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Abstract—Augmented cognition is a relatively new field in
Human-Computer Interaction that aims for the development of
systems that can detect the user’s cognitive state in real-time and
consequently adapt the system appropriately. Such an adaptation
could improve the effectiveness of human-computer interfaces.

In this thesis a method is developed to distinguish between
multiple levels of cognitive workload using eye-behavior features.
These features are based on features that are known to be
distinctive when used to distinguish between other cognitive
states [1]. The data are obtained using an eye tracker.

The results indicate that this method is task dependent to a
degree, but these results are not conclusive. On the other hand,
it is shown that this method can distinguish between different
levels of cognitive workload within a task and that this measure
is subject-independent.

I. INTRODUCTION

Human-Computer Interaction (HCI) focuses on improving
the interaction between computers and humans by developing
more effective modes of communication. An important com-
ponent of user-interface design is to accommodate the needs
of the user. Specific needs vary between users but can also
vary for a user over time. There is a number of factors that
affect perceptual and motor performance which include, but
are not limited to:

• Arousal and vigilance
• Fatigue and sleep deprivation
• Perceptual (mental) load
• Monotony and boredom
• Fear, anxiety, mood and emotion

Ideally the interface would be adapted according to such
changes in the user. Augmented Cognition is a relatively new
sub field of HCI that aims to do this by accessing the internal
state of the user almost directly:

The goal of Augmented Cognition research is to cre-
ate revolutionary human-computer interactions that
capitalize on recent advances in the fields of Neu-
roscience, cognitive science and computer science.
Augmented Cognition can be distinguished from its
predecessors by the focus on the real-time cogni-
tive state of the user, as assessed through modern
neuroscientific tools. At its core, an Augmented

Cognition system is a ‘closed loop’ in which the
cognitive state of the operator is detected in real
time with a resulting compensatory adaptation in the
computational system, as appropriate. [2]

The factors mentioned above all affect the cognitive state
of the user, and could possibly be measured by such neurosci-
entific tools. Such modern neuroscientific tools can consist
of brain measures such as EEG or fNIR [3], [4], [5]. An
alternative prominent approach uses data from eye trackers
to distinguish between cognitive states [1]. Furthermore, in
some cases a whole suite of physiological sensors is used for
cognitive state evaluations [6].

A. Cognitive states

Every day people go through different cognitive states. At
any given time, someone is happy or sad, relaxed or alert,
distracted or focused or somewhere in between. People use
these labels to describe themselves, as well as others: ‘You
look sad, are you ok?’

The cognitive states that carry these labels often manifest
themselves in physical behavior. These are the cues that
humans use to assign such states and these cues and others,
can be used to allow computers to do the same. If such systems
then adapt the interaction appropriately, on the basis of these
states, this could increase the effectiveness of the interaction.

While there are many reasons why measuring someone’s
cognitive states can be useful and interesting, an obvious
application is systems that can be used in the workplace to
increase safety. People that work in aviation or other critical
safety fields can carry jobs with high responsibility, where
mistakes have large consequences. Measuring the cognitive
states of such people could allow for the task of the individual
to be adapted in a way that reduces the risk of mistakes
occurring.

B. Research goals

The focus of this thesis will be on cognitive workload.
Cognitive workload is especially relevant in the context of
the workplace. A job consists of several tasks strung together;
tasks impose a certain amount of cognitive workload on a user,
but this amount of workload is not static and can change, even
if the objective task load would be considered constant. This
could, for example, be caused by a change in strategy by the
user; a more effective strategy would probably require less
cognitive workload.

When the amount of cognitive workload for performing
a task could be determined automatically, a task could be
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adapted if deemed necessary. Tasks could be redistributed
among co-workers to ensure that no one is overloaded, and
someone that is underloaded could receive extra work. Such
a system fits within the goal of augmented cognition.

So if techniques can be developed to determine different
levels of cognitive workload, such knowledge could contribute
to useful applications. There are various examples that pur-
sue this idea. For example, Brain Computer Interfaces have
successfully been used to distinguish between different levels
of cognitive workload and even between different types of
workload [4], [3], [5].

Eye tracking can also be used distinguish between different
cognitive states. S. Marshall used seven features extracted from
eye tracker data to classify between three different types of
cognitive states (relaxed vs. engaged, focused vs. distracted
and alert vs. fatigued) [1]. For this thesis I would like to
investigate if these seven features from S. Marshall can be
used to distinguish between low and higher levels of cognitive
workload as well.

This prompts the following research questions:
• Can a method be developed that employs the same

features (i.e. those used by S. Marshall) extracted from
eye behavior data, to distinguish between different levels
of cognitive workload [1]?

• If so: Is this method task dependent?
• And: Is this method subject dependent?

C. Organization of this thesis

The structure of this thesis is as follows: The next section
describe relevant research findings on eye data features and
subjective workload measures. In Section III I will describe
the experiment that was performed in detail. In Section IV
is described how the data obtained from the experiment was
processed to generate the classification results. These results
will then be shown in Section V. In the last section (Section
VI) these results will be discussed and I will explain how
they relate to the original research questions. Furthermore,
any implications for future research will be discussed in this
section as well.

II. BACKGROUND

A. Eye tracking

Seven features, extracted from eye tracker data, were used
by S. Marshall to distinguish between several mental states [1].
Eye tracker data from three experiments were analyzed; for
each of the experiments two cognitive states were distin-
guished from each other. These were respectively: relaxed vs.
engaged, distracted vs. focused and fatigued vs. alert.

In the first experiment, in which she distinguished between
a relaxed vs. an engaged cognitive state, subjects either
performed no task, or a mental arithmetic task. This mental
arithmetic task was presented to them orally, so no visual
stimuli were used in this experiment. During each of the
conditions the subjects were asked to keep looking at the
(empty) computer screen, so eye tracking could be performed.

In the second experiment, in which she distinguished be-
tween a focused vs. a distracted cognitive state, subjects drove

TABLE I
SHORT DESCRIPTIONS OF THE FEATURES DESCRIBED IN S. MARSHALLS

ARTICLE (PARAPHRASED) [1]

Feature Measure
Blinks (Left, Right) The proportion of a second the eye is

blinking
Movement (Left, Right) The proportion of a second the eye is

moving
Divergence The distance between the horizontal

gaze positions of both eyes averaged
over a second

Index of Cognitive Activity
(ICA) (Left, Right)

The number of changes in pupil diam-
eter caused by cognitive activity per
second

a driving simulator in both conditions. In the distracted condi-
tion though, a separate task was presented orally as a distractor.
For this distractor task different tasks were used such as
solving simple arithmetic problem, or counting backwards.

In the third experiment, in which she distinguished between
a fatigued vs. an alert cognitive state, subjects’ eyes were
tracked during three different tasks, over several sessions.
After each session the fatigue level was measured. Based on
these data the alert and fatigued sessions were separated, to
define which sessions were marked as the alert condition and
which as fatigued condition.

