN that was employed in
[17] was used as a basis for the multi-dimensional tempo detection method YIN-MD.
The original method consists of six steps:

Autocorrelation function response over a range of possible delay values to detect
periodicities

Difference function making the method less sensitive for amplitude change

Cumulative mean normalized difference function (CMND) deals with ”too high”
errors

Absolute threshold deals with ”too low” errors

Parabolic interpolation deals with errors due to large sampling period

Best local estimate finds the optimal local estimate
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Steps five and six are not necessary for accelerometer based tempo detection as
the sampling rate of accelerometers is low enough (50 to 100 Hz) to do an exhaustive
search on a large range of possible periodicities. For three dimensional tempo detec-
tion steps one to three were perform on the individual axis data streams resulting in a
function d′t,d(τ) where d ∈ {x, y, z}. These values were then combined by calculation
the three dimensional magnitude for each delay time τ as:

d′′t (τ) =
√
d′t,x(τ)

2
+ d′t,y(τ)

2 + d′t,z(τ)
2

After combining the values for these three dimensions, the fourth step was applied
to detect gesture repetition. Gesture repetition is detected when:

min
τ
d′′t (τ) < At

The period of repeated gesture is found by determining the smallest τ where d′′t (τ) <
At, i.e. the first dip in the CMND respons that falls below the threshold At.

Three factors that influence the behavior of this algorithm are:

• Window size (W )

• Absolute threshold (At)

• Low-pass filtering (α)

The original paper [17] states that the value of window size influences the perfor-
mance of the algorithm. In the original algorithm, the window size also influences the
temporal resolution. As this is not the case for the currently implemented YIN-MD
algorithm, the effect of W on the accuracy does not necessarily have to be the same.
This will be investigated in section 5.

The absolute threshold parameter influences the sensitivity of the algorithm to de-
tect repetition. In the original algorithm, parameter optimization was not necessary as
the parameter value did not drastically influence the accuracy of the pitch detection.
However, for YIN-MD in the current context, distinction between repetition and non-
repetition is just as important as the detection of the correct interval. The effect of this
parameter will therefor also be investigated in section 5.

Cheveigne reported that a low-pass filter as preprocessing stage before audio based
pitch detection reduced errors. In the implementation of YIN-MD, a low-pass filter
was integrated as an alpha filter, a common tool in signal processing.

3.3 Gesture Classification
This section will be describe a number of well known techniques for gesture classifica-
tion. Gestures are represented as multi-dimensional time series. These same techniques
can often be applied to different types of data. Two-dimensional position data, such as
from mouse, surface or video interfaces often work well. Three-dimensional position
data such as from motion capture systems could also be used. Sensor which do not
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directly sense position information such as accelerometers or gyroscopes can be used
just as well.

The classical approach to pattern recognition is training a classifier with a large
dataset of examples and apply this classifier to new data. Hidden Markov Models
(HMM) are very well suited for classifying temporal patterns [42]. This method was
used for many applications like different types of sign language recognition, hand ges-
ture recognition and full body motion recognition.

Figure 3.1: A visual representation of HMM time modeling

Rubine [49] used a different approach. A set of features are extracted from gesture
examples and a linear regression classifier is used to distinguish between new gestures.
A 30 class classifier was trained to perform with a 97% accuracy using 40 examples
per class. The features that were extracted included initial angle, length of gesture, size
and angle of the bounding box and several others.

In order to reduce training time and allow users to easily create their own gesture
sets, template based classification methods were developed. Wobbrock’s $1 unistroke
recognizer [62] is one example of such a template based method. The $1 recognizer has
a preprocessing stage which accounts for variation like scaling and rotation of gestures
and then picks the most likely gesture template based on euclidean distance. Another
common template based technique uses Dynamic Time Warping (DTW) [64].

3.3.1 Dynamic Time Warping (DTW)

DTW is an algorithm which aligns two time series which may have a different length
and speed and measures the distance between these two time series. The alignment
process is also called matching. The DTW distance can be used in a KNN classifi-
cation algorithm to compare time series and find the class most similar to an evalu-
ated time series. This method was used for accelerometer based gesture recognition in
uWave [34]. Every class required only one recorded template, which also makes this a
template-based gesture recognition method.
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Figure 3.2: A visual representation of DTW matching

The DTW matching algorithm which is describe in Algorithm 1 receives two ar-
guments: two vectors of size n and m. Basically, the algorithm does a greedy search
to match every sample of vector N to a sample of vector M with a minimum match-
ing distance between the two time series. The classic DTW algorithm uses |N(n′) −
M(′m)| as cost function, but this implementation uses multi-dimensional time series.
Therefor, the euclidean distance between to samples is used as cost function.

Algorithm 1 The DTW matchin algorithm
procedure DTWDISTANCE( N(1..n), M(1..m) ))

DTW [n,m] . Distance matrix
for n′ = 1..n do

for m′ = n..n do .
cost := euclideanDistance(N(n′),M(m′))
DTW(n’,m’) := cost +
min(DTW(n’-1,m’), DTW(n’,m’-1), DTW(n’-1,m’-1))

end for
end forreturn DTW (n,m)

end procedure

The implementation of [33], which is also used in this project, also incorporates
a locality constraint: a parameter which constraints the warping distance between the
two vectors.

DTW is designed to be able to align time series of different lengths. Nevertheless,
[33] states that performance increases when input vectors are resampled to be the same
size. In an on-line situation, such as in an expressive application, the input data is not
segmented, so resampling to a certain vector length is not possible. Solution for this
problem in this project was to evaluate the different gesture template with a different
number of input samples from the sensor data buffer. Each template was matched with
a part of the data buffer of the same size as the gesture template.
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3.3.2 Phase shifting dynamic time warping (DTW-PS)
DTW-PS [55] calculates the matching distance between the template and another time
series x on P different phase shifts of the template. A phase shift here is defined as
the transfer from a certain portion of the data samples from the start to the end of the
series. ps is a value between 0 and 1 and shift(ps, g) is the phase shifted template g
with phase ps. Finding this most likely phase shift is done for every gesture template
g in gesture set G. The recognized gesture in time series x is found as:

argmin
g

argmin
ps

DTWDistance(shift(ps, g), x)

Technically, this algorithm divides every gesture template into a set of gesture tem-
plates. For every template, a number of phase shifted variants are evaluated. But in
fact, these different variants are all evaluated independently.

The DTW-PS adds one parameter to the DTW recognition algorithm: phase reso-
lution pr. The parameter tells the algorithm on how many different phase shift values
the DTW matching algorithms should be performed.

