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Abstract

Our research extends the causal Bayesian network implementation of
the Predictive Processing Theory to account for multivalent variables. We
also propose a framework for solving the exploration-exploitation trade-
off in the Bayesian Predictive Processing implementation. Here we use a
Q-Learning approach with Dirichlet distributions as hyperpriors and the
free-energy principle as a base for learning. The latter links the proposed
methods to neural mechanisms in the brain which have been linked to
the exploration/exploitation trade-off. We tested our methods via be-
havioural studies where a robot had to learn an environment from scratch
to navigate to a light source.

1 Introduction

A recent view on cognition is that the brain is a prediction machine, which
is constantly matching incoming sensory inputs with top-down expectations or
predictions (Clark, 2013). This view is used in the Predictive Processing Theory,
which states that the entire operation of the brain can be summarized by a sim-
ple, unifying principle (Kwisthout, Bekkering, & van Rooij, 2017). This theory
proposes that the brain only processes the part of the input that is inconsistent
with the predictions of the brain, the prediction error. In the causal Bayesian
network implementation of Predictive Processing, the predictions of its inputs
are made in a hierarchical manner by generative (causal) models (Kwisthout et
al., 2017). These models are updated based on the prediction error, this allows
the brain to achieve the concept of learning.

This concept of learning in Bayesian Predictive Processing implementation
has been tested via simulation studies where the agent was taught to correctly
predict the outcome of a coin-flip (de Wolff, 2017). Predicting the outcome of
a coin-flip is a binary decision problem, either the result is heads or tails. How-
ever, in real world situations, such as in navigating environments to reach your
goal, there are more than two possible outcomes. The causal Bayesian network
implementation of Predictive Processing is currently silent about how to deal
with these multivalent variables.

That is what we aim to solve: How to extend the computational implementa-
tion proposed by Kwisthout et al. to be able to deal with multivalent variables.
As an example, we will be using a Markov Decision Problem setting where an
agent has to find a light source. The agent is able to detect multiple levels of
light intensities, resulting in the light intensity being a multivalent variable. We
will also propose a framework for solving the exploration-exploitation trade-off
in the Bayesian Predictive Processing implementation.

We aim to achieve this by using a model-free reinforcement learning method,
Q-learning. This allows us to navigate the world to achieve our goals without
the need of prior information about how the world is shaped. We will extend this



Q-learning framework with Dirichlet distributions, which is a continuous mul-
tivariate probability distribution, and with the free-energy principle (Friston,
2010). The Dirichlet distributions are used as hyperpriors, which provide a way
of making predictions and learning about the world. The free-energy principle is
used to learn an action-value function per state. The latter two will contribute
to solving the exploration-exploitation trade-off in the causal Bayesian network
implementation of Predictive Processing.

First, we will introduce the Exploration-Exploitation dilemma and how we
aim to solve it. Second, we will introduce hyperparameters and their usage.
After, we will explain our framework through pseudocode, highlighting the es-
sential parts in subsections. Subsequently, the experiment will be described
followed by the results. We will then proceed with the discussion and recom-
mendations for future study. Finally, we will give a conclusion of this thesis.

2 Exploration-Exploitation Dilemma

We are constantly making decisions. Large decisions, like what career to pursue,
and smaller decisions, like what we are going to eat for dinner. For example,
when choosing what to eat for dinner: do we go for the food that we know
we like, like fish and chips, or do we want to explore new options, like Peking
Duck? These decisions are all driven by a higher-level process: whether we
want to exploit known certainties, or explore new options. These new options
may initially seem worse but could also be more profitable after exploring them.
This is known as the Exploration-Exploitation Dilemma.

It is still unknown how the trade-off between exploration and exploitation is
made (Cohen, McClure, & Angela, 2007). However, most evidence suggests a
trade-off between two components: a reward for performing an action and the
amount of information gained after performing an action (Friston, 2010). But
how this trade-off is made is yet unknown. This raises the question: How does
an agent make the trade-off between exploration and exploitation?

A famous example is the multi-armed bandit problem. Here we have a
multiple-armed slot machine, a so-called multi-armed bandit. The goal of the
agent is to maximize its profits, i.e. subsequently pulling the arm which yields
the highest reward. The solution to this problem is found through exploration
and exploitation. One strategy for this problem was proposed by Gittins (1979).
In this paper, Gittins reduced the multi-armed slot machine to multiple one-
armed slot machines. Every one-armed slot machine provides a random reward
from a probability distribution that is specific to that arm. Every pull is then
rewarded by a straightforward reward function, i.e. 1 for a successful pull and 0
for an unsuccessful pull. Each reward is exponentially discounted as a function
over time. The solution to which arm to pull would then be to choose the
machine which has the highest expected reward (Gittins, 1979). This value is



known as the Gittins index.

However, this strategy cannot be applied to all real-world exploration-exploitation
problems. This is due to the problem space being non-static. When properties
of the problem space change, the Gittins index of a previous non-optimal ac-
tion would still be low, due to new experiences being heavily discounted. When
the previously non-optimal action may be the most optimal action in the new
problem space.