For these experiments a head mounted type of eye tracker
was used. The data recorded by the eye tracker consisted of the
diameter of the pupil of each eye and the x and y locations of
the gaze of each eye. A short description of the seven features
that were derived from these data can be found in Table I.

Since in this thesis I use these seven features to distinguish
between different levels of cognitive load, I will discuss each
of the features in more detail. On top of that is discussed
what could be expected from each of the features in relation
to cognitive workload.

1) The Blink feature: Blinks can be distinguished into three
types: reflexive, voluntary and endogenous. Reflexive blinks
occur in a response to external stimuli, designed to protect
the eye and are more or less involuntary. Voluntary blinks
are invoked by the person in question voluntarily. Blinks
that occur in absence of any physical stimulus or intent are
called endogenous blinks [7]. These blinks are influenced by
perceptual and information processing, however when more
visual attention is required by a task, the endogenous eye
blinks are inhibited and delayed to a moment where the visual
demand is reduced.

The blink feature measures the proportion of a second that
the eye is blinking, once again two values are calculated: one
for each eye.

The above mentioned effects give reason to expect the
number of blinks to be lower in conditions with higher
cognitive workload, in tasks that are visually demanding. At
the same time the number of blinks could actually be larger
in conditions where the cognitive workload is imposed by non
visual sources, making this feature rather task dependent.

This latter effect can actually be observed, in the research
of S. Marshall [1]. When distinguishing between a relaxed vs.
an engaged cognitive state without any visual stimuli, more
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blinks occur during the engaged condition, in which mental
arithmetic was performed (left: 0.080 and 0.140 respectively;
right 0.090 and 0.150 respectively). In this condition more
endogenous eye blinks are likely occurring, which are not
being inhibited by visual attention.

On top of this, research indicates that the number of blinks
increases with the Time on Task, a phenomenon already
documented in the 1940’s, see for example [8]. This could
interfere with the already mentioned effects.

Because of these conflicting effects it is hard to predict
the relationship between blinks and cognitive workload, which
will depend on the type of task.

2) The Movement feature: Eye behavior can be divided into
three types: The eye is blinking, the eye is fixating or the eye
is moving. The movement feature is designed to measure the
proportion of a second that the eye is moving.

This feature is influenced by the amount of blinks and
fixations that are occurring and their respective durations, since
when an eye is blinking, it cannot also be moving or fixating.
Because of this it is hard to create a specific hypothesis
of how this feature would correlate with different levels
of cognitive workload: relationships between eye blinks and
cognitive workload, and relationships between eye fixations
and cognitive workload all play a role.

Some information can be gained by looking at the first
experiment by S. Marshall, since the same feature was used.
During the relaxed condition of this experiment, the movement
feature average was lower than during the engaged condition
(left: 0.621 and 0.550 respectively; right 0.604 and 0.522
respectively) [1].

This could indicate that there is a negative relationship
between cognitive workload and the movement feature. Since
these are only data from one task, it is hard to conclude
anything about task dependency.

3) The Divergence feature: Divergence in this case refers
to the distance between the horizontal gaze locations of each
of the eyes. For the divergence feature the distances between
the horizontal gaze locations on the screen are averaged over
a second.

When focusing on something visually, the eyes adjust their
vergence until the gaze locations of the eyes are very close
or overlap. Therefore during conditions that require a lot of
visual attention the divergence of the gaze locations would
be expected to be small. This is made evident by the results
of S. Marshall: during the experiment designed to distinguish
between a focused vs. a distracted cognitive state, in which
participants used a driving simulator, the mean divergence
was much lower (0.049 and 0.041 respectively) than during
the experiment that distinguished between a relaxed vs. an
engaged cognitive state (0.146 and 0.192 respectively), in
which participants were offered no visual stimuli [1].

Visual demand can certainly be a cause of cognitive work-
load, which would result in a lower divergence, but cognitive
workload can also be caused by non visual sources. When
looking at the results from the first experiment by S. Marshall
again: in the engaged condition, while performing mental
arithmetic, the divergence was actually higher than in the
relaxed condition.

This indicates that there is no straightforward relationship
between the divergence feature and cognitive workload: it
depends mostly on the task that is executed.

4) The Index of Cognitive Activity feature: Behavior of the
pupil size is controlled by several muscles in the eye and
can be caused by different stimuli. Light is the most common
cause of pupil dilation or constriction: more light and the pupil
constricts, less light and the pupil dilates. Cognitive processing
can also cause the pupil to dilate, this is referred to as the
dilation reflex [9].

This phenomenon is very relevant for the current research.
The issue that arises is how to differentiate between the light
and the dilation reflex in data. S. Marshall has developed
and patented a technique that employs wavelet theory to do
precisely this: the Index of Cognitive Activity (ICA) [10].

Since the pupil diameter of both eyes is measured, the ICA
feature results in two values, one for the left and one for the
right eye.

The method to extract the ICA feature uses wavelets to
extract the relevant changes in pupil diameter and to ignore the
changes that are caused by fluctuations in light. This method
will be explained in more detail in Section IV-B6. The feature
values that are obtained consist of the number of times per
second that an increase was measured by this method. These
values usually range between 0-20 per second, where a higher
index would be expected in conditions where the cognitive
workload is higher.

This is also demonstrated by S. Marshalls research: in her
first experiment where she distinguished between a relaxed vs.
an engaged cognitive state, the mean ICA was higher in the
engaged state (left: 0.144 and 0.280, respectively; right: 0.158
and 0.324, respectively) [1].

Both (linear) discriminant functions and (non-linear) neural
networks were used to classify the data. The results across all
three experiments and across both methods of classification
ranged between 69% and 92%. Even though there is no
distinction made between more than two levels of a given
state, these results do at least show that a distinction can be
made.

B. Cognitive Workload

Based on the results of S. Marshall’s research, it is expected
that different levels of cognitive workload can be distinguished
from each other using this method: low levels vs. high levels
at the least.

For her first experiment, subjects’ eyes were tracked in two
conditions: one where they relaxed and performed no task and
a second one where they performed mental arithmetic. Her
interpretation of the experiment classified the distinguished
cognitive states as relaxed vs. engaged. The experiment could
also be interpreted as containing conditions, in which in
one no cognitive workload was imposed and in the other
some cognitive workload was imposed in the form of mental
arithmetic.

For this thesis I aim for an experiment where in all condi-
tions at least some cognitive workload is imposed. To impose
this workload, tasks will need to be defined in such a way that
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Fig. 1. The iView X’Hi-speed: a desk mounted eye tracker. During use the
subject rests their chin on the support, to minimize head movements.

it can be verified that what is measured, is in fact cognitive
workload.

To this end, several kinds of subjective workload question-
naires exist that have been developed in the past to measure
a subject’s cognitive workload. In an article by Rubio et
al. three of such workload measures are compared to each
other [11]. These are the NASA Task Load Index (NASA-
TLX), Subjective Workload Assessment Technique (SWAT),
and the Workload Profile [12], [13], [14].

