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1 Introduction

In real life situations, many decisions need to be made based on uncertain in-
formation. The medical world is no exception to this phenomenon. A medical
doctor needs to make the most informed decision based on the information
available, for instance a number of symptoms displayed by a patient. Bayesian
networks are widely used as a method for dealing with uncertainty [I] and can
be used to assist in the decision making process. One area of applications in
which these types of networks can potentially fulfill a supporting role, is the field
of mobile health (mHealth), which is the active integration of mobile devices
in support of general and personal healthcare. Bayesian networks however, do
pose a problem in the sense that the computation time increases exponentially
with the size of the tree width of the network in the worst case, generally mak-
ing inference on these networks intractable [2]. This, combined with the fact
that computational power on mobile devices is limited, even if it is continuously
increasing, means that the real world applications of these networks might be
limited. Performing Bayesian network inference on a mobile device may be very
slow, if not impossible in some situations. A solution to this problem may lie in
a concept known as knowledge compilation, which is the process of compiling
some representation of a problem into another in which certain operations are
no longer intractable, in an off-line phase, which means that this operation is
not performed on the mobile device itself. Those operations which have now
become tractable in the new representation can than be performed at a much
higher speed in the on-line phase, i.e. on the mobile device itself. Because
memory usage, computational power, and the time needed to perform the op-
erations are all decreased, an additional advantage is achieved in the sense that
less energy is expended and thus battery time is increased. The difficulty in
applying knowledge compilation on a problem is to determine which of many
possible target representations is best suited for the problem at hand. In the
case of an mHealth application: which target language makes it possible to per-
form the operations needed in an acceptable time on a mobile device. When the
proper target language is determined, the next step is to investigate whether
the theoretical improvements of using knowledge compilation are also realized
in practice. The research question that I aim to answer in this thesis is therefore
multifaceted:

1. What target compilation language is most suited for mHealth applications
that use Bayesian network inference? and

2. What are the improvements that can be achieved by utilizing this target
language in an existing application?

The first research question will be answered by analyzing a number of target
languages based on their properties and the kinds of operations each of them
supports in polynomial time. In order to answer the second research question,
the most suited representation will be implemented in an existing mHealth ap-
plication which is currently being developed at the Radboud University, named



eMomCare [3], [].

In this thesis I will first give a brief overview of the previous research on the
subjects of knowledge compilation and mHealth. After that will be a section con-
taining theoretical background information about probability theory, Bayesian
networks, weighted model counting and knowledge compilation. The latter sec-
tion will also contain a separate subsection dedicated to the new compilation
language SDD. Following that will be the analysis to determine the best target
language. The thesis will conclude with the practical implementation of the
chosen target language and a discussion section.

2 Previous research

Knowledge compilation

A lot of research on the subject of knowledge compilation has been done by
Darwiche (e.g. [5,[6] [7]). The analysis for the best target language for usage in
mHealth projects is largely based on the work done by Darwiche and Marquis
[5] as it provides the basis to make an educated selection of candidate languages.
Since this paper was published, a lot more research on the subject of knowledge
compilation has been done, the most notable being that a new target language
SDD [7, 8] has been proposed. As such this language is also taken into account
in this thesis. This newer target language is added to the available comparison
tables in the section on compilation languages, partly based on previous research
by Van den Broeck and Darwiche [9).

mHealth

The World Health Organization defines mHealth as “the use of mobile and
wireless technologies to support the achievement of health objectives.” [I0] As
a result of the substantial increase of the number of available mobile network
connections worldwide [IT], interest in mHealth applications has increased in
recent years as well. mHealth solutions are being used for a large number of
different types of healthcare problems across the globe.

A first example in which mHealth applications are utilized is family planning
[12]. mHealth applications are also being used as a tool in the fight against HIV
and AIDS [13]. In many countries where HIV and AIDS are most prevalent,
discussing disease is often taboo. In these countries, mHealth in the form of
a simple SMS service offers a great opportunity to reach a large audience for
awareness and educational purposes, without sacrificing confidentiality.

More complicated applications offer both physicians as well as their patients a
supportive tool to diagnose certain issues [I4]. This can either be in the form
of a step-by-step guide for the physician or a healthcare worker in order to de-
termine whether or not a certain diagnosis has a high probability, but also give
the patient the opportunity to perform regular checkups from their homes. In



the latter case, the physician might offer the patients some tools to take mea-
surements at home after which a mobile application stores the data both locally
as well as in the patient’s file. An extension of these kinds of applications offers
a physician the opportunity to monitor the effectiveness of medication by con-
sulting these measurements, but also the patient’s emotional state if it might be
altered by prescribed medication. Finally there are those projects that aim to
use mHealth applications to monitor and support maternal and child wellbeing
during and after pregnancy.

Given the current high costs of health care combined with the increasing need
for medical help caused by the aging of society, mHealth applications are a pos-
sible method of increasing efficiency and thus reducing health care costs. One
of the characteristics that aids towards lower overall costs is reducing the num-
ber of face-to-face consultations. It also facilitates a phenomenon referred to as
personalization, which can be described as the adaptation of general decision
making models to a specific patient’s individual situation and measurements.

Artificial Intelligence in mHealth

The role of artificial intelligence in mHealth applications can be a very promi-
nent one, depending on the type of application. Of course, in those projects
where the mHealth aspect consists of sending a text message make limited use
of any artificial intelligence algorithms or theories. This generally changes as
the applications become more complicated. Take for instance the mobile heart
monitor proposed by Rubel et al. [15], which uses artificial neural networks for
the early detection of cardiac events. Minutolo et al. designed an mHealth ap-
plication for the same purpose using a rule-based decision support system [16].
Finally there are those applications that rely on Bayesian network inference to
determine the probability of a certain symptom based on a number of measure-
ments. As reasoning with uncertainty is one of the research field in artificial
intelligence and inference is a prominent method for dealing with this type of
reasoning, the role of artificial intelligence is apparent. It is this part of the
connection between mHealth and artificial intelligence that will be the subject
of this thesis.

3 Theoretical background

In order to be able to answer the research questions I aim to answer in this
thesis, it is important to first provide a base in the form of the theoretical
background on which Bayesian network inference and knowledge compilation
are dependent.



Probability theory

Because probability theory is at the basis of probabilistic inference, a short
introduction on the subject is given. Probability theory is a means of dealing
with uncertainty. In order to explain the background theory used in this thesis
three variables are introduced and used as a running example throughout this
entire section. Let A, B and C' be binary variables, i.e. each can either be
true or false. For instantiations of these variables the notation a is used to
indicate that variable A is true and —a and @ are used interchangeably to indicate
that variable A is false. Furthermore T is the notation for a tautology, i.e.
an unconditionally true statement and L is the notation for the inverse, an
unconditionally false statement. Let B be a Boolean algebra. The probability
distribution P is a function P : B — [0, 1], such that P(L) =0, P(T) =1 and
P(xVy) = P(x)+P(y) if xAy = L, with 2,y € B. A probability distribution can
also be defined over multiple variables. For instance the probability distribution
P(A, B, Q) is the joint probability distribution over all example variables, where
P(a,b,c) represents the probability that all variables are true.

