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1 Introduction

In the field of sound source localisation (SSL), the goal is to compute the position of one
or multiple sound sources with the signals received at multiple microphones. This position
is often referred to as the Direction Of Arrival (DOA). SSL is a multifaceted problem with
numerous different solutions. Variables that make SSL such a multifaceted problem include
the possible locations/distances of sound sources relative to the microphones; the number of
microphones in the environment; the number of sound sources in the environment; different
kinds of real-world environments, for example empty rooms, noisy public spaces, anechoic
chambers, controlled experimental rooms, et cetera. Due to the large amount of variability
in the aforementioned variables, the number of possible waveforms, that signals in their
environments can take on, is infinite. Fortunately, recent approaches with neural networks
have proven to be an effective and robust solution to this issue [1, 10,12,13,21–24,26].

In state-of-the-art research, numerous different methods have been proposed to solve the
problem of SSL with neural networks. Regarding these methods, there are three main cat-
egories: time delay based, beamforming based and high-resolution spectral-estimation based
approaches [4,7,23]. In the time delay based approach, the time difference of arrival (TDOA)
between every pair of microphones is computed and is passed as input to the neural network,
along with the signals. The TDOA is usually computed with generalised cross-correlation
(GCC) and is sometimes combined with the phase transform filtering (PHAT) to improve
robustness [3, 4, 11, 20]. In the beamforming approach, the position of the sound source(s)
is estimated by optimising a spatial statistic based on the TDOAs of the different pairs of
microphones. This spatial statistic, as well as the signals, are then fed into the neural net-
work. An algorithm widely used for optimisation of these spatial statistics is the steered
response power algorithm. This algorithm, like GCC, is often combined with PHAT [5–8,14].
Lastly, an example of a high-resolution spectral-estimation based approach, is the multiple
signal classification algorithm. Again, the computed features are given as input to the neural
network [18]. Moreover, across these three main categories, the position of a sound source is
represented in several different ways. For instance, the position can be represented in terms of
the x-, y- and z-coordinates of the signal [10,23]; by specifying the direction of arrival (DOA)
in degrees or radians and, optionally, the distance to the sound source(s) [12,21]; by estimat-
ing a probability distribution over a pre-determined amount of coordinates/angles [21,22,26];
and even by estimating the clean source signal [13].

All three aforementioned approaches require pre-processing between the time point of
arrival at the microphones and the moment the extracted features become input of the neural
network. In the case of human SSL, however, none of the auditory signals that are received
at the ears are pre-processed with these algorithms. Instead, humans rely on binaural cues,
namely the interaural intensity and phase/time differences (IID, IPD/ITD respectively), to
perform SSL [2, 15]. These cues come to exist due to the shape of our ears and the head
forming an obstruction between both ears. Specifically, human SSL, in the horizontal plane,
relies more on one interaural component depending on the frequency of the signal. In humans,
for signals with a frequency below 1500Hz, the ITD is the strongest feature, as the waveform of
these signals is larger than the average human head, making the signals distinguishable by time
difference. For signals with frequencies above 3000Hz, however, the waveform becomes too
small to distinguish them by time difference. Hence, in this case, humans are more dependent
on the IID. For frequencies between 1500 and 3000Hz, both cues are equally important for
performing SSL [2,15].
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In this thesis, the main focus is to address SSL with neural networks by only providing
the networks with the raw audio signals received at the microphones in a simulated envir-
onment with two microphones. The approach of feeding the raw propagated signals to the
network has been shown equally as effective as pre-processing methods and is still very new
in the field of SSL. To our knowledge, the paper of [23] is the only paper that performed SSL
without pre-processing their signals. Moreover, when the signals are not pre-processed, the
network has to learn to distinguish the relevant features itself. Whereas, in the aforemen-
tioned conventional pre-processing based approaches, these features are already available to
the network. The ITD and IID are among these important features and, therefore, one of the
questions that will be answered in this paper is: does the neural network learn to use the ITD
and IID? We hypothesise that the network will learn to use the interaural components, since
these components are very simple in nature and extracted easily from the raw signals. Fur-
thermore, the effect of different location representations of the sound sources on the accuracy
of SSL is researched. Specifically, a coordinate representation, as compared to an angular
representation. Because the angular representation suffers from the circular property, we
believe that the coordinate representation will prove to be more accurate. Lastly, the effect
of different distances between the sound sources and microphones on the accuracy of SSL is
researched. The distance of a sound source should have no effect on the accuracy of SSL,
since the interaural components will always stay equal relative to the distance between the
sound source and microphones. Therefore, we hypothesise that there will be no significant
effect of distance on the accuracy of SSL.