To compare these subjective workload measures, Rubio et
al. present two different tasks, at each two different difficulty
levels, to the subjects, over 8 different conditions. Four of
these conditions consist of single task conditions varied over
the difficulty levels. The other four conditions are dual task
conditions, which are varied over all possible combinations of
the difficulties.

Their results show that each of the workload measures have
their specific strengths. The Workload Profile performs best
when it comes to differentiating between the eight conditions.
This is reflected in the recommendations given in their con-
clusions:

If the goal is a comparison between the mental work-
load of two or more tasks with different objective
levels of difficulty, then the assessor should choose
the Workload Profile. [11]

In this research, the tasks as described by Rubio et al. will
be replicated and subjects will be asked to fill in the Workload
Profile upon completion of the experiment. The results of the
Workload Profile will be analyzed to assess if different levels
of cognitive workload were indeed imposed on the subjects.

III. METHODS

A. Equipment

The eye tracker used for this experiment is an iView X’Hi-
Speed (see Fig. 1). It is a desk mounted system, on which
users can rest their chin so that their head remains still. This
is different from the head-mounted type of eye tracker, the
EyeLink, as used by S. Marshall [1]. An advantage of the
iView system is that it has a high sampling rate (500 Hz vs.
250 Hz for the EyeLink).

For real life scenarios, less obtrusive set ups are required,
where users can move their head freely, as they can in
normal working conditions. However, for the purpose of this
research, the high temporal and spatial resolutions of the iView
system are important. Furthermore, this set up allows for well-
calibrated and uniform recording conditions, which is essential
for the research sketched below.

The eye-tracker is connected to a pc that runs windows
XP, this pc in turn is connected through a wireless dongle
to another pc that runs the iView software. This other pc
records the eye data. The recorded eye data consist of the
pupil diameter of each eye and the screen coordinates of the
gaze location. The raw data produced by the eye tracker will
be discussed in more detail in section 4.

B. Experiment

As mentioned, the design of this experiment is inspired
by the experiment from Rubio et al. [11]. It consists of two
different types of tasks: Sternberg’s Memory Searching task,
from here on referred to as the Sternberg task, and a tracking
task. These are also combined resulting in a third: a dual task.
Each of these consist of two difficulty levels: easy and hard
(6 conditions in total).

1) The Sternberg Task: The subjects are given a set of
letters that they are told to remember. Subsequently the trial
starts and they are prompted with random letters and asked
whether or not this letter occurred in the original set. The
subject uses the keyboard to answer ‘Yes’ or ‘No’. As soon
as the answer is given there is a pause, after which the next
letter is shown. This repeats until the end of the trial. For the
next trial the subject is first provided with a new set of letters
to memorize, once this is done the new trial starts.

The difficulty of the task is modified through the number
of letters that the subject has to remember: two or four.

2) The Tracking Task: A path is shown on the screen,
together with a cursor. The subjects control the cursor and
are told to follow the path with their cursor for as long as the
trial lasts. The path curves left and right over the screen and
the difficulty of the task is modified through steepness and size
of the curves. The harder conditions require more and faster
movements of the cursor.

The cursor is controlled by the mouse.
3) The Dual Task: For this task both the Tracking task

and the Sternberg task are combined. The Sternberg task is
displayed at the top of the screen and the Tracking task is
positioned underneath. Since only one task requires the mouse
and the other the keyboard, subjects can perform these tasks
simultaneously, by using both hands.

Subjects were instructed to use the left hand to control the
keyboard and the right hand for the mouse, for all conditions.
None of the participants were left-handed.

For a visual of these tasks see Fig. 2.

C. Workload Questionnaire

The Workload Profile is recommended by Rubio et al. if
the goal is to assess the relative workload of different types
of tasks [11].



5

Fig. 2. Screen captures from the experiment. Before the trial started. the subject was prompted with a string of letters to remember for the Sternberg task.
The path for the Tracking task remained frozen until trial start. This can be seen on the left. During a trial, the subject was prompted with a letter for the
Sternberg task. The path would then be moving and the subject should follow it with the cursor. This can be seen on the right

TABLE II
WORKLOAD DIMENSION DISTINCTIONS USED IN THE WORKLOAD

PROFILE.

Workload Dimensions
Stages of Processing Perceptual

Response
Code of Processing Spatial

Verbal
Input Visual

Auditory
Output Manual

Speech

The subjects were asked to rate their experience on the
Workload Profile, after they had completed the experiment.

The Workload Profile consists of four dimensions that
distinguish between different types of cognitive workload.
Each of these dimensions consist of two sub dimensions. These
are shown in Table II. A subject is asked to rate each of the sub
dimensions for a condition, relative to other conditions, which
are subsequently added together to obtain the Workload profile
rating of that condition. Two of the sub dimensions did not
apply to the current experiment.

The instructions and examples as given by Tsang and
Velazquez (the developers of the questionnaire) were provided
to the subjects to help them fill it out [14].

D. Pilot

A small pilot (1 subject) was performed prior to the ex-
periment to identify possible issues with the software and to
detect any issues with the experiment itself.

As a result of this pilot, several small bugs were fixed.
Furthermore both the number of trials and the length of
the trials were reduced due to the subject’s reports. This
reduced the amount of data gathered per subject, but fatigue
in subjects can affect the results and longer experiment times
make subjects less willing to participate.

The final parameters that were defined for the experiment
can be seen in Table III.

E. Procedure

There were six participants, all male students: ages 20-25.
Two subjects wore glasses, which pose no problems for the

TABLE III
PARAMETERS OF THE EXPERIMENT, AS DEFINED AFTER THE PILOT.

Experiment details
# conditions 6
# trials 42 (7*6)
trial duration 40 sec (1st trial: 15 sec)
calibration time +- 20 min
Workload Profile +- 20 min
Experiment +- 40 min

eye tracking system used. The subjects each sat through one
session. At the start of the session the eye-tracker was adjusted
to them and subsequently calibrated. They were asked to stay
seated for the rest of the experiment, barring a break halfway
through the experiment in which they were permitted to get
up and stretch their legs. After this break the eye-tracker was
re-calibrated.

The experiment lasted on average between an hour and an
hour and a half, including the calibration time and the time
required to fill out the Workload Profile. About 20 minutes
of usable data were recorded per subject. To avoid measuring
fatigue rather than workload, the order of the conditions was
counterbalanced, using a Latin Square design. Since there
were both six participants and six conditions, each of the
participants was subjected to a unique order of conditions.

Furthermore, The first trial of each condition only lasted for
15 seconds, instead of 40 seconds, so subjects could get used
to the tasks. The data from these trials did not significantly
differ from the rest of the data and were therefore included in
data analysis.

IV. DATA ANALYSIS

The raw data acquired from the eye tracker are processed in
several different steps, until eventually the results of the clas-
sification are available. In Fig. 3 the set up of the processing
pipeline is depicted. Each of these steps will be discussed in
detail, starting with the preprocessing of the raw data. All of
this processing was performed in Matlab.

