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ABSTRACT: Fever is harmful in critically ill patients with acute brain injury (ABI). It is vital
to swiftly and accurately identify the source of the fever and start treatment. The aim of this
study was to explore the application of AI to predict the etiology of a fever at onset. Fever
episodes of included ABI patients were identified. Fever episodes with ≥ 100 hours of consecutive
antibiotics were labelled as infectious, else non-infectious. Features were extracted over the three
days before the fever. Eight traditional Machine Learning models were trained using different
feature representation and sampling approaches. We identified 610 fever episodes in 423 of the
1056 included patients (40%) of which 120 (20%) were labelled infectious. The best performing
models were Logistic Regression and SVM with rbf kernel, with an AUC of 0.64, which is 0.09
higher than the dummy classifier. The sampling techniques as well as the different approaches in
feature engineering did not show a significant main effect on AUC performance. Based on our
results, we conclude that the combination of features and labels in the created dataset do not carry
sufficient predictive value for the distinction between infectious and non-infectious fever episodes.

I. Introduction

Fever is a common symptom in critically ill
neurologic patients, presenting in up to 70%
of patients at some point during their stay in
the Intensive Care Unit (ICU) [1–3]. Though
fever is common among patients in the ICU
[4, 5], multiple studies show that fever impacts
the population of patients with acute brain in-
jury (ABI) considerably and is associated with
increased mortality, increased ICU and hos-
pital length-of-stay (LOS) and worse outcome
[1–3, 6–8]. It is important to promptly and accu-
rately identify the underlying cause of the fever
and start adequate treatment. Only half of
the fevers among neurologic ICU patients are
caused by an infection [3, 7], other etiologies for
fever among neurologic ICU patients are e.g.
drug reactions, post-surgical and neurogenic
state [9]. Neurogenic fever (NF) is caused by a
complex disturbance of the thermoregulatory
center [9]. Differentiating NF from infectious
fever is a critical diagnostic decision that clin-

icians face with ABI patients, as treatments
differ significantly. If a fever has an infectious
etiology, antibiotics should be given rapidly.
With a neurogenic fever, efforts should focus
on reducing the temperature in order to min-
imize temperature induced secondary brain
injury [9]. The dilemma for clinical experts is
consequently to avoid unnecessary use of an-
tibiotics while at the same time avoiding delay
in start of antibiotic treatment in patients with
severe infections. Currently no specific marker
for disturbed thermoregulation exists, so NF
can only be diagnosed by exclusion of infec-
tious processes and ruling out other etiologies.
This requires expensive and invasive tests that
burden the patient and take time to process
[10–12], thus antibiotics are often prescribed
preventively. Any additional information, such
as a classification model, to aid the clinician
in promptly identifying the cause of the fever
(neurogenic or infectious) would therefore be
a valuable aid in clinical decision making [11].
Literature has been published on indicators
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and risk factors of neurogenic and infectious
fever [10, 13] and simple decision tree models
have been built to assist clinical decision mak-
ing [10]. With the rise of Artificial Intelligence
(AI) applications in the medical field to assist
decision making [14, 15] and the amount of
data recorded on the ICU, we found a lack of
AI applications on fever etiology classification
models for ABI patients.

In the face of this gap in literature, the ob-
jective of this study was to explore the appli-
cation of AI to predict the etiology of a fever
in ABI patients. Due to practical constraints,
this study could not yet make a distinction
between neurogenic and other non-infectious
fevers. Therefore this study will focus on the
prediction of infectious vs non-infectious eti-
ologies.

To achieve this objective, the following sub-
objectives were considered: (1) dataset devel-
opment of fevers of ABI patients; (2) selection
of relevant variables and exploration of dif-
ferent features; (3) exploration of AI methods
for predicting fever etiology as infectious or
non-infectious.

The first section of this paper will explore the
theoretical background of the medical side of
this project. It continues with a brief overview
of AI applications in healthcare and on the
ICU. The third section is concerned with the
methodology used in this study and is followed
by the results section. In the discussion section
the results are examined and the conclusion
summarizes the findings of this paper.

II. Theory

i. Medical Background

The Intensive Care Unit (ICU) is the most
advanced unit in the hospital, designed to take
intensive care of critically ill patients [16]. Pa-
tients on the ICU are heavily monitored both
by medical devices and staff. The ICU is one
of the most data rich environments in the hos-
pital.

Fever Fever is common among patients in the
ICU [4, 5] and is a physiologic mechanism to
raise the core body temperature [17], which

can be accomplished by both increased heat
production and decreased heat loss. Although
there is no uniform definition of fever, a core
body temperature > 38.3◦C is often used [18].
For the general medical population fever may
be a beneficial reaction to infection [5, 17] in
which case aggressive fever reduction is not
necessary. In the ICU, a fever is classified as
either “infectious” or “non-infectious” [19]. In-
fections on the ICU can be diagnosed using e.g.
(blood) cultures, laboratory tests and imaging
studies. If the fever is classified as infectious,
antibiotics need to be administered to treat
the infection [20]. Fevers classified as "non-
infectious" can have different etiologies: drug
reactions (medications), post-surgical, venous
thromboembolism, acalculous cholecystitis, at-
electasis, paroxysmal sympathetic hyperactiv-
ity and neurogenic [7, 9]. Depending on the
classification, fevers are treated differently. To
avoid unnecessary use of antibiotics, prompt
and accurate identification of non-infectious
fever is vital, thereby decreasing emergence
of multidrug-resistant organisms and the risk
of unwanted interactions between drugs and
toxic effects [13].

ABI Acute brain injury (ABI) is a sudden in-
jury to the brain, resulting in a change to the
brain’s neuronal activity. For a concrete list of
diagnoses considered as ABI in this study see
Table 6 in Appendix A.

ABI and Fever Fever is a common symp-
tom in critically ill ABI patients, presenting
in 15 - 70% of patients at some point during
their stay in the ICU [1–3, 7, 10]. Between 42%
and 52% of fevers among neurologic ICU pa-
tients are caused by an infection [3, 7]. Fever
affects the injured brain differently and is as-
sociated with increased secondary brain dam-
age, resulting in worse outcome and increased
mortality [2, 5, 6, 21]. One possible pathophys-
iologic mechanism is that intracranial pressure
increases with temperature, putting the already
injured brain at risk for further injury [22].

NF Neurogenic fever (NF), also known as
central fever or centrally mediated fever, is
caused by a complex disturbance of the ther-

3



moregulatory center and is thought to be in-
duced by injury to e.g. the hypothalamus
[9, 23] due to ABI. Around 30% of fevers
among neurologic ICU patients have a neu-
rogenic etiology [7, 13]. Several studies have
investigated indicators, predictors and risk fac-
tors for neurogenic fever in ABI patients [9, 10].
However, the diagnosis of neurogenic fever ul-
timately relies on a diagnosis per exclusion
[9], requiring expensive and invasive tests that
burden the patient and take time to process [10–
12]. To prevent the damaging effects of fever on
the injured brain, treatment of NF should con-
sist of cooling measures and/or administering
antipyretics. [9, 11, 13].

ii. Technical Background

The application of Artificial Intelligence (AI)
techniques on medical data started in the pre-
vious century [24, 25]. Currently, AI is being
used in several different fields of healthcare
[26–28]. In 2018 an introduction to the back-
ground of AI in healthcare was published [29].
The field of medical signal analytics analyses
continuous data from monitoring devices, sit-
uational and contextual data such as lab re-
sults and patient information in order to get
actionable insights, i.e. diagnoses, predictions
and treatment prescriptions [30]. The massive
amounts of patient data available combined
with the high stakes and gains involved, makes
the ICU an attractive subject for signal analyt-
ics. Popular subjects on the ICU are mortality
prediction [31–33], outcome prediction [34–36],
and sepsis prediction [37–39].

AI techniques Many studies on the ICU use
statistical methods such as analysis of variance
(ANOVA) and principal component analysis
(PCA) as well as logistic regression analysis to
identify predictors, indicators and risk factors
and build simple models on the results [10, 40].
Though these techniques could also be seen
as an element of AI, a diverse set of more ad-
vanced Machine Learning (ML) techniques are
used in signal analytics on the ICU [14, 31].
Some of these recent techniques include Artifi-
cial Neural Networks (ANNs) [39, 41], Random
Forests (RFs) [42, 43], Support Vector Machines

(SVMs) [39, 43], Reinforcement Learning (RL)
[37, 44], and boosting algorithms [43]. In infec-
tion management Logistic Regression (LGR),
RFs, SVMs and ANNs are most prevalent [45].
For the detection of diseases, Naive Bayes (NB)
and SVMs are widely used, offering better ac-
curacy compared to other algorithms [46, 47].

Challenges Datasets with imbalanced classes
are very common in medical fields [42, 48].
Building reliable classifiers from imbalanced
datasets is a problem that can result in high ac-
curacy scores with very low minority class pre-
cision scores. Common strategies to deal with
imbalanced datasets are undersampling and over-
sampling, each with drawbacks. With under-
sampling, instances of the majority class are
reduced to the amount of the minority group,
at the risk of potentially losing valuable in-
formation. In oversampling, instances of the
minority class are duplicated to the amount
of the majority group, at the risk of overfit-
ting and increasing computational resources
needed for the models [42]. Several studies
have demonstrated improved overall classifi-
cation performances when training set classes
are balanced [49, 50], undersampling in par-
ticular seems to help [49, 51]. When dealing
with imbalanced classes, using accuracy as the
only performance metric is misleading: high
accuracy can be achieved while the precision of
the minority class may be very low [42]. There-
fore it is important to consider other metrics
of performance with imbalanced classes such
as precision, recall (also known as sensitivity),
specificity, F1-score or Area Under the Receiver
Operating Characteristics (AUROC).

Most AI projects use retrospective electronic
health record (EHR) data, which can be noisy,
inconsistent and may contain many missing
values since data collected in EHR is not fo-
cused on research. Cleaning data and dealing
with missing data comprises 80% of the work
[45]. However, less than half of the studies on
infection on the ICU do not report how missing
data is handled, reducing comparability and
reputability [45].
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Related work The application of AI for infec-
tion management is still in its infancy [52]. Re-
cent review studies identified only 50-60 stud-
ies that used ML for infection management in
healthcare. Studies on sepsis prediction pre-
dominate in this field [15, 45]. A study using
LGR, RF and deep CNNs found that variations
in vital signs such as the standard deviations
of blood pressure, heart rate and SPO2 as well
as maximum and average features of heartrate,
blood pressure and SPO2 could be used to
predict the onset of severe sepsis in critically
ill children [38]. Other subjects of AI on infec-
tion management in the ICU include predicting
hospital-acquired infections [40, 42, 49].