This thesis is organised as follows. The data generation, neural network topology and the
environment simulation are explained in Section 2. All three experiments and their discussed
results are presented in separate paragraphs in Section 3. The ideas for future research and
limitations of our research are discussed in Section 4. Finally, the concluding remarks are
provided in Section 5.

2 Methods

This section describes how an infinite amount of data was generated, how the environments
were simulated, what the architecture of the neural networks was and a custom loss function
used during training and testing of networks with an angular location representation.

2.1 Data Generation

In this paper, the only audio signal was a sine wave. When using real-world data, such as
a dataset of voice excerpts, one is limited in the amount of data we can use. In contrast,
sine waves can be generated in an infinite amounts of forms by altering their frequency and
amplitude. The only restriction imposed by our neural network structure, explained in Section
2.3, on the data generation was that the input signals of a network need to be of the same
length. For example, if the network was modeled such that it expected input signals of 100
total samples, then any signal of more than 100 samples was unusable for the network. On
the contrary, signals smaller than 100 samples could be made suitable by padding the signals
with zeros until they were 100 samples long.

Regarding the actual data generation, each individual wave was given a length of one
second and a random frequency and amplitude. The average range of audible frequencies
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for humans is 20 to 20000Hz, hence, to further emulate human SSL, the chosen frequency
range for the sine waves was [20, 20000]. Moreover, the signal was amplified by an integer in
the range [1, 500]. These ranges allow for 500 ∗ 19881 = 9990500 unique sine waves. If the
infinite number of angles and locations, where the signal can be propagated from, are taken
into account, the number of unique sine waves that can be simulated is infinite.

2.2 Simulated Environment

The environment is a vital component of SSL. A vast number of factors can be changed in
the environment that will change the outcome and difficulty of the problem. These factors
include the number of microphones; the kind of environment that is simulated (e.g. noisy,
anechoic, small, big); the number of sound sources; the distance between a sound source;
the type of microphones; et cetera. Therefore, to simplify this issue, the Python library
pyroomacoustics was used to simulate sound propagation [17]. pyroomacoustics simulates
real-world sound propagation according to the variables and environment that were chosen.

The environment that was chosen was a reverberant square room of size x cm where sound
sources were placed only on the circumference of a circle with diameter x cm and center (x/2,
x/2), where the (0, 0) point of the room was placed at the top-left. In this thesis, this circle
will be referred to as the sound source circle. The first microphone was placed on coordinates
(x/2−11 cm, x/2−10 cm) and the second microphone on coordinates (x/2+11 cm, x/2−10
cm). An example environment with an exemplary sound source is visualised in Figure 1. The
distance between the microphones on the x-axis was set equal to 22cm to simulate the average
human head, which is approximately 22cm wide. Furthermore, due to the cone of confusion
problem which occurs when the center of the microphones is equal to the center of the sound
sources [25], the two microphones were placed 10cm above the center of the sound source
circle. Lastly, in this environment, the sampling rate was set to 2.2 ∗ 20000 = 44000Hz, as,
according to the Nyquist-Shannon sampling theorem [16,19], the sampling rate should exceed
twice the maximal frequency found in the sine wave data to be able to properly distinguish
all signals.