A. Preprocessing

The eye tracking software records the data at a sampling rate
of 500hz. The resulting data file consists of the header lines,
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Fig. 3. The data processing pipeline. The analysis of the data is divided in
several stages: the preprocessing of the data, the extraction of features of the
data and the classification of the feature data. These stages are explained in
detail in Chapter IV.

TABLE IV
DESCRIPTIONS OF THE RELEVANT TYPES OF DATA PRODUCED BY THE EYE

TRACKING SYSTEM. AN EXAMPLE OF THE DATA OUTPUT FROM THE EYE
TRACKER CAN BE FOUND IN APPENDIX B.

Data type Description
Pupil location The location of the pupil on the eye-

tracker camera image, for each eye the
x and y location

Pupil diameter The area and diameter of the pupil on
the camera for both eyes.

Corneal reflection location The location of the corneal reflection
on the eye tracker camera image, for
each eye the x and y location

Gaze location For each eye the x and y location on
the computer screen (requires calibra-
tion)

describing the settings used for the eye tracking; the column
headers and the recorded data. It also contains any messages
sent to the recording pc. These messages mark events, such
as trial starts and trial ends.

Any line after the column headers contains both a timestamp
of when the line was recorded and a type that reflects whether
the line contains data or a message (‘SMP’ or ‘MSG’). The
data lines contain 16 columns of data. An example of output
produced by the eye tracking system can be found in Appendix
B.

These columns contain 4 different types of data as shown
in Table IV.

Fig. 4. Preprocessing schema. From the raw data obtained from the eye
tracker the relevant data vectors are extracted: Ldia, Rdia, Lx, Ly, Rx, and
Ry. The Ldia and Rdia are used to identify the blinks. These blinks locations
are saved and used to mask the blinks in these data vectors, i.e., the blink
locations are replaced by NaNs (Not a Number) in each of the vectors. These
stages are explained in detail in Chapter IV-A.

TABLE V
RAW DATA COLUMNS RELEVANT FOR FEATURE EXTRACTION AND WHAT

THEY WILL BE REFERRED TO AS.

Column Name
Left pupil, diameter Ldia
Right pupil, diameter Rdia
Left eye, X location Lx
Left eye, Y location Ly
Right eye, X location Rx
Right eye, Y location Ry

These data require preprocessing before the features can be
extracted. In Fig. 4 the several steps taken to preprocess the
data are depicted.

1) Extraction of relevant data: Of these four types, only the
gaze location and the pupil diameter are required for feature
extraction. All columns that are not needed can be removed;
this also goes for any lines of data that do not belong to a
specific trial (i.e., the breaks between trials). These lines are
identified by the messages that denote the trial start and end.
These messages also contain the information needed to label
the data lines that do belong to a trial, with a condition and
trial label. After labeling these messages are also removed and
only the data relevant for feature extraction remain. These data
consist of 8 columns(see Table V).

2) Blink removal: Once the relevant data have been ex-
tracted, the blinks need to be removed. When the eye closes for
a blink the eye tracker becomes unable to track both the pupil
and the corneal reflex until the eye opens again. Therefore all
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Fig. 5. Pupil diameter during a blink (500 data points equal one second)

the data columns for that eye will report zeros for that period
of time. For the short period before and after this, when the
eyelid still covers the eye partially, the data the eye tracker
records is unreliable.

The moment that the eyelid starts to occlude the eye, up
until the moment that the eyelid has cleared out of the way
again, is considered a blink. A visual representation of how
these blinks appear in pupil diameter data can be observed in
Fig. 5.

You can see clearly here how the diameter starts to drop
once the eyelid starts occluding the pupil. Once the eyelid
opens again, the pupil diameter increases until it is back to
normal.

These blinks need to be removed from the data entirely so
that each of the features can be calculated accurately. This
is achieved by locating the blinks in the data and replacing
or ‘masking’ them for each data column with NaNs (Not a
Number).

These blinks are located in the data by setting a threshold for
the pupil diameter; every data point that falls underneath the
threshold is marked as a blink. The goal of setting a threshold
is to catch as many points that are part of the blink as possible.

The problem is that the blink does not show up in the
data points only as periods of zero pupil diameter, but also
as periods of non-zero diameter: the moments in which the
eyes are closing and opening again. The threshold creation
involves a trade-off; the goal is catching as many blinking
data points as possible, while still making sure that no other
data points are clipped.

Because the average pupil diameter varies over time and
not just per subject, one threshold per subject is not sufficient.
Instead the threshold is recalculated for each trial.

The blink threshold is determined by making a histogram
of the diameter data. It can be best explained by looking at

Fig. 6. The blink threshold in relation to the pupil diameter graph and
histogram. The threshold is depicted as a red line and is set at 25 in this
example. Note how none of the ‘proper’ data points are clipped.

the histogram and pupil diameter graph, which are depicted in
Fig. 6

It is assumed that for each blink the number of points
belonging to the eye opening and closing is is relatively
constant and that they are distributed evenly over the area
between zero and the proper diameter data. For each trial, the
number of data points where the diameter is zero is counted
and this number is divided by a constant. At any point, in the
area between zero and the proper diameter data, the frequency
of data should be lower than this fraction. This constant is
subject-dependent and derived by observation of the subject’s
data.

When a bin in the histogram matches this frequency (mov-
ing right from zero), the value for this bin is taken as the
threshold. This threshold is subsequently lowered by 2 pixels,
to make sure not too many data are clipped.

Once the threshold is found, and the data that fall under-
neath are marked as a blink location, a margin is applied at
the front and end of this location. This margin is required to
catch any floating blinking points still left in the data, since
the use of a threshold will not cut all desired points.

In the last step, the data belonging to the specific eye
are masked using the blink location information that was
previously obtained. The following pseudo-code illustrates in
detail how this algorithm works:

bin[0], frequency[0] =histogram(pupilDiameter)
binNumber = 0
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while frequency[binNumber] < frequency[0]/4 do
increment binNumber

end while

blinkTreshold = bin[binNumber]− 2

blinkLocations = zeroes(length(pupilDiameter))

for i = 0 to length(pupilDiameter) do
if pupilDiameteri < blinkTreshold then
blinkLocationsi = 1

end if
end for

apply margin(blinkLocations,marginLeft,marginRight)

for i = 0 to length(blinkLocations) do
if blinkLocationsi == 0 then
pupilDiameteri = NaN
eyeLocationXi = NaN
eyeLocationYi = NaN

end if
end for

An example of the position of the threshold, resulting from
the use of this algorithm, in relation to the pupil diameter can
be found in Fig. 6.

B. Feature Extraction
Now that the blinks are filtered from the data, it can be

segmented and from each of these segments a feature vector
can be calculated. This process is illustrated in Fig. 7.

1) Data Segmentation: Because the features are defined
over a period of one second, the segment size should also
cover one second. In this case the data were recorded at 500Hz
and therefore each segment consists of 500 data points.

