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Abstract

Light emitted by celestial objects is shifted towards higher wavelengths when
it reaches Earth. This is called redshift. Photometric redshift estimation is
necessary to process the large amount of data produced by contemporary and
future telescopes. However, the �lter bands recorded by the Sloan Digital
Sky Survey are not su�cient for accurate estimation of the redshift of high-
redshift quasars. Filter bands that cover higher wavelengths, such as those in
the WISE and UKIDSS catalogues provide more information. Taking these
�lter bands into account causes the problem of missing data, since they might
not be available for every object. This thesis explores three ways of dealing
with missing data: (1) discarding all objects with missing data, (2) training
multiple models and (3) naively imputing the missing data.
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Chapter 1

Introduction

1.1 Astroinformatics

Astroinformatics is the intersection of astronomy and computer science. As-
tronomy is a suitable domain for data mining techniques. According to
Borne [1], data mining is essential to astronomical research. Catalogues
such as the Sloan Digital Sky Survey (SDSS) [2] contain terabytes of data.
Upcoming catalogues will produce such data volumes per night, per hour, or
even per minute: The European Extremely Large Telescope (EELT) [3] and
the Large Synoptic Survey Telescope (LSST) [4] will gather terabytes of data
per night. They are expected to be fully operational in the early 2020s and
will yield petabytes of data during their lifetimes. The Square Kilometre Ar-
ray [5] (SKA) will gather petabytes per hour � data volumes that cannot be
stored or processed anymore in their full entirety. These enormous amounts
of data can not be processed manually. Data mining methods can be used
to �nd what data is interesting enough to be analyzed further. One area of
astronomy where automated data analysis is useful is photometric redshift

estimation.

1.2 Photometric Redshift Estimation

Estimating redshift is amongst one of the most challenging problems in astron-
omy. The further away a quasar1 is from Earth, the more its light spectrum
is shifted towards the red side (i.e., higher wavelengths). Thus, redshift can
be seen as a proxy for the distance of the object. Using a telescope, the �ux

1quasi-stellar radio source
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1.2. Photometric Redshift Estimation Chapter 1

Figure 1.1: A plot of a spectrum showing the di�erent �lter bands for the
SDSS catalogue and a redshifted spectrum [6]. When z increases, the spec-
trum is shifted towards higher wavelengths

of a lightsource can be measured for a number of �lter bands. Using these
to estimate an object's redshift is called photometric redshift estimation. Al-
ternatively, a spectrum could be taken of the lightsource, which will reveal its
true redshift. Taking spectra is more expensive than doing photometric anal-
ysis. To make sure that the telescope's time is spent well, we would like to
only take these spectra of "interesting" (e.g., distant) objects. By estimating
the redshift from the �lter bands, we can predict the redshift without having
to take a spectrum. Then, if the object is possibly interesting, a follow-up
spectrum could be taken. Figure 1.1 contains a plot of a spectrum and the
range of the di�erent �lter bands.

1.2.1 Classi�cation Versus Regression

Using the �ux in the �lter bands, we can also make a distinction between stars,
galaxies and quasars. Because all three of these types of celestial objects are
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Chapter 1 1.3. Machine Learning

contained in the SDSS catalogue and I am only interested in the quasars, the
quasars �rst need to be extracted. This task can be described as a multiclass
classi�cation task. There are a number of distinct classes � three in this
case: stars, galaxies and quasars � and each object needs to be assigned to
one class. Conversely, redshift estimation can be formalized as a regression
task. For each instance a continuous value � its redshift � has to be predicted.

1.2.2 Algorithms Used for the SDSS Catalogue

Currently, photometric redshift for SDSS is estimated using a nearest neigbour
�t2 [7]. Classi�cation of stars and galaxies is done using a linear threshold3.
Both of these methods are rather simple and are not completely accurate.
Finding better models for these tasks might thus be very useful and not very
di�cult. The SDSS webpage on classi�cation already mentions that more
complex algorithms perform better in some circumstances.

1.3 Machine Learning

Machine learning is the general task of using computers to �nd patterns in
data. Supervised learning in particular is very important in this �eld. In
supervised learning, �rst a model is �tted on data with known labels. After
constructing a model, it is then applied to yet unseen inputs. Generally the
data is split into a training and a test set (and sometimes also a validation
set). The model is �rst trained using the training set. Next, we use the
test set to �nd to what extent the model generalizes to data it has not seen
before. Only the performance on the test set is relevant, since the model
might have over�tted on the training data.