With these parameters, one second of a randomly generated sine wave had 44000 samples.
However, due to the nature of sound propagation in pyroomacoustics and the fact that
some signals arrived later at one microphone than the other, some propagated signals were
slightly longer than others. Hence, all signals were padded with a number of zeros at their
tail such that the length of each generated signal was equal to a number, M , greater than the
maximum original signal length, such that

M > max(|s| : s ∈ S),

where S is the set of all signals for the current environment. M is relative to the radius of the
circle of sound sources. A larger radius induces a longer signal propagation time and, hence,
a longer signal length.
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Figure 1: An exemplary environment with sound source. The legend is given in the top-right and the
(0, 0) coordinate is in the top-left.

2.3 Neural Network Architecture

The neural network architecture is shown in Figure 2. This architecture was based on [23]
and is a convolutional neural network (CNN). One difference between the CNN in [23] and
our CNN is that no dropout was used in the fully connected layers. Since the problems
posed in this thesis are less complex than in [23], our network did not converge when dropout
was applied, likely due to underfitting. Another difference is that uniform Xavier weight
initialisation was used in this thesis to overcome vanishing gradients [9]. Lastly, in this thesis,
coordinate estimation was only concerned with the x- and y-coordinates, whereas the network
in [23] was also concerned with the distance. Hence, the FC Output layer of the network in
Figure 2 consisted of two blocks, or one block in the case of angle estimation.

Figure 2: The used neural network architecture. k stands for kernel size, s stands for stride and #F
stands for number of filters/nodes. 1D Conv is an abbreviation for a one-dimensional convolutional
layer and displayed in green, Max Pool for a max pooling layer and displayed in red, and FC for a

fully connected layer and displayed in orange.
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2.4 Penalised Cosine Loss

To solve the problem of SSL, where the DOA is estimated in terms of the angle of the sound
sources, a circular loss function was required. A linear loss function, such as the Mean
Squared Error (MSE) loss, did not suffice because it did not adhere to the circular property,
which was defined such that

θ mod 2π = θ. (1)

For example, the angle of 0 is equal to the angle 2π and nearer to the angle of 3π
2 than π.

Thus, due to the circular property in Equation 1, the number of correct predictions for
any angle was virtually infinite. To ensure that a neural network trained to estimate an angle
converged, the number of possible correct predictions needed to be limited. More specifically,
to restrict the problem, a penalty P , with a penalty value p, needed to be introduced for all
estimated angles θ that are in a multiple k of the range [0, 2π), such that

P = |kp|, for all k where θ ∈ [0 + 2πk, 2π + 2πk) and k ∈ Z. (2)

Because there was no loss function implemented in PyTorch that satisfied the properties in
Equations 1 and 2, a custom loss function was implemented, called the penalised cosine loss.

The penalised cosine loss function consisted of two parts where each part satisfied one
property respectively. The circular property in Equation 1 was satisfied by the first part of
the loss function, which is visualised in Figure 3,

| cos(y − ŷ)− cos(0)| (3)

where y is the target angle and ŷ is the predicted angle, both in radians. The subtraction of
cos(0) was necessary to center the zero point of the loss function at equal target and predicted
values and to reduce the number of extrema to one, instead of two. Moreover, because the
absolute value was taken, the cosine showed two maxima in the range [0, 2π], instead of one
maximum and one minimum.

Figure 3: Heatmap of Equation 3 for angles in the range of [0, 2π]. The bar on the right indicates
the values corresponding to the colours.
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The property in Equation 2 was satisfied by taking the predictions and putting them in
the following equation, which is visualised in Figure 4,

max(0, ŷ − 2π) + max(0,−ŷ) (4)

where ŷ is the predicted angle in radians. With this equation, the penalty value p is equal to
θ such that

P = |kθ|, for all k where θ ∈ [0 + 2πk, 2π + 2πk] and k ∈ Z.

Figure 4: Heatmap of Equation 4 for angles (in radians) in the range of [0, 2π] on the y-axis and
angles (in radians) in the range [0, 6π]. The bar on the right indicates the values corresponding to

the colours.