To calculate the features, the data from each trial will be
split in segments of 500 data points; the data points left
over at the end are ignored. Technically these data points
could be used to create an additional segment, using either
a mirroring technique or by extrapolating from the available
data points, but this will only result in 42 extra data points
at best (6 conditions * 7 trials). Since this would result in
a marginal performance increase at best and require relatively
large amount effort to do so, I opted to ignore these data points
instead.

2) The Features: From each segment, seven features are
calculated. These features are mostly the same as the ones used
by S. Marshall, with the exception of the Index of Cognitive
Activity Index (ICA) feature(s) [1].

The ICA feature is an invention by S. Marshall and while I
have used the technique as inspiration for one of my features,
I did not manage to duplicate it entirely [10]. Therefore I will
not refer to it as the ICA feature, but simply the Cognitive
Activity feature. I will explain more about the differences later.

In Table VI you can see which filtered data vectors are
required to calculate each of the features.

Fig. 7. Feature extraction schema. The filtered data vectors are segmented
into chunks of 500 data points. These chunks are then used to calculate the
different feature values: e.g., to calculate the movement feature value for the
left eye, the x and y locations of the left eye are required. Each of these steps
are explained in detail in Chapter IV-B.

TABLE VI
THE SEVEN FEATURES AND THE REQUIRED FILTERED DATA VECTORS

REQUIRED TO CALCULATE THEM

Feature Data required
Blinks, Left Ldia
Blinks, Right Rdia
Movement, Left Lx, Ly
Movement, Right Rx, Ry
Divergence Lx, Rx
Cognitive Activity, Left Ldia
Cognitive Activity, Right Rdia

3) The Blink feature: The blink feature is defined as the
proportion of a second in which the eye is blinking, i.e., the
eyelid is moving across the eye [1].

This is precisely what has been removed from the data
during blink removal, so in order to calculate this feature, the
number of NaN’s per segment of 500 data points are counted:

Blinks =

500∑
i=1

isNaN(pupilDiameteri)

500
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Fig. 8. Histogram of distance between consecutive eye gaze locations, for
each eye, for all participants. The threshold used to differentiate between fast
and slow eye movements divides the data roughly in two.

where

isNaN(x) =

{
1 if x = NaN

0 otherwise

The formula described is used twice to calculate a feature
value for each eye.

4) The Movement Feature: The eye movement feature is
defined as the proportion of a second in which the eye is
moving (i.e. neither stationary nor blinking) [1].

To calculate this, two consecutive gaze locations for an
eye are taken and the distance between them is calculated.
If the distance is longer than a certain threshold, the eye is
considered to be moving.

S. Marshall used a threshold of one pixel to divide the data
into fixations or blinks, and eye movement. While the data
used by Marshall had a frequency of 250Hz, the data here
were recorded at a frequency of 500Hz. To account for this
difference either half the data points would have to be ignored
and instead only the distance between every other data point
calculated, or the threshold should be made twice as strict.

It does seem counter-intuitive to take a threshold of half
a pixel, but the data seem to support the idea. In Fig. 8 the
histogram of the movement is plotted. As you can see the
mean of each of those graphs seems to lie close to the 0.5
pixel mark.

This illustrates that the 0.5 mark is not completely arbitrary,
but actually provides a good division of the data. It might
imply that the feature I extracted is not necessarily the
proportion of a second in which the gaze is moving, but rather
the proportion of a second where the gaze is moving fast, with
the inverse being the proportion of a second where the gaze
is moving slowly or not at all.

The feature is calculated as follows:

Movement =

500∑
i=1

geq(δi, θ)

500

where

geq(x, y) =

{
1 if x ≥ y
0 otherwise

and

δi =
√
(Xi −Xi−1)2 + (Yi − Yi−1)2

and

θ is 0.5

and

X and Y are the x and y coordinates of the eye on the screen

The formula described is used twice to calculate a feature
value for each eye.

5) The Horizontal Divergence Feature: The last feature
calculated is the divergence between the eyes. It is defined as
horizontal distance between the gaze points of each eye [1].

It is calculated by taking the horizontal locations of the gaze
of each eye on the screen and calculating the distance between
them. Data instances where the eye is blinking are excluded
and have to be subtracted from the total segment length for
the division.

Divergence =

500∑
i=1

isNaN(Lxi, Rxi)
√

(Lxi −Rxi)2

500∑
i=1

¬isNaN(Lxi, Rxi)

where

isNaN(x, y) =

{
1 if x = NaN ∨ y = NaN

0 otherwise

6) The Cognitive Activity Feature: The Index of Cognitive
activity (ICA) feature is designed to differentiate between the
light and the dilation reflex in pupil diameter data [10].

I diverged slightly from the method to calculate the ICA
feature. To avoid any misunderstandings I have named this
feature the Cognitive Activity feature. To explain where the
method differs, it is necessary to first explain how the Index
of Cognitive Activity is calculated.

The first step is to apply a wavelet transform to the pupil
diameter data.

Wavelet analysis is especially suited to analyze non-
stationary signals. A wavelet has a compact support, i.e., it has
a finite start and finish. Furthermore, wavelets are designed to
retain both time and frequency information, in contrast to, for
example, conventional Fourier Analysis, which only retains
frequency information.

A family of wavelets is derived from a mother wavelet ψ
by dilation and translation:

ψjk(x) = 2j/2ψ(2jx− k)
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where

j is an index of dilation

k is an index of translation

This family of wavelets encodes x. In the case of the ICA,
the pupil diameter data are substituted for x.

This encoding consists of a smoothed approximation of the
signal, plus all the wavelet coefficients. Together they can be
used to reverse the transformation fully.

Each wavelet coefficient cjk expresses how well the wavelet
ψjk fits to the signal and so the wavelet coefficients represent
the signal locally. To obtain the ICA, the wavelet coefficients
are used to find the changes in pupil diameter caused by
cognitive processing.

The mother wavelet used in this case, is the
Daubechies(32) [15]. The number 32 refers to the number
of wavelet coefficients. This number was inferred from the
directions given to obtain the ICA, by S. Marshall [10].

According to these directions, to be able to isolate the
dilation reflex from the light reflex, the Daubechies(8) should
be used for eye tracking data with a frequency of 60Hz and
the Daubechies(16) for a frequency of 250Hz. Since the data
obtained from this experiment have a frequency of 500Hz,
scaling according to those suggestions results in the use of
a Daubechies(32). Choosing this wavelet will ensure that
per time unit I would obtain the same amount of wavelet
coefficients as S. Marshall.

The signal is denoised by removing the parts of the signal
with wavelet coefficients below or above certain thresholds
using a minimax threshold estimation algorithm as given
in [16].

The application of the wavelet and this denoising technique
are combined together in a function in the Matlab Wavelet
Toolbox: wden . This function was used to perform the wavelet
decomposition.

In order for this function to be applied to the data the blinks
need to be interpolated. An interpolation function already
implemented in Matlab was used for this (interp1 ).