Only two studies could be found that aimed
at predicting fever etiology as infectious or
non-infectious, however none of these were
aimed at patients on the ICU with fever. The
first study aimed to classify infectious and non-
infectious etiologies for prolonged undifferen-
tiated fever of patients in a tertiary care centre
in Asia [53]. Using 24 hours of prospective
continuous temperature recordings of febrile
patients, an ANN reached a highest accuracy
of 91.3%. The second study of discriminating
infectious and non-infectious causes of fever
focused on fevers of unknown origin (FUO),
which are fevers lasting more than 3 weeks
of which the etiology remains uncertain after
a week of in-hospital diagnostic workup [54],
using Logistic Regression analysis to identify
independent predictors. A model of these pre-
dictors classified infection in patients with FUO
with a sensitivity and specificity of 90%.

For specific ABI conditions such as stroke,
traumatic brain injury (TBI) or subarachnoid
hemorrhage (SAH), literature can be found on
mortality, outcome and deterioration predic-
tion [35, 41, 47, 55, 56]. Less literature is pub-
lished where AI techniques are applied to the
overall population of ABI patients, especially
regarding fevers and infections. Tree-based
ML algorithms have been used to identify risk
factors for healthcare-associated ventriculitis
and meningitis in the neuro-ICU [40]. Another
study aimed to predict the onset of fever in crit-
ically ill children on the neurological ICU using

AI on physiomarkers extracted from continu-
ous physiological data [57]. Heart rate associ-
ated physiomarkers were important features,
other important features were derived from
blood pressure data. An RF, SVM and CNN
had an average accuracy of 85.4%, 77.6% and
81% respectively.

Medical literature has been published us-
ing statistical analyses to identify risk fac-
tors, predictors and indicators for the distinc-
tion between infectious and neurogenic fevers
[8, 10, 58]. Though these give some guidance
to relevant variables, they do not directly pre-
dict a fever to be infectious or non-infectious
in ABI patients on the ICU using AI.

III. Methods

i. Dataset
For this retrospective study clinicians were

consulted in every step of building the dataset.
Figure 1 gives an overview of the steps in build-
ing the dataset.

Main inclusion criteria for patients were: 18
years and older, consecutively admitted for at
least 48 hours to the ICU of Radboud Uni-
versity Medical Center (Nijmegen, the Nether-
lands) between Jan 1, 2015 and Dec 31, 2019
having at least one of the selected ABI admis-
sion diagnoses (Table 6 in Appendix A). The ex-
clusion criterion was a second infectious admis-
sion diagnosis (Table 7 in Appendix A) since
the focus of this study is fever that develops on
the ICU of which the etiology is not known at
onset.

We defined fever episodes as body tempera-
ture > 38.3◦C recorded on at least one measure-
ment for at least two consecutive days [10, 13].
We excluded the first 36 hours of temperature
measurement in post-cardiac arrest patients
due to cooling interventions as well as the last
48h of deceased patients due to temperature
irregularities.

We dichotomized the fever etiologies in in-
fectious and non-infectious fever as follows: if
a patient received ≥ 100 hours of consecutive
antibiotics during a fever, the fever episode was
labelled as infectious, in all other cases the fever
episode was labelled as non-infectious. More
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Figure 1: Datasets creation steps

detailed information about the implementation
of fever episode identification and labelling can
be found in Appendix A.

Selected data used for model building in-
cluded (1) patient demographics; (2) admis-
sion information; (3) vital parameters; (4) test
measurements; (5) fluid data; (6) lab results;
and (7) medications administered. See Table
8 in Appendix A for a detailed list of the se-
lected data. Selection of these data was based
on medical physiology and pathology, litera-
ture, as well as availability of the data from
the medical records at the time of building the
dataset.

Literature as well as clinicians were con-
sulted in the feature engineering process to
turn the selected data into meaningful features.
Features extracted from (1) patient demograph-
ics and (2) admission information only needed
to be extracted once for each fever episode.
For the other variables intervals and a range
needed to be chosen over which to extract the
features. Based on medical physiology and
pathology, these features were extracted from a
time window starting at 3 days before the fever
episode. Features from time series data were
extracted at intervals of 8 or 24 hours, depend-
ing on the variable used. Since group (3) vitals
included continuous raw data, features could
be extracted over intervals of 8 hours (one shift).
Two different approaches were taken for fea-
ture engineering. For a full overview of the
specific features of both approaches see Table

8 in Appendix A.

Numerical approach For the first ap-
proach, continuous numeric features were ex-
tracted from the variables, such as sum, min-
imum (min), maximum (max), median (med)
and standard deviation (std). Categorical fea-
tures were one-hot encoded. As mentioned
in ii Challenges, one of the issues of working
with retrospective EHR data is missing values,
either due to machine errors, human mistakes
or simply because a patient had not yet been
admitted. Due to limited resources and time
it was not possible to explore advanced im-
putation techniques. We decided to impute
missing feature values with the mean of that
feature. It is important to note that this impu-
tation was fitted (the means are calculated) on
the training dataset, and this fit was applied to
missing values of both the training and the test
datasets.

Discrete approach Since we had many dif-
ferent data streams and limited resources it was
not possible for this study to perform prepro-
cessing on all these data streams. Therefore no
outlier detection and removal was performed
and as mentioned no sophisticated approaches
were taken to deal with missing data. The de-
cision was made to also make discrete features
to reduce the impact of outliers and to deal
with missing data. For this second approach
a clinician drafted bins for some of the contin-
uous features. Again due to time constraints
not all of the numerical features could be dis-
cretized and only one continuous feature was
binned for each variable, generally the median
feature. Missing feature values were dealt with
by adding two extra bins to each feature: one
bin for missing data because the patient was
not yet admitted and another bin for missing
data while the patient was already admitted.
To be able to use these categorical features as
input for ML models, these bins were ordinal
encoded, meaning that the bins of each feature
were encoded as integers 0 to nBins − 1. See
Appendix A for more information on the bins
for missing data.

6



ii. Models

We chose six ML classifiers from the scikit-
learn library [59]: Naive Bayes (NB) (Categori-
cal Naive Bayes for the discrete features, Gaus-
sian Naive Bayes for the numerical features),
k-Nearest Neighbor (kNN), Logistic Regression
(LR), Support Vector Machine (SVM), Random
Forest (RF) and Gradient Boosting (GB). Three
different kernels were used for the SVM: the
Radial Basis Function (rbf) kernel, Polynomial
(poly) kernel and Sigmoid (sigmoid) kernel.
These techniques were chosen because they
span a wide range of approaches and complex-
ities and have different strengths and weak-
nesses, allowing for a systematic comparison
and exploration.

Naive Bayes (NB) Naive Bayes classifiers use
Bayes Theorem to calculate the class probabili-
ties of a sample using prior knowledge. Naive
Bayes assumes that all features are condition-
ally independent. Based on the specific type of
NB classifier used, another assumption is made
on the distribution of the probability (e.g. Cat-
egorical, Gaussian, Multinomial, Bernullian).
Advantages of NB include generally good per-
formances, better performance than more com-
plex models on small datasets and high inter-
pretability. Disadvantages of NB are that with
enough data, more complex models tend to
outperform NB and that the estimated proba-
bility is rarely accurate because of the assump-
tion of conditional independence.

k-Nearest Neighbor (KNN) The basis of the
KNN algorithm is feature similarity. The train-
ing phase only consists of loading in the train-
ing data, when a new sample is presented it is
classified as the most common class among its
K nearest neighbors. The similarity between
the new sample and the training set instances
are calculated by a specified distance metric,
such as Manhattan distance or Hamming dis-
tance. Advantages of KNN include simplicity,
easy interpretability and no assumptions be-
ing made about the data. On the other hand,
KNN is computationally expensive, requires a
lot of memory and is sensitive to meaningless
features and the scope of the data.

Logistic Regression (LGR) Regression is the
process of modeling the relationship between
variables by minimizing the error of the pre-
dictions. Logistic Regression uses a Sigmoid
function as cost function to optimize. The ad-
vantages of LGR are its simplicity, interpretabil-
ity and generally pretty good results as well
as the inference it allows about the importance
of the features. The disadvantages of LGR are
its assumptions of no outliers in the data and
no high correlations between the independent
variables as well as its tendency to overfit when
using datasets of high dimensionality. To avoid
overfitting, L1 regularization (used in Lasso
regression) and/or L2 regularization (used for
Ridge regression) can be applied. Additionally,
LGR cannot solve non-linear problems.

Support Vector Machine (SVM) Support
Vector Machines find hyperplanes to separate a
dataset into different classes and maximize the
distances (margins) between the hyperplane
and the data points nearest the hyperplane
(support vectors). This hyperplane is linear,
but kernels can be applied to transform the fea-
tures to find non-linear hyperplanes. Popular
kernels include the polynomial kernel, radial
basis kernel (rbf) and sigmoid kernel. Advan-
tages of SVMs include effectiveness in high
dimensional spaces, ability to solve many dif-
ferent complex problems when using appro-
priate kernels and reduced risk of overfitting.
Disadvantages include decreased performance
on noisy data, poor interpretability and difficul-
ties in choosing a good kernel for the problem.

Random Forest (RF) A Random Forest is an
ensemble method where weak base estima-
tors (decision trees) are built in parallel and
predictions are bagged: the majority vote of
the weak estimators determines the class of
the sample. In an RF, unpruned classification
trees are grown from bootstraps of the origi-
nal data where a number of features are ran-
domly sampled at each node. The advantages
of RFs include reduced variance and overfitting
beside robustness to outliers and noise. The
disadvantages of RFs include increased train-
ing time, computational power and resources.
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Figure 2: Models pipeline

Additionally, RFs are more complex and less
interpretable.

Gradient Boosting (GB) Boosting methods
are ensembles that are built and combined
sequentially to reduce the bias of the combined
estimators. Gradient Boosting typically en-
sembles decision trees and minimizes the bias
when combining estimators using gradient
descent. The advantages of GB are that it has
been repeatedly proven to be very powerful
in classification and is very flexible. Disad-
vantages of GB include increased complexity,
training time, computational power and
resources. GB is also less interpretable, more
prone to overfitting and due to its flexibility
has many parameters that need to be tuned.