Thus, the combination of Equations 3 and 4 produced the following loss function that
satisfied all necessary properties, which is visualised in Figure 5,

L = | cos(y − ŷ)− cos(0)|+ max(0, ŷ − 2π) + max(0,−ŷ) (5)

where L is the final loss, y is the target angle and ŷ is the predicted angle.

Figure 5: Heatmap of Equation 5 for angles (in radians) in the range of [0, 2π] on the y-axis and
angles (in radians) in the range [0, 6π]. The bar on the right indicates the values corresponding to

the colours.

7



3 Experiments

In this paper, three experiments were conducted: firstly, the accuracy of SSL via coordinate
and angle estimation were compared; secondly, accuracy of SSL was measured and compared
between different distances between the microphones and sound source; lastly, the networks
in experiment two were analysed on whether they used the interaural components to perform
SSL.

3.1 Experiment 1: accuracy of DOA estimation in terms of x- and y-
coordinates and in terms of angles

3.1.1 Experimental setup

In this experiment, two networks were trained and tested and, finally, their results were
compared to each other and a baseline model. One network was trained to estimate the x-
and y-coordinates of the sound sources placed on the sound source circle. The other network
was trained to estimate the angle of the sound sources placed on the sound source circle.
Both networks adhere to the topology described in Section 2.3. The baseline model was a
simple fully connected neural network with 6 layers, which was also trained on the x- and
y-coordinate representation.

Regarding the training parameters, all networks were trained on a batch size of 64 signals,
M , the length of the input signals, of 48000 for 7000 epochs. The MSE loss function was
used for the estimation in terms of x- and y-coordinates, such that the total loss was the sum
of the MSE loss on the x-coordinates and the MSE loss on the y-coordinates. The penalised
cosine loss function, described in Section 2.4, was used for the estimation in terms of the
angle in radians. The width and height of the room, and therefore also the diameter of the
sound source circle, were set to 100cm. The signals of the sound sources were generated as
described in Section 2.1 and placed on random angles generated in the range [0, 2π) along the
sound source circle. Lastly, both networks were tested on 10000 total sine waves.

3.1.2 Evaluation

The networks were trained with different loss functions and the loss values could, therefore,
not be compared directly. Nevertheless, due to the constraint that sound sources were only
placed on the circumference of the sound source circle, the angles could be converted to
coordinates and vice versa. Thus, the penalised cosine loss on the predictions in terms of
angles was compared to the cosine loss on the predictions in terms of x- and y-coordinates
converted to angles and vice versa, such that both networks could be objectively compared
to each other.

To determine whether the results were significantly different a dependent t-test was used.
The dependent t-test was used because the data for the network trained with x- and y-
coordinate representation and for the network trained with the angular representation were
sampled from the same dataset.

3.1.3 Results and Discussion

In Table 1 the results for this experiment are shown. From the table, it follows that the loc-
ation representation in terms of x- and y-coordinates performed significantly better than the
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location representation in terms of angles. Moreover, both representations clearly performed
significantly better than the baseline. For the MSE loss, t(9998) = −20.08 at p < 0.001 and
for the penalised cosine loss, t(9998) = −20.26 at p < 0.001. The standard deviations of the
losses of the coordinate representation imply that the loss values could be negative. However,
it is important to note that both loss function are non-negative and that, therefore, their loss
values can only reach a minimum of zero.

The x- and y-coordinate representation was likely more accurate due to the fact that the
x- and y-coordinate representation is easier to predict than the angular representation. This is
because circular data, such as angles, suffer from the circular property from Equation 1 which
results in an infinite number of possible correct predictions. Whereas coordinate systems do
not suffer from the circular property.

Table 1: Cross-evaluated results for the coordinate and angular representation. ∗ indicates
significance at p < 0.001. The standard deviation has been given after the ±-sign.