After both these functions have been applied, the next step
is to find the places in the pupil diameter signal where there
was a specific increase, and check whether the corresponding
wavelet detail coefficient was high. If this is the case this
position is marked, otherwise it is ignored. The ICA feature
is then the number of marked places per second. As a result
of this last step noise is decreased.

This last step was not described in sufficient detail for me to
replicate it adequately. Instead I used a threshold to filter the
wavelet coefficient vector and counted the resulting number of
data points above the threshold:

CognitiveActivity =

500∑
i=1

geq(detailCoefi, θ)

where

θ = 0.1

Fig. 9. Classification schema. The feature files for each participant are
split based on the task, resulting in three files: St, Tr and DT, with the data
from the Sternberg task, the Tracking task and the Dual task, respectively.
Furthermore data files are joined to create new data files that contain the data
from all participants combined. These files are then fed to the relevant type of
classifier. A distinction is made between different types of classifiers, because
the results of each type aim to answer a specific research question.

and

detailCoef = the wavelet detail coefficient

The method described above is used twice to calculate a
feature value for each eye.

A note on the difference between the ICA feature and
the Cognitive Activity feature: S. Marshall specifies that the
ICA feature should typically fall between 0-20 counts per
second, where 0 counts indicate conditions with low cognitive
workload and 20 counts indicate high cognitive workload [1].
With this threshold function applied to the wavelet coefficients
the data from this experiment range also generally between
these values. I therefore assume that this CA feature is at least
comparable to that from S. Marshall.

C. Classification

When the features are extracted, the data can be classified.
The goal of the classification is to answer the research ques-
tions posed in the introduction. To answer these questions the
data need to be classified in different ways. The different type
of classifiers that are used can be seen in Fig. 9. Prior to
classification the feature files are split and/or joined to create
the required input.

Typesetting has been used to clarify which classifiers are
designed to answer which specific question:

• Can the same features as used by S. Marshall, extracted
from eye data, be used to distinguish between different
levels of Cognitive Workload[1]?
The classifiers designed to answer this question are
bolded in Fig. 9

• Is this method task dependent?
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The classifiers designed to answer this question are in
SMALLCAPS in Fig. 9

• Is this method subject dependent?
The classifiers designed to answer this question are
underlined in Fig. 9

In Fig. 9 can also be seen how the files are split and joined.
The split files contain data from each of the specific tasks, that
each consist of data from two difficulty levels. Therefore the
classifiers that they serve as input for, are called within-task
classifiers. These classifiers each solve two-class problems.

The all-conditions datasets consist of all the feature data of a
participant. These serve as input for classifiers that solve a six-
class problem, since they are designed to distinguish between
all six different conditions.

Lastly, the data for all participants are joined and serve as
input for the classifiers that will solve either the within task
problems or the all-condition problem, but this time for all
participants at the same time.

1) Classifiers: WEKA, software that holds a collection
of machine learning algorithms, was used to classify the
data [17]. Each dataset is classified twice, once using a
Multilayer Perceptron (MLP) and once using a Support Vector
Machine (SVM). For both of these an implementation exists
in WEKA.

The MLP was chosen on the basis that it was also used by
S. Marshall [1]. She used a MLP implementation in Matlab,
with a hidden layer of 5 nodes that employed early stopping
using a validation set of 25%. In early stopping, the validation
set is used to check between each iteration through the training
set, whether or not the performance is still increasing. If not,
training is stopped.

Furthermore, her results were obtained through a hundred
runs per dataset. A specific test set was separated prior
to classification to test the generalization of the networks
afterwards. The main reported results were the classification
rates of the network on all data.

As you can see in Table VII MLP’s with a hidden layer
of 5 nodes are used together with early stopping, also with
a validation set of 25%. Instead of running each dataset a
hundred times, I have chosen to use k-fold cross validation
of 10 for each classifier, which will be repeated 10 times.
This also results in a hundred classification rates per dataset,
but at the same time makes sure that, for each dataset, each
instance has been used for training once per run out of the 10.
Furthermore I will be reporting the results on the test set, not
performance on the entire dataset.

The other method of classification used by S. Marshall was
linear discriminant function analysis. Since WEKA does not
offer this, an SVM algorithm has been used instead. The
implementation of the SVM in WEKA uses the Sequential
Minimal Optimization algorithm by J. Platt [18]. The param-
eters used for this algorithm are shown in Table VIII.

The kernel used for classification is the Pearson IIV
function-based universal kernel [19]. This kernel has been de-
signed to be more universally applicable than, for example, the
Polynomial or Radial Basis Function kernels, to circumvent
the problem of being forced to choose the kernel best suited
for the data through extensive testing.

TABLE VII
PARAMETERS SET FOR THE MULTILAYER PERCEPTRON CLASSIFIER IN

WEKA

Multilayer Perceptron
Back propagation

Parameter Value
decay false
hiddenNodes 5 (one layer)
learningRate 0.3
normalizeAttributes true
momentum 0.2
validationSetSize 25%
validationThreshold 20

TABLE VIII
PARAMETERS SET FOR THE SUPPORT VECTOR MACHINE CLASSIFIER IN

WEKA

Support vector machine
Sequential Minimal Optimization (SMO)

Parameter Value
buildLogisticModels false
filterType normalize training data
kernel Puk (Pearson IIV function-based universal kernel)

For this classifier, 10-fold cross validation was also applied
and repeated 10 times.

V. RESULTS

A. Workload Profile

During classification of the data, the assumption is that there
is an actual difference in cognitive workload that the subjects
are under in different conditions.

In order to check this assumption, the Workload Profile
ratings for all subjects need to be analyzed.

In Table X, the results of each participant can be found.
There are differences noticeable between subjects, both

in the scaling of the ratings and in the relative difference
between conditions. On the other hand, some trends in relative
difference between conditions are visible. Statistical analysis
can show whether these trends are also significant.

For this analysis the first null hypothesis is:

H0 : No conditions differ in workload score

With the alternative hypothesis:

Ha : At least one condition differs in workload score

The hypothesis is tested by performing a GLM Repeated
Measures with the within-subject factor: task difficulty(1-
6), and the dependent variable: the Workload Profile rating.
The results were significant(Huyn-Feldt:F = 8.582, p = 0.04).
Therefore the alternative hypothesis is true: at least one
condition differs in the workload score from the others.

The follow-up question is if all pair wise comparisons are
also significant. The results can be seen in Table XI.

