
Reality strikes back:

The problems with a real-life
implementation of Evolutionary

Robotics

Bachelor Thesis
By: Maarten-Jan van Gool
Affiliation: Department of Artificial Intelligence, Radboud University Nijmegen
Student Number: s0513393
March 9, 2009

Contents

Abstract 3

Acknowledgments 3

1 Introduction 4

1.1 Evolutionary Robotics . 4
1.2 Co-evolution: predator-prey . 5
1.3 Interleaving . 5
1.4 Obtaining results . 6
1.5 Simulation of robotics . 6

1.5.1 Methods . 7
1.5.2 Results . 7
1.5.3 Conclusion . 7

1.6 My experiment . 8

2 Method 9

2.1 Arena . 9
2.2 Hardware . 9
2.3 Software . 10
2.4 Fitness function and the initiation of the algorithm 12
2.5 Expectations . 13

3 Results 14

3.1 Statistical Analysis . 15

4 Conclusion and Discussion 16

4.1 Hardware problems . 16
4.2 Time problems . 17
4.3 The reality Gap . 17
4.4 Validity . 18

5 Suggestions for further Research 18

5.1 Search for optimal parameters . 18
5.2 Solving time limitations . 18
5.3 Hardware setup . 19
5.4 Decreasing the search space . 19

1

References 19

Appendix A: Programming on PC and Mindstorms 21

Programming on the pc . 21
Programming on the robots . 21
Programming schematics . 22

Appendix B: Graphs of the results 23

2

Abstract

Evolutionary robotics can be done in two ways; in simulation and in

real-life. Earlier studies have showed that interleaving does not show very

promising results. In this paper I did a predator-prey experiment com-

pletely in real life and I compared it with the results of simulation. The

main research questions are: is it possible to get results in real life experi-

ments that show progress? And is this progress comparable with progress

in simulation? What are the main difficulties with implementing a real

life experiment?

Keywords: Evolutionary Robotics, Artificial evolution, Predator-Prey,

simulation, real-life evolution

Acknowledgements

I would like to thank Pim Haselager and Ida Sprinkhuizen-Kuyper for their
support, guidance and expertise. Without their help, I would never have reached
this point. I would also like to thank Jules Ellis, for helping me with the
statistical analysis.

3

1 Introduction

In this chapter I will explain my motivations for the experiment I ran. I will
start by introducing the field of evolutionary robotics. After that I will zoom
in on co-evolution and predator-prey evolution; the main subject of this thesis.
I will discuss my research questions; and I will also explain how results in this
part of the field of Evolutionary Robotics are obtained.

1.1 Evolutionary Robotics

The solution to a (computational) problem can be found in a lot of ways. The
simplest way to find an answer is to perform a random search. Of course, if
the solution space is very large, it could take forever to find a suitable solution.
In order to solve this problem, a lot of heuristics were created. A heuristic is
a way to speed up the search process by preferring possible solutions that are
‘generally’ more likely to work.
However; in order to use most heuristics a lot of domain knowledge is needed
to make it work; else the risk is too great to get stuck in a local optimum.

Evolutionary algorithms and evolutionary robotics are based on Darwinian
evolution: ‘survival of the fittest’. Holland (1975) proposed at first an evolu-
tionary algorithm. All that is needed is a starting population, a fitness function
and an evolutionary algorithm. The evolutionary algorithm mutates and/or
crossbreeds the individuals the fitness function finds fittest in order to generate
a new population. After that the program can repeat itself until a suitable so-
lution is found.

The advantage of the evolutionary algorithm is that it works on almost every
problem. This is because there is not much domain knowledge needed in order
for it to work: it is not necessary to know what the solution should look like.
Most of the times an evolutionary algorithm has more flexibility to avoid local
optima if compared to other heuristics.

There are multiple reasons to use evolutionary algorithms in robotics. One
reason could be that the control mechanism, a neural network, functions as a
‘black-box’; thus it is not known what the solution would look like. Often the
solutions are completely different of what is expected.

4

Robotics are often used as a simulation of real-world (inter)actions between
animals. In order to simulate evolution of animals evolutionary algorithms could
be added. Interaction between different populations while they are evolving is
called co-evolution.