Since the Predictive Processing Theory aims to explain cognitive processes
of the brain, we propose a solution to the exploration-exploitation trade-off that
can be linked back to known neurological systems. This way, our framework
could serve as a way of modelling the underlying mechanisms of the brain being
a prediction machine.

Studies to the exploration-exploitation trade-off in the human brain have
proposed several systems which are thought to be involved in this process. These
systems are the midbrain dopamine system, the locus coeruleus-norepinephrine
(LC-NE) system and the basal forebrain cholinergic and adrenergic systems
(Cohen et al., 2007).

The midbrain dopamine system is thought to be involved in reward and
prediction errors (Cohen et al., 2007). Rewards and prediction errors contribute
to learning about one’s environment, as stated in the Predictive Processing
theory (Clark, 2013), where the brain only processes that part of the sensory
input that is inconsistent with the predictions of the brain.

The LC-NE system is thought to be specifically involved in the exploration-
exploitation trade-off (Aston-Jones & Cohen, 2005). The LC neurons exhibit
two modes of activity: phasic and tonic. The phasic mode is proposed to be
involved in exploitation and the tonic mode in exploration. The LC-NE system
could mediate between the necessity of the two components mentioned earlier.

And finally, the basal forebrain cholinergic and adrenergic systems are thought
to be involved in monitoring uncertainty (Cohen et al., 2007). Which could play
a role in action selection, such that when there is a high uncertainty, one could
deviate from choosing the current optimal action and explore potentially better
actions.

We aim to solve the exploration-exploitation dilemma by letting the agent
learn an action-value function inspired by components from the neural systems
mentioned earlier.

Actions that yield high rewards should have high action values and actions
that would lead to a gain in information should also have an increased action
value. This corresponds to the midbrain dopamine system, where a higher
reward would lead to more dopamine release.

Actions that lead to potential worse rewards should not be discounted in situ-
ations with high uncertainty. This corresponds to the basal forebrain cholinergic
and adrenergic systems and the LC-NE system, where LC neurons exhibit more
tonic activity with high uncertainty (Aston-Jones & Cohen, 2005).



For the implementation of this action-value function we will make use of the
free-energy principle (Friston, 2010). Here action values are composed of two
components, an extrinsic value and an epistemic value. The extrinsic value can
be seen as the utility of an action, i.e. the reward of the action. The extrinsic
value can be seen as a measure for the information that is gained when the
action is executed. Maximizing both the extrinsic and epistemic values leads to
minimizing the expected free energy (Friston et al., 2015).

We will let the agent learn the environment through the use of hyperpa-
rameters. These capture the cumulative experiences of the agent in the world.
This knowledge is embedded in Dirichlet distributions, which store occurrences
of events. These distributions can also provide information about the certainty
of the predictions an agent makes through a statistical property of the distribu-
tion: variance. We will then use the certainty about one’s prediction to choose
between competing actions. When there is a high uncertainty, the agent should
be encouraged to explore rather than to exploit.

3 Hyperparameters

Hyperparameters are parameters of a prior distribution that can be used for
a causal Bayesian network. These are the type of networks that are used in
the Bayesian implementation of the Predictive Processing theory. The hyper-
parameters capture the cumulative experiences of the agent in the world. This
information is then used to provide knowledge about a prior probability dis-
tribution. The parameters are such that the probability density function can
be drawn. The probability density function provides information about the
predictions of the agent.

In the coin-flip example, this prior distribution could be over the probability
P(X = heads). Since there are only two possible outcomes, i.e. heads or tails,
we can count the occurrences of heads and tails and use these as parameters
for a distribution. In this example, we could use a Beta distribution, denoted
as Beta(a, B) where « can be the number of heads and 8 the amount of tails.
Examples of these Beta distributions can be seen in figure 1. For example, the
Beta distribution Beta(1,1) is the initial distribution, here each probability is
equally likely. However, in Beta(15,5), the probability on heads is much higher
than the probability on tails.

However, Beta distributions can only take two parameters, o and (3, while
in a real-world situation, this would be insufficient most of the time. For ex-
ample, when navigating in a dark space and one would want to go to the light
source, one would want to be able to distinguish between multiple intensities of
light (e.g. no light, some light, prominent light) to locate the light source. A
solution to this problem is to use a different distribution that can take multiple
parameters: Dirichlet distributions. These distributions are denoted as Dirich-
let([ar, g, . . ., ap]), where a; is the number of occurrences of the corresponding
category. In our experiment, we used three different conditions: «7: no light,



The probability density function of a

ag: some light, a3: prominent light.
Dirichlet distribution will be plotted as a triangle, where each edge represents
one category. The probability density function is plotted as a colour overlay

over the triangle. The category with the highest probability density is the most

Examples of Dirichlet distributions can be seen in figure 2.

likely category.

Here the initial distribution is Dirichlet([1,1,1]) (figure 2a), where every point

in the problem space has an equal likelihood. However, in Dirichlet([15,5,5])

(figure 2d) the probability density is highest near the edge oy, meaning that the

category No Light is most likely.
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Figure 1: Probability density function of various Beta distributions, from (de
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Figure 2: Probability density function of various Dirichlet distributions

3.1 Characteristics of Hyperparameters

The parameters that are used to construct the distributions gives us more infor-
mation than a probability distribution. The parameters can be used to derive
statistical properties, which provide us with information about the predictions
the agent makes (Friston, 2008). We will be using the following statistical prop-
erties: the probability distribution function, the variance and the mean. The
probability distribution function will be used to illustrate the distribution, the
mean will provide us with the most likely category and its probability, and the
variance will be used as a measure of uncertainty over the agent’s predictions.