3.3.3 Gesture Follower
All the described techniques are so called offline recognition techniques: gesture data
is recorded from start to end, the data vector is fed to the classifier, the gesture is
classified. Bevilacqua developed a new approach to gesture recognition where not
only recognition of a gesture is important, but also the time progression of the gesture
[10]. This time progression means which exact part of the gesture is being performed
at an exact time. This method also provided early recognition, which means that the
classifier could make a prediction of the performed gesture before the gesture was
finished. This method was implemented in the software called Gesture Follower. The
model is based on the HMM approach of gesture modeling but guarantees precise
temporal modeling of gesture profiles. One the developed applications with the gesture
follower involved a mapping between the time progression and the samples of a sound
file, thus allowing performers to precisely speed up or slow certain parts of the sound
file in real-time. The Gesture Follower was also used with Barth’s DMI [9].

3.3.4 Gesture Variation Follower
Caramiaux [13] took the analysis of gesture tracking even further by incorporating
tracking of gestural features in a gesture recognition model called the Gesture Variation
Follower (GVF). The gestural features that were incorporated in the model were phase,
speed, scale and rotation. Whereas the GF model was already able to track the phase
and speed of a gesture performance, the GVF model could track even more specific
features. This feature tracking can also be considered as feature invariance when the
model is only used as a recognition model.

The GVF method is based on Particle Filtering (PF) or Sequential Monte Carlo
methods [51, 22]. A state model is defined which contains the current state of the sys-
tem. This state is described by the gesture phase, speed, scaling and rotation. On every
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Figure 3.3

new received sample, Monte Carlo Sampling is applied. State samples (i.e. particles)
are generated from the current model state distribution. These state samples are then
weighted according to the new observed sample. In the resampling step, particles with
negligible weights are selected and redistributed over the state space.

Recognition using this model is done by summing the weights of the particles for
each gesture template in a gesture set. The gesture with the highest total gesture weight
is selected as the recognized gesture.

There are no explicit limits for the values of these summed weights: they do not
necessarily add op to one like probabilities for instance. Therefor, it is difficult to detect
whether the analyzed gesture actually is the gesture template with the highest summed
weight, or in fact a gesture which is not yet incorporated in the gesture vocabulary.

A requirement for this method to work is that the particles are redistributed over
the state space at the start of a new gesture.

3.3.5 Gesture vocabularies
Different types of gestural control applications apply a different method for acquiring a
gesture set. For many applications, a fixed gesture set is defined to be coupled with spe-
cific functions. In these situations, the common rules of HCI should apply: the gestures
should be easy to use, easy to learn and correspond well to the triggered functionality.
To achieve this, measures of gestural features were developed in [35] that correlate well
with their similarity ratings of different gestures. A gesture set with more distinguish-
able gesture is easier to memorize than a gesture set with more similar gestures. It is
also important that the recognition performance of the gesture recognition software is
high such that the system behaves in a way that the user expects it to behave. Another
method is to let the user define their own gestures for different functionalities [9, 62].
A more experimental line of research goes into finding preferred or more intuitive ways
for specific groups of people in specific situations [29, 12]. Other methods, like the one
presented in [56] include both classifier accuracy and a set of human factor objectives
in an analytical approach for gesture vocabulary selection.

The template-based gesture recognition methods are typically used in applications
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Figure 3.4: The unistroke vocabulary by Goldberg [24]

where users can define their own gesture set. However, for testing performance of a
new method on multiple users, defined gesture sets are still necessary. A well known
set of unistroke gestures was created by Goldberg [24]. This set was a rather small set
of two-dimensional gestures, but all the gestures were rotated and mirrored in different
directions to make it into a bigger gesture set.

Figure 3.5: The gesture vocabulary by [34] also used by Caramiaux [13]

Another simple gesture set was defined by [34] which was also used by [13]. The
vocabulary was designed to be functional, easy to remember and easy to perform. The
gestures are all simple and short.

Figure 3.6: The musically inspired gesture vocabulary designed by Barth [9]

In order to create a more musically associative gesture set, the principle of unistroke
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gestures was combined with gestures from musical conducting [36] and improved for
classifier recognizability by Barth [9]. The aesthetics of the gestures was also taken
into account here as the project was focused on live gestural music performance.
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Chapter 4

Gesture recognition by
repetition

This section is dedicated to describing the core goal of this project, giving some more
specific details and describing the setup that was used in this project. The core goal, as
stated in section 1.2 is:

2. Create an expressive application using only accelerometer based interactions.

The underlying motivation of this question is the fact that all current gesture recog-
nition algorithms follow a certain assumption: that the data is segmented i.e. the start
and end of a gesture are known. Applications which involve gesture recognition on
accelerometer data usually mark the beginning and end of a gesture by using a button
or footpedal press. This helps the system to reliably segment the signal. For interac-
tive dance on the other hand, the situation is quite different. The use of buttons and
footpedals is often not practical because it restricts movements of dancers.

The goal of this project is to recognize repetitive hand gestures made with three-
dimensional accelerometer sensors. Using repetition of gesture to distinguish between
gesture and non-gesture eliminates the necessity of a button or footpedal for signal
segmentation. A method for detection of repetition was implemented and evaluated
(section 5). Three algorithms for gesture recognition that we think are suitable for this
purpose are compared: dynamic time warping, phase shifted dynamic time warping
and gesture variation follower (section 6).

In order to evaluate algorithms for repetition detection and gesture recognition, user
data is required. To record this data, a gesture set must be defined. The next sections
will describe details on (1) the hardware setup, (2) the process and considerations of
the gesture vocabulary design, and (3) the data acquisition process.

4.1 Hardware and data processing
For sensing gestural data, hardware from the Sense/Stage platform was used. Sense/Stage
was developed by Marije Baalman, a freelance artist and hardware engineer at Steim.

33
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Everything in this project was done using a single MiniBee starter kit (figure 4.1a)
which consists of:

• 2 x Sense/Stage MiniBee (the sensor units)

• 1 x XBee Explorer USB (the coordinator board)

• 3 x XBee with wireless chip antenna (wireless communication)

The MiniBee’s are equiped with an Analog Devices ADXL345 3-axis high resolu-
tion, low-power accelerometer sensor. The sensor can be configured to have a range
of either ±2g, ±4g, ±8g or ±16g with varying resolution from 10 to 13 bit increas-
ing with the range. In the Sense/Stage MiniBee, the range is set to ±16g with 13 bit
resolution.

Sample rate with one single MiniBee sending accelerometer data could be as high
as 167 Hz (interval of 6 ms). When adding a second MiniBee, the timing became very
inconsistent. Reliable data from two MiniBee’s can be received at a sample rate of 50
Hz (interval of 20 ms). In this project, data is collected at 33 Hz (interval of 30 ms).