Coordinate representation Angular representation Baseline

MSE Loss 4.835± 6.702 86.253± 83.226∗ 3884.853± 1985.833

Penalised Cosine Loss 0.019± 0.026 0.433± 0.416∗ 4.682± 1.543

3.2 Experiment 2: the effect of distance between sound sources and mi-
crophones on the accuracy of SSL

3.2.1 Experimental setup

To measure the effect of distance between sound sources and microphones on the accuracy of
SSL, three neural networks, following the architecture in Section 2.3, were trained in three
different simulated environment where the room width/height and diameter of the sound
source circle was 100cm, 1000cm or 10000cm, respectively. Subsequently, each networks was
tested on signals from every simulated environment.

To train the networks, the batch size was set equal to 32 and the number of epochs to
12000. The batch size was kept low due to computational constraints. However, the epochs
were increased to make up for the lower batch size. M was set to 65000, since a value of 48000
could not capture the whole signal due to propagation delays in the room of 100m long/wide.
The signals of the sound sources were generated identically to Experiment 1. Finally, both
networks were tested on 10000 total sine waves.

3.2.2 Evaluation

Similar to Experiment 1, the location of the sound source was estimated in terms of the x- and
y-coordinates and, hence, the loss was set to the sum of the MSE on the x- and y-coordinates.
Furthermore, the relative MSE (rMSE) loss was employed to compare across tested distances.
The absolute MSE loss showed the differences within tested distances better and the relative
MSE loss enabled comparison between tested distances. The relative MSE loss was obtained
by taking the square root of the MSE loss and dividing the outcome by the radius the network
was tested on as follows:

rMSE =

√
MSE

rtest
.
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Furthermore, an independent Welch’s t-test was employed to determine whether there
were significant differences between the losses on the diagonal in Table 5. Welch’s t-test was
chosen due to the violation of the homoscedasticity assumption of the standard t-test. The
assumption was tested with a Levene’s test on every pairwise combination of the diagonals of
Table 5, the results of which can be found in Table 2.

Table 2: The F-statistics of the Levene’s tests for every pairwise combination of the diagonals of
Table 5. ∗ indicates significance at p < 0.001.

Radius pairs F -statistic

r = 50cm versus r = 500cm 5.63∗

r = 50cm versus r = 5000cm 51.03∗

r = 500cm versus r = 5000cm 21.37∗

3.2.3 Results and Discussion

The absolute MSE loss values are presented in Table 4 and the rMSE loss values in Table 5.
In both tables, the radius that the networks were trained on is indicated in the columns and
the radius that the network was tested on is indicated in the rows. From the data presented
in Table 4 it is apparent that all values not on the main diagonal are disproportionate to
the value on the diagonal in their respective row, indicating that networks trained on one
radius did not generalise to another radius. Furthermore, the relative MSE losses in Table 5
indicate that networks trained on a smaller radius performed significantly more accurately,
when given test data from their own radius, than networks trained on a larger radius. The
differences between all pairwise combinations of the diagonals were significant (see Table 3).

Table 3: Degrees of freedom and t-statistics for all pairwise combinations of the diagonals of Table 5.
∗ indicates significance at p < 0.001.

Radius pairs Degrees of freedom t-statistic

r = 50cm vs r = 500cm 9998 −16.10∗

r = 50cm vs r = 5000cm 9998 51.04∗

r = 500cm vs r = 5000cm 9998 −5.31∗

Contrary to our hypothesis, the network trained on a smaller radius performed relatively
more accurate on its own data, than networks trained on a larger radius. This might be due
to the fact that the room was reverberant and that this reverberation interfered more with
the original signal for larger radii, than for smaller radii. Because it took longer for the signal
to arrive at the microphones for larger radii, the signal had more time to reverberate and
interfere with the original signal. The time window of reverberation for smaller radii was
narrower, resulting in less interference with the original signal.
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Table 4: Cross-evaluated absolute MSE losses (± standard deviation) for the networks trained and
tested on different radii (rtrain and rtest respectively). ∗ indicates significance at p < 0.001.