To compare these classifiers to a sim-
ple baseline, we applied a Stratified Dummy
classifier from the scikit-learn library which
generates predictions based on the class
distribution in the training set. Some hyperpa-
rameters of the selected classifiers were tuned
using grid search over supplied parameter
ranges to optimize on recall. Other default pa-
rameters were changed based on preliminary
explorations. See Table 5 in Appendix A for
an overview of hyperparameters used.

To study the effect of balancing the classes
before training, undersampling, oversampling
as well as no sampling were applied.

The performance of the models, feature engi-
neering approaches and sampling techniques
was estimated using 10 Fold Cross Validation
(CV), illustrated by the loop in Figure 2. The
datasets were divided into ten subsets; one sub-
set was retained as test set and the remaining
nine were used as training set. The training
sets were used to fit mean imputation for the
numerical features, apply sampling on, tune
the hyperparameters and train the classifiers.

The trained models were tested on the test sub-
set. This process was repeated ten times, using
each of the subsets as test set once. To report
the performance the means and standard devi-
ations of the recall (also known as sensitivity),
specificity and Area Under the Curve (AUC)
were calculated. Additionally, Receiver Operat-
ing Characteristic (ROC) curves were plotted
for a more qualitative analysis and the coeffi-
cients of the LGR model as well as the feature
importance of RF and GB were analysed.

IV. Results

i. Dataset

The number of patients included and ex-
cluded at each step of the patient selection
process are illustrated in Figure 3. Of 1056
selected patients, 423 (40%) experienced fever
episodes with a total of 610 fever episodes (Ta-
ble 1), of which 120 (20%) were classified as
infectious.

Figure 3: Patient Flow Diagram
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Table 1: Overview of patient demographics, fever episodes and antibiotics.

Total Non-infectious Infectious

Patient demographics (n=423) (n=375) (n=97)
Median age (IQR) 57 (40-68) 57 (42-68) 57 (40-67)
Male/Female 65%/35% (273/149) 64%/36% (239/135) 69%/31% (67/30)
Median days on ICU (IQR) 13.5 (7.7-21.4) 12.7 (7.3-20.4) 21.7 (15.3-31.5)
Median days in hospital (IQR) 23.8 (13.4-41.6) 23.1 (12.9-40.4) 36.1 (21.5-62.3)
% Mortality (n) 25% (106) 24% (89) 30% (29)

Fever episodes (n=610) (n=490) (n=120)
Median amount per patient (IQR) 1 (1-2) 1 (1-1) 1 (1-1)
Median days duration (IQR) 3.0 (1.8-5.6) 2.7 (1.8-5.0) 4.7 (2.4-8.2)
Median days on ICU till onset (IQR) 4.1 (1.2-9.3) 3.6 (0.9-8.3) 6.9 (2.3-12.7)

Antibiotics treatments
Median hours continuous (IQR) 0 (0-73) 0 (0-23) 171 (124-267)

During the feature engineering stage, dif-
ferent engineering approaches were compared
with regard to the medications representation,
interval window, and features with a lot of
missing values. The different approaches only
yielded marginal differences in performance
with inconclusive overall preference (Tables 9-
12 in Appendix B). After engineering features
from the selected data, the discrete feature rep-
resentation dataset contained 272 features and
the numerical dataset contained 618 features
(Table 2). The numerical dataset suffered more
missing values (38%) than the discrete dataset
(25% missing). Half of the missing values in
the discrete dataset are due to patients not yet
being admitted. For example, if a patient de-
velops fever on the second day after admission
then no data has been recorded over the third
day before the fever, since the patient was not
yet on the ICU that day.

Patients with infectious fever episodes had a
longer ICU and hospital length of stay com-
pared to patients with non-infectious fever
episodes (Table 1). Patients with infectious
fever episodes had a higher mortality than
non-infectious fever patients. Overall, fever
episodes occurred four days after ICU admis-

sion, however a quarter of the fever episodes
developed within 1.2 days of ICU admission.
Infectious fever episodes occurred after 6.9
days after ICU admission as opposed to 3.6
days for non-infectious fever episodes.

ii. Models

The models were trained and tested on both
the discrete and numerical datasets with each
of the different sampling methods applied. The
main results of the performances will be pre-
sented in this section. The full comparison of
the performance of the sampling techniques,
models and features is available for inspection
in Table 13 of Appendix B.

No significant main effect of different sam-
pling techniques on AUC performance can be
seen (Figure 4). Performances in terms of recall
and specificity in Figures 9 and 10 in Appendix
B show a pattern; the plots are horizontally
mirrored. Either both recall and specificity are
mediocre (0.5-0.6), or an improvement in recall
comes at the cost of a decrease in specificity
and vice versa.

Figure 5 illustrates the AUC performance
of the discrete and numerical feature repre-
sentations without sampling. No main differ-

Table 2: Overview of missing feature values.

Total Non-infectious Infectious

Discrete dataset (n=272)
% Missing (% not admitted) 25% (12%) 26% (13%) 20% (7%)
Median missing per feature (IQR) 91 (0-298) 81 (0-243) 12 (0-49)

Numerical dataset (n=617)
% Missing 38% 39% 32%
Median missing per feature (IQR) 249 (83-337) 214 (69-282) 40 (10-54)
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Figure 4: Boxplots of CV AUCs aggregated over the
datasets split over the sampling methods on
the x axis. The models are indicated by color.

ence can be found. The difference has a slight
impact on the SVM with polynomial kernel,
which performed worse than the Dummy clas-
sifier on the numerical dataset. Performances
of recall and specificity in Figures 11 and 12 in
Appendix B show the same mirrored pattern
for the two datasets as seen for the sampling
methods. These figures also show that the
SVM with polynomial kernel has high variabil-
ity between the CV folds. Table 3 compares
performance on the training sets and the test
sets using the mean AUC and standard devi-
ation. The AUC performances of the SVMs
with sigmoid and polynomial kernels on the
train set are very low, with the sigmoid kernel
SVM being at chance level. Aside from LGR
and the SVMs, all models show a difference
between train and test set AUC of more than
0.2. GB and KNN showed the biggest differ-
ences between train and test AUCs with a very
high AUC on the train set, but an AUC that is
barely above chance level on the test set. GB

Table 3: Aggregated AUC means (SD) on train and test
sets.

Metric AUC
Model\Dataset Test Train

NB 0.62 (±0.08) 0.80 (±0.06)
KNN 0.55 (±0.08) 0.92 (±0.12)
LGR 0.61 (±0.11) 0.73 (±0.09)
SVMpoly 0.55 (±0.12) 0.68 (±0.26)
SVMrbf 0.59 (±0.10) 0.72 (±0.17)
SVMsigmoid 0.52 (±0.09) 0.53 (±0.09)
RF 0.62 (±0.07) 0.81 (±0.05)
GB 0.57 (±0.10) 1.00 (±0.00)

Figure 5: Boxplots of CV AUCs for normal sampling
split over the different datasets on the x axis.
The models are indicated by color.

has a notable train AUC of 1.00 with a standard
deviation of 0.00.

iii. Variable selection and feature ex-
ploration

A comparison of the models with setups
leading to the highest AUC performance shows
that the LGR and SVM with rbf kernel achieved
the highest AUC at 0.64, which was an im-
provement of 0.09 on the Dummy (Table 4). NB,
RR and the SVM with polynomial kernel are
not far behind with mean AUCs of 0.63, 0.63
and 0.62 respectively. All models were able to
outperform the Dummy with at least 0.03 on
mean AUC and 0.06 on mean recall, however
none could outperform it on specificity. The
sampling methods and datasets on which the
models perform best is almost evenly spread.
Figure 7 illustrates the ROCs per fold as well
as the mean ROC for the two best performing
models: LGR and SVM (rbf). Both ROCs show
high variability between the CV folds, but in
general the mean reaches barely above chance
level.

Figure 6 presents the 15 features with the
biggest coefficients, either positive or negative
for the different datasets without sampling.
Positive coefficients are more predictive of in-
fectious fever, negative coefficients more of
non-infectious fever. The discrete dataset had
a mean AUC of 0.64 (±0.08) and the numeri-
cal dataset had a mean AUC of 0.63 (±0.10).
The bars are colored per variable group. "-xd"
means that the feature was extracted over an
interval of [(x − 1) ∗ 24, x ∗ 24] hours before
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Table 4: Mean performance (SD) of setup with highest AUC per model.

Model AUC Recall Specificity Sampling Dataset

Dummy 0.55 (±0.09) 0.28 (±0.15) 0.82 (±0.03) Normal -
NB 0.63 (±0.09) 0.48 (±0.16) 0.69 (±0.06) Undersampling Numerical
KNN 0.58 (±0.06) 0.57 (±0.17) 0.54 (±0.06) Undersampling Numerical
LGR 0.64 (±0.08) 0.62 (±0.13) 0.58 (±0.11) Normal Discrete
SVMpoly 0.62 (±0.08) 0.34 (±0.13) 0.82 (±0.05) Oversampling Discrete
SVMrbf 0.64 (±0.08) 0.42 (±0.12) 0.74 (±0.06) Oversampling Discrete
SVMsigmoid 0.58 (±0.10) 0.57 (±0.23) 0.57 (±0.17) Normal Discrete
RF 0.63 (±0.08) 0.48 (±0.11) 0.72 (±0.06) Oversampling Numerical
GB 0.60 (±0.09) 0.59 (±0.14) 0.60 (±0.05) Undersampling Numerical

the fever episode, or x days before the fever
episode. "-xs" means that the feature was ex-
tracted over an interval of [(x − 1) ∗ 8, x ∗ 8]
hours before the fever episode, or x shifts (8
hours) before the fever episode. The most im-
portant feature for both datasets is the length-
of-stay (LOS) on the ICU at the start of the fever
and is predictive of infectious etiology. Venti-
lator settings positive end-expiratory pressure
(PEEP) and fraction of inspired oxygen (FiO2)
are also predictive of infectious fever etiology.
Blood transfusions on the third and second
day before the fever and Glasgow Coma Scale
(GCS) on the second day before the fever are
predictive of non-infectious fever etiology. An
overview of the 15 most important features
for the LGR model aggregated over the all the
different datasets and sampling approaches as
well as for the RF and GB models is available
in Figure 8 in Appendix B.