The MiniBee’s are also equipped with an Atmega328p microcontroller which can
be programmed to do some of the event detection calculations (which were discussed in
section 3). The Sense/Stage platform was also used in the Sonic Juggling Balls project
[54]. They developed juggling balls using the MiniBees’ accelerometers, on-board
catch detection and sound generation and an integrated speaker.

The data was received into a pc using the Python based PydonHive software (freely
distributed on the Sense/Stage website [8]) and forwarded to other software appli-
cations using Open Sound Control messages (OSC) [5]. The real-time parts of the
software such as prototype development, recording and online testing of the software
was done using Pure Data (PD), a visual programming environment comparable to
MAX/MSP. PD is open source and mainly used by musicians, visual artists, perform-
ers, developers and researchers. Visual programming environments like PD are very
useful when designing complex multi/threaded applications where timing plays en im-
portant role, which is certainly the case in musical applications. Another great ad-
vantage is the fact that these environments re always in runtime: every change in the
programming is immediately effective, which makes quick prototyping a lot easier than
coding environments.

4.2 Gesture vocabulary design
To validate the performance of the system, we need a gesture vocabulary. A number
of possible gesture vocabularies were already mentioned in section 3.3.5, but there are
some specific requirements for this project. These requirements on the desired gesture
set are as follows:

• The gestures should be simple to remember and easy to perform

• The gestures should be continuously repeatable (i.e. the start and endpoint of the
gestures are the same)
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(a) The set of Sense/Stage sensors
sewed on wrist bands

(b) One of the sensor sensors when
equipped

Figure 4.1: The Sense/Stage hardware setup as used in this project.

Figure 4.2: The total gesture set of 20 two-dimensional gestures

• The gesture set should maximize classification accuracy

Using these guidelines and the mentioned papers as inspiration, a set of geomet-
rical, continuous gesture shapes was defined. This set included a number of simple
geometrical shapes with different directions of movement and different orientations.
After initial testing and a pilot experiment, user feedback was that cornered shapes
(e.g. squares and triangles) were more difficult to perform than fluid shapes (e.g. cir-
cles and eight-shapes). Therefor, some more variations of some existing shapes were
added to the gesture set which resulted in gesture set of a total of 20 gestures (figure
4.2). Speed of the gestures was varied from a period of 1 second to 2 seconds to keep
the gesture speed constant. To test the accuracy of the classifier on different users, we
wanted to have a total gesture set of eight different gestures, similar to [15].

Thus, we wanted to find the subset of eight gestures from this set of twenty gestures
which would maximize the classification accuracy. One possible method for this would
be to record all the gestures and calculate the average classification accuracy for all
these subsets. As there were a total of 125,970 different subsets, a different approach
was chosen.

The chosen approach was to iteratively form gesture sets by semi-greedy adding
gestures to well performing gesture sets. This was done by first recording data of all
twenty gestures, seven trials per gesture. The accuracy for a specific trial of a gesture
set was determined by leave-one-out cross validation: constructing a classifier for the
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Gesture name length (seconds)
corner right down 2
corner right up 2
infinity 2
triangle 1.5
curve down 2
curve left 2
curve up 2
curve right 2

Figure 4.3: The selected gesture set of 8 gestures for the experimental research, with
their respective names and lengths

i’th gesture where i ∈ {1, 7} and calculate the recognition accuracy on the rest of
the trials. The recognizability score of the gesture set was determined as the average
accuracy over cross-validation trials.

The accuracy for all the combination of gesture sets of size 2 were calculated.
There were 190 different pairs in total. There were 15 pairs of gestures that resulted
in a combined classifier accuracy of 100%. The next step was to take all these pairs,
extend all these gesture sets by one more gesture, and recalculate the accuracies for
these gesture sets. Again, there were 15 gesture sets with a perfect accuracy score.
These sets were again extended by one of the gestures. In the rest of the iterations,
the ten best gesture sets were chosen to be extended instead of the fifteen best. This
procedure was now iteratively repeated until the optimal gesture set of 8 gestures was
found. This gesture set is shown in figure 4.3. All gestures, except one, had a gesture
period of 2 seconds, the triangle had a gesture period of 1.5 seconds. Visualizations of
typical data recordings for each gesture are included in appendix B.

4.3 Data acquisition

Data was collected from ten different subjects, mostly colleagues at Steim and AI mas-
ter students from the Radboud University, Nijmegen. To be able to answer all the posed
research questions, subject data was required. Two types of data: (1) a predefined ges-
ture set, performed by multiple subjects, and (2) unique gesture sets created by the
subjects.

Both these data were collected in a single session for each subject. First the prede-
fined set, then the unique gesture set. All the subjects wore the sensor band on the right
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wrist. All but one were right handed. The whole recording session took about fifteen
minutes.

4.3.1 Predefined gesture set
To evaluate how the classification performance is influenced by sensor rotation, sub-
jects recorded the predefined gesture set from section 4.2 at three different hand orienta-
tion: (1) zero degrees, (2) 45 degrees and (3) 90 degrees. This is a small simplification
from the original experiment, where they had five different orientations in the same
range. Nevertheless, three different orientations will be sufficient to confirm the orig-
inal findings. Evaluation of phase and speed invariance was be done by manipulating
the recorded in order to simplify the recording process.

A gesture recording application was implemented in Pure Data and Processing.
Processing is a programming environment based on Java, designed for quick and easy
programming of graphics and animations. The Pure Data part of the application re-
ceived the accelerometer data from PydonHive, while the Processing part of the appli-
cation showed animations of the gesture on the screen which the subjects could follow.

The recording session for the predefined gestures consisted of three sets. The three
sets consisted of animations of the eight gestures in randomized order. After every
gesture, the subject got the chance to see the gesture and try to synchronize with the
animation. Whenever they were ready, they would press the space bar. A countdown ,
from three to one would start after which recording of 7 trials would begin.

At the beginning of the sessions, subject would put the sensor on their wrist. The
sensor band was not moved during the recording session. The subjects were instructed
to keep the sensor horizontal in the first recording set, at 45 degrees in the second
set and at 90 degrees during the third set. The subjects were also instructed to make
the gesture sufficiently big, without explicitly specifying a size. Between sessions,
subjects were allowed to take a short break, as some of them found it to be quite heavy
movements to perform in such a repetitive way.