The first statistical property that we will be discussing is the probability
density function. This is a function that calculates for every possible value in
the sample space, the relative likelihood that the variable would be equal to this
value. Informally, the probability distribution function displays the most likely
category and its probability. In Beta distributions, this can be plotted as a func-
tion of the probability of a variable (see figure 1). However, due to having more



categories in Dirichlet distributions, we plotted the probability density function
as a colour overlay in the sample space. Since we used three categories, the
sample space is triangle-shaped (see figure 2). A high probability density means
that this value is more likely to be drawn out of the distribution. Informally,
the category with the highest probability density is the most likely prediction
of the agent.

The mean of a distribution is used as the probability of a condition. The con-
dition with the highest probability is the prediction of the agent. The prediction
is defined as the category with the highest probability. With Beta distributions,
there are two conditions, X = 1 or X = 0. However, if one knows P(X = 1),
then P(X = 0) is also known, since P(X = 0) = 1— (P(X = 1). The mean
of a Beta distribution is given by equation 1. This is illustrated in the proba-
bility density plot as the probability where the probability density function is
maximized. The agent’s prediction is defined as the condition with the highest
probability.

@

PX =1)= (1)

In Dirichlet distributions you have more than one condition. The probability
of a condition is defined by the mean of the corresponding parameter, given by
equation 2. The prediction of the agent is the condition that has the highest
probability. In the probability density function, this is the condition that corre-
sponds to the edge which minimizes the distance to the maximum probability
density.

Q4

P(X = ;) (2)

The Variance of a distribution is defined as the squared standard deviation
of the hyperparameters. It is a measure for statistical dispersion of a set of num-
bers. The variance of a parameter decreases when parameters are incremented.
Thus, with more experience, the variance decreases. To this end, we will use
the variance to reason about the certainty of the agent’s predictions.

With Beta distributions, the variance of a condition is defined as the variance
of a (equation 3). In the probability density function, the variance is illustrated
as the width of the peak.

ey

af
(a+B8)*(a+8+1)

Var(X =1) = (3)



In Dirichlet distributions the variance of a condition is defined as the variance
of the corresponding parameter in the distribution, given by equation 4. In the
probability density function, the variance is illustrated by the dispersion of the
probability density.

a;(ag — a;)
ad(ap+1)

where ag = Xrak

Var(X = ;) = (4)

4 Model Learning

When navigating in an environment, an agent should have a notion of his po-
sition in the world, his current state. These states should be an abstract rep-
resentation of the relevant parts of its environment. Ideally, this state begins
in the most basic form, e.g. if there is an obstacle which prevents the agent
from moving. After observing high prediction errors, the representation of the
states should become more detailed by adding a variable which minimized the
prediction error, this is called model revision (Kwisthout et al., 2017; de Wolff,
2017).

However, in this thesis we will be focusing on model updating, rather than
model revision, i.e. we will focus on updating the probabilities instead of adding
contextual variables. We will be using constant representations of the world
that consist of the position of the robot, the orientation the agent is facing and
whether there is an obstacle in front of the agent.

We aim to autonomously navigate in a world, potentially without any prior
knowledge about the world. We will be needing an online reinforcement learning
technique, because we need to learn the environment as we explore and because
making actions in a world does not give us any feedback whether that action
was optimal or not. That is why we have chosen for a model-free reinforcement
learning technique, Q-learning (Watkins & Dayan, 1992).

4.1 Q-Learning

Q-learning is a form of model-free learning which enables users to learn an
action-value function by exploring a Markovian domain (Watkins & Dayan,
1992). The action-value function is such, that the utility of an action in a given
state is only dependent on the previous experiences when executing that partic-
ular action, rather than being dependent on every previous experience leading
up to that action. In Q-learning the agent learns the action-values, referred to
as Q-Values, in an online fashion, i.e. updating Q-Values after each new expe-
rience. In traditional Q-Learning you start with exploring the environment and
after the Q-Values converge to a stable value, you start exploiting the gathered
knowledge about the world, choosing the action with the highest value. How-
ever, this requires a static world. If the world would change, the previously



gathered experience would be outdated resulting in the Q-Values also being
outdated. This no longer guarantees choosing the optimal action in a new en-
vironment.

To this end we will make some adjustments to the traditional Q-Learning
approach. Rather than first exploring the environment and then exploiting the
gained knowledge, we will choose our actions based on how certain we are of this
action being the most optimal action. We will be using Dirichlet distributions
as hyperpriors for our model (section 3). These Dirichlet distributions store
our knowledge about the world. If there is a high variance in the probability
distribution (section 3.1), we have not gathered enough evidence that our actions
are optimal. If we are not certain of our actions being, we should tend to explore
more opposed to exploiting potentially sub-optimal actions.