Conditional probability

Conditional probability theory deals with the probability that hypothesis h is
true given some evidence e, denoted P(h | ). The evidence e consists of all
current observations of the world. The conditional probability P(h | e) is called
the posterior probability for h, with P(h), the probability of A without any
additional information about any evidence, being the prior probability for h.
This conditional probability P(h | €) can be obtained in the following manner:

P(h|e) = P(If(g)e)

For example, assume we know that if variable A is true, variable B is true with
a probability of 0.1, then P(b| a) = 0.1.
Chain rule

In order to determine the probability for a set of variables {Xi,...,X,}, the
following rule, which is known as the chain rule, can be utilized:
P(Xl,XQ,...,Xn) :P(Xl | XQ,...,Xn)X
P(XQ | X37"'5XTL)X

P(anl | (Xn)x
P(X,)
= 1:[ P(X; | Xiy1,... Xn)P(X,)



When applied to the example variables, this means that:

P(A,B,C) = P(A| B,C) x P(B|C) x P(C)

Marginalization

In many situations, the probability for a single variable is not part of the known
probability distribution. If this is the case this variable can be summed out by
utilizing marginalization:

P(z)=P(xAT)
=P A (yV-y))
— P((x Ay) V(& A-p))
= P(x Ay) + P(z A—y) — since P(aVb) = Pla)+ P(b)ifaAb= 1
Therefore

P(z) =) P(x,Y)

For the example variables, the probability distribution for, for instance, B by
itself is not part of the probability distribution. If we want to know the probabil-
ity for b we simply take the sum of P(b,a) and P(b, ~a). Using the probabilities
as they are given in Figure [I] we obtain the following:

P(b)=> P(bA)
A

= P(b|a)-Pla)+P(b|-a)- P(-a)
=0.1-0.6+0.3-0.4 = 0.18

Bayes’ rule

It is often the case that the probability P(e | h) is known, but P(h | e) is the
probability that is most useful. As an example, think of the situation where it is
known that some symptom s can be caused by some disease d. The probability
that d causes s is known, i.e. P(s | d) is known. However, the information that
is more interesting in this situation is the probability that a person who suffers
from disease d, given that symptom s is present, i.e. P(d | s). In order to find
the probability when reasoning in the direction opposite of the causal relation,
Bayes’ rule can be used:

P(h] e = 2L MPR) 1'32;3 ")

Let the causal relations for the example variables be as depicted in Figure [T}
As can be seen in the Figure A influences both B and C. A could be some
disease and B and C' two symptoms associated with A. Now say b is observed
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Figure 1: The dependencies and conditional probabilities between the three example
variables A, B and C.

and we want to know the probability P(a). Using Bayes’ rule we can obtain the
probability P(a | b):

P(b|a)P(a) 0.1-0.6

Plajy) = O 000

Bayesian Networks

In order to represent conditional relations between a set of variables, Bayesian
networks can be used. The previously used example in Figure [1f shows the
Bayesian network that represents the example variables A, B and C' and the
conditional relations between these variables. A Bayesian network is formally
defined as a pair (G, P), where G is an acyclic directed graph (ADG), with
G = (V,E), where V is the collection of vertices and E is the collection of
edges. P is the joint probability distribution of a set of variables X, where every
variable X € X is represented by a node vx € V in the network. Every edge
e € F represents a direct relationship between two variables. Two variables
X and Y are independent, denoted X 1L Y, if P(X | Y) = P(X) for all
instantiations of X and Y. Variables that are not independent may still be
conditionally independent given some other variables. T'wo variables X and Y
are said to be conditionally independent given variable Z, denoted X 1l Y | Z, if
P(X |Y,Z)=P(X | Z) for all instantiations of X,Y and Z. In other words: if
the value for Z is known, knowing the value for Y does not influence probability
for X and vice versa. An example would be that in the example network, once
the value for A is known, it no longer matters what the value for C is for the
probability that B is true. The conditional (in)dependencies in any Bayesian
network imply the conditional (in)dependencies in the probability distribution
it represents. By taking these conditional independencies into account, the joint



probability distribution P in a Bayesian network can be represented compactly
in the form of local conditional probability distributions connected to each node
v € V. These are the probability tables at the bottom of the example network.

Bayesian network inference

Bayesian networks are generally used to determine the conditional probability
for the value of some variable X in the network given evidence e, for instance
to determine P(a | b) in the example network. Another possible query to be
answered by using a Bayesian network is to determine the maximum a posteriori
probability for variable X, or the full probability distribution for X given e, i.e.
the value of X that maximizes P(X | e), or the distribution P(X | e). In
order to determine these probabilities, these values need to be inferred from the
network. In a simple network this can be achieved by using the marginalization
method and the chain rule explained earlier, combined with the exploitation
of independencies in the network. However, in many cases this is not a viable
option, as it requires the enumeration of all possible combinations of values for
all variables in the network.

Variable elimination

One of the most commonly used methods to determine probabilities given a
Bayesian network, is an algorithm called variable elimination. To explain this
algorithm, the first step is to explain factorization, which is the process of ex-
cluding all variables that are independent of some queried variable from its
conditional probability. A factor can be described as a function that transforms
a tuple of random variables into a number. An example would be some fac-
tor f on the example variables A, B and C, denoted f(A4, B,C). f(a,b,c) for
instance, is then the numerical value of f if all example variables are true. Be-
cause conditional probability distributions can be regarded to be a function over
variables and a factor is a representation of such a function, a factor can be used
to represent conditional probabilities. For example, the conditional probability
P(B | A) can be represented as a factor f on A and B, so again assuming both
variables are true, f(b,a) = P(b | a) would hold. A number of mathematical
operations can be performed on factors. The first is multiplication: Let f; be
a factor over example variables A and B and f a factor over the variables A
and C. The product of these two factors, fi X fo, is a factor on the union of
the variables:
(fl X fQ)(A7BaO) = fl(Aa B) X fQ(A’ C)

Secondly, variables can be summed out in a factor: Summing out some variable
X from a factor f(X,Yp,...,Y,), results in a factor on all remaining variables
in the factor f(Yp,...Y,). For instance summing out variable A from the pre-
viously mentioned factor fi(A4, B), results in a factor on the other variables in
f1, in this case only B:

(3> /)(B) = fi(a, B) + fi(~a, B)
A



Using this operation, the posteriors for any variable X given some evidence can
determined by summing the variable out. Of course not all probabilities given
some evidence can easily be obtained by summing out a single variable. Often
it is needed to sequentially sum out a set of variables The order in which these
variables are summed out is an elimination ordering. In the variable elimination
algorithm, all variables are summed out given some elimination ordering, until
the posteriors for the queried variable are calculated.

Weighted model counting

As said, variable elimination is the most commonly used method to determine
some probability in a Bayesian network. However there are alternative methods
to find these probabilities. One such alternative is the usage of weighted model
counting (WMC). WMC is the concept of calculating the weighted sum of all
models given a certain theory. A model in this sense is a logical formula that
does not contradict the theory. If for example we have observed the example
variable A to be true, then a AbAc is a model of this theory, but —a AbAc is not.
An instance of the WMC is created by defining a logical theory A and assigning
some weight W ({) to each literal ¢, where a literal is an atomic formula or the
negation of an atomic formula, so for instance a and —a are literals. These
weights then determine the weight for each model w of A as follows:

W(w) =[] W)
wl=L

Meaning that it is the product of all literals that are entailed by the model. A
literal is entailed by the model it does not contradict the model. The weighted
sum WMC(A) is then calculated by:

WMC(A) =Y W(w)
wEA

Which means that it is the sum of all models that satisfy the theory.