1.4 Datasets

1.4.1 SDSS

The Sloan Digital Sky Survey (SDSS) [2] regularly releases a lot of data. In
this thesis I have used all spectroscopically con�rmed objects from the SDSS
data release 12 (DR12). This survey contains a total of 1,425,280 objects.
The distribution of the di�erent classes in this dataset can be found in table

2See http://www.sdss.org/dr12/algorithms/photo-z/
3See http://www.sdss.org/dr12/algorithms/classify/
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1.4. Datasets Chapter 1

Class Count

Quasar 164,333
Galaxy 987,729
Star 273,218

Table 1.1: The di�erent classes making up the SDSS data and their number
of occurences in the SDSS dataset

1.1. For each object, there is data from �ve bands (u; g; r; i and z) computed
using six di�erent functions (psfMag, modelMag, petroMag, extinction and
dered) resulting in a total of thirty features per instance. Any objects that
were missing at least one of these features have been removed from the
dataset, decreasing the size by about 200,000.

1.4.2 Quasars from SDSS, WISE and UKIDSS

The second dataset I've used contains quasars from Sloan Digital Sky Survey-
III: Baryon Oscillation Spectroscopic Survey (SDSS-III/BOSS), Wide-Field
Infrared Survey Explorer (WISE) ALLWISE data release, UKIRT Infrared
Deep Sky Survey (UKIDSS) and several large-area Spitzer Space Telescope

�elds. The composition of this dataset is thoroughly descibed in Richards et
al. [8]. In this thesis I have used the �candidate� dataset. Besides the SDSS
u; g; r; i and z bands, this dataset also contains Y; J;H and K from UKIDSS,
and 3:6 and 4:5 bands from WISE. For all 150453 objects the SDSS and
WISE bands are present and for 42366 of these there is also UKIDSS data.

The �lter bands from WISE and UKIDSS cover higher wavelengths (see
Figure 1.2) than the �lter bands from SDSS and are useful for photometric
redshift estimation of high-redshift quasars. Chapter 3 discusses this topic in
greater detail.

5From http://inspirehep.net/record/1232359/plots
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Chapter 1 1.4. Datasets

Figure 1.2: This plot shows the wavelength range of the �lter bands in the
WISE and UKIDSS catalogues including some �lter bands from the SDSS
catalogue.5
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Chapter 2

Methods

2.1 Supervised learning

In this thesis, I have used two algorithms: k-nearest neigbours and random
forest. Both algorithms were used for classi�cation as well as regression tasks.

k-Nearest neighbours was often used in prior research (e.g., [9�11]), and
is also currently being used in the SDSS catalogue [7]. For this reason,
this algorithm was chosen to provide a baseline for the performance on the
datasets I've used. In all experiments in this thesis, random forest performed
better than k-nearest neighbours. Therefore, all results described in this thesis
were achieved using random forests. However, most initial exploration of the
data was done using k-nearest neighbours.

2.1.1 k-Nearest Neighbours

k-Nearest neighbours is a simple machine learning algorithm. The estimated
redshift of a new object is computed by taking the average of the redshift of
k points from the training set closest to that object:

Ŷ (x) =
1

k

∑
xi2Nk(x)

yi (2.1)

Where Nk(x) are the k closest neighbours of x . All experiments were done
with k = 12, which is also used in Polsterer et al. [10]. Higher values of k
did not signi�cantly improve performance.

k-Nearest neigbours does not scale well when the dataset is large and has
more than a few dimensions. However, using a datastructure like a k-d tree,
this algorithm can scale to a moderate number of dimensions.
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Unfortunately, k-nearest neighbours also has other downsides. If the data
is sparse, the prediction might not be accurate. Moreover, due to the nature
of the algoritm, it is impossible to extrapolate [13] to higher redshift quasars
than were encountered during training. A more detailed explanation of k-
nearest neighbours can be found in Chapter 13 of Hastie et al. [12].

2.1.2 Random Forests

A random forest [14] is an ensemble of decision trees. A number of samples
are taken from the dataset and a decision tree is trained on each of them. The
redshift of a new object is computed by averaging the result of all decision
trees:

Ŷ (x) =
1

B

B∑
b=1

ŷb(x) (2.2)

Where B is the number of trees in the forest and ŷb(x) is the prediction of
tree b for x . A more detailed explanation of random forests can be found in
Chapter 15 of Hastie et al. [12].