1.2 Co-evolution: predator-prey

Co-evolution is used to train different populations in the same experiment.
There are multiple ways of co-evolving robots: let them work together or let
them compete. In this thesis I will only discuss the latter case. With competing
robots the goal is to stimulate one population by improvement of the other. In
essence the goal is to start an ‘arms race’ (Nolfi & Floreano, 1998), like they
occur in real-life situations (Dawkins & Krebs, 1979) (also see the red queen ef-
fect (Van Valen, 1973)). One example of competing robots is the predator-prey
relation. In that case there are two populations: one population hunts the other.

However; improvement because of co-evolution is not always guaranteed. It
is for example possible that the predators get almighty. If this happens; evolu-
tion stops: prey has no chance of improvement, and predator does not have to
improve.

Another problem is called cycling. For example: the predator has tactic A,
while the prey has the less successful tactic X. In order to beat tactic A, the
prey ‘comes up’ with tactic Y. In order to beat the prey again, the predator
switches to tactic B. And then the prey switches again to tactic X, which is
not effective against A, but is effective against B. This will make the predator
switch to A. Cycling has begun.

1.3 Interleaving

Because of the fact that evolving real robots takes a lot of time most of the re-
search is done in simulation. Another possibility is to evolve the robots partially
in simulation, and partially in reality. This is called interleaving. Goosen (2007)
and Van den Brule (2008) ran some experiments to examine if this approach
works.

5

Unfortunately, they both concluded that interleaving is not a good solution
for multiple reasons. First of all, resetting the trial in the real-life part of the ex-
periment was done by hand, wasting a lot of time of the experimenter. Secondly,
the difference between reality and simulation appeared to be too big to overcome
(this is called the reality gap). The improvement obtained in the simulation did
not result in improvement in real-life. The first problem I solved by automat-
ing the process of resetting. The second problem I avoided by conducting my
experiment completely in real life; I will not use simulation.

1.4 Obtaining results

Because of the risk of cycling, it is difficult to evaluate the obtained results.
One way of evaluation is to use master tournaments. The champion of each
generation of predators is competing against all champions of every generation
of preys. If later generations beat the earlier ones; there is no cycling taking
place, and you obtain good results; the robots are improving. Figure 1 (Van
den Braak, 2005) shows what the results would be like in different situations.
The pictures in figure 1 show what the results would be like when a population
of predators competes against a population of prey for 100 generations.

In the ideal situation, the predator wins when it is of a higher generation
than the prey. This should also work the other way around. In this case the
results would be like Figure 1(a). Unfortunately, results are most of the time
far from ideal. It is more realistic to get results like the ones in Figure 1(b).
Figure 1(c) shows possible results that are obviously not preferred.

It can be argued that the name for Figure 1(c) should be ‘random behaviour’
or ‘no improvement’ instead of cycling because it is not clear from the picture
that old tactics are reused. However; since the only thing important is the
quality of the results; and because this Bachelor thesis limits me because of
time restrictions to investigate this further; I would like to point to my source
of the pictures, Van den Braak (2005), for further information.

1.5 Simulation of robotics

Like I said in paragraph 1.3, most evolutionary robotic experiments are done
in simulation. Van den Braak (2005) wrote her master thesis on predator-prey
simulation. In this paragraph I will discuss one of the experiments she did. In

6

(a) Ideal (b) Progress (c) Cycling

Figure 1: Here you can see the ideal situation, co-evolutionary progress and cycling.
On the x−axis are the generations of the prey set out (from 0 to 100, from left to
right). On the y−axis are the generations of the predator set out (from 0 to 100, from
top to bottom). A black dot means the predator has won; a white dot means the prey
has won (Van den Braak, 2005).

the first part I will discuss her methods. In the second part I will talk about
her results and her conclusion.

1.5.1 Methods

Van den Braak used the Evorobot software (Nolfi, 2000) to run her simulations.
The simulation software simulates 2 Khepera robots. Both Khepera robots were
equipped with 8 infrared sensors and 5 photoreceptors.The robots were placed
in an empty environment, surrounded by walls. The robots had 2 motors, which
were controlled by a neural network with 30 synapses. Each weight was encoded
in 8 bit. The genotype was encoded in a bitstring that had the length of 30 ∗ 8
bits. The prey was able to go twice as fast as the predator.