Bayesian network to WMC

Any Bayesian network combined with evidence in the form of observations can
be transformed into a knowledge base A on which WMC can be performed.
W MC(A) then corresponds with the probability of the observations. As an ex-
ample take a Bayesian network with three binary variables {A, B, C} as shown
in Figure [2| which is identical to the example Bayesian network introduced
earlier. In order to perform WMC on the network, the network needs to be
transformed into a logical formula. It is generally the case that these formulas
are in negation normal form (NNF), which means that the formula consists of
only literals and conjunctions and disjunctions. Often a bit more of a restric-
tion is imposed on these formulas and the logical representations are in either
conjunctive normal form (CNF) or disjunctive normal form (DNF'). Formulas

10
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Figure 2: A simple Bayesian network

that are in CNF consist of a conjunction of (disjunctions of) literals. A formula
in DNF consists of a disjunction of (conjunctions of) literals. To illustrate the
how weighted model counting on a Bayesian network works, the example net-
work will be transformed into CNF form. This can be achieved in the following
manner.

First the logical variables need to be defined. Each of the possible value for
a variable in the Bayesian network needs a corresponding variable in the CNF.
This is achieved by defining an indicator variable A for each possible variable
value. Doing this for the network in Figure [2] yields the following logical vari-
ables: A\, and Ag for the variable A, Ay and )y for the variable B and . and Az
for the variable C'. Logical variables for the conditional probability table entries
need to be defined as well. For this, a parameter variable 6 is introduced. The
following parameter variables are obtained from the example network: 6,, 0z,
ab\aa 95|aa 0b|6, 95‘57 ec|a, 96|cm 00\6 and 06|E~

The next step is to define the knowledge base A that represent the Bayesian
net. For each instantiation in the network the logical variables whose subscript
is consistent with it is set to true. All other variables in the CNF are set to
false. The following table shows all instantiations for the network in Figure
and the corresponding CNF variables that are set to true (all other variables in
the CNF are set to false).

11



Network instantiation | CNF variables set to true
abc )\aAbACHQQMGGC‘a
abe )\a/\b/\EgaebmaE\a
abc Aa /\g/\ct%@gl(ﬂc‘a
GBE )\a )\g/\geaGElaaaa
abc )\5)\1,)\6959(4596‘5
abc )\5/\1,)\595914595‘5
abc )\5)\5)\695%690‘5
abe Xadgrelatiy zbefa

This strategy works for the small example network used, however listing all
possible instantiations of a real world network will generally be intractable.
A more efficient manner of representing the knowledge base as a CNF is by
processing each network variable and each parameter. Below is an example of a
CNF encoding for the example network. In the table CPT stands for conditional
probability table. More background information on CNF encoding can be found
in Chavira and Darwiche [6].

Variable A
Variable B
Variable C
CPT 1
CPT 2

CPT 3

Ao V Az
Ay V /\g
Ae V Az
Ao & 0,
Aa AN Ap & 9b|a
Ag N )\E =4 egla
A N Ae & 95|a
Ao A Xz & Oz

_‘)\a V _‘)\E
=Xy V Az
=XV oAg

Az & Oz

Az A XAy & Gb‘a
)\a A\ )\E ~ 95\6
Az A\ Ae & 0c|E
P AR 95|E

The following step is to assign a weight W (¢) to each literal in the CNF. Each
positive literal of a parameter variable is assigned a weight equal to the proba-
bility of the corresponding conditional. All other literals are assigned a weight
of 1. In the example, this means that all weights are 1 except the following:

W(0,) =06 W(bs) =04

W (o) = 0.1 W(y,) = 0.9
W (Bua) = 0.3 W (b, =0.7
W(6e) = 0.7 W(bz,) = 0.3
W (o) = 0.2 W(bgz) = 0.8

Because these are the only weights that are not equal to 1, each model w has a
weight that is equal to the product of the weights of all positive literals.

The final step in transforming Bayesian network inference into an instance
of weighted model counting is to add observations. Adding evidence can be
achieved in two different ways. The first is to change the weights of all indicator
variables A whose subscript contradicts the evidence from 1 to 0. The result is
that the weights for all models that not support the evidence is now zero. The
following table illustrates this for the example with added evidence e = {a, b}.

12



Network instantiation | CNF variables set to true | Weight without e Weight with e
abc Aa Ao Aclabbiabcla 0.6-0.1-0.7=0.042 | 0.042

abc Aa A A0 abp)abz)a 0.6-0.1-0.3=0.018 | 0.018

abc /\a/\p\ceaﬁg‘aﬁc‘a 06-09-04=0.216 | 0

abe AargAclaby,Ocla 0.6-0.9-0.6=0.324 | 0

abc Aa v AcOalhaleia 04-0.3-02=0.024 | 0

abe Aa o Aelalyalea 04-0.3-0.8=0.09 | 0

abe AaAgAclaly g Ocla 0.4-0.7-0.2=0.056 | 0

Now, P(e) = WMC(A) = 0.024 + 0.036 = 0.06. The second manner of adding
evidence to the knowledge base is by removing all those models that contradict
the theory. This is achieved by computing P(e) = WMC(A A A.), where A,
is the conjunction of the indicator variables that represent the evidence. In the
case of the example with evidence e = {a,b}, A, = Ay A \y. The advantages of
each of these two methods are addressed in Chavira and Darwiche [6].

Knowledge Compilation

One of the reasons that weighted model counting is an interesting approach
to performing Bayesian network inference, is the fact that it facilitates a phe-
nomenon known as knowledge compilation. While performing inference on real
world sized Bayesian networks is generally intractable, representing the network
in some other way may result in polynomial time algorithms to solve certain
problems. Knowledge compilation is a fairly new research direction that deals
with the intractability of general propositional reasoning. The basic idea is that
some propositional theory, for instance a Bayesian network that is represented
as a logical formula, as is explained in the previous section, is compiled into
a target language in an off-line phase, after which a large number of queries
can be answered in polynomial time in the on-line usage of the application. A
target language is also a logical formula, but by means of putting some restric-
tions on the way sentences in the formula may be formed, some operations on
the language can be performed much easier and faster. The restriction that
can be placed onto logical formulas in order to arrive to a target language will
be discussed in more detail in the next section. Compiling the original theory
into some target language in an off-line phase offers the great advantage that a
major part of the computational power needed for the theory is now dealt with
in an off-line, rather than the on-line phase. This is particularly useful in mobile
applications, since most mobile devices do not possess as much computational
power as a desktop or laptop computer, meaning that any shift of computa-
tional steps from the on-line to an off-line phase should result in an increase
in speed in everyday use of the application. Another advantage of compiling a
given language into a different target language is that, given that the proper
target language is chosen, certain queries are guaranteed to be answerable in
polynomial time after compilation. This will be discussed in more detail in the
following sections.

13



Compilation languages

As stated earlier, a number of restrictions can be imposed on a logical language
in order to create a subset of that language that can be used to compile the orig-

inal

theory into. By imposing these restrictions, a representation of the original

language is created that facilitates the possibility to perform certain operations
very efficiently. These restrictions are extensively described in Darwiche and
Marquis [5]. Any combination of the following restrictions can be imposed on

the
tion

1.
2.

N o e

NNF language in order to obtain target languages for knowledge compila-

Flatness: The height of NNF is at most 2.

Simple Disjunction: Every disjunction is a clause, where literals share
no variables.

Simple Conjunction: Every conjunction is a term, where literals share
no variables.

Decomposability: Conjuncts do not share variables.
Determinism: Disjuncts are logically disjoint.
Smoothness: Disjuncts mention the same set of variables.