While random forests also somewhat su�er from the problems mentioned
with k-nearest neighbours, it also has some bene�ts. An ensemble of models
usually improves the performance a little bit. A random forest reduces the high
variance of single decision trees at the cost of a slight increase in bias. Growing
the trees in the forest is trivially parallelized, which can greatly reduce the time
required to train the forest. Random forests have few hyperparameters and,
thus, work well out of the box. Moreover, they scale well to large datasets
compared to support vector machines and usually don't su�er in performance.

2.2 Evaluation metrics

2.2.1 Classi�cation

For classi�cation I used the accuracy, precision and recall metrics to evaluate
the model's performance. These metrics are calculated using the following
formulae:

accuracy =
TP+ TN

TP+ FP+ TN+ FN
(2.3)

precision =
TP

TP+ FP
(2.4)

recall =
TP

TP+ FN
(2.5)
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2.2. Evaluation metrics Chapter 2

Where TP denotes the amount of true positives, TN true negatives, FP false
positives and FN false negatives. These metrics all range between 0 and 1
and a higher score indicates a better model.

Accuracy is the fraction of correctly classi�ed instances. However, this
metric might not be very relevant if the dataset is unbalanced, or if the model
has more trouble predicting one label than another. Thus, recall and precision
scores are also computed per label. Recall can be interpreted as the model's
ability to �nd all instances of a speci�c class. Precision can be interpreted as
the model's ability not to assign the wrong class to an instance.

2.2.2 Regression

For regression tasks, I used the root mean squared error which is de�ned as
follows:

RMSE =

√∑
n

t=1(ŷt � yt)
2

n
(2.6)

Where ŷ is the estimated value and y is the actual value. A lower RMSE
means a better model.
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Chapter 3

Approach

My approach consists of three steps, which resemble the "real-world" pipeline
of estimating the redshift of distant quasars. First we have to �lter the quasars
from stars and galaxies. Next, we �nd out which quasars are interesting by
making a distinction between quasars that are relatively close by (z < 4) and
distant quasars (z � 4). Lastly, we will estimate the redshift of these distant
quasars (see Figure 3.1). I will explain each of these steps in detail in this
chapter. Steps 1 and 2 are less relevant to my research question, so most
e�orts have gone towards the last step. All steps were implemented in Python
and use scikit-learn [15]1.

3.1 Finding Quasars

Finding quasars can be formalized as a classi�cation task. I trained a random
forest with 100 estimators on the SDSS dataset. The classi�er achieved an
accuracy of 97%. The confusion matrix of the classi�er's predictions can be
found in Figure 3.2 and recall and precision scores in Table 3.1.

The results are already quite good. Moreover, the precision and recall for

1Source code is available at https://github.com/jvanvugt/redshift-estimation

Classify stars,
quasars and
galaxies

Classify
low and

high-redshift
quasars

Estimate
redshift of
high-redshift

quasars

Figure 3.1: Pipeline for photometric redshift estimation of distant quasars
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3.1. Finding Quasars Chapter 3

Figure 3.2: Normalized confusion matrix of the classi�er's prediction plotted
in logscale

Metric Quasar Galaxy Star

Precision 0.93 0.95 0.99
Recall 0.89 0.96 0.99

Table 3.1: Precision and recall scores for classi�cation of quasars, galaxies
and stars
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Chapter 3 3.2. Finding Distant Quasars

quasars can be increased using cool star rejection [9]. The light picked up
from these cool stars is very similar to that of quasars, which can cause errors
in the classi�cation of these types of objects.

3.2 Finding Distant Quasars

Having a model specialized to estimating the redshift of high-redshift quasars
might be bene�cial. A model suited for this type of quasar might need some
other properties, compared to a general model, such as being able to deal with
a lot less training data. However, to be able to use a model specialized to
high-redshift quasars in practice, a quasar �rst has to be classi�ed as having
a high redshift. In other words, a model trained speci�cally on high-redshift
quasars can't be expected to work well on low-redshift qusars too. Finding out
if a quasar has a high redshift can be seen as a classi�cation task by putting
a (rather arbitrary) bound at z = 4. We now have two classes: quasars with
z < 4 and quasars with z � 4.