Another adjustment to the tradition Q-Learning approach is in the updating
of the Q-Values, where we will be using components of neural systems in the
human brain that are proposed to be involved in the exploration-exploitation
trade-off as described in section 2.

To further demonstrate the framework, we will be using the pseudocode
given in algorithm 1. The algorithm will run for a pre-set number of cycles. It
will then run until the agent achieves its goal, reaching the light source location.
Every iteration of the algorithm follows a number of steps. First, the algorithm
computes valid actions based on the agent’s current knowledge of the world
and its current state. The agent will then choose one action based on the
corresponding Q-Values and the certainty of the action being optimal. This will
be further discussed in section 4.2. The agent then proceeds with performing
the selected action. After the action has been performed, the agent gathers
sensory information about its environment, such as the light intensity and the
distance to the nearest object in front of the agent. The distance to the nearest
object will then be used to update the internal map of the agent, i.e. whether
the agent can move forward. The light intensity will then be used to adjust
the Dirichlet distributions, which will be discussed in section 4.3. Finally, the
Q-Values of the previous state and selected action will be updated based on the
newly gained experience. This will be discussed in section 4.4.



Algorithm 1 Model Learning Pseudocode

1: procedure MODELLEARNING(cycles)
2: Inputs
3: cycles: amount of cycles
4: Local
5 QValues: Table containing Q-Values for every possible state-action com-
bination
obstacleField: variable that holds information about where obstacles are
7: dirichletDistributions: variable holding one Dirichlet distribution per
possible state

@

8:

9: Algorithm

10: for cycle:=1 to cycles do

11: currentState <— initialState

12: repeat

13: As + validActions(currentState)

14: A + chooseAction(As)

15: newState <— performAction(A)

16: obstacleField < updated based on the newState
17: dirichletDistributions(newState)

18: <+ adjustDistribution(newState)
19: QValues(currentState, A) < updateQvalues(newState, A)
20: currentState < newState

21: until currentState == light source location

4.2 Action Selection

The first thing in every iteration will be to select an action based on our current
knowledge of the world. We will be selecting actions based on how certain we
are that this action is the most optimal action in our current state.

Since we do not have a static world, we cannot use a simulated annealing
approach, where actions are first chosen in a pseudo-random fashion and in later
stages in a greedier fashion, i.e. choosing the action with the highest Q-Value.
Instead, we will select actions based on certainty. Certainty is provided through
previously gathered experience. We will be using the scaled total variance, o,
of a Dirichlet distribution (equation 5) as a measure of certainty. The total
variance is scaled such that it will produce a high value when there is a high
uncertainty and exponentially decays to 1 (see figure 3). We used a « of 100 in
our experiment to achieve this.

or(M) =1+ 7% Xq,em Var(a;) (5)

10



Selecting an action is done through a softmax function, where an action a
is chosen with a probability given the Dirichlet distribution M of the current
state (equation 6).

eQ(s,a)/or (M)
PlalM) = S ot a7eran (6)
The total variability of a model M, the Dirichlet distribution, is used as a
measure of uncertainty. If o is high, this results in all actions being regarded
as equal (equation 7). This is also illustrated in figure 3. Here we have three
available actions, each having its own Q-Value. For demonstration purposes,
these Q-Values are not updated. Here we see that actions with a higher Q-
Value initially have a similar probability of being executed as actions with a
lower Q-Value. After being more certain about one’s prediction, the probability
of the actions being executed diverge. This results in the action with the highest
Q-Value being chosen with a higher probability.

lim e@a)/or — 0 — 1 (7)
o —00
When the agent has no experience the value of op is high, making the
three actions almost equivalent to each other. But when the agent gets more
experience the value of o drops, making the agent greedier. This results in the
agent being more likely to choose the action with the highest Q-Value.
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Figure 3: Softmax action selection comparison
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4.3 Adjusting Hyperparameters

The hyperparameters are used as the knowledge base of the agent. The hy-
perparameters store the number of occurrences of the different categories of
encountered light intensity per state. The use of Dirichlet distributions enable
us to have more than two possible conditions per variable. For illustration pur-
poses, we have chosen to use three categories per distribution: No Light, Some
Light and Prominent Light. The respective parameters are aq, as and oz (see
section 3).

Updating the hyperparameters is straightforward: after the agent performs
an action, it measures the light intensity and decides to what category this light
intensity belongs. The corresponding parameter is then incremented by one.

Adjusting the parameters of a Dirichlet distribution changes the character-
istics of the distribution, e.g. the variance and mean. This enables the agent
to make better predictions and to be more certain about its predictions. Every
experience lowers the value of o7, making the agent more prone to exploitation,
i.e. choose the action with the highest Q-Value, as opposed to exploration.

Adding more experiences to distributions make it a more robust and efficient
system. Every experience that is added lowers the variance and increases the
certainty of making optimal predictions. However, when examining how pre-
dictions are made (equation 1 and 2), one may notice a potentially problematic
property: distributions are resistant to change, which is problematic in non-
static environments. This is further studied by de Wolff (2017). In this study,
de Wolff did simulation studies with coin-flips. In one trial the coin-flips were
sorted, i.e. the first 50 flips were heads and the next 50 flips were tails. The
results are given in figure 4. Here one can see that the distribution was first
slanted all the way to left due to the first 50 trials being heads. After the 50
trials of tails, the distribution was shifted to the middle, indicating a probabil-
ity of heads being 0.5. With this study, de Wolff pointed out the robustness
of the distributions and shows that the prediction error might not be the best
metric for error. Instead de Wolff suggests a weighted prediction error where
the prediction error is discounted over time.