It shows that two of the pair wise comparisons within-task
are significant (3vs4, p = 0.01; 5vs6, p =0.005). The pair wise
comparison between 1vs2 is not significant, and neither are
most of the other pairs.
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TABLE IX
MEANS AND STANDARD DEVIATIONS ACROSS DATA FROM ALL PARTICIPANTS OF THE FEATURES REPORTED PER CONDITION

Means + (standard deviations)
Sternberg Tracking Dual Task
Easy Hard Easy Hard Easy Hard

Blinks Left 0.091(0.143) 0.118(0.170) 0.042(0.113) 0.028(0.090) 0.034(0.097) 0.079(0.171)
Right 0.098(0.155) 0.119(0.169) 0.044(0.114) 0.033(0.100) 0.035(0.096) 0.082(0.173)

Movement Left 0.498(0.148) 0.504(0.155) 0.541(0.113) 0.534(0.083) 0.527(0.154) 0.503(0.155)
Right 0.520(0.175) 0.527(0.182) 0.569(0.158) 0.574(0.130) 0.558(0.184) 0.542(0.178)

Divergence 10.780(7.433) 17.272(11.533) 13.090(10.248) 10.425(7.778) 16.862(11.644) 17.558(13.721)
Cognitive Activity Left 3.478(3.073) 4.517(4.770) 3.390(3.981) 2.673(2.968) 3.229(3.979) 4.834(6.092)

Right 4.255(4.198) 4.950(5.274) 3.373(4.350) 2.848(3.753) 2.815(3.315) 4.562(5.883)

TABLE X
WORKLOAD PROFILE RESULTS. THE RESULTS ARE OBTAINED BY SUMMING THE SCORES ON THE DIFFERENT SUB DIMENSIONS OF THE WORKLOAD

PROFILE. BOTH THE INDIVIDUAL SUBJECT SCORES AND THE AVERAGE AND STANDARD DEVIATION ARE DISPLAYED FOR EACH CONDITION. ’E’ AND ’H’
REFER TO THE DIFFICULTY OF THE TASK, EASY AND HARD RESPECTIVELY.

Task s01 s02 s03 s04 s05 s06 µ σ

Sternberg(e) 3.1 0.75 0.75 1.7 0.9 1.7 1.48 0.91
Sternberg(h) 3.3 0.85 1.25 2.3 1.5 1.9 1.85 0.87
Tracking(e) 2.9 0.25 0.65 0.6 2.9 0.6 1.32 1.23
Tracking(h) 3.3 0.55 0.9 1.15 3.2 0.9 1.67 1.24
Sternberg(e) Tracking(e) 4.7 1.05 1.25 3.15 4.2 1.35 2.62 1.62
Sternberg(h) Tracking(h) 4.9 1.5 2.05 3.9 4.85 2.6 3.3 1.46

TABLE XI
SIGNIFICANCE LEVELS OF PAIR WISE COMPARISONS OF WORKLOAD

PROFILE RESULTS. LEVELS SIGNIFICANT AT P < 0.05 ARE STARRED: ’*’.

Comparison Sig. (p-values)
Condition 1 vs. 2 0.10

vs. 3 0.736
vs. 4 0.702
vs. 5 0.084
vs. 6 0.013*

Condition 2 vs. 3 0.276
vs. 4 0.679
vs. 5 0.168
vs. 6 0.018*

Condition 3 vs. 4 0.01*
vs. 5 0.08
vs. 6 0.01*

Condition 4 vs. 5 0.016*
vs. 6 0.01*

Condition 5 vs. 6 0.005*

These results could be explained by the low number of
subjects used for this research. Still this will have some im-
plications for any results I might find, these will be discussed
in the Discussion section.

B. Feature distribution

To find out what relations exist between the features and
cognitive workload, the means and standard deviations of each
of the features are found in Table IX.

When looking at the blink feature for the Sternberg task,
the mean is lower in the easy condition than it is in the hard
condition (left:0.090 vs. 0.118 respectively; right: 0.098 vs.
0.119 respectively). For the Tracking task this relationship is
inversed (left: 0.042 vs. 0.028, easy vs. hard; right: 0.044 vs.
0.033, easy vs. hard). Finally, for the Dual Task, the mean
for the easy condition compared to the hard condition is
once again lower (left: 0.034 vs. 0.079 respectively; right:
0.035 vs. 0.082). This indicates that this feature is likely

task dependent, and that a more general, task independent,
relationship between cognitive workload and the proportion
of blinks per second cannot be specified.

Looking at the movement feature in the same vain: For the
Sternberg task, the means increase with cognitive workload;
For the Tracking task the differences between the means are
not significant for both eyes and for the Dual Task the means
decrease with cognitive workload.

Next, looking at the divergence feature: For the Sternberg
and Dual Task task, the means increase with cognitive work-
load; For the Tracking task the means decrease with cognitive
workload.

Lastly, looking at the Cognitive Activity feature: For the
Sternberg and Dual Task task, the means increase with cogni-
tive workload; For the Tracking task the means decrease with
cognitive workload.

Looking at the standard deviations for each of the features,
they appear to be rather large in comparison to the mean of
the respective features, especially since all features range from
zero up. This can be explained by looking at the distributions
of the features. Not all of them follow the pattern of a normal
distribution, which becomes obvious when looking at the box
plots of the features, for each of the conditions. This plot can
be found in Appendix A.

C. Classification Results

In SectionIV-C was explained how the different types of
classifiers were set up in order to allow the results obtained
from these classifiers to answer the research questions posed
in the introduction.

The results from these different types will also be reported
separately, to keep this distinction clear.

1) Within-task classifiers using individual models: The
within-task classifiers are those that classify between the
two difficulty levels of each task (i.e., Sternberg(easy) vs.
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TABLE XII
RESULTS FROM THE EXPERIMENTS DISTINGUISHING BETWEEN COGNITIVE STATES BY S. MARSHALL‘[1]. A DISTINCTION IS MADE BETWEEN RESULTS

OF SINGLE MODEL CLASSIFIERS AND INDIVIDUAL MODEL CLASSIFIERS. THE RESULTS FROM LINEAR DISCRIMINANT FUNCTION (LDF) AND
MULTILAYER PERCEPTRON (MLP)ARE SEPARATED.[1]

Individual Model Single Model
µ All subjects

Relaxed vs. Engaged 73% Relaxed vs. Engaged 62%
LDF Focused vs. Distracted 70% LDF Focused vs. Distracted 59%

Alert vs. Fatigued 73% Alert vs. Fatigued n/a
Relaxed vs. Engaged 79% Relaxed vs. Engaged 65%

MLP Focused vs. Distracted 69% MLP Focused vs. Distracted 61%
Alert vs. Fatigued 79% Alert vs. Fatigued n/a

TABLE XIII
CLASSIFICATION RESULTS FROM THE WITHIN-TASK CLASSIFIERS FOR THE

INDIVIDUAL MODELS.

Individual model
µ σ

Dual Task 82.68% 12.79%
MLP Sternberg 79.40% 13.68%

Tracking 75.60% 13.61%
Dual Task 83.00% 12.40%

SVM Sternberg 80.44% 12.47%
Tracking 76.66% 12.53%

TABLE XIV
CLASSIFICATION RESULTS FOR THE ALL-TASK CLASSIFIERS FOR THE

INDIVIDUAL MODELS.

Individual model
µ σ

MLP - All Data 55.16% 9.97%
SVM - All Data 56.52% 8.50%

Sternberg(hard), Tracking(easy) vs. Tracking(hard) and Dual
Task(easy) vs. Dual Task(hard)). The classifiers were trained
and tested on the individual models which means that for each
participant a new model was trained.