Training a random forest with 100 estimators for this task with quasars
from SDSS achieves an accuracy of 99%. However, quasars with z � 4

only make up 2% of the dataset, which puts chance level at 98%. Thus, the
accuracy doesn't really tell us much about the true performance of the model.
Precision and recall, which are much more informative in this case, are listed
in table 3.2.

Metric z < 4 z � 4

Precision 0.988 0.720
Recall 0.997 0.388

Table 3.2: Precision and recall scores for classi�cation of high vs low redshift
quasars

The precision and recall for high-redshift quasars reveal that the model
doesn't actually perform very well. The model has di�culties recognizing
these quasars, since the recall for this class is only 38:8%. A cause of this
problem is that this task is actually a regression task (predicting the redshift),
but is cast to a classi�cation task. Quasars with z � 4 might be classi�ed
into the wrong category. In this task, recall is more important than precision.
Finding out a quasar's redshift is not very high after taking a spectrum is not
as bad as completely missing a high-redshift quasar. Thus, we can sacri�ce
some precision for an increase in recall. This can be achieved by training the
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3.3. Redshift Estimation for Distant Quasars Chapter 3

model on a lower bound (e.g., z = 3:5), but evaluating the model with the
class boundary at z = 4. Using a class boundary of z = 3:5 increased the
recall to 56%. Naturally, the boundary can be moved to achieve the desired
recall score. Alternatively, the decision boundary of the random forest can
be moved. For example, for a quasar to be classi�ed as high-redshift, only
a third of the trees in the forest need to predict this class, instead of just
picking the class predicted by the majority of the trees.

3.3 Redshift Estimation for Distant Quasars

The last stage of the pipeline consists of estimating a quasar's redshift. Con-
trary to the two prior stages, this stage is a regression task, rather than a
classi�cation task. All results in this section were achieved using a random
forest regressor with 100 estimators.

Figure 3.3 shows a scatter plot of the (predicted) photometric redshift
versus the (true) spectroscopic redshift. Most points are on or near the
diagonal, which means that the model was able to accurately predict the
redshift. However, almost all quasars with approximately z � 4 are predicted
to have a lower redshift. Figure 3.4 shows that this problem is not caused by
the relative low frequency of high-redshift quasars in the dataset. The model
used to generate this graph was only trained on quasars with z � 4. The plot
shows that for quasars with approximately z � 4:8 the model's prediction is
not any better than random guessing, as the points are uniformly distributed.

The model's inability to accurately predict the redshift of quasars with
z � 4:8 is caused by the spectrum being redshifted beyond the �lter bands
in the SDSS catalogue. Because of this, the u; g; r; i and z bands do not
contain any useful information for the model to base a prediction on.

3.3.1 Using another dataset

The dataset composed by Richards et al. [8] has �lter bands from UKIDSS
and WISE which cover higher wavelengths. The �ux in these bands might
contain the information necessary for photometric redshift estimation of high-
redshift quasars. Since the UKIDSS features are only present for a third of
the quasars, a way to deal with this missing data problem is necessary. In this
thesis, I discuss three options for dealing with this missing data problem:

1. Only use the quasars with complete data

14



Chapter 3 3.3. Redshift Estimation for Distant Quasars

Figure 3.3: Scatter plot of the redshift predicted by the model (vertical axis)
versus the true redshift.

2. Train 2 models: one model for complete data (i.e., SDSS, UKIDSS
and WISE features) and one model for quasars with partially missing
features (i.e., just SDSS and WISE features).

3. Impute the missing UKIDSS data

Figure 3.5 shows the performance of a model trained just on the SDSS
features from this dataset. By training only on the SDSS features, this
model provides a baseline for the new dataset. The plot shows a performance
similar to the performance on the other dataset. The test set consists of
approximately 20000 quasars with complete data. This test set will be used
for all following experiments to allow for comparisons of the performances.
Not having a �xed test set could result in uncomparable results, since quasars
with missing UKIDSS data might di�er in some way from quasars with full
data.
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3.3. Redshift Estimation for Distant Quasars Chapter 3

Figure 3.4: Scatter plot of the redshift predicted by the model (vertical axis)
versus the true redshift just with quasars with z � 4.

Quasars with complete data

The �rst way of dealing with missing data is to simply discard all quasars with
missing data. The scatter plot for the performance of this model can be found
in Figure 3.6. The performance when using all features (RMSE = 0:29) is
a lot better when using just SDSS features (RMSE = 0:52). Some of the
high-redshift quasars' redshifts are predicted accurately, but there are some
mispredictions as well.