rtrain = 50cm rtrain = 500cm rtrain = 5000cm

rtest = 50cm 4.834± 12.974∗ 6.257 ∗ 105 ± 6.507 ∗ 104 6.841 ∗ 107 ± 1.424 ∗ 107

rtest = 500cm 6.643 ∗ 105 ± 2.093 ∗ 105 1.068 ∗ 103 ± 3.804 ∗ 103∗ 4.321 ∗ 107 ± 4.850 ∗ 106

rtest = 5000cm 7.466 ∗ 107 ± 2.183 ∗ 107 6.821 ∗ 107 ± 2.075 ∗ 107 1.573 ∗ 105 ± 5.572 ∗ 105∗

Table 5: Cross-evaluated rMSE losses (± standard deviation) for the networks trained and tested on
different radii (rtrain and rtest respectively). ∗ indicates significance at p < 0.001.

rtrain = 50cm rtrain = 500cm rtrain = 5000cm

rtest = 50cm 0.044± 0.072∗ 15.821± 5.102 165.423± 75.484

rtest = 500cm 1.630± 0.915 0.065± 0.123∗ 13.146± 4.405

rtest = 5000cm 1.728± 0.934 1.652± 0.911 0.079± 0.149∗

3.3 Experiment 3: interaural components learned by the network

3.3.1 Experimental setup

For the final experiment, the activations of the linear layer of the x- and y-coordinate network
in Experiment 1 were recorded for 4500 sine waves, 1500 for each frequency category. These
three categories included a low frequency (LowFreq) group, where signals were generated
with a frequency (in Hz) in the range [20, 1500]; a medium frequency (MedFreq) group,
where signals were generated with a frequency (in Hz) in the range [1500, 3000]; a high
frequency (HigFreq) group, where signals were generated with a frequency (in Hz) in the
range [3000, 20000]. Subsequently, the means of these activations were correlated with the
interaural components of the received signals. These components included the ITD, the
TDOA between one microphone and the other, and the IID, the difference in amplitude
between one microphone and the other. In the case of the ITD, the time of arrival at the
right microphone, TOAR, was subtracted from the time of arrival at the left microphone,
TOAL, as follows

ITD = TOAR − TOAL.
For the IID, the amplitudes of all peaks of the received signal at the left, peaksL and

right microphones, peaksR were computed. Subsequently, the (mean) interaural intensity
difference was obtained by

IID =
1

N

N∑
i=0

peaksiL − peaksiR,

where N = |peaksL|. If |peaksL| 6= |peaksR|, then the first ||peaksL| − |peaksR|| elements
were removed from whichever vector was longer before the IID was computed.

To correlate the activations with the interaural differences, Pearson’s r correlation coef-
ficient was used. A two-tailed p-value was computed to test whether the correlations were
significant.
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3.3.2 Results and Discussion

The plot of the ITDs correlated with the activations of the neural network are shown in
Figure 6 and the plot of the IIDs correlated with the activations of the neural network are
presented in Figure 7. For the ITD-activations significant correlations were found for the low,
medium and high frequency categories (r=0.75, 0.74 and 0.76, respectively, all significant at
p < 0.001). Furthermore, for the IID-activations significant correlations were observed for
the low, medium and high frequency categories (r=-0.34, -0.23 and -0.26, respectively, all
significant at p < 0.001).

These results indicate that the neural network did learn to use the interaural differences,
which are also employed by humans when performing SSL. However, the results were not
completely consistent with human SSL. For frequencies below 1500 Hz, i.e. the low frequency
category, human SSL is more dependent on the ITD than the IID. For frequencies above 3000,
i.e. the high frequency category, this effect is reversed; human SSL is, in the high frequency
case, more dependent on the IID than the ITD. When frequencies between 1500 Hz and
3000 Hz are presented, human SSL is equally dependent on both interaural differences [2,15].
This effect was not observed in the correlation coefficients. In fact, the ITD stayed equally
relevant throughout all frequency categories and the IID showed the opposite effect, where
the correlation coefficient for the low frequency group was higher than for the high frequency
group. We presume that this might be caused by the fact that, in human SSL, the head forms
an obstruction between the two ears, whereas, in the simulated environment, there was no
obstruction between the two microphones.