Decision: A node of the form true, false, or (X A aV—-X A (3), where X
is a variable and «, 8 are decision nodes.

Ordering: Decision variables appear in the same order on any path in
the NNF.

A number of the target languages that are the result of imposing any number
of these restriction on the NNF language can be found in the table in Figure

Acronym | Description ‘

N

NF Negation Normal Form

D

NNF Decomposable Negation Normal Form

d-DNNF Deterministic Decomposable Negation Normal Form

sd-DNNF | Smooth Deterministic Decomposable Negation Normal Form

FBDD Free Binary Decision Diagram

OBDD Ordered Binary Decision Diagram

OBDD. Ordered Binary Decision Diagram (using order <)
DNF Disjunctive Normal Form

CNF Conjunctive Normal Form

Figure 3: A selection of the languages compared by Darwiche and Marquis.

The names of the target languages generally indicate the restrictions that
are imposed on the NNF in order to arrive to that language. For each of the

14



languages in the table in Figure [3| a short description is given, both to clarify
the meaning of the restrictions and to give an impression of the resulting target
language.

DNNF The target language DNNF is obtained by imposing decomposability
on an NNF. This means that conjuncts do not share any variables. For instance,

V; \%

N\ /N

.7
=

<
2
<o

Figure 4: Example sentence.

the sentence depicted on the left in Figure [ is not decomposable, since the
conjuncts associated with the circled and-node both contain an instantiation of
the variable a. The sentence on the right is decomposable, because none of the
and-nodes have more than one child node with the same variable.

d-DNNF This language is obtained by imposing determinism on a DNNF.
This means that disjuncts are logically disjoint. The sentence in Figure [5|is not
deterministic, because the circled node has children —a and b and these two are
not disjoint, i.e. ma A b & L. For a sentence to be deterministic the children of

an or-node may never be all true.
v
A

2l
<

Figure 5: Example sentence.

15



sd-DINNF The target language sd-DNNF is a d-DNNF with the additional
restriction that smoothness must be adhered to. A sentence is smooth if each
disjunction in it mentions the same variables. The sentence in Figure [5] is not
smooth either, as the circled node has a child with the variable A and a child
with the variable B.

FBDD The way an FBDD is formed does not follow directly from its name.
In order to understand what an FBDD is, a definition for Binary Decision
Diagrams (BDD) is needed. BDD is the set of all NNF sentences, where the
root of each (part of a) sentence is a decision node. Figure[6fa) shows a decision
node as it is generally represented graphically. This node corresponds with the
tree depicted in Figure[6(b) [5]. FBDD is the intersection of DNNF and BDD,
in other words, it is a decomposable BDD.

(a) Decision diagram (b) Tree

Figure 6: A decision node (a) and its corresponding tree structure (b).

OBDD OBDD is FBDD with an additional ordering restrictions, meaning
that all variables appear in the same order on all paths from the root to the
leafs in the NNF.

The most important aspect when using knowledge compilation is choosing which
target language the original theory will be compiled into. In order to do so Dar-
wiche and Marquis [5] propose three different key properties of compilation
languages, which can be utilized in order to make an informed decision on the
target language most suited for a particular type of application. These key
properties are:

1. Level of succinctness: Let L; and Ly be two subsets of NNF. L is at
least as succinct as Lo , denoted L; < Lo, iff there exists a polynomial p
such that for every sentence a € Lo, there exists an equivalent sentence
B € Ly where |8] < p(|al).

2. Set of queries supported in polynomial time: Checking for consis-
tency, validity, clausal and sentential entailment, implicant and equiva-
lence, as well as model counting and model enumeration.

16



sd-DNNF | = |d-DNNF|

Figure 7: A graph representing the succinctness of a number of subsets of the NNF
language as presented by Darwiche and Marquis [6]. An edge L1 — L2 indicates that
Ly is strictly more succinct than Lo: Li < Lo, while L1 = Lo indicates that L; and
Lo are equally succinct: L; < Lg and L2 < L;. Dotted arrows indicate unknown
relationships.

3. Set of transformations supported in polynomial time: Condition-
ing, (singleton) forgetting, (bounded) conjunction, (bounded) disjunction
and negation.

The tables in Figure [§ and [J] give an overview of the queries and transfor-
mations discussed in [5].

Of course, the exact meaning of each of the table entries in both these tables
is not included. As such, each query and transformation will be introduced
briefly.

A language L supports polytime consistency checking (CO) if there exists a
polynomial time algorithm to determine whether any formula in L is consistent
or not. Consistency in this context refers to logical consistency, i.e. the formula
does not contain any contradictions. polytime validity checking (VA) is very sim-
ilar to CO in the sense that L support VA if there exists a polytime algorithm to
determine if any formula in L is valid, where validity means that the formula is
true under every interpretation. L supports polytime causal entailment checking
(CE) if there exists an algorithm that checks whether « is entailed by £ (X =)
for all clauses v and all formulas ¥ from L in polynomial time. If it is possi-
ble to check whether v = ¥ in polynomial time, L satisfies polytime implicant
checking (IM). If L satisfies polytime equivalence checking (EQ) if there exists a
polynomial time algorithm that determines whether ¥ = ® holds for any pair of
formulas ¥ and ® in L. If there exists such an algorithm to determine whether
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| Notation ‘ Query ‘

CcO polytime consistency check

VA polytime validity check

CE polytime clausal entailment check
IM polytime implicant check

EQ polytime equivalence check

SE polytime sentential entailment check
CT polytime model counting

ME polytime model enumeration

Figure 8: An overview of notations for queries.

| Notation | Transformation
CD polytime conditioning
FO polytime forgetting
SFO polytime singleton forgetting
ANC polytime conjunction
ABC polytime bounded conjunction
vC polytime disjunction
vBC polytime bounded disjunction
-C polytime negation

Figure 9: An overview of notations for transformations.

Y = @, L satisfies polytime sentential entailment checking(SE). L satisfies poly-
time model counting (CT) if there is a polytime algorithm to determine the
number of models for each sentence in L. Finally polytime model enumeration
(ME) is satisfied by L if there exists a polynomial p(n, m), where n is the size
of some formula in L and m is the number of models for that sentence, such
that all models for the sentence can be output in time p(n,m).

A language L satisfies polytime bounded conjunction (NBC) if every pair of for-
mulas in L can be mapped to a formula in L that is equivalent to the conjunction
of these two formulas. If the same can be done for any finite set of formulas in L,
L satisfies polytime conjunction (AC). Conversely, L satisfies polytime bounded
disjunction (VBC) if pair of formulas can be mapped to a formula equivalent to
the disjunction of these formulas. Again, if the same can be done for any finite
set of formulas in L, the language satisfies polytime disjunction (VC). If every
formula in L can be transformed into another formula that is equivalent to the
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negation of that formula, L is said to satisfy polytime negation (—~C). If, for
every formula ¥ in L and every term -y, each variable X of ¥ can be replaced by
true if x is a literal of v and by false if -z is a literal of v in polytime, L satisfied
polytime conditioning (CD). Finally, L satisfies polytime forgetting (FO) if for
every set of variables X and every sentence ¥ in L a sentence ¥’ in L can be
constructed such that for every formula « that does not mention any variable in
X ¥ = « holds precisely when ¥ = « holds. If this property holds, but merely
for a single variable rather than a set of variables, L satisfies polytime singleton
forgetting (SFO).