4.3.2 Unique gesture sets
After recording the predefined gesture set, subjects were going to create their own
gesture set. Whereas the predefined set consisted only of two dimensional gestures
performed with a three dimensional sensor, the subjects could now create of any type
of gesture they wanted. There were two requirements. The first was that the gesture
had to begin and end at the same point, so that the gestures again could be performed
in a repeating way. The second requirement was that a gesture had to be exactly 1.5
seconds long. A metronome was ticking with this interval and instead of synchronizing
with an animation, the subjects now had to synchronize with this metronome.

The subjects had to think of four different gestures and write or draw a represen-
tation of the gesture on a piece of paper so that they could remember it. Again, there
were three sets, of four trials this time, each recorded seven times. Again, the subjects
could try out their gesture, then press space and after the countdown, recording would
start.
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Chapter 5

Evaluation of YIN-MD

In section 3.2 an algorithm was presented to detect repetition and the interval of repe-
tition of multi-dimensional time series: YIN-MD. In this section, we will present our
findings on the evaluation process of this algorithm. The algorithm was evaluated using
the collected user data described in section 4.3. The questions we will be focusing on
are:

3. Can we use repetition of gesture to reliably distinguish between gesture and non-
gesture?

(a) Can we use repetition of gesture to reliably distinguish between gesture and
non-gesture?

(b) Does the type of repeated gesture influence detectability of repetition?

(c) Do different users need different parameter setting?

The YIN-MD algorithm runs on two parameters: absolute threshold (At) and win-
dow size (W ). The absolute thresholds determines the sensitivity of the algorithm to
detected repetition. Window size indicates the length of the auto-correlation interval.
Additionally, the effect a low-pass filter (i.e. an alpha filter) in the preprocessing step
will be evaluated as this was also reported in the original paper.

5.1 Analysis

The YIN-MD algorithm was evaluated on different parameterizations. To evaluate the
performance of repetition detection of the algorithm for one parameterization, simu-
lations were run with the recorded gesture data. The data of each subjects si ∈ S =
{s1...s10}were evaluated sequentially such that there would be two consecutive repeti-
tions of each gesture at a time. For every gesture gi ∈ G = {g1...g8} trial 1 and 2 were
evaluated first. Then, for every gesture trial 2 and 3 were evaluated. This continued
until the evaluation of trial 6 and 7 of each gesture gi. With this method, every second
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repetition of a gesture should be classified as repeating gesture, while every first repe-
tition should be classified as non-repeating. The accuracy of the algorithm of detecting
repetition correctly was used a performance measure.

Figure 5.1: The accuracy ratings for the parameter optimization of the YIN-MD algo-
rithm for two consecutive repetitions of each gesture

5.2 Parameter optimization results
Figure 5.1 shows the parameter optimization results of the YIN-MD algorithm. There
is a clear interaction effect on the accuracy based on the two parameters. The maximum
accuracy of .82 was acquired withAt = .10 andW = 10. Higher values ofW decrease
the average accuracy for different values of At. Higher values for W also shift up the
optimal value of At: for W = 10 the optimal value At = .1 while if W = 60, the
optimal value At = .4.

A higher value of W causes the algorithm to react too specific to cope with the
variability of a performer, and therefor reject too many trials which are actually rep-
etitions. This also explains why the optimal value for At goes up: a higher value for
At results in a more sensitive behavior of the algorithm, therefor accepting more trials
as repetition. This also results in more non-repetition movement being classified as
repetition, therefor increasing false positive errors.

The individual subject results for parameter optimization results are shown in ap-
pendix A. There are some small variations between the optimal settings for the YIN-
MD parameters, but for the nine participating subjects in our research, only two optimal
parameter settings were found: (1)W = 10, At = .1 andW = 20, At = .2. With such
small variability, in most practical situations, it will not be necessary to recalibrate the
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system for every new user.

Figure 5.2: The accuracy ratings for the parameter optimization of the YIN-MD algo-
rithm for seven consecutive repetitions of each gesture

In performance arts, repetitions will often be made longer than two consecutive
repetitions. We also evaluated parameters using seven consecutive repetitions instead
of two. The results are shown in figure 5.2 and optimal parameters were: W = 20,
At = .3 with an accuracy of .92. Longer repetitions increase the reliability. One of the
explanations for this is that the changing points between repetition and non-repetition
cause many of the errors.

When looking at these longer repetitions, the YIN-MD algorithm also show less
distinct optimal values for the parameter optimization. Accuracy values for At >= .2
are all more or less the same. Accuracy value for W ∈ {10, 20, 30} are also in the
same, good range of .90. This increased parameter invariance makes the algorithm
more reliable in different practical situations.

Looking at the parameter optimization results with two consecutive repetition and
seven consecutive repetitions, the optimal parameter setting is the one which performs
well in both situations. By looking at the two graphs, the optimal point on both settings
is selected at W = 20 and At = 2 .

5.3 Preprocessing evaluation
With the parameter setting found in the previous section, the effect of an alpha filter
in the preprocessing stage was evaluated. To have a closer look on the effect, different
values for α were evaluated for different repetition lengths. The results are presented
in figure 5.3.
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Figure 5.3: The accuracy ratings for the parameter optimization of the YIN-MD algo-
rithm for different numbers of consecutive repetitions ofor different values of α

Clearly, a low-pass filter does not have a positive effect on repetition detection
accuracy. Only when evaluation seven consecutive repetitions, α = .5 has a slightly
higher accuracy rate than α = 1 with accuracy ratings of .923 and .917 respectively.
For all other number of consecutive repetitions α = 1 was the optimal value.

5.4 Individual gesture results

Now that a proper parameter setting is found, some more specific analysis is done to see
how YIN-MD performs on the different gestures in the vocabulary of this project. In
order to see whether there was a learning effect between the three recording sessions (0,
45 and 90 degrees rotation), the YIN-MD accuracy ratings were compared. A second
question we try to answer here is whether there is a difference in YIN-MD accuracy
rating between different gestures in the gesture set. The results were analyzed using
ANOVA.

For the difference between recording sessions, there was no significant effect (F (2, 24) =
.314, p = .734). The results are shown in table 5.1. These results tell us that there was
no learning effect in the sense that subjects did not became improve on performing a
smooth, repetitive motion while keeping synchronized with the animation on the screen
during the experiment.

The results for the gesture comparison analysis are shown in table 5.2. These results
are a bit more complex than the previous. ANOVA showed there was a very strong
effect of gesture on the accuracy of YIN-MD (F (7, 20) = 25.324, p < .001). Pairwise
comparison showed that repetition was detected correctly significantly better on gesture
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Accuracy Session 1 Session 2 Session 3
Mean .811 .815 .804
Std. error .010 .010 .010

Table 5.1: The YIN-MD accuracy scores for the three sessions per subject for W = 20
and At = .2 analyzed with two consecutive trials per gesture

8 than on gesture 1 to 5 (p < .001, p = .009, p = .002, p < .001, p < .001). YIN-MD
performed better on gesture 6 than on gesture 1,3,4 and 5 (p < .001, 0 = .025, p =
.002, p = .001). For the rest there are no significant pairwise differences.