The results of this classification can be found in Table XIII.
The classification rates shown are generally well above the

chance level for a two class problem, which is 50%.
For comparison, the results from S. Marshall can be found

in Table XII. Since they are being compared to the results
from the individual models from the experiment, the results
in the individual model table should be consulted.

2) All-task classifiers using individual models: The all-task
classifiers are those that classify all six conditions. Once again,
for each of the participants a new model was trained.

The results obtained can be found in Table XIV
These classification rates are noticeably lower than those

from the within task classifiers, but are still well above chance
level: the chance level for a six class problem would be 16.7%.

3) Within-task + all-task classifiers using a single model:
The within-task and all-task datasets were also combined for
all participants and used to create single model classifiers.

These results can be found in Table XV.
Compared to the performance of the individual model

classifiers these classification rates are distinctly lower.
The within-task results on the single model can be compared

to the single model results by S. Marshall. For these results
see Table XII

TABLE XV
RESULTS FROM SINGLE MODEL CLASSIFICATION FROM BOTH

WITHIN-TASK AND ALL-TASK CLASSIFIERS.

Single Model
All Subjects

MLP Dual Task 70.24%
Task data Sternberg 70.75%

Tracking 70.79%
All data 35.16%

SVM Dual Task 75.85%
Task data Sternberg 73.72%

Tracking 73.88%
All data 44.58%

VI. DISCUSSION

Based on the results, conclusions can be drawn about the
research questions posed in the introduction.

I will reiterate these questions for clarity:
• Can a method be developed that employs the same

features (i.e. those used by S. Marshall) extracted from
eye behavior data, to distinguish between different levels
of cognitive workload[1]?

• Is this method task dependent?
• Is this method subject dependent?

A. Conclusions

1) Main research question: Can a method be developed
that employs the same features (i.e. those used by S. Marshall)
extracted from eye behavior data, to distinguish between
different levels of cognitive workload [1]?

The results from the within-task classifiers using the indi-
vidual models, averaged over all participants, range from 76%
to 83% for the MLP, and from 77% to 83% using the SVM.
These results are at a comparable level and even somewhat
higher than the results found by S. Marshall [1], which range
from 69% to 79% for the individual models. From this can be
concluded that this method definitely can distinguish between
different levels of cognitive workload.

It should be noted that the performance on the Sternberg
task is 75% while there was no significant effect found
between the respective Workload Profile ratings. There are
multiple explanations possible for this: the lack of a significant
effect is caused by the low number of subjects (n=6), or
classifiers are not actually distinguishing between different
levels of cognitive workload but between something else.

The individual workload profile ratings of each of the par-
ticipants (see Table X) indicate that the former explanation is
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quite likely, since each of the participants has rated the harder
Sternberg condition as imposing more cognitive workload than
the easy Sternberg condition.

2) Is this method task dependent?: Different tasks can elicit
different eye behavior in a subject. The question is whether
this method can still distinguish between different levels of
cognitive workload if that cognitive workload is imposed by
different types of tasks.

The classifiers on all-tasks using individual models per-
formed at 55% for the MLP and at 57% for the SVM. These
classification rates are in the low range, but definitely above
chance level, which is 16.7% in this case.

On the other hand, the results from the means and standard
deviations of each of the features seemed to indicate that most
of the features on their own are very task dependent. With such
differences in the direction of the relationship with cognitive
workload for each of the features, classification rates ranging
from 55% to 57% could indicate that this specific combination
of features removes some of this task dependence.

Furthermore, the lack of significant effects found during
statistical analysis, could explain a proportion of the low clas-
sification rates as well (only a few were found: for reference
see XI).

Without clearer evidence it is impossible to draw a definite
conclusion, but the results do indicate that this method is task-
dependent, if at least to a degree.

3) Is this method subject dependent?: To answer this ques-
tion, the data from all participants were combined and a single
model was trained for all the within-task datasets.

The results range from 70% to 71% for the MLP and from
74% to 76% for the SVM. Comparing this to the results
of the individual models these results are only about 5% to
10% lower. It is to be expected that a single model performs
somewhat worse than models that are trained for a specific
individual, since variance in eye behavior can be expected
between different subjects. Such variance already shows in the
standard deviation of the classification rates for the different
tasks (around 12% - 13%).

Furthermore there is also variance between the individual
workload profile ratings for each of the conditions.

All in all, this method definitely seems to generalize well
over different subjects. The conclusion is that this method is
not subject dependent.

B. Future research

These findings indicate that a system to distinguish between
different levels sufficiently distinct of cognitive workload in
real time could be developed. The system would have to
be restricted to a single task that could be composed of
smaller subtasks that are executed simultaneously (as in the
Dual Task condition). Furthermore the system would require
training on the expected levels of cognitive workload before
use. This limits real world applications for the moment, but
with continued research perhaps advancements could be made.

Whether this method is task dependent or not requires
more compelling evidence. To solve the problem of a lack
of significant effects between Workload Profile ratings, the

difference in cognitive workload imposed by the different tasks
should be increased, or a larger amount of subjects should
participate.

Currently seven features were used to classify the data; in
future research more features could be investigated. Estab-
lished research shows that the addition of features that describe
the mean or standard deviation of an existing feature can
increase performance [20]. While this was specifically applied
to multi stroke gesture recognition, it is conceivable that this
could work for these eye-behavior features as well.

For example the divergence feature currently describes the
average of the divergence between the eyes over a segment.
Since the calibration can affect the baseline divergence for a
subject, extra information could be gained from the standard
deviation of the divergence over a given segment.

Furthermore, the classification performed in this research
was offline. A new line of research could investigate whether
or not an online implementation could be achieved. While
the classification rates from the within-task classifiers were
perhaps too low for success with an online system, they could
be increased by increasing the interval size of the features.
Currently the data were classified with instances covering one
second of eye tracker data. This could be increased to 5 or
even 10 seconds per interval.

Moving toward such an online system is the next step in
achieving the goal of a true Augmented Cognition: To create
a real-time system that detects the user’s cognitive state and
adapts accordingly.
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Fig. 10. Box plots for each of the features used in classification of data from all the participants. Each plot represents one feature, in which each of the box
plots represents one condition. Condition numbers mean the following: 1 = Sternberg, easy; 2 = Sternberg, hard; 3 = Tracking, easy; 4 = Tracking, hard; 5 =
Dual Task easy, 6 = Dual Task, hard. For each of the box plots the top and bottom represent the 75th and the 25th percentile, respectively. The line near the
middle represents the 50th percentile which is also the median. The ‘whiskers‘ of the box plot can extend to twice the length of the box plot in both upward
and downward direction, and extend up to the last data point that can be reached in that distance. Data points beyond these whiskers are marked with a red
+ and are normally considered outliers. (They are only necessarily outliers if the data plotted generally follow a normal distribution).

APPENDIX A
FEATURE DISTRIBUTIONS
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Fig. 11. An example of output generated by the eye tracking system. —- indicate a jump in data, to show how messages show up in data.
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