The main goal when selecting the appropriate target language for a project
is to first determine which queries and transformations should be supported in
polynomial time and when this is done, choosing the most succinct language
to support these features. In the next section an overview is presented of all
the queries and transformations that are supported in polytime by each of the
languages mentioned, as well as their succinctness.

The SDD target language

Besides the target languages discussed in the previous section, another, newer
target language is examined as a candidate for usage in mHealth applications
that use Bayesian network inference: the Sentential Decision Diagram or SDD.
This language was proposed in 2011 by Darwiche [7] and as such was not a part
of the original comparison between target languages. Because of this, and the
fact that this language possesses characteristics that allow for fast compilation
into a compact representation (given a good heuristic) [7], an in depth analysis
of this target language is made in order to include SDD comparison between
target languages.

SDD is the language that is obtained by imposing two newer restrictions on the
NNF language: structured decomposability [I7] and strong determinism [18]. If
a language adheres to structured decomposability, it adheres to the decompos-
ability restriction discussed earlier but is also structured. A structured language
is a language that respects a viree, where a vtree for a set of variables X is de-
fined as a full, rooted binary tree whose leaves are in one-to-one correspondence
with the variables in X. A language is strongly deterministic if the conjunction
of the formula represented by any pair of nodes in the vtree is inconsistent. As
said, SDD adheres to both these restrictions and is a strict subset of d-DNNF
and a strict superset of OBDD [7]. The question here is how exactly it com-
pares to these two, but also all the other target languages discussed. To answer
this question the queries and transformations supported by SDD in polytime
are discussed, as well as its succinctness in comparison to the other languages
discussed in this thesis.
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Queries and Transformations

The first property on basis of which SDD will be compared to the other lan-
guages are the queries and transformations that are supported in polynomial
time this target language. These properties have recently been discussed exten-
sively by Van den Broeck and Darwiche [9]. These results have been added to
the comparison table presented in [5] and can be seen in Figures [10] and

\ [CO[VA|[CE[IM[EQ]SE]CT]ME |
NNF
DNNF
d-DNNF

sd-DNNF
SDD
FBDD

OBDD
OBDD.
DNF
CNF
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Figure 10: A table representing the queries supported in polytime by each of the lan-
guages as presented by Darwiche and Marquis, with the addition of the SDD language.
v'means that the query is supported by the language in polytime, whereas omeans it
is not, unless P=NP.

| [CD [ FO [ SFO [[ AC [ ABC [[ VC [ VBC || <C |
NNF v v v v
DNNF
d-DNNF
sd-DNNF
SDD
FBDD
OBDD
OBDD.
DNF
CNF

D RNENENENENENENENEN
o |o|loe|® 00NN

AR AENENAEYS BRI

BN I ECE B NECH RN RN
NN S[olsfe|ofolN

o|N|e|le|j@e|@|O0|O0|K]|O

NN N ofSlo|lo|o]|o

\|o|eo|lo|@|@|l0O|O]|O

Figure 11: A table representing the transformations supported in polytime by each
of the languages as presented by Darwiche and Marquis, with the addition of the SDD
language. v'means that the query is supported by the language in polytime, emeans
it is not supported and omeans it is not supported unless P=NP.

Succinctness

Besides the operations that are supported in polynomial time, the succinctness
of the SDD target language needs to be analyzed. Because this is not discussed
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in previous literature, an analysis of the succinctness property with regards to
SDD is presented here.

Because SDD is a proper subset of d-DNNF, d-DNNF < SDD holds. Con-
versely, because SDD is a strict superset of OBDD, SDD < OBDD holds as
well. Because the succinctness relation adheres to transitivity we can now con-
clude that for all target languages L for which L < d-DNNF holds, L < SDD
holds as well. Conversely for all languages L’ which adhere to OBDD < L/,
SDD < L’ also holds. As can be seen in Figure [7, FBDD is the only language
positioned in between d-DNNF and OBDD concerning succinctness. To deter-
mine where SDD stands compared to FBDD in terms of succinctness, it makes
sense to look at the properties of both languages. In the following, we make use
of the following two results. The first..

Theorem 1 ([§]). All Boolean functions that can be represented by a tree struc-
tured circuit, can be represented by an SDD whose size is linear the size of the
circuit.

Conversely Breitbart et al. have proved that there exist Boolean functions
that can only be represented by an FBDD that is exponential in the number of
variables:

Theorem 2 ([19], Theorem 6). For everyn > 4, there exists a Boolean function
D, such that every FBDD computing ® contains at least 2™ nodes, but there is
a BDD computing ® with no more than O(n?) nodes.

This means that if every FBDD can be represented by a tree structured
circuit, we can say something about the succinctness of the FBDD language
compared to the SDD language.

(a) Decision diagram (b) Tree

Figure 12: A decision node (a) and its corresponding tree structure (b).

Definition 1. A decision node in an BDD as depicted in Figure (a) corre-
sponds to the tree structure depicted in Figure [19(b) [5].

Proposition 1. For all n > 0 it holds that a BDD with n decision nodes can
be represented by a tree with 6n + 1 nodes.
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Proof. Proof by complete induction on n.

If n = 0, then the BDD consists of a single node representing 0 or 1. The
associated tree is exactly the same, i.e., the tree has 1 node.

Let m be any natural number > 0 and assume that the proposition holds for
all BDDs with 0 < ¢ < m decision nodes (induction hypothesis). A BDD with
m + 1 decision nodes can be represented as the tree depicted in Figure b),
where both o and (3 represent subtrees with k and [ decision variables such that
k+1 = m. This tree then has 5+ (6k+1)+ (6/+1)(IH) = 6m+7 = 6(m+1)+1
nodes. U

Proposition 2. SDDs are at least as succinct as FBDDs, i.e., SDD < FBDD.

Proof. Because all BDDs of size n can be represented by a tree of size 6n + 1
(Proposition , the same holds for all FBDDs, since FBDD C BDD. By
Theorem it follows that all these FBDDs can be represented by an SDD
linear in n. O

Proposition 3. SDDs are strictly more succinct than FBDDs, i.e., SDD <
FBDD.

Proof. From Proposition [I] and Theorem [ it follows that there is a function
that can only be computed by an FBDD with a tree of size O(2") that be
represented by a different BDD with a tree of size O(n?) and thus by an SDD
of size O(n?) (Theorem . Therefore, it holds that FBDD £ SDD. Together

with Proposition 2] the property follows. O
NNF | DNNF | d-DNNF | sd-DNNF | SDD | FBDD | OBDD | OBDD. | DNF | CNF
NNF < < < < < < < < < <
DNNF £ < < < < < < < < £
d-DNNF £ £ < < < < < < £ £
sd-DNNF | £ £ < < < < < < % %
SDD £ £ £ P < < < < £ £
FBDD % P % % £ < < < % %
OBDD % £ P P P % < < % £
OBDD. | £ % % £ £ % % < £ %
DNF % % % % % % P % < %
CNF £ P £ £ i P P % £ <

Figure 13: succinctness table with SDD

4 Analysis

Now that all properties for all target languages have been established, the next
step is to determine what queries and transformations are important in an
mHealth application that uses Bayesian network inference. To do so, all queries
and transformations will be discussed and a decision will be made on whether
or not it needs to be supported by the ideal target language.
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Queries

In mHealth applications that use Bayesian network inference, the improvements
from compiling the network are mainly to be made in the time needed to perform
inference based on some evidence.