(1) (2) (3) (4) (5) (6) (7) (8)

Accuracy
Mean .783 .813 .793 .784 .764 .853 .828 .864
Std. error .009 .010 .015 .015 .013 .009 .014 .006

Table 5.2: The YIN-MD accuracy scores for the individual gestures for W = 20 and
At = .2

5.5 Conclusion
The question that was addressed in this research was whether we are able to reliably
detect repetition and measure the repetition interval from three-dimensional accelerom-
eter data. An algorithm for audio pitch detection was implemented and modified into
the presented YIN-MD algorithm to do just this. Gestural user data was used to eval-
uate the performance accuracy of this algorithm and investigate on the effect of the
tunable parameters of the algorithm. Situation with single repetition were considered
as well as longer repetitions.

The results of this investigation look promising. In the situation with only single
repetitions, the algorithm already performs quite well, even though the accuracy is quite
sensitive to parameter settings. When looking at the situations with longer repetitions,
the accuracy went further up and also became less sensitive to parameter settings.

The negative effect of the low-pass filter in the preprocessing stage contradicts with
the results from the evaluation of the original YIN algorithm [17], but there are some
differences in context which may explain this contradiction. YIN was developed and
evaluated with audio data. Audio data has much more energy and noise in higher fre-
quency ranges which may interfere with fundamental frequency estimation. In gestural
data, these high level frequencies do not occur during repeated gesture. The alpha filter
could still have a positive effect through canceling noise, but this did not seem to be
the case.

There is also another difference between the YIN evaluation and the YIN-MD eval-
uation presented here. In audio pitch detection, a tone of 200 Hz would stretch five full
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periods in their optimal time window (which was 25 ms). In our gestural period detec-
tion, an average gesture takes about 1.5 seconds which would stretch only a third of the
window of .5 second.

Average accuracy score’s of around .9 may not seem very desirable, but note that
these results were obtained from experiment subjects with no prior knowledge about
the system or training. When the subjects would be given more time and exercise, these
scores would most definitely be higher.

We looked into possible differences between gestures in detectability of repetition.
Two out of eight gestures scored significantly higher than respectively five and four
other gestures. These results indicate that repetition of certain types of gestures are
easier (or more difficult) to detect than repetition of other gestures. However, no quali-
tative difference can be pointed which distinguishes these two gestures from the other.
The eight selected gestures were all simple geometrical shapes. To see if the algorithm
can detect repetition of longer, more complex gestures, further research is required.

The YIN-MD algorithm was also used with gestural three dimensional hand po-
sition data acquired with a Kinect camera. No qualitative data was collected, but the
system responded reliable in repetition and period detection, so YIN-MD is not re-
stricted to the use with accelerometer sensors.

Currently, there were no other algorithms for multi-dimensional repetition and pe-
riod detection, but there are several other pitch detection algorithms than YIN. These
other pitch detection algorithms, such as FFT-based algorithms or comb filter based al-
gorithms, may also be modifiable to operate on multi-dimensional time series. Further
investigation in this direction may lead to more reliable algorithms than the presented
YIN-MD.



Chapter 6

Comparison of gesture
classification algorithms

In most gesture classification literature, the same evaluation methodology is used: a
gesture vocabulary is selected, user data is collected, classification accuracy is com-
pared between algorithms. In some cases, such as in [13], the classification algorithm is
developed with a specific property so the gesture vocabulary or the user data is recorded
in such a way to support this property (i.e. GVF is supposed to be invariant to sensor
orientation, so user data is collected at different sensor orientations).

In this section we will address a number of questions concerning gesture classifica-
tion and propose a more elaborate methodology for comparison of gesture classification
algorithms.

4. What are the current possibilities in accelerometer based hand gesture classifica-
tion?

(a) How do algorithms compare on specific performance properties and which
algorithm is best fitted for this project?

(b) Can we do inter-user gesture classification using accelerometer sensors?

(c) How do different gesture sets influence classification accuracy?

As described earlier is section 3.3, GVF is a very flexible classification algorithm,
able to do online frame-by-frame gesture classification as well as tracking of multi-
ple expressive gestural features like phase, speed, scaling and rotation. To answer
the second research question of this project, the next section will be investigating into
the capabilities of this classification algorithm in different situation and how these ca-
pabilities compare to the capabilities two other classification algorithms: DTW and
DTW-PS.

With the acquired user data, the first step will be to reproduce the results that were
presented in [13] to confirm that the setup that was used in this project is comparable
to the setup that was used in the original project, as far as GVF implementation goes.
Sensor orientation invariance was said to improve inter-user gesture classification, as
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different users hold (or wear) a sensor differently. To test this, we will compare the
algorithms on inter-user classification accuracy. The algorithms will then be evaluated
a criterion of this specific project: phase invariance. A final algorithm property that
will and compared is speed invariance. The performance of the algorithms will also be
compared on novel gesture sets, designed by the different participants, to see which of
the algorithms is most reliable in different conditions.

The GVF software is openly distributed through Caramiaux’s website [14]. In this
project, the same implementation as in the originally published thesis was used. For
the multi-dimensional DTW algorithm, an implementation was used presented in [33].
This algorithm was extended to implement DTW-PS.

6.1 Sensor orientation invariance
For reproducing the orientation invariance results presented in [13], participants were
asked to perform eight different gestures on three different orientations, seven times
each. The original experiment had a different gesture set and five orientations in the
same range (0 to 90 degrees).

Following the arguments from Caramiaux [13], this sensor orientation invariance
is supposed to solve the problem of users handling the sensor device differently (they
used the accelerometer of a mobile phone to collect the user data). GVF would therefor
give better results for users between sessions and also between users.

For each subject data, evaluation was performed with the three different orienta-
tions as a basis for the classifiers (Otr ∈ {0, 45, 90}) and with the three orientations as
the test data Ote ∈ {0, 45, 90}.

6.1.1 Results
The recognition accuracy results were compared using three-way mixed design ANOVA
analysis with Classifier (GVF, DTW, DTW-PS) as between subject factor and Orienta-
tion of the test data (0, 45, 90) and Orientation of the training data (0, 45, 90) as within-
subject factors. These are shown in figure 6.1. Main effects of all factors were highly
significant (all p < .001) with three-way interaction (F (8, 108) = 39.6, p < .001).