Sum of errors: 99,1894 Sorted Distribution

Prediction Error
O - N W s O o

Weighted Prediction Error (log scale)

L= 4 -
20 40 B0 80 100 1) 02 04 06 08 1 o 20 40 B0 80 100
Trial (chunk size 1) Beta distributions over Trials Trial (chunk size 1)

o

Figure 4: Robustness of distributions, adapted from (de Wolff, 2017, figure 3)
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We solve this problem by adjusting the hyperparameters based on the pre-
diction error: when there is a high prediction error, the agent should be inclined
to adjust its prior beliefs such that the agent gets more uncertain. This would
result in the agent exploring other options. A solution can be found in the
equation for variance (equation 4). Here we can see that a solution would be
to lower the magnitude of the parameters, while avoiding changing the ratio of
these parameters, i.e. the probability distribution should remain the same. To
this end we can divide the parameters by a factor and pick the ceiling of these
values. This way we avoid making big changes in the probability distribution
and still achieve making the agent more uncertain about its predictions (see
figure 5). Here we divided the parameters with a factor of 3. The probabil-
ity density function is more dispersed but the maximum density remained on
the same position, meaning that the mean did not change but the variance did
change (see section 3.1).

The factor by which the parameters are divided defines how the agent reacts
to prediction errors. A higher factor leads to the agent being quick to adapt to
prediction errors. However, when a high factor is used, it can also lead to the
system never being able to converge to a stable state. This is the case when the
perceived light intensity is a border case. After perceiving the light intensity as
a different category, the agent would divide the parameters with a high factor.
This could result in constantly resetting the distribution.

To this end we have chosen to use a factor of 2. This factor was experi-
mentally defined such that the system is resistant to varying judgement of a
perceived light intensity, but flexible enough to account for a non-static envi-
ronment.

Figure 5: Changing the parameters of a Dirichlet distribution to make an agent
more uncertain by dividing the parameters with a factor (3 in this example),
without altering the prediction itself.

13



4.4 Updating Q-Values

Updating Q-Values is vital for the agent when exploring environments. If all
actions have equal Q-Values, every action would be regarded as optimal. We
want to design the action-value function such that it follows the free-energy
principle. The free-energy principle is an information theory where the surprise
on sampling some data is minimized (Friston, 2010). The action-value function
should thus promote actions which lead to a high information gain.

To this end the Q-Values should be composed of two components: the corre-
sponding reward of performing the action and a reward for performing actions
which lead to a high information gain. We implemented this by using the
free-energy framework (Friston, 2010). Here it is proposed that the key to the
exploration-exploitation trade-off is the minimization of expected free energy of
future outcomes. This is done through maximizing extrinsic and epistemic val-
ues. Where the extrinsic value corresponds to the expected utility of performing
an action and the epistemic value corresponds to the expected information gain
(Friston et al., 2015). The idea is that if there is a high information gain when
performing an action, there could be some unexplored utility left. This pro-
motes exploring actions with a lower utility that potentially have unexplored
utility.

We define the utility of performing an action as the average weighted proba-
bility p,, of the probability distribution of the resulting state, given by equation
8. The average weighted probability is defined as the weighted sum of the prob-
abilities in the probability distribution, divided by the number of categories in
the variable. The weights are defined by equation 9. This equation gives the
average weighted probability such that probabilities in higher categories, like
Prominent Light, are weighted heavier than probabilities in lower categories,
like No Light.

, if category is “no light”
, if category is “some light” (9)

, if category is “prominent light”

14



To make the agent less greedy we also added a predicted future utility @ to
the extrinsic value, given by equation 10. The predicted future utility is defined
as the maximal Q-Value of the actions in a state. By adding this aspect, we can
promote going to states which result in states with high-value actions. This is
particularly useful when the agent is in a dark corridor with nothing but dark-
ness surrounding it. The predicted future utility would then promote actions
which lead the agent out of this corridor to states with a higher light intensity.

i(s) = max(Q(s.a)) (10)

We defined the expected information gain E as the statistical distance be-
tween the probability distribution before experiencing the new information ver-
sus after experiencing the new information (equation 12). We used the Kullback-
Leibler divergence (Kullback & Leibler, 1951) as a measure for statistical dis-
tance, given by equation 11.

P(i)
Qi)

Dgr(Pl|Q) = % P(i) log (11)

E(s;a) = Dxr(P(s)||P(s|a)) (12)

However, the range of p,, is [0 0.33], 4 is [0 1.0] and E is [0 0.07], so we have
to scale these variables such that their maximum values sum up to one and such
that the most important factor has the highest weight. To this end we weigh
each variable. This results in the update rule of equation 13. Where the new
Q-Values are the sum of the average weighted probability of the resulting state,
the predicted future utility of the resulting state and the expected information
gain in the current state.