(CO, VA) In general, any mHealth application that utilizes Bayesian network
inference will use a set network to perform inference on. Because a Bayesian
network is always consistent, it is of no importance whether or not a check
for consistency is supported in polynomial time. A polytime validity check is
not important for mHealth applications that use Bayesian network inference, as
the need for all models to be true will never arise. If all models in a Bayesian
network are true, the probability for a query would simply be 1. If other types
of probabilistic models, such as more general probabilistic logical models are
taken into account, consistency or validity checks may become more important.
However, it makes sense that in such cases the model is created in an off-line
phase and that consistency and validity can be checked in this phase as well.
Once the model has been created, there will generally be no need to adjust the
network on the mobile device itself. It is therefore not important whether the
target language supports polytime consistency or validity checking, even if other
probabilistic models are taken into account.

(CE, IM, EQ, SE) These four queries are grouped together because all deal
with entailment in some form. The main usage of all of these queries is to check
for equivalence of sentences[5]. Equivalence checks are important when multiple
representations of the same theory are proposed and it needs to be determined
if both are equal. However, in mHealth applications this situation will never
occur in the on-line phase of the application. It might be the case that two
representations for some theory are proposed. However, before any application
is deployed to the mobile device, the proper representation should already be
decided on. As such it is not important for mHealth applications whether clausal
entailment, implicant, equivalence and sentential entailment can be checked in
polynomial time.

Another usage of these queries might again be in the case that some other
logical model is used, rather than one created from a Bayesian network. In
general logical models it may be desirable to be able to check whether or not
some clause or formula is entailed by another.

(CT) As explained earlier in this thesis, model counting is the method to de-
termine the probability for a given statement when used for Bayesian network
inference. In other words, the probability for the value of some variable X given
evidence e can be calculated by means of model counting. This probability is
equal to the weighted sum of all models in which the statement is true. Deter-
mining these types of probabilities is the main goal of any mHealth application
that uses Bayesian networks. As such this query needs to be supported in
polytime by any target language which is to be used in an mHealth application.
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(ME) The polytime model enumeration property is adhered to if there exists
a polynomial p(n,m) over the size n of some input sentence and the number of
models m for that sentence. The problem with this is that a polynomial time
algorithm is not guaranteed with this, as the size of the input sentence could
be exponential, making the p an exponential function as well. As such this
query is not particularly useful in an mHealth application that uses Bayesian
network inference. However, all target languages that support polytime model
counting must also support model enumeration. As polytime model counting is
a necessary condition in any application in any mHealth application that utilizes
Bayesian network inference, polytime model enumeration will be supported by
default by any suitable target language.

Transformations

(CD) Besides model counting, this is the most important property that a
target language used for an mHealth application based on Bayesian network
inference should support in polynomial time. Conditioning is used to set the
evidence in the compiled theory, by setting each variable in the theory that
is part of the evidence to its corresponding truth value. Because the main
purpose of any mHealth application that uses a Bayesian network would be to
determine some risk or probability, given some evidence, this transformation
must be supported in polytime.

(FO, SFO) Both forgetting as well as singleton forgetting might be useful
in situations where the entire network is not always needed. For instance in
a situation where a number of variables that are part of the Bayesian network
used are only applicable to women. In that case it would make sense that if
the user of the application is male, those variables that are not applicable to
males can be forgotten from the network to improve memory usage and time
needed for inference. The question then is whether or not this transformation
should be done in the on-line or the off-line phase. In the case that only a
single application, rather than two distinct applications for men and women, is
released, the on-line phase will generally be favored. This will most likely only
be applicable to a small fragment of all mHealth applications and even when
it is, it is the question whether forgetting part of the network truly offers a
great advantage in practice. Therefore polytime (singleton) forgetting should
be considered when choosing the appropriate target language, yet it should be
given a relatively low weight.

(AC, ABC, VC, VBC, =C) These transformations all deal with transforming
some set (AC, VC, —C) or pair (ABC, VBC) of sentences in the target languages
into a single sentence that is respectively the conjunction, the disjunction or the
negation of these sentences. All these properties have some value when building
a compiler into a target language, meaning that polytime support for these
transformations might be important when a compiler needs to be implemented.
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However, this is not the aim of this thesis. Rather the aim is to determine
what properties are important in the on-line phase in an mHealth application.
Therefore, even though these transformations are important in many situations,
these operations are of minor importance in the final application.

Most suited target language

Given that we have now established the queries and transformations that should
be supported by the ideal target compilation language, we can now decide on the
theoretical best choice for a compilation language. The most important of these
operations are model counting and conditioning. As stated, some operations
might be valuable for certain distinct situations. However, as the aim of this
thesis is to find the most suited target language for mHealth applications in
general, the most succinct language that would support the majority of mHealth
applications is chosen. As such the most succinct language that supports both
polytime model counting as well as polytime conditioning is considered the
theoretical best choice. The table in Figure indicates that d-DNNF or sd-
DNNF would be the theoretical best choice as these two languages are the
most succinct languages to support the essential operation in polynomial time.
SDD should also be mentioned as a viable candidate for a target language
for mHealth applications that use Bayesian network inference. Though not as
succinct as d-DNNF and sd-DNNF, this language has the additional advantage
that it supports a lot more transformations in polynomial time. Because of
this, compilation into this language is more efficient than it is for d-DNNF and
sd-DNNF [7]. Especially for extremely large networks this is something that
should be taken into consideration. However, because d-DNNF and sd-DNNF
are the more succinct languages, these two languages are considered to be the
most suited target languages for the purpose of Bayesian network inference.
Though these two languages are ranked equally, in the following sections d-
DNNF is chosen as the most suited target language, for the simple fact that it
is the more practical choice of these two languages, as a stable compiler for it
has already been implemented.

Bayesian network to d-DNNF

Because d-DNNF is the most suitable target language for mHealth applications
that use Bayesian network inference, a small example on how probabilities can
be obtained from a compiled network is given. Figure [14] shows the what the
example network used earlier would look like of it were compiled into d-DNNF
form. The representation in the graph shown is a simplified version of the true
d-DNNF, as the indicator variables (A) have been left out. As such the children
of or-nodes in the tree are not logically disjunct. We can however assume that
those variables whose subscripts are disjoint are logically disjoint.

The easiest way to determine probabilities in this network is by transform-
ing the d-DNNF into an arithmetic circuit, which is achieved by replacing all
and-nodes by a multiplication and all or-nodes by an addition and adding all
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Figure 14: The example network as a d-DNNF.

probabilities to the variables.

This would result in the tree that can be seen in Figure Say that B
is observed as true. The network is now conditioned on the evidence b, which
means that all variables whose subscript contradicts b are assigned a weight 0.
The result of this conditioning is displayed in Figure After conditioning on
b, the entire network now evaluates to 0.18, which is P(b). Say we now want
to know the probability that A true given the evidence. This can be achieved
by conditioning the network in Figure[16|on a, which would result in the entire
right subtree evaluating to 0. The entire network now evaluates to 0.6. In order
to now determine the probability P(a | b) we simply divide these to evaluations
to get to 0.33.

5 The eMomCare Project

In order to answer the second research question “What are the improvements
that can be achieved by utilizing this [best suited] target language in an exist-
ing application?”, a test application will be implemented based on an existing
mHealth application developed at the Radboud university named eMomCare.