Simple effect analyses was conducted to contrast all classification rates, indicating
that GVF performed significantly better (p < .001) than the other two algorithms in
recognizing gestures at all cases where train and test orientation were not identical (e.g.,
train orientation is 45 degrees and test orientation is 90). In these cases, the classifica-
tion performance between DTW and DTW-PS were not significantly different. When
only looking at the cases where train orientation and test orientation were the same,
DTW-PS performed significantly better than the two other algorithms (p < .001), with
a less strong effect for train and test orientation 45: DTW-PS performed better than
DTW (p = .006) and GVF (p = .019).

In summary, the above analysis revealed the following: GVF performed much bet-
ter when recognizing rotated gestures as compared to the other two algorithms. The
accuracy of GVF performance at 90 degrees rotation compared to the recorded tem-
plate is very low and therefor not reliable to use for a real application, but the range up



6.2. INTER-USER RECOGNITION 47

Figure 6.1: Mean classification accuracy for three algorithms in three orientations of
test and training data

to 45 degrees rotation is much more reliable than the DTW-based algorithms.
Secondly, in the traditional gesture recognition setting without difference in sensor

orientation, the recognition accuracy of GVF was not better than DTW. Moreover, the
DTW-PS algorithm clearly outperformed GVF with an accuracy of .95 against an accu-
racy of .82 respectively. Combined with the fact GVF is computationally much heavier
than the other two algorithms, DTW-PS seems the be the best recognition algorithm
choice when doing traditional gesture recognition. When incorporating rotation in a
performance, GVF comes out on top.

6.2 Inter-user recognition

Now that we have seen that GVF indeed outperforms the other two algorithms when
evaluating sensor orientation invariance, we will evaluate whether this indeed con-
tributes to inter-user invariance i.e. training a model with data of one user and evaluat-
ing the data of another user. To evaluate this, cross-validation was performed between
users combined with leave-one-out cross-validation on the trials.

6.2.1 Results

The inter-user recognition results are presented in figure 6.2. The blue bars show the
accuracy when using the same train and test subject. The green bars show the average
accuracy when using a different train and test subject. The average recognition accu-
racy for the three recognition algorithms DTW, DTW-PS and GVF are .376, .308 and
.450 respectively.
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Figure 6.2: Mean classification accuracy for three algorithms on inter-user gesture
recognition

ANOVA was used to analyze the difference between the classifiers. The main effect
was significant (F (2, 5) = 7.16, p = .034). Pairwise comparison showed that DTW
performed significantly better than DTW-PS (p = .018). GVF performed significantly
better than DTW-PS (p = .036) and marginally significantly better than DTW (p =
.072).

Within the GVF accuracy distribution of pairwise subject comparisons the mini-
mum accuracy is .10 and the maximum is .81. The best subject’s train data resulted in
an average GVF inter-user recognition accuracy of .629 and the worst is .130. These
results indicate that GVF is indeed better for doing inter-user gesture recognition.

6.3 Phase invariance

For this specific project it is important that a gesture recognition algorithm is phase in-
variant i.e. the algorithm can recognize gestures if they are not started from the begin-
ning. GVF does frame-by-frame gesture following and is capable of early recognition.
DTW and DTW-PS is not capable of frame-by-frame gesture recognition. DTW-PS
however, is especially adapted to combine the two characteristics of phase invariance
and good recognition results in one algorithm.

Again, ”leave-on-out” cross-validation was applied to evaluate the algorithm. This
time, in every evaluation round, the test set was phase shifted a percentage ps ∈
{0, 0.1, 0.2...0.9}. Phase shifting is done by moving the annotations in the gesture
data back, such that the start and end points of the gestures are shifted back.
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Figure 6.3: Mean classification accuracy for three algorithms on different phase shift
values

6.3.1 Results

The results of the evaluation of phase invariance is shown in figure 6.3. The accuracy of
GVF-PS is clearly higher than the other two. The difference between GVF and DTW
is a bit more subtle. The average accuracy for DTW, DTW-PS and GVF are .335, .913
and .435 respectively. ANOVA analysis showed a strong significant difference between
the three classifiers (F (2, 24) = 809.5, p < .001). Pairwise comparison showed that
DTW-PS performed significantly better than the two other algorithms (p < .001) and
GVF performed better than DTW (p < .001).

DTW and GVF both showed a distinct peak in accuracy at ps = 0.5. This may
be due to the fact that a number of the gestures are somewhat symmetrical in nature.
Figure 6.7a shows the accelerometer data of the curve up gesture. The gesture has a
symmetrical shape on two of the dimensions and a varying shape on the third dimen-
sion.

The DTW-PS has the best accuracy on ps = 0 with only a small decrease in ac-
curacy on other phase shift values. This decrease in accuracy may be explained by
artifacts due to the phase shifting of the templates. Figure 6.7b shows such an artifact.
In the middle of the shifted data, there is a small drop of the yellow line and a small
nudge up in the blue line. These are not part of the gesture but artifacts due to vari-
ability of gesture performance (i.e. the start and end of the gesture are not exactly the
same). These artifacts are bigger when variability of a performer is bigger and this may
influences the recognition accuracy.

Figure 6.4 shows the gesture specific accuracy ratings for phase invariance evalua-
tion. The accuracy of DTW-PS has some variability between gestures, but without an
obvious pattern. DTW has a rather stable accuracy rating between gestures accept the
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Figure 6.4: Mean classification accuracy for the individual gestures for three algorithms
on phase invariance evaluation

clearly higher accuracy for triangle.
The explanation for this is that the triangle is the only gesture of 1.5 seconds,

whereas the rest of the gestures where 2 seconds long. DTW matching distance is
smaller for shorter sequences. Therefor, when the distance between input data and all
the templates are large, the shortest template will have an advantage over the rest of
the templates. One way to deal with this is to resample all the gesture templates to the
same template size.

GVF, like DTW-PS has some variation in accuracy ratings between gestures, with-
out an obvious pattern. One thing to notice is that the lowest accuracy rating is for the
triangle gesture. This could also be a result of triangle being the shortest template. As
the particle filter algorithm collects evidence during on-line analysis of gesture data,
a shorter gesture gives less evidence. Therefor, shorter gestures may more difficult to
recognize than longer gestures. However, further research on this topic is required to
make claims about this.

6.4 Speed invariance
Because GVF tracks the speed of a performed gesture, it should also be able to recog-
nize gestures in different speeds. Being able to recognize gestures at different speeds
is very important for expressive control because movement speed greatly influences a
performers expression. Evaluation of this property was done by the same ”leave-one-
out” cross-validation method. Just as the evaluation of phase invariance, models were
trained on the original gesture data, and the test set was manipulated to simulate dif-
ferences in gesture speed. The test data was linearly interpolated and resampled with
different intervals to simulate gesture speed from a factor f ∈ {0.8...1.33} times the
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Figure 6.5: Mean classification accuracy for three algorithms on different speed factors

original gesture speed.