1.5.2 Results

Van den Braak ran her simulation for 100 generations; and she did this 10 times.
She also conducted master tournaments of her results, and the best results she
obtained are shown in figure 2.

1.5.3 Conclusion

Van den Braak concluded that her results were not as good as the results of
(Nolfi & Floreano, 2000). Because of the speed advantage of the prey and the
fact that the prey can see the predator coming, the predator had a considerable

7

Figure 2: The results of van den Braak (2005). On the x−axis are the generations of
the prey set out (from 0 to 100, from left to right). On the y−axis are the generations
of the predator set out (from 0 to 100, from top to bottom). A black dot means the
predator has won; a white dot means the prey has won.

disadvantage. However, in my opinion it is still quite clear from the figure that
higher generations are having a better chance at beating the lower generations.
So there is at least some progress. The statistical analysis Van den Braak
performed also supports this view.

1.6 My experiment

In this bachelor thesis I will conduct an experiment with 2 real lego Mindstorms
robots. Each robot has its own task: one of them will be the predator; and the
other will be the prey. My goals are the following:

• Figure out the capacity of the Lego Mindstorms NXT to work with evo-
lutionary algorithms and neural networks.

• To find out if introducing auto-resetting of a trial improves the exper-
imental conditions for the experimenter, and reduces the length of the
experiment in relation to the results of Goosen (2007) and Van den Brule
(2008).

And my main research question:

• I want to find out if predator-prey co-evolution works in a real-life setup,

8

and how well these results are compared to the results of Van den Braak
(see section 1.5).

The exact methods I did use are discussed in the next section. I will also
elaborate on my main research question there. The results I obtained can be
found in section 3; which will be discussed in the conclusion (section 4). Sug-
gestions for further research are done in section 5.

2 Method

In this section I will discuss the methods I used; I will first discuss the setup of
the arena and the robots. After that I will state my expectations.

2.1 Arena

The arena has a white floor which is 140 centimeters in length, and 140 centime-
ters in width. It is surrounded by white walls. There won’t be any obstacles in
the way.

2.2 Hardware

I am using Lego Mindstorms NXT for this experiment. In this package, the brick
is the central part of each robot. It is possible to connect up to 3 motors and 4
sensor units. Each robot will get 2 motors, to drive around with, and 4 sensors:
2 sonars, and 2 light-sensors. The sonars are used to measure distance, while
the light-sensors are used to measure light intensity. Because each sensor-type is
placed on the left and on the right side of the robot, it should be able to tell the
difference between left and right. To make sure the light sensors are effective,
I put black paper around each robot. One of the robots is shown in Figure 3.
Both the robots will have the same morphology and software. The only thing
different between the predator and prey is the fitness function. I chose not to
give the prey a speed advantage, because Van den Braak found that favored
the prey too much. This would disturb the evolutionary progress. Although
because of other reasons my results may be less compared to the results of Van
den Braak, I expect this specific change will improve the results. In Table 1 the
hardware parameters are summarized.

9

Parameter: Value: Source:
Arena-size 140x140 Own decision
Sensor 2 Sonars Own decision

2 light-sensors Own decision
Speed-advantage prey 0 Van den Braak
Speed-advantage predator 0 Van den Braak

Table 1: Hardware parameters summarized.

Figure 3: One of the bots

2.3 Software

The sensors will give their output to a neural network (see figure 4), that will
control the motor units. The neural network will have 6 input-units (2 sonar
readings, 2 light-sensor readings and the 2 previous motor readings) and 2 out-
put units. Between the input-layer and the output-layer there will be a hidden-
layer, together with the context layer (Elman, 1993). The context layer contains
the activations of the hidden layer of the previous time step, and functions as a
memory. These layers will each contain 6 nodes. This will give a neural network
with in total 6 ∗ 6 + 62 + 6 ∗ 2 = 84 weights. Every weight will be encoded in

10

Parameter: Value: Source:
Recurrency yes Own decision
Number of Synapses 84 Own decision
Weight-size 8 bit Van den Braak

Table 2: Parameters of the neural network summarized.