Pre-eclampsia

The eMomCare Project is an mHealth application aimed specifically towards
pregnant women[3]. A common complication in pregnancy is a syndrome called
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Figure 15: The d-DNNF as an arithmetic circuit.

pre-eclampsia, which often occurs after 20 weeks of pregnancy or immediately
following the delivery. The syndrome can affect the pregnant woman’s kidneys,
liver, heart, and brain and is diagnosed in approximately 7.5% of first time
pregnant women. In the Netherlands, it is the most important cause of death
among pregnant women and because forcing the (early) delivery of the baby is
the only cure for pre-eclampsia, it is important to identify those with a high
risk of suffering from this syndrome as early as possible. If high risk is detected
in an early stage, anti-hypertensive treatment can be used to reduce the risk on
pre-eclampsia.

The project

The eMomCare system is a mobile home-monitoring system which can be used
by pregnant women to help determine their risk of developing pre-eclampsia.
Many of the data needed to diagnose pre-eclampsia, but also to predict the
risk thereof, can be obtained by measurements done by the patients themselves.
These data are then automatically sent to the health-care team. This offers mul-
tiple advantages over the traditional method of periodical checkups performed
at the medical doctor’s office. The first advantage is that the measurements
taken in a domestic setting are often a more accurate representation of the ev-
eryday values than those taken in a clinical setting. This especially holds true
for the measurement of blood pressure, which is known to generally be elevated
compared to its normal value in a clinical environment, a phenomenon known
as the white-coat effect. Secondly, the patient will generally need to visit the
hospital less frequently and also be more actively involved in the monitoring of
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Figure 16: The arithmetic circuit conditioned on b.

her pregnancy. This in turn leads to another possible advantage: the work load
for the obstetric care, as well as the cost for healthcare, can be reduced.

Technical realization

In order to monitor the patient sufficiently and more importantly, to make
informed decisions as well as getting an accurate prediction for the risk of pre-
eclampsia occurring, a number of different technical aspects of the system come
into play. The risk is determined using the following:

1. Collection of patient and sensor data. This is done by means of question-
naires, automatic reading of measurement equipment such as electronic
blood pressure meter via Bluetooth and automatic analysis of urine strips
using the phones camera and image processing techniques.

2. Automatic interpretation of both patient and sensor data within the smart-
phone itself by a specially designed Bayesian network. The model can be
used to provide feedback, explain the results obtained and recommend ac-
tions to the patient and the care team regarding the progression, or lack
thereof, of the syndrome.

3. Communication of the results, both textually and visually, to the care
team and the patient. The data should be stored in a hospital database
for further inspection by the caregivers.
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Network used

The eMomCare system is based on a Bayesian network designed specifically for
the project. The network was designed to take all clinical knowledge concerning
pre-eclampsia into consideration.

Queries in eMomCare

To demonstrate that the queries supported by the selected target language d-
DNNF are sufficient for usage in a practical application, the queries required
to improve eMomCare are discussed briefly. The aim in this application is to
improve the speed with which inference can be performed. In order to achieve
this increase in speed, the compilation language should at least support polytime
model counting. All other queries mentioned are of lesser importance for the
eMomCare project, simply because most of these queries are useful if changes
have been made to the model. However in the case of this project, this is
not a likely scenario. The model used will not be changed often, presumably
merely if new clinical data is found that necessitates a change or addition to
the existing Bayesian network. If this is the case however, it would mean that
the Bayesian network itself is modified, not the compiled theory. The modified
network would then be compiled to a new compiled theory, making the need for
the target language to support any of the queries other than model counting in
polytime small to non-existent.

Transformations in eMomCare

For the same reason that nearly all queries need not be supported by the target
language, none of the transformations are of importance for the eMomCare
project. All transformations are useful for changing something in the model in
the on-line phase. As explained earlier, this does not offer any additional value
in this project.

6 Testing

In order to test the performance of the compiled network compared to the orig-
inal network with regards to the time needed to perform inference, two different
kinds of tests were run. The first test consisted of performing inference on five
different Bayesian networks, all of different sizes, including the network used in
the eMomCare project. Figures |17 and [19| show (a part of) the networks used
for this test. For all networks both a compiled and an uncompiled version of the
network were used in the test and in all cases the evidence and query variables
were the same in both versions of the network. In the two largest networks (E4
and the eMomCare network), tests with more than one query variables were
run as well. This test was performed to measure the performance of the original
networks and the compiled network based on input size. The results for the test
are displayed in the table in Figure |21] and are discussed in the results section.
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Figure 17: Testing networks used

The times in the table are averages over a hundred trials.

The second test consisted of a large number of queries on the eMomCare
network. These were all queries that are indicative of the types of queries that
the full application should support in everyday use. The following queries were
examined:

e P(PEwgex=yes),wrrkx=12,16,20,24,28,32,36,38,40,42, based on a num-
ber of risk factors as found in Figure [I§ These numbers provide the
baseline for the risk of developing pre-eclampsia without any measured
signs.

e P(PEwEgrx=yes),wrrKx=12,20,32,42, based on the previously established
risk factors and a number of signs for wggrg. The probabilities were de-
termined for all different values for treatmenty ggg.

e P(PEwEggk+=yes), with the same conditions as the previous bullet, and
wEEK+ representing the checkup following wepk.

e The expected values for the signs in wepk+.

30



S[I0M)OU SIR)WOIN® O} UI SO[(RLIRA 9} JO MOIAIOAO UY R 9INJI]

sok ‘ou ad eisdure[oearg "Ipukg
you ‘Yo ONNJTVNEY uorjounjy [euay o
‘suajradAr-a19a9s ‘'suajlradAy ‘[eurrou ‘‘susjodAy ONOJDSVA UoIjoUN] IR[NISBA ml.
onuIy ‘osyej MSIYOSVA NSLI IR[NOSBA 3
YO+ LH-1IUY ‘Y10 ‘LH-1juy ‘ou LINANLVHY T, quaryed o) Aq uaye) sSniq ‘UIOIXH
g < G-g% " '90°0-¥0°0 ‘€0°0-0 YOVd | oner ouruipesi)—(urunqgy) uojoid
TTT <‘121-8T1° """ ‘g¥ > LVEAD (1/10wr) suruIyELID L
€6 ‘€9 ‘T aH (71/10wm) wrqo[Sowex €
01T < ‘601-00T * " ddda (SHww) sanssaxd poorq d1joyserq *
0LT < ‘691-09T "~ ddgs (SHwwr) sanssard poorq d1oIsAg
sok ‘ou DNIMONS Jurnjowrg
0¥ < “°* ‘ge-T1z ‘0t > any o8e euroye]y
95070 ‘QYSTOMISA0 ‘[RULIOU ALISHEO A318s9q )
sak ‘ou ADNVNDHUL-ILTINN Aoueudoad ardiymN
soh ‘ou avig-Hd sojoqeIp Jo A103sIy AJTwueq
sok ‘ou IH-HA uotsuajradAy Jo A109s1y AJTueq H
Iogsis-1oyjow ‘oadyJIoyrej ‘ou Aad-HdA ersdureooald jo A109s1y AJTuuef &
sok ‘ou AA-LNINLVHY], sojeqel(] 10j sSni(g .\H
sohk ‘ou AY-ININLVHY ], oseasIp [euay 10} s8ni( 2
sek ‘ou LHD-LNIWLVHY T, uoisuajrodAy o1uoay) 10j s8nig 3
sok ‘ou SALAAVI sojoqeI(] %
sok ‘ou ASVASITYNAY os®easIp [euUay
sok ‘ou LH OINOYH)) uoisuayradAy oruoIyD)
ou-snored ‘seh-snored ‘snoredinu HJAMOLSIH-ALIUY ] eisduwreoeaid jo A109s1 pue Ajired
sek ‘ou HINOYANAS SV sworpuds prdijoydsoydrjuy
soSuey / sonyep uorjerAdIqqy 10300 odAT,

31



Firstly a number of Risk Factors, as they are included in the original application
was set. With these risk factors, the baseline for the risk for the development of
pre-eclampsia during the pregnancy was calculated using both the compiled, as
well as the original network. This baseline was then plotted as a graph in the
results for both versions of the network in order to quickly identify potential
differences in the output probabilities. In theory the outputs for both versions
should be identical. In a second step different signs were added for the and
the effect of treatment for the weeks 12, 20, 32 and 42. These results were also
plotted in the results. The third step was to predict the values for the week after
the current week (i.e. the week for which the signs were added). Finally the
expected values for the signs at the next checkup were calculated and displayed
in the results.