V. Discussion

The objective of this study was to explore
the application of AI to predict the etiology
of a fever as infectious or non-infectious in
ABI patients. For this objective we (1) identi-
fied fever episodes in ABI patients and were
able to label these fever episodes as infectious
or non-infectious and (2) selected variables
and explored different features derived from
these variables. Exploration of different fea-
ture engineering approaches showed no over-
all difference in performance between any ap-
proach. With the chosen feature engineering
approaches we created datasets on which we
(3) explored different ML models and tech-
niques for predicting fever etiology as infec-
tious or non-infectious. The models performed
poorly in predicting the fever etiology. The
AUCs of the best models were 0.09 higher than

the dummy classifier. None of the different
sampling methods, datasets or models made
any impact on the performance. Since the gen-
eral performance of the models is barely above
chance, we are hesitant to draw any conclu-
sions based on the results of this study. Poor
global AUC scores that are not impacted by any
changes in approach or model indicates poor
overall predictive performance of the dataset,
which can either be because the labels are not
representative of the problem, or the features
are not predictive for the labels. In the fol-
lowing sub-sections we will discuss the im-
plications of the results for each of the sub-
objectives.

i. Poor performance of the models

The models had a poor performance, with a
predictive power only marginally higher than
chance. There are a number of possible expla-
nations for this poor performance.

First, the final dataset was smaller than ex-
pected, with just 610 fever episodes. For ma-
chine learning models 610 samples to learn
from is sparse, especially when a subset is
additionally removed for testing. Follow-up
studies would do well to gather more samples.
More samples can be gathered by expanding
the timeframe of the inclusion criteria to in-
clude patients of before Jan 1, 2015. Other
hospitals could additionally be approached to
increase the samples.

Also, the amount of samples might be one
of the causes of the poor performance on the
dataset. Other likely causes are the conces-
sions made in labelling. During the process
of building the dataset, a lot of concessions
were made due to limited time and resources
for this study, availability of data and COVID-
19. The first concession was that it was too
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Figure 6: The coefficients of the top 15 features for best performing LGR per dataset. The size of the coefficient score (x
axes) indicates how predictive the feature is of infectious (positive) or non-infectious (negative) etiology. Left
are the top 15 discrete features (AUC=0.64), right the top 15 numerical features (AUC=0.63). The feature
names are on the y axes, the colors represent different variable groups.

complex to distinguish between the different
non-infectious fever etiologies in the timeframe
of this research. Labeling the fever episodes
as neurogenic was not possible due to the lack
of golden standard for neurologic fever and
lack of time and people for manual labelling.
As an alternative the overarching term of non-
infectious was chosen. All fever episodes that
did not satisfy the criteria for infectious were
assigned non-infectious.

Another concession needed to be made in
the criteria for labelling fever episodes as infec-
tious. Originally, a fever should satisfy one of
the following three criteria to be infectious:

• Parenteral antibiotics ≥ 100 consecutive
hours.

• Positive bloodculture in combination with
positive linetip culture (CVC or artierial
lineswitch) with the same micro-organism,
followed with a start of new antibiotics or
an arterial lineswitch.

• Positive pusculture, followed by drainage.

However, data on lines and drainage was
not yet available at the time of building this
dataset, so we could only use the first crite-
rion for labelling fever episodes as infectious.
Due to these concessions, we are now pre-
dicting whether the fever episodes will be
treated with ≥ 100 hours of parenteral antibi-
otics or not. Treatment response prediction

might need other variables than the variables
selected. Variables relevant for predicting treat-
ment response might include whether the fever
episode started during the weekend or during
the night, the specific clinician on call, the num-
ber of other patients on the ICU compared to
the number of staff.

The minimal difference in performance
found in this research might indicate two gen-
eral problems: either the labels do not repre-
sent a real issue, or the features are not pre-
dictive for the labels. We suspect that both
are the case. Future research should get access
to the needed data to be able to use all three
criteria for infectious fever episodes. A bonus
would be to have multiple medical specialists
label the fever etiology (or better: the specific
non-infectious etiologies) manually and check
inter-rater agreement and reliability to get a
golden standard. Until this additional data can
be accessed or resources are available to manu-
ally label the fever episodes we cannot apply
AI techniques to predict fever etiology.

A limitation of the current study is that cool-
ing interventions were not taken into account
in the definition of fever episodes. There is
no consensus in literature on the definition
of fever episodes, and very few studies take
interventions into account that counteract or in-
duce high temperatures. Omitting these inter-
ventions from our fever definition might have
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Figure 7: ROC plots of best performing models.

resulted in artificially short or split up fever
episodes. For future research it would be in-
teresting to explore an expansion of the fever
episode definition to include interventions that
counteract or induce high temperatures.

Compared to the reported incidence rate of
40-50% infectious fevers among neurologic ICU
patients [3, 7] our class imbalance (20% infec-
tious) was bigger than expected. Reported inci-
dences are very dependent on the population
included and excluded and the exact defini-
tions of fever and infection. The difference in
incidence is likely caused by the difference in
population as well as no consensus in litera-
ture on the definition of fever episodes and the
concessions made in labelling. The difference
in ICU LOS, hospital LOS, mortality rate and
ICU LOS before fever onset between patients
with infectious or non-infectious fever episodes
reflects findings from previous studies [10, 13].
The differences in LOS before fever onset may
be explained by the fact that longer ICU stay
is associated with a higher risk of developing
Hospital-Associated Infections (HAIs) [60].

ii. Variable selection and feature ex-
ploration

No overall difference could be found be-
tween the discrete and numerical approaches
for the features. This might be surprising, since
the numerical dataset contains more descrip-

tive features such as minimum, maximum and
standard deviation, which the discrete dataset
does not contain, though at the cost of added
sparsity and increased risk of overfitting. We
would have expected to see either a decrease
in performance due to overfitting, or an in-
crease in performance due to the extra infor-
mation. However, we should be cautious with
any conclusions on the impact of the different
datasets with the poor overall performances.
With more resources future research could im-
prove comparability of the discrete and numer-
ical datasets by discretizing all of the numerical
features, such as minimum, maximum etc. If
resources are again limited, a quick and simple
approach would be to use the quartiles as bins.

This study suffered a large amount of miss-
ing values in the features (> 25%), of which
almost half were due to patients not being ad-
mitted at the interval for which features are
extracted. Features were extracted at intervals
over three days before the fever occurred. More
than a quarter of the patients being admitted
for less than three days at fever onset explains
the high percentage of missing feature values.
Infectious fever episodes suffered less from
missing feature values due to not being ad-
mitted, which can be explained by infectious
fevers generally happening later on in the ICU
stay. Still, more than half of the missing fea-
ture values are missing while the patient was
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already admitted. This may be caused by hu-
man error or inadequate machine recording. If
a feature has a missing value while the patient
was already admitted, information that might
be important for the prediction, for example
a peak during the interval or a change in the
trend, is not available to the model. Conse-
quently, the features in the dataset might con-
tain less information predictive of the labels.
In addition, most machine generated data are
manually validated before data storage, which
is subject to mistakes. The large amount of
missing data by itself is unlikely to have been
the cause of the low performances, since drop-
ping features with > 20% missing values did
not show an improvement in results. Never-
theless we recommend future research to take
measures to reduce the amount of missing fea-
ture values. To reduce missing values due to
patients not being admitted, one could use a
shorter window than the three days for the fea-
tures and for example only focus on the one
day before the fever episode. Future studies
could also include pre-ICU data if available,
such as data from the ward, operating room
(OR) or emergency room (ER). As a more so-
phisticated approach to imputing missing val-
ues of admitted patients, missing entries could
be imputed in the timeseries data from which
the features can then be extracted. One could
also change the prediction approach and give
updated predictions as more data is recorded
from the patients, this would allow the model
to be more confident in predictions as data
contains fewer missing values.

The amount of different variables and dif-
ferent data streams made it impossible to pre-
process all the data, allowing noise to remain,
specifically outliers and human errors. In fu-
ture research it would be better to focus on
less variables, so these variables can be pre-
processed.

The most important feature for the best per-
forming model predictive of infectious fever
was how long the patient had been on the
ICU before the fever episode began. This
finding is consistent with the literature on
neurogenic fever, which found onset of fever

within 72 hours of hospital admission to be
a predictor [10, 13]. Additionally, increased
length of ICU stay has also been shown to
be a risk factor for developing Nosocomial or
Healthcare-associated Infections (HAIs) such
as a Ventilator-Associated Pneumonia (VAP),
or Central Line-associated bloodstream infec-
tions (CLABSI) [60]. Mechanical ventilation
is also a risk factor for developing HAIs [60],
so the positive association between ventilator
settings such as PEEP and FiO2 and infectious
fever are also reasonable. Literature has found
blood transfusions and lower GCS to be pre-
dictive of neurogenic fever [10, 11]. The LGR
model also associates these with non-infectious
fever episodes. We cannot draw the conclusion
that the other features in this top 15 are also
indicative of either infectious or non-infectious
fever episodes due to the poor AUC (mean of
0.64).

iii. Exploration of AI methods

We are hesitant to draw any conclusion
whether the models benefit from balanced data
using sampling techniques. No main effect
could be seen, only some interactions with spe-
cific models, which is to be expected. The
difference between train and test set AUC per-
formance for nearly all models indicate that
most of the models overfit on the train sets.
The big difference between train and test AUC
performance of KNN and GB indicate that they
suffer most from overfitting, with GB overfit-
ting extremely. The low AUC performance on
the train set for the sigmoid kernel SVM on
the other hand indicates that this model is not
able to learn from the dataset. Due to the poor
overall performance, we are also cautious to
draw any conclusion on the suitability of the
different ML models for predicting the etiology
of a fever.

With the poor predictive performance, the
pattern in recall and specificity for the mod-
els is expected. Features are not informative
enough for this label, so models can either fo-
cus on a high recall and predict most episodes
as infectious and consequently misclassify a
lot of non-infectious fever episodes to be infec-
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tious, resulting in low specificity, or the other
way around. Thus the main problem has be-
come the trade-off between mediocre recall and
specificity, high recall and low specificity, or
low recall and high specificity.

The ROC plots of the best performing mod-
els illustrate this trade-off well. They show
high variability between the CV folds, with
a resulting mean that is barely above chance
level. There is some predictive value in the
features for this problem, but it is only slight.
One of the goals of the clinical use-case for
these models was to reduce unnecessary an-
tibiotics. However, misclassifying an infectious
fever episode as non-infectious and therefore
not administering antibiotics in time can be
disastrous. For this use-case it is therefore im-
perative to avoid false negatives, so in the ROC
plots, a threshold with the highest true positive
rate would need to be chosen. However, that
forces a very high false positive rate, meaning
that we would classify every fever episode as
infectious, based on which we would give ev-
eryone antibiotics, which is what is currently
being done and what we wanted to improve.