6.4.1 Results

The results of the evaluation of speed invariance is shown in figure 6.5. The aver-
age accuracy over the different gesture speeds for DTW, DTW-PS and GVF are .49,
.86 and .68 respectively. ANOVA showed a strong main effect between the classifiers
(F (2, 8) = 818.8, p < .001) and pairwise comparisons showed highly significant dif-
ferences between all the classifiers (p < .001). DTW-PS is the clear winner here. The
figure shows that over all the different speeds, DTW-PS performs equally accurate or
more accurate than both the other algorithms. DTW has a distinct peak in accuracy on
speed factor f = 1, i.e. the original speed. In both directions, accuracy quickly drops.
GVF has a less distinct accuracy peak and actually performs better in situations where
f < 1 than where f = 1. When using GVF, it is better to record the gesture templates
a bit quicker than the gesture speed how they will be performed.

6.5 Novel gesture set evaluation

Up until now, the three algorithms were evaluated on only one gesture set: the one that
was constructed specifically for this research. The purpose of this project is to create
a gesture recognition system that will behave reliable and stable in many different
creative contexts. To test which of the algorithms would be most reliable in these
different contexts, ten novel gesture sets were recorded. These novel gesture sets were
created by the participants of the experiment.
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Figure 6.6: The average accuracy values for the evaluation of the unique gesture sets
for the three recognition algorithms

6.5.1 Results

The average accuracy for the three recognition algorithms were compared using ANOVA
analysis. The average accuracy for DTW, DTW-PS and GVF were .856, .996 and .833
respectively (figure 6.6). ANOVA showed that the main effect of the classifiers was
highly significant (F (2, 27) = 9.056, p < .001). Pairwise comparison showed that
DTW-PS significantly outperformed DTW and GVF (p = .007 and p = .002). No
difference was found between DTW and GVF (p = 1.0).

From this experiment comparison, DTW-PS is the very convincing winner. With an
average accuracy of .996 against .856 for the second best, there is no doubt that DTW-
PS will be the best choice for gesture recognition applications using accelerometer
data. A gesture vocabulary of only four gestures is rather small, but previous analyses
showed that when doing regular, one-user gesture recognition with gesture vocabularies
of eight gestures, DTW-PS also outperformed the other two algorithms.

6.6 Conclusion

The results of the gesture recognition method comparison revealed two issues. When
performing regular gesture recognition without intended gesture variation such as ges-
ture rotation or sensor rotation, DTW-PS was the most reliable method. The phase
shifting mechanism in the algorithm makes up for some of the timing mistakes of the
users and therefor increases the accuracy compared to the original DTW algorithm.
The DTW-PS algorithm was suggested again to be the best choice when phase and
speed invariant performance was required. However, it is good to note that our results
may be limited to evaluation of short and simple gestures. Further research is neces-
sary for testing the generality of the current findings with e.g., more complex or longer
gestures, gestures with more varying lengths, or gesture sets of different size.

When sensor orientation invariance or inter-user invariance is required, the GVF
algorithm was the most reliable recognition method, though it did not perform signif-
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(a) (b)

Figure 6.7: (a) Accelerometer data of a performance of the ”U” gesture and (b) the
same gesture data shifted with phase shift ps = .5. In the black rectangle in figure b
the artifact of phase shifting is visible.

icantly better than DTW for inter-user recognition. The recognition accuracy of GVF
with large sensor orientation differences as well as with inter-user recognition was not
very high, definitely not high enough for most practical applications. Nevertheless,
GVF showed the most potential for improvement in those contexts. GVF was imple-
mented exactly in the same manner as in the original presented paper, which was opti-
mized for sensor orientation invariance. Different parameter settings (i.e. the particle
spreading parameters that influence speed and phase tracking) may improve accuracy
of GVF in different contexts. The sensitivity to parameter setting of GVF makes it a
very flexible algorithm, but it also makes it difficult to tune.
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Chapter 7

Developing an expressive
application

Now that the current possibilities with wearable accelerometer sensors for expressive
control have been described, the current state of the art in gesture recognition is eval-
uated and a way of segmenting the data without the use of an external controller is
developed, it is time to get into the fourth and final goal of this project:

2. Create an expressive application using only accelerometer based interactions.

An expressive application could be a DMI [9] or an interactive performance appli-
cation [7]. An example of a visual application is the gestural controlled photo-effect
application [15]. For this project, a DMI was created, controlled by two accelerometer
sensors worn on the wrists. In order to create a DMI from an input device, two com-
ponents are required: (1) a synthesis device, and (2) a parameter mapping. The next
section describes the process of parameter mapping and finally, the demo application
is presented.

7.1 Mapping

When developing a DMI or interactive performance application, the focus of the design
is often on the input device and synthesis device. In the current project, the input device
are the wearable sensors and the algorithms to extract features from this sensor data.
The synthesis device is created through sound design and has to produce the sound for
a specific piece. The mapping between the input device and the synthesis device may
seem trivial, but is actually an art in itself as much as the design of both the other two
components [26]. Even though parameter mapping is different for every input device,
output device and context, some strategies have been described [25].
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Figure 7.1: A graphical model of parameter mapping

7.1.1 Role of mapping
One distinction between different mapping strategies is the method for creating a map-
ping:

• Generative mechanism for mapping generation

• Explicit mapping definition

A generative mechanism for creating parameter mappings utilize models or algo-
rithms such as neural networks, Bayesian networks and probabilistic models. When
using such a strategy for parameter mapping, the mapping is part of the composition.
The behavior of the generative mechanism determines the character of the expressive
application. Explicit parameter mapping enables designers to be more accurate in the
design of the instrument, connecting certain behaviors of the performer, to specific re-
actions of the synthesis device. In this scenario, when mapping is fixed, the whole
composition is in the performers behavior.

7.1.2 Type of mapping
Another distinction between mapping strategies is the type of complexity of the map-
ping:

One-to-one One synthesis parameter is controlled by a single control parameter

One-to-many Multiple synthesis parameters are controlled by a single control param-
eter

Many-to-one One synthesis parameter is controlled by multiple control parameters

Many-to-many Multiple synthesis parameters are controlled by a complex combina-
tion of multiple control parameters

Two examples of mapping strategies are shown in figure 7.2. Figure 7.2a shows
two simple one-to-one mappings and figure 7.2b shows a one-to-one mapping com-
bined with a many-to-one mapping. These two mappings were used in a small user
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(a) (b)

Figure 7.2: Different mapping strategies

experiment where subjects were asked to explain the mapping. The second, more com-
plex mapping was not only more difficult to explain by the subjects, it was also more
rewarding and interesting to play with.