Q(si,a) = extrinsic value + epistemic value (13)

=5, * Do (P(8i11)) +va * 0(sit1) +9E * E(s4,a)

where 5 =2, 73 =025 yp=2
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5 The Experiment

We wanted to test if the suggested framework is able to learn the location of a
light source. We want to achieve this by making use of a multivalent variable.
The multivalent variable that was used is Light Intensity and its values are No
Light, Some Light and Prominent Light.

To test this, we designed a maze that perfectly utilizes our framework. The
designed grid consists of two corridors. At the end of each corridor there was a
light source that could illuminate the grid. Every space on the grid would have
a light intensity that was a value in the variable Light Intensity.

5.1 The Robot

In this experiment, we used a LEGO EV3 robot (figure 6). The robot could
perform three actions: turn right, turn left or move forward. The robot is outfit-
ted with two sensors: an ultrasonic sensor and a colour sensor. The ultrasonic
sensor was used to detect obstacles in its path, i.e. if the robot could move
forward or not. The colour sensor was used as a light sensor, sampling only the
intensity of the light, rather than the actual colour. The ultrasonic sensor was
placed such that the robot could detect what was directly in front of it. The
colour sensor was placed such that when the robot stood in front of the light
source, the sensor would be at the same height, directly sampling the light’s
origin. Every sample from these sensors was an average of 5 samples to reduce
the possibility of false samples.

Due to the limited processing capacity of the LEGO EV3 robots, we worked
with a master-slave setup. Where the robot would act as a slave, executing
all the tasks that were given from the host, a laptop. The host would be the
“brains” of the robot, making all the calculations and keeping track of the
robot’s beliefs about the world.
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Figure 6: The LEGO EV3 robot used in the experiment, outfitted with a colour
sensor (top-sensor) and an ultrasonic sensor (bottom-sensor)

5.2 The World

The world that was used consists of two corridors, the North and East corridor
(figure 7). One corridor in front of the robot and one to the right of the robot.
The robot sees the world in a grid-like manner. Where one forward-movement
corresponds to moving one space forward in the grid. The starting location of
the robot was always at the point where the two corridors met and its orientation
would always be to the north, directly facing the North corridor. At the end
of each corridor was a light source. Only one light source was turned on at a
time, with the light source at the east being turned on first. The light sources
where both aimed at the initial location of the robot. The light sources were
placed such that the light would shine directly into the robot’s colour sensor if
the robot stood right in front of them. When the robot moves closer to the light
source, the light intensity measured by the robot would get higher. But when
the robot was not directly looking at the light source, the light intensity would
drop to zero. The robot does not initially know where the walls are and learns
these as it explores the world. As such, the robot also does not know that the
world only consists of two corridors.
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Figure 7: The grid that was used in the experiment: The dashed light source
and corresponding bundle is the location of the light source that was initially
turned off. The colour in the light bundle corresponds to the light intensity of
the light source at that location, where a warmer colour depicts a higher light
intensity. The blue box at the left-bottom location is the starting location of
the robot, the arrow depicts the orientation the robot is facing

5.3 The Task

The robot knew three different intensities of light: No Light, Some Light and
Prominent Light. These three categories are respectively denoted as aq, a2 and «sg.
In figure 7 these different intensities of light are shown as a colour overlay over
the environment, where warmer colours indicate a higher light intensity. The
task of the robot was to go to the light source that was turned on. This was
achieved by following the framework outlined in section 4. At the beginning
of the experiment, the light source in the east corridor was turned on. After
finding the light source location, the robot would be moved back to the initial
position.
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After the robot had learned the initial location of the light source, i.e. that
the light source in the east corridor was turned on and the light source in the
north corridor was turned off, the light sources were flipped. Now the light
source in the north corridor was turned on and the light source in the east corri-
dor was turned off. The robot now had to learn that the light source in the east
corridor was turned off and the light source in the north corridor was turned
on. Or in terms of the model: The robot had to that there is no light in the
east corridor, and learn that there is light in the north corridor.

After the robot had learned that the light source in the north corridor was
turned on and the robot could reliably find the optimal path to the light source,
the light sources were flipped again. Now the robot had to learn that the light
source in the east corridor was turned on again. We did this to study the impact
of having to learn a previously known light source location.

6 Results

The model is initialized with the Q-Values for each action being equal. This
was done to avoid giving the agent a (dis)advantage. They were initialized at a
value of 0.5. This value is chosen because it does not provide the agent with any
information nor bias about an action. A value of 0 would discourage exploration
due to every unexplored action being worse than an explored action. A value of
1 would cause the opposite effect, it would encourage the agent to immediately
explore every action at least once. With a value of 0.5, we do not get such
biases.

The Dirichlet distributions are initialized as Dirichlet([1,1,1]), to give the
agent no prior information about the world.

To maintain relevancy and readability, we will only present a subset of all
the results. Since every space in the world contains eight states with each
three possible actions, the number of plots grow exponentially. We will thus be
focussing on the most informative plots.