VI. Conclusion

This study shows that the combination of
features and labels in the created dataset do
not carry predictive value for the distinction
between infectious and non-infectious fever
episodes.

To be able to draw any conclusions on the
applicability of AI for the prediction of fever
etiology in ABI patients on the ICU, this study
would need to be repeated with an improved
dataset.
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A. Additional methods details

Temperature data Temperature data consisted
of a combination of raw monitor data
(probes that record blood, rectal, core
and general temperature measurements)
and validated measurements taken by ICU
staff. Any temperatures < 30◦C or dupli-
cate entries were dropped.

Febrile Temperature measurements were con-
sidered febrile if they were > 38.3◦C
and had at least one other measurement
> 38.3◦C 24 to 48 hours away. The first
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36 hours of resuscitation patients were ex-
cluded as well as the last 48 hours of de-
ceased patients.

Fever episode Fever episodes consisted of all
consecutive temperature measurements
that were either febrile measurements or
within 24 hours of a previous and 24 hours
of a next febrile measurement. The start
of a fever episode was the first febrile
measurement of a fever episode and the
end of a fever episode was the last febrile
measurement of the fever episode. Fever
episodes were required to last at least 24
hours.

Labelling For each fever the amount of hours
of continuous parenteral antibiotics was
calculated. If the duration of the antibi-
otics treatment was ≥ 100 hours, the
fever was labelled as infectious, else as non-
infectious. We considered a treatment to be
continuous if the window between admin-
istrations was < 48 hours. We made no
distinction between antibiotics, any par-
enteral antibiotic counted. The start of the
treatment needed to fall within the win-
dow of 24 hours before and 72 hours after
the start of the fever.

This heuristic was based on the expertise
of the clinicians in identifying and dealing
with infections. It is common practice in
this ICU to take cultures for testing and
to start antibiotics treatment when an ABI
patient develops fever. If test results are
in and clinicians interpret them as there
not being an infection, the antibiotics treat-
ment is stopped. This heuristic as well as
the threshold of 100 hours were chosen in
deliberation with clinicians.

Discrete missing bins During feature extrac-
tion for the discrete dataset when no en-
tries existed for a specific window, the fea-
ture value was set to −2 for "missing",
unless the window occurred before the
admission of the patient, in which case
the feature value was set to −1 for "not
admitted".

i. Tables

Table 5: Hyperparameters set and tuned.

ML technique Hyperparameters set Hyperparameters tuned

Categorical Naive Bayes alpha: [0, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75]

K-Nearest Neighbor n_neighbors: [1,3,5,7,9]
weights: [‘uniform’,’distance’]
metric (discrete): [‘hamming’, ‘canberra’, ‘braycurtis’]
metric (numerical): [‘euclidean’, ‘manhattan’, ‘minkowski’]

Logistic Regression solver: ‘saga’ l1_ratio: [0.25, 0.5, 0.75]
penalty: ‘elasticnet’ C: [0.01, 0.1, 1]
class_weight: ‘balanced’

SVM class_weight: ‘balanced’ C: [0.01, 0.1, 1]
probability: True
kernel: ‘rbf’ |‘sigmoid’ |‘poly’

Random Forest n_estimators: 100 max_features: [30, 50]
max_depth: 2
min_samples_leaf: 2
class_weight: ‘balanced’

Gradient Boosting max_depth: 2 n_estimators: [100, 200]
min_samples_leaf: 2 learning_rate: [0.1, 1]

max_features: [30, 50]
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Table 6: ABI admission diagnoses used for patient selection.

NiceId Ap4Id Name NiceId Ap4Id Name

1006 6 Cardiac arrest (with or without respiratory arrest) (medical) 2604 357 Biopsy, brain
1113 59 Encephalopathy, hepatic 2605 358 Burr hole placement
1602 123 Amyotrophic lateral sclerosis 2606 359 Cerebrospinal fluid leak, surgery for
1603 124 Coma/change in level of consciousness 2607 360 Complications of previous spinal cord surgery, surgery for
1604 125 CVA, cerebrovascular accident/stroke 2608 361 Cranial nerve, decompression/ligation
1606 127 Encephalitis 2609 362 Cranioplasty and complications from previous craniotomies
1607 128 Encephalopathies (excluding hepatic) 2610 363 Devices for spine fracture/dislocation
1608 129 Guillian-Barre syndrome 2612 365 Hematoma, epidural, surgery for
1609 130 Hematoma, epidural 2613 366 Hematoma, subdural, surgery for
1610 131 Hematoma, subdural 2614 367 Hemorrhage/hematoma-intracranial, surgery for
1611 132 Hemorrhage/hematoma, intracranial 2615 368 Laminectomy/spinal cord decompression (excluding malignancies)
1612 133 Hydrocephalus, obstructive 2616 369 Neoplasm-cranial, surgery for (excluding transphenoidal)
1613 134 Meningitis 2617 370 Neoplasm-spinal cord surgery or other related procedures
1614 135 Myasthenia gravis 2618 371 Neurologic surgery, other
1615 136 Neoplasm, neurologic 2619 372 Seizures-intractable, surgery for
1616 137 Neurologic medical, other 2620 373 Shunts and revisions
1617 138 Neuromuscular medical, other 2621 374 Spinal cord sugery, other
1618 139 Nontraumatic coma due to anoxia/ischemia 2622 375 Stereotactic procedure
1626 147 Seizures (primary-no structural brain disease) 2623 376 Subarachnoid hemorrhage/intracranial aneurysm, surgery for
1627 148 Subarachnoid hemorrhage/arteriovenous malformation 2624 377 Sympathectomy
1628 149 Subarachnoid hemorrhage/intracranial aneurysm 2625 378 Transphenoidal surgery
1703 152 Arrest, respiratory (without cardiac arrest) (medical) 2626 379 Ventriculostomy
1919 208 Head (CNS) only trauma 2702 152 Arrest, respiratory (without cardiac arrest) (surgical)
1920 209 Head/abdomen trauma 2919 428 Head (CNS) only trauma, surgery for
1921 210 Head/chest trauma 2920 429 Head/abdomen trauma, surgery for
1922 211 Head/extremity trauma 2921 430 Head/chest trauma, surgery for
1923 212 Head/face trauma 2922 431 Head/extremity trauma, surgery for
1924 213 Head/multiple trauma 2923 432 Head/face trauma, surgery for
1925 214 Head/pelvis trauma 2924 433 Head/multiple trauma, surgery for
1926 215 Head/spinal trauma 2925 434 Head/pelvis trauma, surgery for
1932 221 Spinal cord only trauma 2926 435 Head/spinal trauma, surgery for
1933 222 Spinal/extremity trauma 2932 441 Spinal cord only trauma, surgery for
1934 223 Spinal/face trauma 2933 442 Spinal/extremity trauma, surgery for
1935 224 Spinal/multiple trauma 2934 443 Spinal/face trauma, surgery for
2024 6 Cardiac arrest (with or without respiratory arrest) (surgical) 2935 444 Spinal/multiple trauma, surgery for
2603 356 Arteriovenous malformation, surgery for
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Table 7: Infectious admission diagnoses used for patient exclusion.

NiceId Ap4Id Name NiceId Ap4Id Name

1018 18 Endocarditis 1721 170 Pneumonia, other
1030 30 Pericarditis 1722 171 Pneumonia, parasitic (i.e. Pneumocystis pneumonia)
1034 34 Sepsis, cutaneous/soft tissue (medical) 1723 172 Pneumonia, viral
1035 35 Sepsis, GI (medical) 2043 267 Grafts, removal of infected vascular
1036 36 Sepsis, gynecologic (medical) 2049 34 Sepsis, cutaneous/soft tissue (surgical)
1037 37 Sepsis, other (medical) 2050 35 Sepsis, GI (surgical)
1038 38 Sepsis, pulmonary (medical) 2051 36 Sepsis, gynecologic (surgical)
1039 39 Sepsis, renal/UTI (including bladder) (medical) 2052 37 Sepsis, other (surgical)
1040 40 Sepsis, unknown (medical) 2053 38 Sepsis, pulmonary (surgical)
1111 57 Cholangitis 2054 39 Sepsis, renal/UTI (including bladder) (surgical)
1114 60 GI Abscess/cyst 2055 40 Sepsis, unknown (surgical)
1117 63 GI Perforation/rupture 2112 292 Cholecystectomy/cholangitis, surgery for (gallbladder removal)
1120 66 Inflammatory bowel disease 2116 296 Fistula/abscess, surgery for (not inflammatory bowel disease)
1121 67 Pancreatitis 2118 298 GI Abscess/cyst-primary, surgery for
1122 68 Peritonitis 2120 300 GI Perforation/rupture, surgery for
1207 76 Renal infection/abscess 2126 306 Inflammatory bowel disease, surgery for
1502 112 Arthritis, septic 2128 308 Pancreatitis, surgery for
1504 114 Cellulitis and localized soft tissue infections 2130 310 Peritonitis, surgery for
1508 118 Myositis, viral 2502 346 Cellulitis and localized soft tissue infections, surgery for
1601 122 Abscess, neurologic 2601 354 Abscess/infection-cranial, surgery for
1718 167 Pneumonia, aspiration 2708 386 Infection/abscess, other surgery for
1719 168 Pneumonia, bacterial 2718 396 Thoracotomy for thoracic/respiratory infection
1720 169 Pneumonia, fungal
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Table 8: Selected variables with extracted features (*one-hot encoded).