Implementation

To produce the d-DNNF to be used for inference in the test networks, UCLA’s
Ace compiler [20] was used. For the implementation in the application the on-
line engine code provided with the Ace package was used as a basis. The choice
was made to use a simple test application with a minimal user interface. A
separate parser class was used to generate most of the code for the layout of the
test application. Because the eMomCare application currently uses the EBayes
[21] library for inference, this library was used to provide the data with which
the compiled network was compared. In order to display the probabilities cal-
culated in the application, a graph view was used. The rendering of the graphs
was implemented using the GraphView Library [22]. All of these individual
components were combined in the test application and adjusted for usage on a
mobile device where needed. The main drawback of the current implementation
is that the entire compiled network is loaded into Java on the startup of the
application. In theory, this should be done in the off-line phase, however for the
purposes of the test application, rendering the network on-line is not a problem.
In the final application this should be changed.

Results
Compilation time

Before either of the two previously described tests could be performed, the
original Bayesian networks needed to be compiled into d-DNNF form. As said
earlier, UCLA’s Ace compiler was used to do so. Even though the most impor-
tant aspect of a target language that is to be used in an mHealth application
that uses Bayesian network inference is its performance in the on-line phase,
it still is interesting to look at the time needed for compilation to determine
whether or not the possible improvements in the on-line phase are large enough
to justify the compilation. The time needed for compilation for each of the test
networks can be found in the table in Figure The table shows all individual
components that are involved in the compilation process. While the compile
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Figure 19: Part of the eMomCare network

time may be the most important aspect of these components, it accounts for a
rather small portion of the total time needed for compilation, especially in the
smaller networks. It is for this reason that it makes sense to look at the total
time for the compilation process, rather than just the time needed for compila-
tion only. It appears this total time increases with the size of the input network,
but not in an exponential fashion.

The first test

The results for the first test can be found in Figure 21} For small networks the
original and the compiled network perform comparatively well. However, as the
input size increases, the inference time for the original network increases a lot
faster than that of the network compiled to a d-DNNF. Because both versions of
the network show a similar performance for small inputs, the large discrepancy
between the two for larger networks can only be explained by the reduction in
complexity for inference in the compiled network.
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Network | Nodes | Edges | Network Initialization | Compilation | Write | Total
read time | time time ‘ time ‘ time
E1l 4 3 167ms 37ms 3ms 4ms 213ms
E2 5 4 168ms 40ms 3ms 4ms 221ms
E3 16 18 150ms 43ms 5ms 6ms 204ms
E4 21 23 163ms 51ms 5ms Tms 227ms
eMom 105 186 296ms 124ms 41ms 81lms 543ms

Figure 20: Compilation times for the test networks.

Network | Nodes | Edges | Query variables | Original | d-DNNF
El 4 3 1 <1ms <1ms

E2 5 4 1 <1ms <1lms

E3 16 18 1 ~4ms <1lms

E4 21 23 1 ~11ms <lms

E4 21 23 4 ~13ms <lms
eMom 105 186 1 ~293ms ~43ms
eMom 105 186 10 ~2599ms | ~45ms

Figure 21: Results for the first test. All results are averages over 100 trials

The second test

In the second test the advantage of the d-DNNF over the original network
became even more apparent. The entire second test ran in approximately 600ms
on the compiled network, averaged over ten trials. The second test could not be
completed using the original network due to out of memory errors. To still test
the performance of both networks, the queries for the final week (week 42) were
left out. The result was that the compiled network again ran in circa 600ms on
average, whereas the original network needed approximately 185 000ms. Though
many of these increases in speed can be explained by the theory presented in
this thesis, there is another, more practical aspect that influences the time
needed to complete the second test. Because of the many variables involved in
the testing, combined with the exponential nature of Bayesian inference, the
application often ran into memory allocation errors (and out of memory int he
full trials). In order to free memory for the application to run, the built-in
Java garbage collector is invoked. Java objects are created on heap. The Java
garbage collector attempts to free heap space by collecting those objects that
are either set to null, whose parents are set to null or that are created within a
block for which the scope is already passed in the execution. The reason that
the garbage collector adds to the time needed to complete the tests, is that
execution is paused each time the collector is invoked.

7 Conclusions

Based on the fact that it supports both polytime model counting as well as
polytime conditioning, d-DNNF and sd-DNNF appear to be the theoretical
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best suited target languages for general mHealth applications that use Bayesian
network inference. The fact that the main improvements in these types of ap-
plications lies in the improvement of inference speed, the two aforementioned
properties should generally be sufficient to increase the applications’ perfor-
mance. As d-DNNF and sd-DNNF are the most succinct languages to support
the required query and the required transformation, there should generally be
no need to select a different target language. From a practical standpoint, d-
DNNF ranks at the top of the candidate languages, due to the fact that a stable
compiler from Bayesian networks to d-DNNF is readily available. In practice,
compiling a Bayesian network to d-DNNF shows the same promising results as
the theory predicts. While inference speed rapidly increases with the size of the
network in an uncompiled network, increases in inference time in the compiled
network occur at a much lower rate. While the time needed for the compilation
process does increase with the network size, this is merely a one time operation.
This fact, combined with the fact that large increases in speed in the on-line
phase are observed, especially in larger networks, justifies the usage of compi-
lation into d-DNNF form for any mHealth that uses Bayesian network inference.

Future research could focus on compiling a Bayesian network into the newer
target language SDD and testing its performance in a real world application.
The reason for this is that this language ranks right behind d-DNNF and sd-
DNNF in terms of succinctness, but it has an advantage over these languages in
terms of the number of transformations that are supported in polynomial time.
The main improvement that these additionally supported transformations offer
is an increase in compilation speed. For the networks tested, compilation speed
was not a limiting factor, however much larger networks might be compilable
into SDD in reasonable time whereas this is not the case for &-DNNF. A com-
piler for SDD already exists, though its performance appears to differ between
different inputs. The existence of a compiler for SDD should however increase
the feasibility of testing this language in practice.

A second improvement that could be made to the practical implementation
of the compiled d-DNNF network is the loading of the network into the mobile
phone application. In the application’s current form, the network is loaded into
the on-line inference engine on application start-up. This process takes up un-
necessary time and should ideally be moved to the off-line phase.

In the end, d-DNNF appears to perform well in practical situations when used
in mHealth applications that use Bayesian network inference. Though it would
be interesting to examine if there are situation in which SDD would be pre-
ferred over d-DNNF, the current improvements that have been made compared
to the usage uncompiled networks in mHealth applications seem to be a very
promising step in the direction of an accelerated healthcare system.
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