Figure 6: The ITDs (y-axis) correlated with the activations of the neural network (x-axis) for the
three frequency categories. * indicates significance at p < 0.001.
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Figure 7: The IIDs (y-axis) correlated with the activations of the neural network (x-axis) for the
three frequency categories. * indicates significance at p < 0.001.

Nevertheless, Figure 6 showed an interesting pattern; the representation of all datapoints
in Figure 6 shows a circular pattern, which implies that there is no simple linear correlation
between the activations (of all categories) and the ITDs. When a line was drawn across the
zero point on the y-axis and another line was drawn from the smallest ITD to the largest
ITD, as is shown in Figure 8, the ITDs plotted against the activations showed interesting
correspondence to the simulated environment, shown in Figure 9. The area marked in cyan
represents negative ITDs, indicating that the signal arrived at the left microphone earlier
than at the right microphone. Similarly, the area marked in yellow indicates that the signal
arrived at the right microphone earlier than at the left microphone.

Figure 8: The activations plotted as a function of the ITDs corresponded with the simulated
environment. All negative ITDs are marked in cyan and all positive ITDs in yellow. The markings

show correspondence to Figure 9.
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Figure 9: The simulation environment where the side of the sound source circle that produces
negative ITDs is marked in cyan and the side that produces positive ITDs is marked in yellow. The

markings show correspondence to the correlation in Figure 8.

Hence, we observe from Figures 8 and 9 that, when the simulated environment was rotated
by −π

2 radians, the simulated environment could be mapped to the pattern of the activations
plotted against the ITDs. However, there was not a one-on-one relationship between the
simulated environment and the activations. The sound source circle in the simulated environ-
ment was a perfect circle, whereas the correlation is more oval-like. Firstly, this discrepancy
might be due to the fact that the neural network does did solely rely on ITDs to perform
SSL. The IID also correlated with the activations of the neural network. Hence, the correl-
ation might not show a perfect circle shape because the activations also represented other
features than the ITDs. Secondly, the microphones in the simulated environment were placed
off-center which resulted in asymmetric ITDs above and below the horizontal midline of the
sound source circle. The asymmetric ITDs might be another explanation for the oval-like, i.e.
non-symmetric, shape of the correlation.

4 Future Research

Future research could aim to study the effect of distance or different location representations
on accuracy, or the use of interaural components in more ecologically valid situations, given
the lack of ecological validity of the approach used in this thesis. For example, by using noisier
and differently shaped environments or real-world data such as voices. Furthermore, networks
in Experiment 2 did not generalise outside of their own trained distance. Hence, it could prove
interesting to train the networks on signals from different distances to obtain a network that
generalises across different distances. Lastly, the effect of different variables on the correlations
in Experiment 3 could be researched to gain more insight into the representations of the neural
network. These variables might include the addition of some form of obstruction in between
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the two microphones to simulate a human head or different microphone positions within or
even outside the sound source circle.

5 Conclusion

In this paper, we have investigated SSL by giving the raw signals to a CNN. The results of the
first experiment showed that an x- and y-coordinate representation of the location of a sound
source achieved higher SSL accuracy than an angular representation of the location of a sound
source. The x- and y-coordinate representation outperformed the angular representation
because coordinates are not influenced by the circular property, whereas angles are. In the
second experiment, the results showed that networks trained on one specific distance between
the microphones and the sound source did not generalise to other distances than the one
they were trained on. Furthermore, it was shown that SSL was more accurate for smaller
distances than for larger distances. Finally, the results of the third experiment showed that
the approach of the neural network to SSL was partially consistent with human SSL. It was
consistent with human SSL in the sense that the activations correlated with the ITD and IID,
which are both fundamental to human SSL. However, it was inconsistent in the sense that
the correlation did not differ between signals of different frequencies for both the ITD and
IID, whereas this is the case for humans. Furthermore, the circular pattern of the datapoints
showed interesting similarity to the simulated circular environment.
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