Variables Numerical Features Discrete Features

Demographics Age on admission Age on admission 18-30|30-40|40-50|50-60|60-70|70+
Gender M|F|U * M|F|U
Length & Weight BMI Underweight (<18.5)|Normal (18.5-24.9)|

Overweight (25-29.9)|Obese (≥30)

Admission Cardiovascular NICE admission diagnosis 0|1 0|1
Gastrointestinal NICE admission diagnosis 0|1 0|1
Genitourinary NICE admission diagnosis 0|1 0|1
Hematology NICE admission diagnosis 0|1 0|1
Metabolic/Endocrine NICE admission diagnosis 0|1 0|1
Musculoskeletal/Skin NICE admission diagnosis 0|1 0|1
Neurologic NICE admission diagnosis 0|1 0|1
Respitory NICE admission diagnosis 0|1 0|1
Transplant NICE admission diagnosis 0|1 0|1
Trauma NICE admission diagnosis 0|1 0|1
Admission type Medical|Emergency surgery|Planned surgery * Medical|Emergency surgery|Planned surgery
Hospital admission datetime Admission in/out of office hours

(on weekdays between 8:30 and 16:59 = 1, else: 0)
Admission in/out of office hours
(on weekdays between 8:30 and 16:59 = 1, else: 0)

ICU admission datetime Admission in/out of office hours
(on weekdays between 8:30 and 16:59 = 1, else: 0),
ICU LOS till fever in hours,
time between Hospital admission & ICU admission

Admission in/out of office hours
(on weekdays between 8:30 and 16:59 = 1, else: 0),
ICU LOS till fever: 1 day|2 days|3 days|4 days|
5 days|6 days|7 days|2 weeks|3 weeks|4 weeks |month+

Admission source OR|ER|Ward|Other * OR|ER|Ward|Other

Vitals Heart rate (HR) minimum (min), maximum (max),
standard deviation (std), median (med)

med: <60|60-100|>100

Respitory rate (RR) min, max, std, med med: <8|8-20|>20|>30
Blood pressure MAP (NBPm) min, max, std, med med: <60|60-80|>80|>100
Blood pressure systole (NBPs) min, max, std, med med: <80|80-120|>120|>140
Blood pressure diastole (NBPd) min, max, std, med med: <40|40-80|>80
Oxygen saturation (SPO2) min, max, std, med med: <90|90-95|>95
Temperature (Temp) min, max, std, med, %time<35.5, %time>38.3 med: <35.5|35.5-36.4|36.5-38.3|38.4-39|39.1-41|>41

Measurements Ventilator mode Controlled|Spontaneous|No Ventilator * Controlled|Spontaneous|No Ventilator
Fraction of inspired oxygen (FiO2) min, max, std, med med: 21-35|36-50|51-60|>60
Positive end-expiratory pressure (PEEP) min, max, std, med med: <8|8-12|>12
Continuous Renal Replacement Therapy (CRRT) 0|1 0|1
Glasgow Coma Scale (GCS) Eye & Motor & Verbal GCS total (Eye+Motor+Verbal) Total: 3-8|>8
Richmond Agitation-Sedation Scale (RASS) min, max, std, med, interquartile range (IQR) Med: <-1|-1 to +1|>1
Sequential Organ Failure Assessment (SOFA) Total score, separate organ scores Total score, separate organ scores

Fluids Transfusion blood ml/day ml/day: 0-300|300-600|>600
Cumulative fluid balance ml/day ml/day: <-2000|-2000-0|0-2000|>2000
Urine ml/day ml/day: <500|500-1000|>1000

Labs Leukocytes y/n>8, y/n<3 y/n>8, y/n<3, med: <3|3-8|>8|>10
Sodium (Na) min, max, std, med, %time<130, y/n<120 y/n<120, med: <120|120-130|131-150|>150
Potassium (K) min, max, std, med med: <3|3-5.9|>5.9
Glucose min, max, std, med, %time<4, y/n>8 y/n>8, med: <4|4-10|>10
Lactate min, max, std, med, %time>2.1, y/n>9.5 y/n>9.5, med: <2|2-5|5.1-10|>10
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Table 8 continued from previous page

Variables Numerical Features Discrete Features

Ureum min, max, std, med med: <4|4-10|>10
Kreatinine (Kreat) min, max, std, med med: <30|30-90|>90
Chronic Kidney Disease Epidemiology
Collaboration (CKD-EPI)

min, max, std, med med: <20|21-50 |51-70|>70

Hemoglobine (Hb) min, max, std, med, y/n<3, y/n<4, y/n<5, y/n<6 y/n<3, y/n<4, y/n<5, y/n<6, med: <3|3-5|5.1-9|>9
Bilirubine (Bili) y/n>20, y/n≤20 y/n>20

Meds Vasopressine 0|1 0|1
Noradrenaline 0|1 0|1
Midazolam 0|1 0|1
Propofol 0|1 0|1
Dexmedetomidine 0|1 0|1
Clonidine 0|1 0|1
Esketamine 0|1 0|1
Sufentanil 0|1 0|1
Remifentanil 0|1 0|1
Morphine 0|1 0|1
Propranolol 0|1 0|1
Thiopental 0|1 0|1
Carbamazepine 0|1 0|1
Fenobarbital 0|1 0|1
Fenytoine 0|1 0|1
Levetiracetam 0|1 0|1
Allopurinol 0|1 0|1
Clomipramine 0|1 0|1
Amytriptyline 0|1 0|1
Dosulepine 0|1 0|1
Haloperidol 0|1 0|1
Clozapine 0|1 0|1
Dapoxetine 0|1 0|1
Escitalopram 0|1 0|1
Citalopram 0|1 0|1
Fluoxetine 0|1 0|1
Fluvoxamine 0|1 0|1
Paroxetine 0|1 0|1
Sertraline 0|1 0|1
Duloxetine 0|1 0|1
Trazodon 0|1 0|1
Venlafaxine 0|1 0|1
Moclobemide 0|1 0|1
Safinamide 0|1 0|1
Selegiline 0|1 0|1
Rasagiline 0|1 0|1
Fenelzide 0|1 0|1
Tranylcypromine 0|1 0|1
Lithium carbonate 0|1 0|1
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B. Additional results

Table 9: Aggregated means (SD) for medication features engineered per medication (n=39) or group of application (n=4).

Metric AUC Recall/Sensitivity Specificity Precision F1
Medication Names Groups Names Groups Names Groups Names Groups Names Groups

Models NB 0.60 (±0.08) 0.61 (±0.08) 0.57 (±0.20) 0.55 (±0.20) 0.58 (±0.15) 0.59 (±0.16) 0.25 (±0.08) 0.25 (±0.09) 0.33 (±0.10) 0.33 (±0.10)
KNN 0.57 (±0.09) 0.56 (±0.08) 0.41 (±0.19) 0.41 (±0.19) 0.69 (±0.13) 0.68 (±0.14) 0.25 (±0.12) 0.25 (±0.11) 0.29 (±0.11) 0.29 (±0.11)
LGR 0.62 (±0.10) 0.62 (±0.10) 0.54 (±0.17) 0.55 (±0.16) 0.63 (±0.11) 0.63 (±0.11) 0.27 (±0.10) 0.27 (±0.11) 0.35 (±0.11) 0.35 (±0.11)
SVMpoly 0.55 (±0.13) 0.56 (±0.12) 0.62 (±0.30) 0.62 (±0.30) 0.49 (±0.35) 0.49 (±0.35) 0.26 (±0.14) 0.26 (±0.13) 0.33 (±0.11) 0.33 (±0.11)
SVMrbf 0.57 (±0.10) 0.57 (±0.11) 0.58 (±0.18) 0.57 (±0.18) 0.55 (±0.15) 0.56 (±0.15) 0.24 (±0.10) 0.24 (±0.10) 0.33 (±0.11) 0.33 (±0.11)
SVMsigmoid 0.50 (±0.09) 0.50 (±0.09) 0.60 (±0.23) 0.59 (±0.24) 0.49 (±0.20) 0.49 (±0.20) 0.21 (±0.08) 0.21 (±0.08) 0.30 (±0.10) 0.30 (±0.10)
RF 0.62 (±0.07) 0.62 (±0.08) 0.52 (±0.16) 0.52 (±0.16) 0.65 (±0.10) 0.65 (±0.10) 0.27 (±0.11) 0.28 (±0.11) 0.35 (±0.11) 0.35 (±0.11)
GB 0.57 (±0.09) 0.58 (±0.09) 0.33 (±0.22) 0.34 (±0.22) 0.76 (±0.15) 0.76 (±0.15) 0.26 (±0.13) 0.27 (±0.13) 0.26 (±0.12) 0.27 (±0.13)

Features Discrete 0.59 (±0.10) 0.59 (±0.10) 0.51 (±0.21) 0.52 (±0.21) 0.63 (±0.16) 0.63 (±0.16) 0.26 (±0.11) 0.26 (±0.11) 0.32 (±0.12) 0.33 (±0.11)
Numerical 0.56 (±0.10) 0.57 (±0.11) 0.53 (±0.25) 0.52 (±0.25) 0.58 (±0.24) 0.59 (±0.24) 0.25 (±0.11) 0.25 (±0.12) 0.31 (±0.11) 0.31 (±0.11)

Sampling undersampling 0.58 (±0.10) 0.58 (±0.10) 0.59 (±0.19) 0.59 (±0.19) 0.55 (±0.17) 0.55 (±0.17) 0.25 (±0.09) 0.25 (±0.09) 0.34 (±0.10) 0.33 (±0.10)
normal 0.57 (±0.10) 0.58 (±0.10) 0.48 (±0.26) 0.47 (±0.25) 0.64 (±0.23) 0.65 (±0.23) 0.26 (±0.13) 0.26 (±0.13) 0.30 (±0.13) 0.30 (±0.13)
oversampling 0.58 (±0.10) 0.58 (±0.10) 0.50 (±0.22) 0.50 (±0.22) 0.62 (±0.19) 0.62 (±0.19) 0.25 (±0.11) 0.26 (±0.11) 0.32 (±0.11) 0.32 (±0.11)

Overall 0.58 (±0.10) 0.58 (±0.10) 0.52 (±0.23) 0.52 (±0.23) 0.61 (±0.20) 0.61 (±0.20) 0.25 (±0.11) 0.25 (±0.11) 0.32 (±0.11) 0.32 (±0.11)

Table 10: Aggregated means (SD) for features dropped if > 20% is missing (TRUE) or all features included (FALSE).