The most interesting states for the plots containing Q-Values are: in the
starting location, turning right to the East corridor and moving forward to the
North corridor; in the corridors, moving towards the light sources. The most in-
teresting states for the plots of the Dirichlet distributions are the resulting states
after performing the action of the corresponding Q-Value plot. We will not give
a plot for every observed distribution through time to maintain relevancy and
readability. Instead we will highlight distributions at times where they provide
us with the most information: at the end of learning the first and second light
source location, and during learning the second light source location.
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We will discuss the results in chronological fashion. We will be starting with
learning the initial light source. Then proceed with flipping the light sources,
discussing what happens in this trial. After, we will discuss how the model
converges back to a stable state during the flip. After the model converges
we will flip the light sources to their original states and discuss the effects on
learning the model. Finally, we will discuss the time it took the agent to learn
the environment by using the number of steps required as a measure of the effort
made by the agent.

6.1 Learning the Initial Light Source Location

When learning a new light source location, the starting location is particularly
interesting because here the agent has to choose which corridor to explore.
The corridor where the light source was turned on first was at the end of the
East corridor. The hypothesis being that the Q-Value for the initial location
and turning right (figure 8) should be higher than the Q-Value for the initial
location going forward (figure 10).

When looking at the two plots, we can see that the initial Q-Values for go-
ing into the wrong direction are roughly equal to the Q-value for going into the
correct direction. But after performing every action at least twice the Q-Value
for Turn Right is significantly higher. Even though the Q-Value is significantly
higher, the action Forward is still chosen three times. This is due to the agent
still having a high uncertainty, which promotes exploration over exploitation.
After having enough occurrences, the agent is more confident over its predic-
tions and the action Turn Right is consistently chosen over Forward. When
having learned the light source location, the Q-Values remain constant. It is
worth noting that the agent reported having seen No Light once when perform-
ing the action Turn Right. This is reflected in figure 8 by the sudden increases
in epistemic value and in figure 9a having a higher variance and the parameters
having non-one values for a;.

Proceeding to the last locations we want to examine: the corridor positions
just before moving to a potential light source location. The initial light source
location was in the East corridor, the hypothesis would be that the Q-Values in
the East corridor (figure 12) should be higher than the Q-Values in the North
corridor (figure 14).

This is indeed the case, when the agent entered the east corridor the Q-
Value (figure 12) jumped from the initial value, 0.5, to 1, which is the reward
for being at the light source. This Q-Value did not change until the light source
location was flipped. This is also reflected in the Dirichlet distributions since
the parameters of o7 and as remained I and the parameter ag was non-one
(figure 13). This means that the agent only saw the highest intensity of light
while at the end of the East corridor.

The Q-Value in the North corridor (figure 14) first jumped to a value over
0.6 due to the high information gain when the action was performed, but after
performing the action three times the value dropped since the information gain

20



was non-significant and since there was no light detected at the location. The
agent never found light in this location, reflected in the Dirichlet Distribution
being shifted to o1, indicating No Light.

6.2 First Light Source Location Change

After the agent consistently chose the most optimal path to the light source,
the light sources were flipped, the active light source now being in the North
corridor instead of the East corridor.

In the starting position the action Forward should now become the dominant
action instead of Turn Left.

The Q-Value for Turn Right marginally changed after the first occurrence
of the action. This was because lowering the parameters would be the last step
of the algorithm, i.e. after the Q-Values were calculated. This resulted in the
distribution in figure 9b. After multiple occurrences of Turn Right, the Q-Value
dropped and the agent had learned that there was a low possibility of light,
reflected in figure 9c.

The Q-Values for Forward increased faster than the Q-Values for Turn Right
decreased, this was due to the lower magnitude of the Dirichlet distribution for
performing the action Forward (figure 9a vs. figure 11a). After more occurrences
of the action, it became the dominant action. The Q-Values quickly converged
resulting in the agent having learned that there was a high probability that
there was light in the North corridor, reflected in the Dirichlet distribution in
figure 1lc.

The Q-Values in the corridor positions both changed with a significant
amount (figures 12-14). With the Q-Values in the North corridor immediately
changing to 1.0 and in the East corridor decreasing to a value around 0.4. This
rapid change is best illustrated in the plots of the Dirichlet distributions. In the
East corridor: The rapid decrease in ag, learning that there was a low probabil-
ity of a high light intensity (figure 13b). The increase in o1, learning that there
was a high probability of a low light intensity (figure 13c).

In the North corridor: The rapid decrease of «ay, learning that there was a
low probability of a low light intensity (figure 15b). The increase of a3, learning
that there was a high probability of a high light intensity.

6.3 Second Light Source Location Change

After the agent consistently chose the most optimal path to the light source,
the light sources were flipped back to their original state. The light source in
the North corridor was now turned off and the light source at the East corridor
was turned back on. This meant that the dominant action in the initial position
should again become Turn Right instead of Forward.
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The learning process was similar to when the agent had to learn the ini-
tial light source location. The difference being the speed at which the learning
process occurred. The Q-Values of the action Turn Right (figure 8) steadily
converged back to the Q-Value when the agent had to learn the initial light
source location. And the Q-Values of the action Forward quickly decreased to
a value of around 0.4. This resulted in similar distributions to the distributions
when learning the initial light source location (figure 9a-d, figure 11a-d).