7.1.3 Musical time scale
An additional distinction between parameter mappings strategies which is also men-
tioned in [50] is the distinction based on musical time scales of the parameter as de-
scribed by Curtis Roads [47].

Mini scale Timbre of individual musical events

Meso scale Phrase structure of musical events

Macro scale Larger temporal structure of musical events

Synthesis parameters often involve only one of the time scales. Filter settings on a
synthesizer for instance, are mini scale parameters. Editing events in a step sequencer
are meso scale parameters.

7.2 The demo application
The developed instrument uses two separate sound sources: (1) clouded events and (2)
discrete events. The architecture of this instrument is presented in figure 7.3. The sen-
sor data is all received and processed in Pure Data and send to Ableton Live 9 through
MIDI messages. In Abletone Live 9, different melodic instruments are configured on
different MIDI channels.

The intensity of the two sound sources are both controlled by the amount of en-
ergy measured by the sensors. Though the energy is a direct controller for the volume
of the discrete events, while it is heavily filtered by a low-pass filter for the clouded
events. Therefor, the intensity of the clouded events slowly build up through a perfor-
mance, as a macro scale control parameter. The discrete events are controlled as mini
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Figure 7.3: Software architecture of the demo application

scale parameters. Orientation of one hand is used to control the pitch of the discrete
events. Different type of instruments for the discrete events are selected by performing
specified selection gestures, but only when this selections gesture is repeated. If rep-
etition of gesture is detected, a gesture template is recognized, then the MIDI channel
of the instrument corresponding to that gesture is selected to send pitch and volume
information.



Chapter 8

Conclusion

The goal of this project was to create a sophisticated system to use in interactive dance
and music performance, where all the expressive control is done through physical
movement of ones body rather than physical movement of an external controller. The
research consisted of the development of one specific interaction pattern, the develop-
ment of algorithms for that interaction pattern and the evaluation and comparison of
these algorithms.

For the interaction pattern, gesture recognition through repetition, some algorithms
needed to be developed, optimized and evaluated. YIN-MD was developed as algo-
rithm for repetition detection. DTW-PS was developed for gesture recognition on re-
peated gesture where the exact starting point of the performed gesture is unknown.
Both these algorithms were evaluated on user data.

Chapter 2 was a short survey on gesture and gestural control. Different definitions
from different theoretical backgrounds and interests were discussed to form an un-
derstanding of how the notions of gesture could be approached from different angles.
After that, different technical methods of analysis of gesture were discussed. These
techniques were connected to existing projects and applications of expressive control,
mostly music related.

Chapter 3 started to focus on the used methods in the presented project, the ac-
celerometer as wearable sensor. Various techniques of feature extraction were dis-
cussed combined with some examples of how these extracted features could be used
in musical applications. Additionally, the state-of-the-art techniques in gesture recog-
nition were discussed and the original algorithm extensions of this project were pre-
sented.

In chapter 4 some details on the setting of the research were explained, such as the
hardware that was used, and the process of collection of user data.

The evaluation research of the algorithms started in chapter 5, where the evaluation
analysis and results on the YIN-MD algorithm were presented. The proposed imple-
mentation of YIN-MD came out reliably enough to distinguish between gesture and
non-gesture in a live performance situation. Multiple repetitions of the same gesture
gave more reliable results of repetition detection, which makes sense. Period detection
of the repeated gesture was not discussed in this thesis, but practical experience with

59



60 CHAPTER 8. CONCLUSION

the system were good and consistent. The use of a pitch detection algorithm for ges-
tural repetition and period detection is successful. Modifying different algorithms for
pitch detection in a similar way (as done with YIN to YIN-MD) could result in better
and more reliable performance.

The comparison of three gesture recognition algorithms DTW, DTW-PS and GVF
was discussed in chapter 6. Multiple aspects of gesture recognition were evaluated
including rotation of sensor, inter-user gesture recognition, phase invariance and varia-
tion of speed of gesture. Finally, robustness on a variety of gesture sets was evaluated.
Phase invariance was an important requirement for this project and the DTW-PS was
the clear winner there. Therefor, DTW-PS was the obvious choice of method in the
final developed system for recognition of repeated gesture. The results from Carami-
aux [13] on invariance to sensor rotation were reproduced as well as the confirmation
of his hypothesis of inter-user gesture recognition. In both these situations, GVF came
out as the best gesture recognition algorithm. In the case of regular gesture recognition
without specific variation, DTW-PS outperformed the other two algorithms and this
result extended to the evaluation of the original gesture sets created by the participants.

Finally, chapter 7 describes the implementation of a musical instrument integrating
the developed techniques in one system. The presented instrument is only one exam-
ple of how these techniques can be combined into an expressive application. Gesture
recognition by repetition of gesture can be used in different contexts to control different
applications. Knowing exactly where a gesture starts is not a requirement with the pre-
sented methods. Therefor, performers can concentrate more on the performed gesture
and less on the underlying technique of gesture analysis, resulting in more expressive
performances.

8.1 Future directions
A further development that we are already looking into is integrating autonomous learn-
ing in gesture recognition by repetition. This means that there will be no distinction
between learning and feedback phase. In this new situation, the system will detect re-
peated movement if this is performed. If this repeated gesture is conforms to a known
template, return this signal. If the repeated gesture does not conform to a known tem-
plate, record this template. Getting rid of this distinction between learning and feed-
back phase would allow for more open-ended performance possibilities with different
kind of improvisation interaction between system and user.

A big question that is still open for further research is the effect of the many differ-
ent possibilities of parameter settings of the GVF algorithm on the gesture recognition
and variation tracking performance of the algorithm. For the presented research, a short
parameter optimization experiment was done. No conditions like phase shifting, scal-
ing or rotations were included, only regular gesture recognition. The best parameter
settings were comparable with the parameter settings used by Caramiaux in his origi-
nal research, so these same settings were used throughout this whole research project.
Still, there may be better parameter settings for these non-regular gesture recognition
conditions. Further research could be done there.

As mentioned before, improving current methods to deal better with gesture sets
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with gestures of different length is also interesting, especially for the DTW-based meth-
ods. Continuing on the current subject of repeated gesture, the period detected by the
YIN-MD algorithm could be used to select the amount of data to be evaluated by the
gesture recognition algorithm. This does not concern the GVF algorithm as it does
continuous updating of the state model.
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