Metric AUC Recall/Sensitivity Specificity Precision F1
Drop features TRUE FALSE TRUE FALSE TRUE FALSE TRUE FALSE TRUE FALSE

Models NB 0.59 (±0.07) 0.61 (±0.08) 0.59 (±0.18) 0.54 (±0.21) 0.54 (±0.14) 0.61 (±0.15) 0.24 (±0.08) 0.26 (±0.09) 0.33 (±0.09) 0.33 (±0.10)
KNN 0.57 (±0.09) 0.56 (±0.08) 0.43 (±0.19) 0.39 (±0.19) 0.68 (±0.13) 0.69 (±0.14) 0.25 (±0.11) 0.25 (±0.12) 0.30 (±0.11) 0.28 (±0.11)
LGR 0.62 (±0.10) 0.62 (±0.11) 0.55 (±0.16) 0.53 (±0.18) 0.62 (±0.11) 0.64 (±0.12) 0.27 (±0.10) 0.27 (±0.11) 0.35 (±0.10) 0.35 (±0.12)
SVMpoly 0.57 (±0.13) 0.54 (±0.12) 0.65 (±0.28) 0.60 (±0.31) 0.48 (±0.34) 0.50 (±0.36) 0.27 (±0.13) 0.26 (±0.14) 0.34 (±0.11) 0.31 (±0.11)
SVMrbf 0.58 (±0.10) 0.57 (±0.11) 0.60 (±0.17) 0.55 (±0.19) 0.54 (±0.13) 0.57 (±0.16) 0.24 (±0.10) 0.24 (±0.09) 0.34 (±0.11) 0.32 (±0.11)
SVMsigmoid 0.48 (±0.09) 0.52 (±0.09) 0.59 (±0.25) 0.61 (±0.21) 0.48 (±0.22) 0.50 (±0.18) 0.21 (±0.08) 0.22 (±0.08) 0.29 (±0.10) 0.32 (±0.10)
RF 0.62 (±0.08) 0.63 (±0.07) 0.53 (±0.16) 0.51 (±0.16) 0.65 (±0.10) 0.66 (±0.10) 0.28 (±0.11) 0.27 (±0.10) 0.35 (±0.11) 0.34 (±0.11)
GB 0.57 (±0.08) 0.56 (±0.10) 0.34 (±0.22) 0.32 (±0.22) 0.75 (±0.15) 0.77 (±0.15) 0.25 (±0.12) 0.26 (±0.13) 0.26 (±0.12) 0.26 (±0.13)

Features Discrete 0.59 (±0.10) 0.58 (±0.10) 0.53 (±0.21) 0.50 (±0.21) 0.62 (±0.15) 0.64 (±0.16) 0.26 (±0.10) 0.25 (±0.11) 0.33 (±0.12) 0.32 (±0.12)
Numerical 0.56 (±0.10) 0.57 (±0.11) 0.54 (±0.24) 0.51 (±0.25) 0.56 (±0.24) 0.60 (±0.24) 0.24 (±0.11) 0.25 (±0.12) 0.31 (±0.11) 0.31 (±0.12)

Sampling undersampling 0.58 (±0.10) 0.57 (±0.10) 0.59 (±0.19) 0.59 (±0.19) 0.55 (±0.17) 0.55 (±0.17) 0.25 (±0.09) 0.25 (±0.09) 0.34 (±0.10) 0.33 (±0.10)
normal 0.57 (±0.11) 0.58 (±0.10) 0.49 (±0.26) 0.46 (±0.25) 0.63 (±0.24) 0.66 (±0.23) 0.25 (±0.12) 0.26 (±0.13) 0.30 (±0.12) 0.30 (±0.13)
oversampling 0.58 (±0.10) 0.58 (±0.10) 0.52 (±0.22) 0.48 (±0.22) 0.60 (±0.19) 0.64 (±0.19) 0.25 (±0.11) 0.26 (±0.11) 0.32 (±0.11) 0.31 (±0.12)

Overall 0.58 (±0.10) 0.58 (±0.10) 0.53 (±0.23) 0.51 (±0.23) 0.59 (±0.20) 0.62 (±0.20) 0.25 (±0.11) 0.25 (±0.11) 0.32 (±0.11) 0.32 (±0.12)
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Table 11: Aggregated means (SD) for vitals engineered at intervals of 8 hours (8h) or 24 hours (daily) (non-vitals engineered at intervals of 24 hours).

Metric AUC Recall/Sensitivity Specificity Precision F1
Vitals window 8h daily 8h daily 8h daily 8h daily 8h daily

Models NB 0.62 (±0.08) 0.61 (±0.09) 0.56 (±0.21) 0.54 (±0.22) 0.59 (±0.17) 0.61 (±0.16) 0.25 (±0.09) 0.25 (±0.09) 0.34 (±0.10) 0.33 (±0.11)
KNN 0.55 (±0.08) 0.56 (±0.08) 0.41 (±0.20) 0.39 (±0.19) 0.68 (±0.14) 0.69 (±0.14) 0.25 (±0.12) 0.25 (±0.12) 0.29 (±0.12) 0.28 (±0.10)
LGR 0.61 (±0.11) 0.61 (±0.11) 0.54 (±0.17) 0.54 (±0.17) 0.63 (±0.12) 0.63 (±0.12) 0.27 (±0.10) 0.27 (±0.11) 0.34 (±0.11) 0.34 (±0.12)
SVMpoly 0.55 (±0.12) 0.55 (±0.11) 0.54 (±0.31) 0.55 (±0.30) 0.56 (±0.35) 0.55 (±0.34) 0.26 (±0.15) 0.26 (±0.13) 0.31 (±0.12) 0.31 (±0.11)
SVMrbf 0.59 (±0.10) 0.57 (±0.11) 0.53 (±0.20) 0.55 (±0.21) 0.59 (±0.16) 0.59 (±0.17) 0.24 (±0.10) 0.24 (±0.10) 0.32 (±0.11) 0.33 (±0.12)
SVMsigmoid 0.52 (±0.09) 0.52 (±0.09) 0.63 (±0.21) 0.62 (±0.21) 0.49 (±0.18) 0.49 (±0.17) 0.22 (±0.08) 0.22 (±0.08) 0.32 (±0.11) 0.32 (±0.11)
RF 0.62 (±0.07) 0.62 (±0.08) 0.52 (±0.17) 0.49 (±0.16) 0.65 (±0.10) 0.65 (±0.10) 0.27 (±0.10) 0.26 (±0.10) 0.34 (±0.11) 0.33 (±0.11)
GB 0.57 (±0.10) 0.55 (±0.09) 0.33 (±0.23) 0.30 (±0.19) 0.77 (±0.14) 0.77 (±0.15) 0.26 (±0.13) 0.25 (±0.12) 0.26 (±0.13) 0.25 (±0.11)

Features Discrete 0.59 (±0.10) 0.58 (±0.10) 0.51 (±0.22) 0.50 (±0.22) 0.63 (±0.16) 0.64 (±0.16) 0.25 (±0.11) 0.25 (±0.10) 0.32 (±0.12) 0.32 (±0.11)
Numerical 0.57 (±0.10) 0.57 (±0.10) 0.51 (±0.24) 0.50 (±0.25) 0.61 (±0.23) 0.61 (±0.23) 0.26 (±0.12) 0.25 (±0.11) 0.31 (±0.12) 0.31 (±0.12)

Sampling undersampling 0.58 (±0.09) 0.57 (±0.10) 0.60 (±0.18) 0.57 (±0.20) 0.54 (±0.16) 0.55 (±0.17) 0.25 (±0.09) 0.24 (±0.08) 0.34 (±0.10) 0.33 (±0.10)
normal 0.58 (±0.10) 0.58 (±0.10) 0.45 (±0.26) 0.45 (±0.25) 0.67 (±0.22) 0.66 (±0.22) 0.25 (±0.13) 0.25 (±0.12) 0.29 (±0.13) 0.30 (±0.12)
oversampling 0.58 (±0.10) 0.58 (±0.10) 0.47 (±0.22) 0.47 (±0.23) 0.65 (±0.18) 0.65 (±0.19) 0.26 (±0.11) 0.26 (±0.11) 0.31 (±0.11) 0.31 (±0.12)

Overall 0.58 (±0.10) 0.58 (±0.10) 0.51 (±0.23) 0.50 (±0.23) 0.62 (±0.20) 0.62 (±0.20) 0.25 (±0.11) 0.25 (±0.11) 0.32 (±0.12) 0.31 (±0.11)

Table 12: Aggregated means (SD) for features engineered at intervals of 8 or 24 hours depending on the variable (daily) or at a single interval over the entire three days
before the fever (overall).

Metric AUC Recall/Sensitivity Specificity Precision F1
General window daily overall daily overall daily overall daily overall daily overall

Models NB 0.62 (±0.08) 0.60 (±0.08) 0.56 (±0.21) 0.51 (±0.18) 0.59 (±0.17) 0.64 (±0.12) 0.25 (±0.09) 0.26 (±0.09) 0.34 (±0.10) 0.33 (±0.10)
KNN 0.55 (±0.08) 0.56 (±0.09) 0.41 (±0.20) 0.38 (±0.19) 0.68 (±0.14) 0.70 (±0.14) 0.25 (±0.12) 0.26 (±0.13) 0.29 (±0.12) 0.28 (±0.11)
LGR 0.61 (±0.11) 0.63 (±0.10) 0.54 (±0.17) 0.52 (±0.19) 0.63 (±0.12) 0.66 (±0.10) 0.27 (±0.10) 0.28 (±0.12) 0.34 (±0.11) 0.35 (±0.13)
SVMpoly 0.55 (±0.12) 0.51 (±0.13) 0.54 (±0.31) 0.70 (±0.30) 0.56 (±0.35) 0.39 (±0.35) 0.26 (±0.15) 0.26 (±0.14) 0.31 (±0.12) 0.33 (±0.09)
SVMrbf 0.59 (±0.10) 0.54 (±0.11) 0.53 (±0.20) 0.58 (±0.18) 0.59 (±0.16) 0.52 (±0.15) 0.24 (±0.10) 0.22 (±0.09) 0.32 (±0.11) 0.32 (±0.10)
SVMsigmoid 0.52 (±0.09) 0.53 (±0.10) 0.63 (±0.21) 0.58 (±0.22) 0.49 (±0.18) 0.51 (±0.18) 0.22 (±0.08) 0.22 (±0.08) 0.32 (±0.11) 0.30 (±0.10)
RF 0.62 (±0.07) 0.63 (±0.07) 0.52 (±0.17) 0.51 (±0.14) 0.65 (±0.10) 0.67 (±0.10) 0.27 (±0.10) 0.29 (±0.11) 0.34 (±0.11) 0.36 (±0.11)
GB 0.57 (±0.10) 0.57 (±0.10) 0.33 (±0.23) 0.33 (±0.23) 0.77 (±0.14) 0.77 (±0.14) 0.26 (±0.13) 0.27 (±0.14) 0.26 (±0.13) 0.27 (±0.14)