For the Q-Values of the actions in corridor positions, the learning process
was similar as well, except for the Q-Values in the North corridor (figure 14).
These values decreased below the previous minimum value. This was because
the surrounding Q-Values leading up to this state also had to decrease to their
minimum value, resulting in more occurrences of action leading back to the end
of the North Corridor. This resulted in similar distributions as when the agent
had to learn the initial light source location (figure 13a-d, figure 15a-d).
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Position: (0,2,North) Action: Forward

extrinsic

0 5 10 15 20 25 30
occurrence

After Flippi d) End Distributi
Figure 14: The Q-Value composition for (c) After Flipping  (d) End Distribution

the state with posit.ion: (0,2), orienta- Figure 15: Dirichlet distributions for
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6.4 Learning time

The number of steps required to reach the light source location are plotted in
figure 16. The initial trial had an almost minimal number of required steps to
find the light source, this was because the robot chose the correct corridor by
chance (see section 4.2). In the second trial, the correct corridor was chosen
again, which resulted in the agent finding the most optimal path.

In the third attempt, the agent chose the North corridor. This resulted in
the agent exploring the whole corridor, but with no avail since there was no ac-
tive light source in the North corridor. This is reflected in figure 16 by the peak
in trial 3. After the agent learned that there was no light in the North corridor,
he backtracked to the starting position. After performing many actions in the
starting location, the agent got more certain about its predictions, resulting in
consistently choosing the action with the highest Q-Value. This led the agent
to the East corridor where the agent already found the most optimal path to
the active light source.

After the agent had consistently chosen the optimal path, the light sources
were flipped. This happened at trial 15, denoted by the arrow in figure 16. The
agent was still certain about its predictions, so the agent kept exploring the
East corridor. This was because the Q-Value of actions leading to the end of
the East corridor were higher than the Q-Values of actions leading to the North
corridor. This is reflected in figure 16 by the peak at trial 15.

After the agent had found the new active light source for the first time,
there were still some Q-Values that promoted actions to enter the Fast corri-
dor. These remnants resulted in the small bumps at trial 17 and 20.
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After the agent had consistently chosen the optimal path, the light sources
were flipped to the original state. This happened at trial 32. Flipping the light
sources to their original state resulted in the same behaviour as in trial 15.

Comparing the peaks at trial 3 and 32 displays that the agent had more
trouble learning the light source’s location in the 32nd trial than in the initial
trials. This was because the agent first had to learn that there was no active
light source in the North corridor.

Although the peaks at trial 15 and 32 are arguably of the same size, one
cannot argue that it takes the same amount of effort to learn a new light source
location without further experiments.

Moves Per Trial

20 25 30 35 40 45
Trial

Figure 16: The number of steps per trial, the arrows denote the trial in which
the light sources were flipped

7 Discussion & Future Study

One of the shortcomings of this algorithm is displayed in figure 16: When flip-
ping the light sources to their original state, it took about twice as long for
the algorithm to converge to a stable state than when the robot initially had
to learn the place of the light source. This is because the agent first had to
learn that there was no light source at the previous location and relearn that
the light source was at the initial location. A possible improvement would be
to implement a memory structure such as is present in the human brain: After
consolidation of the memory of the light source location in the short-term mem-
ory, it may be pushed to the long-term memory. The robot could then switch
between known locations if the prediction error is high due to the light source
not being where the agent predicted it to be. This could be implemented as
another prior for the model.
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The way the hyperparameters are updated due to high prediction errors,
discussed in section 4.3, could also be improved: Instead of only dividing the
parameters by a factor, it may be an improvement to also redistribute the pa-
rameter values such that the prediction error is minimized. Another solution
could be model revision, where irreducible prediction errors lead to the revision
of the structure of the model by adding contextual variables (Oetringer, 2017).

In a pilot study where we could detect seven different categories of light-
intensities, we found that the steps that it took for the robot to realise there was
no active light source in a corridor, were significantly decreased. We speculate
that this was due to the fact that the difference between Q-Values of No Light
and Prominent Light are bigger when there are more categories the agent could
detect (see equation 8). This improvement is vital in bigger and more complex
grids, since the Q-Values for successive states could become equal due to the
inability to detect a higher light intensity.

8 Conclusions

Our research provides a way of how to deal with multivalent variables in the
causal Bayesian network implementation of Predictive Processing, through the
use of Dirichlet distributions, hereby extending the recent work of (de Wolff,
2017).

We have also provided a framework for how the Bayesian Predictive Process-
ing implementation could solve the exploration-exploitation trade-off. This was
done by implementing a Q-Learning framework that used Dirichlet distributions
for storing information about the world. The action-selection method incorpo-
rates the agent’s certainty about its predictions, promoting exploration when
there is a high uncertainty. The action-value updating rule uses a free-energy
approach incorporating predictions about future states. The effectiveness of this
approach is best illustrated in figure 8. When the light sources were flipped for
the first time, there is a decrease of extrinsic value, as there is no light in this
location. However, since there is a large information gain the total Q-Value
increases. This promoted the selection of the action to explore potential infor-
mation gain.

The action-selection and action-value updating methods have been linked to
proposed neurological systems that are involved in the exploration-exploitation
trade-off in the brain. This ensures that the proposed framework could serve
as a way of modelling the underlying mechanisms of the brain as a prediction
machine.
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