Figure 3.7 shows all remaining combinations of features from SDSS, WISE
and UKIDSS. SDSS and WISE features combined seem to contain almost as
much information as SDSS, WISE and UKIDSS features combined. The
performance when using just SDSS and WISE features is only slightly worse
than using features from all three catalogues.

The major downside of this model is that it can only be used when features
from all three catalogues are available. However, using a technique called
surrogate splits [16], a random forest can still be used even when some data
is missing. In surrogate splits, when a split has to be made on a missing value,
the split will be made with correlated objects where that particular value is

present instead.
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Chapter 3 3.3. Redshift Estimation for Distant Quasars

Figure 3.5: Scatter plot of the redshift predicted by the model (vertical axis)
versus the true redshift. Trained on the SDSS features in the dataset by
Richards et al.

Training two models

The second approach to handling the missing data problem is to train two
models. Missing data in this dataset is very regular, because only the entirety
of UKIDSS is ever missing. Because of this fact, only 2 di�erent patterns
occur: either all data is present or UKIDSS is missing. Therefore it is still
feasible to train multiple models.

When estimating the redshift of an unseen quasar, the quasar's redshift
is predicted by the model tailored to the features which are present for that
quasar. In this case that is either the model with no missing features or the
model for quasars with missing UKIDSS features. This technique achieved a
root mean squared error of 0:30, which is similar to that of using just SDSS
and WISE data.

Imputing missing data

The last technique described here for dealing with missing data is to impute
(i.e. �ll-in) the missing data. I have tried only a few naive approaches:

17



3.3. Redshift Estimation for Distant Quasars Chapter 3

Figure 3.6: Scatter plot of the redshift predicted by the model (vertical axis)
versus the true redshift. Trained on quasars without missing data in the
dataset by Richards et al.

(1) replace the missing data with the mean of that column and (2) replace
the missing data with the median of that column. Both techniques had a
similar performance (RMSE = 0:30), which is again similar to that of using
just SDSS and WISE features and the approach with two models. However,
in contrary to the latter technique, this approach only requires training one
model.

A more sophisticated approach such as imputing data using nearest neigh-
bours might perform slightly better, although I do no consider this very likely.
If useful information can be imputed using data that is already present, the
model will already learn that information from that data. The intermediate
imputing step shouldn't provide any more information.
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Figure 3.7: Models trained using just WISE (top left), UKIDSS (top right),
SDSS and UKIDSS (middle left), SDSS and WISE (middle right) and WISE
and UKIDSS (bottom middle)
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Chapter 4

Conclusion

Modern telescopes produce so much data that algorithms are necessary to ex-
tract interesting data. This is also true for computing an object's redshift. In
this thesis I've described a pipeline consisting of three stages for photometric
redshift estimation of quasars.

The �rst step of this pipeline consists of classifying quasars, galaxies and
stars with the goal of extracting quasars from other objects in space. A ran-
dom forest trained on the features available in the SDSS catalogue performed
very well on this task.

The second step of the pipeline is classifying low and high-redshift quasars.
This step introduced some problems, since it is naturally a regression task �
redshift is a continuous value after all. The di�culties in correctly classify-
ing high-redshift quasars can be partially overcome by moving the decision
boundary.

The last step of the pipeline is estimating the quasars' redshifts from
photometric data. When evaluation the dataset in its entirety, this works
fairly well. However, the redshift of high redshift quasars, which only make up
a small fraction of the dataset, turned out to be very di�cult to predict. Since
the data in the SDSS catalogue does not contain useful information for these
quasars, another dataset with �lter bands from WISE and UKIDSS, besides
SDSS, that cover higher wavelengths was considered. Using data from these
catalogues improved performance for the dataset in its entirety. However, it
is hard to draw any sound conclusions about the performance of the model
on high-redshift quasars as there are only few present in the dataset.

The dataset with features from SDSS, WISE and UKIDSS also had some
missing data. Three approaches for dealing with this problem were discussed:
(1) discarding all missing data, (2) training multiple models to �t the di�erent
patterns of missing data and (3) imputing the missing data. Imputing the
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missing data with either the mean or the median of the column proved to be
the best approach. The advantage of this technique over discarding all missing
data is obvious: even objects with missing data can be useful. Furthermore,
only one model needs to be trained, in contrast with the approach where
multiple models were trained.
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