Features Discrete 0.59 (±0.10) 0.58 (±0.10) 0.51 (±0.22) 0.50 (±0.20) 0.63 (±0.16) 0.64 (±0.16) 0.25 (±0.11) 0.26 (±0.12) 0.32 (±0.12) 0.32 (±0.11)
Numerical 0.57 (±0.10) 0.56 (±0.12) 0.51 (±0.24) 0.53 (±0.26) 0.61 (±0.23) 0.58 (±0.25) 0.26 (±0.12) 0.25 (±0.11) 0.31 (±0.12) 0.31 (±0.11)

Sampling undersampling 0.58 (±0.09) 0.57 (±0.11) 0.60 (±0.18) 0.58 (±0.20) 0.54 (±0.16) 0.56 (±0.19) 0.25 (±0.09) 0.25 (±0.09) 0.34 (±0.10) 0.34 (±0.10)
normal 0.58 (±0.10) 0.57 (±0.11) 0.45 (±0.26) 0.47 (±0.25) 0.67 (±0.22) 0.65 (±0.24) 0.25 (±0.13) 0.27 (±0.14) 0.29 (±0.13) 0.30 (±0.12)
oversampling 0.58 (±0.10) 0.57 (±0.10) 0.47 (±0.22) 0.50 (±0.22) 0.65 (±0.18) 0.62 (±0.20) 0.26 (±0.11) 0.25 (±0.11) 0.31 (±0.11) 0.31 (±0.11)

Overall 0.58 (±0.10) 0.57 (±0.11) 0.51 (±0.23) 0.52 (±0.23) 0.62 (±0.20) 0.62 (±0.21) 0.25 (±0.11) 0.26 (±0.11) 0.32 (±0.12) 0.32 (±0.11)
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Table 13: Complete overview of CV means (SD).

Metric AUC Recall/Sensitivity Specificity Precision F1
model sampling Discrete Numerical Discrete Numerical Discrete Numerical Discrete Numerical Discrete Numerical

Dummy undersampling 0.48 (0.12) 0.48 (0.12) 0.39 (0.20) 0.39 (0.20) 0.56 (0.05) 0.56 (0.05) 0.19 (0.13) 0.19 (0.13) 0.26 (0.15) 0.26 (0.15)
normal 0.55 (0.09) 0.55 (0.09) 0.28 (0.15) 0.28 (0.15) 0.82 (0.03) 0.82 (0.03) 0.27 (0.12) 0.27 (0.12) 0.27 (0.13) 0.27 (0.13)
oversampling 0.48 (0.12) 0.48 (0.12) 0.39 (0.20) 0.39 (0.20) 0.56 (0.05) 0.56 (0.05) 0.19 (0.13) 0.19 (0.13) 0.26 (0.15) 0.26 (0.15)

NB undersampling 0.62 (±0.07) 0.63 (±0.09) 0.74 (±0.09) 0.48 (±0.16) 0.42 (±0.08) 0.69 (±0.06) 0.24 (±0.06) 0.27 (±0.11) 0.35 (±0.07) 0.34 (±0.12)
normal 0.62 (±0.07) 0.61 (±0.10) 0.75 (±0.10) 0.37 (±0.13) 0.42 (±0.08) 0.75 (±0.07) 0.24 (±0.07) 0.27 (±0.11) 0.36 (±0.08) 0.31 (±0.12)
oversampling 0.62 (±0.05) 0.60 (±0.11) 0.66 (±0.15) 0.37 (±0.13) 0.50 (±0.12) 0.74 (±0.06) 0.25 (±0.08) 0.26 (±0.11) 0.35 (±0.09) 0.30 (±0.12)

KNN undersampling 0.56 (±0.07) 0.58 (±0.06) 0.55 (±0.12) 0.57 (±0.17) 0.60 (±0.07) 0.54 (±0.06) 0.25 (±0.08) 0.23 (±0.09) 0.34 (±0.10) 0.32 (±0.11)
normal 0.55 (±0.07) 0.54 (±0.05) 0.23 (±0.14) 0.26 (±0.11) 0.88 (±0.04) 0.82 (±0.04) 0.29 (±0.17) 0.26 (±0.12) 0.24 (±0.14) 0.25 (±0.10)
oversampling 0.54 (±0.07) 0.53 (±0.12) 0.41 (±0.11) 0.44 (±0.22) 0.62 (±0.03) 0.62 (±0.08) 0.21 (±0.09) 0.22 (±0.13) 0.28 (±0.10) 0.29 (±0.14)

LGR undersampling 0.64 (±0.10) 0.59 (±0.07) 0.67 (±0.13) 0.52 (±0.10) 0.52 (±0.11) 0.59 (±0.07) 0.26 (±0.09) 0.24 (±0.08) 0.37 (±0.10) 0.32 (±0.08)
normal 0.64 (±0.08) 0.63 (±0.10) 0.62 (±0.13) 0.53 (±0.17) 0.58 (±0.11) 0.68 (±0.10) 0.27 (±0.11) 0.30 (±0.13) 0.37 (±0.12) 0.37 (±0.13)
oversampling 0.55 (±0.14) 0.62 (±0.11) 0.38 (±0.18) 0.50 (±0.12) 0.73 (±0.07) 0.68 (±0.08) 0.25 (±0.11) 0.28 (±0.09) 0.29 (±0.12) 0.35 (±0.09)

SVM (poly) undersampling 0.57 (±0.10) 0.51 (±0.08) 0.42 (±0.20) 0.79 (±0.28) 0.70 (±0.12) 0.23 (±0.33) 0.24 (±0.13) 0.22 (±0.09) 0.29 (±0.14) 0.31 (±0.08)
normal 0.60 (±0.11) 0.45 (±0.10) 0.34 (±0.16) 0.68 (±0.36) 0.80 (±0.09) 0.37 (±0.39) 0.27 (±0.15) 0.24 (±0.18) 0.29 (±0.15) 0.29 (±0.14)
oversampling 0.62 (±0.08) 0.56 (±0.12) 0.34 (±0.13) 0.68 (±0.30) 0.82 (±0.05) 0.44 (±0.38) 0.32 (±0.10) 0.29 (±0.17) 0.32 (±0.10) 0.34 (±0.11)

SVM (rbf) undersampling 0.59 (±0.08) 0.54 (±0.09) 0.58 (±0.12) 0.58 (±0.14) 0.56 (±0.09) 0.50 (±0.08) 0.25 (±0.08) 0.22 (±0.08) 0.34 (±0.10) 0.31 (±0.10)
normal 0.60 (±0.10) 0.58 (±0.10) 0.56 (±0.23) 0.55 (±0.25) 0.56 (±0.17) 0.57 (±0.24) 0.21 (±0.10) 0.22 (±0.11) 0.30 (±0.13) 0.30 (±0.13)
oversampling 0.64 (±0.08) 0.60 (±0.10) 0.42 (±0.12) 0.52 (±0.21) 0.74 (±0.06) 0.60 (±0.10) 0.28 (±0.07) 0.24 (±0.11) 0.33 (±0.07) 0.32 (±0.13)

SVM (sigmoid) undersampling 0.51 (±0.11) 0.50 (±0.07) 0.66 (±0.14) 0.65 (±0.22) 0.53 (±0.08) 0.43 (±0.20) 0.26 (±0.08) 0.22 (±0.06) 0.36 (±0.10) 0.32 (±0.08)
normal 0.58 (±0.10) 0.51 (±0.05) 0.57 (±0.23) 0.53 (±0.26) 0.57 (±0.17) 0.51 (±0.23) 0.22 (±0.10) 0.19 (±0.08) 0.31 (±0.14) 0.27 (±0.11)
oversampling 0.56 (±0.08) 0.47 (±0.04) 0.65 (±0.15) 0.71 (±0.19) 0.51 (±0.10) 0.37 (±0.16) 0.25 (±0.07) 0.22 (±0.07) 0.35 (±0.09) 0.33 (±0.09)

RF undersampling 0.63 (±0.07) 0.63 (±0.07) 0.66 (±0.13) 0.60 (±0.18) 0.53 (±0.06) 0.63 (±0.09) 0.25 (±0.07) 0.29 (±0.11) 0.36 (±0.08) 0.38 (±0.13)
normal 0.62 (±0.07) 0.62 (±0.07) 0.50 (±0.11) 0.31 (±0.13) 0.63 (±0.07) 0.77 (±0.05) 0.25 (±0.07) 0.26 (±0.13) 0.33 (±0.08) 0.28 (±0.13)
oversampling 0.62 (±0.07) 0.63 (±0.08) 0.56 (±0.09) 0.48 (±0.11) 0.61 (±0.07) 0.72 (±0.06) 0.26 (±0.09) 0.30 (±0.12) 0.35 (±0.08) 0.36 (±0.12)

GB undersampling 0.59 (±0.09) 0.60 (±0.09) 0.59 (±0.18) 0.59 (±0.14) 0.57 (±0.05) 0.60 (±0.05) 0.24 (±0.08) 0.27 (±0.09) 0.34 (±0.10) 0.36 (±0.10)
normal 0.52 (±0.11) 0.57 (±0.11) 0.17 (±0.13) 0.20 (±0.11) 0.86 (±0.04) 0.90 (±0.05) 0.21 (±0.16) 0.33 (±0.15) 0.19 (±0.15) 0.24 (±0.12)
oversampling 0.51 (±0.07) 0.59 (±0.08) 0.16 (±0.08) 0.26 (±0.13) 0.84 (±0.05) 0.85 (±0.05) 0.20 (±0.13) 0.29 (±0.10) 0.17 (±0.10) 0.26 (±0.11)
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Figure 8: Top 15 features aggregated per dataset and GB, RF or LGR.
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Figure 9: Boxplots of CV recall scores aggregated over the datasets split
over the sampling methods on the x axis. The models are indicated
by color.

Figure 10: Boxplots of CV specificity scores aggregated over the datasets
split over the sampling methods on the x axis. The models are
indicated by color.

Figure 11: Boxplots of CV recall scores for normal sampling split over the
different datasets on the x axis. The models are indicated by
color.

Figure 12: Boxplots of CV specificity scores for normal sampling split over
the different datasets on the x axis. The models are indicated by
color.

29


	Introduction
	Theory
	Medical Background
	Technical Background

	Methods
	Dataset
	Models

	Results
	Dataset
	Models
	Variable selection and feature exploration

	Discussion
	Poor performance of the models
	Variable selection and feature exploration
	Exploration of AI methods

	Conclusion
	References
	Additional methods details
	Tables

	Additional results