8 bits (the bits were encoded to an integer, positive or negative was decided by
the first bit, to compute the motor output). The genotype will thus contain
84 ∗ 8 = 672 bits. My neural network is bigger then the network used by Van
den Braak and has a recurrence the network of Van den Braak has not. I did
this because I found out that if I made the network smaller, or when I removed
the context-layer, the robots would perform the same action every time they
were in the same situation. Obviously, this is not desirable behavior; for a good
fitness some flexibility is required.

Figure 4: The Neural Network (Grey nodes are recurrent)

A trial of 1 individual robot will take 400 time-steps. Every step will take

11

Parameter: Value: Source:
Number of Generations 40 Own decision
Population Size 20 Van den Brule
Number of offspring 2 Van den Brule
Mutation rate 0.5% Own decision

Table 3: Parameters of the genetic algorithm summarized.

approximately 200 milliseconds. Every step the network receives new input and
the motors get new instructions.

Goosen (2007) and Van den Brule (2008) have inspired me to choose 2 pop-
ulations with 20 individuals each (100, like Van den Braak would be a practical
impossibility because of time-restrictions). I chose a mutation rate of 0.005. I
ran the experiment for 40 generations. In every generation, the best 10 preda-
tors and the best 10 prey will have 2 ‘children’ (the same setup was used by
Van den Brule (2008)). I chose to follow Van den Brule here, because I also did
this with the population size. Only mutation will take place; cross-over is not
used in this experiment. I chose the mutation rate to be low, because I found in
earlier ‘trial-and-error’ that a higher mutation grade leaded to behavior totally
different from parental behavior. These parameters are summarized in Table 3.

2.4 Fitness function and the initiation of the algorithm

Every new run, a predator was randomly paired (under the condition that they
were not selected earlier) with a prey. The fitness of a predator is determined
by the number of time-steps it took him to capture the prey. If it is not able
to capture it within the time limit, it will get a fitness of 400 (the maximum
number of time-steps). The best predator in a generation can be determined
by:

min20
i=1(ti)

The fitness of a prey is determined by the number of time-steps it was able to
avoid the predator. If it was able to avoid the predator the entire run; it also
got a fitness of 400. The best prey in a generation can be determined by:

max20
i=1(ti)

12

Please keep in mind the fitness of the prey is the opposite of the fitness of the
predator. A high score for example is not good for the predator, while being
very well for the prey.

The evolutionary algorithm is started with a population with random geno-
types. Every value in the genotypes is chosen by a random value generator.

2.5 Expectations

There are multiple outcomes of this experiment possible:

1. The real-world experiment works better than the simulation.

2. The real-world experiment is just as good as the simulation.

3. The real-world experiment is not as good as the simulation; but still
progress is visible.

4. The real-world experiment does not work at all; and we don’t get close to
the results obtained by Van den Braak. This can happen in three ways:

(a) The hunter always wins.

(b) The prey always wins.

(c) Cycling takes over.

I do not expect it will be the first or the second possibility. Because simu-
lation is simpler than the real world and the fact that in simulation far more
runs can be done, it does not seem likely real-life will beat simulation or even
get the same results.

It is far more likely that option 3 or 4 will be the result. If the results are
like option 3, real-world evolutionary robotics has a chance of succeeding; even
though interleaving does not yield promising results. When the results won’t
be satisfiable; the experiment should be run in different ways. If option 4(a) or
4(b) takes place; the population that always loses should get an advantage, and
the experiment could be run again. If cycling (or random behavior) takes place,
it will be more problematic to make things work.

13

3 Results

To find out if my robots improved I conducted a master-tournament. Because of
time restrictions; I only evaluated every fourth generation. The visual results of
the master-tournament can be found in figure 5(b). As can be seen; the results
do not look very promising. If compared with the ideal situation and compared
with the cycling example, my results seem to have more in common with the
cycling example.

(a) Ideal (b) My results (c) Cycling

Figure 5: My results versus Ideal and cycling (predator from top to bottom; prey
from left to right). Remember; my results are compared to example pictures from Van
den Braak. I evaluated 10 generations, while she evaluated 100.

If compared with the results obtained by Van den Braak (Figure 6), it does
not look similar at all. Looking at the pictures the difference between simulation
and real-life seems very big. In the next chapter I will conduct a statistical
analysis, to further analyze the results.

(a) Results of Braak (b) My results

Figure 6: My results versus the results of van den Braak. (predator from top to
bottom; prey from left to right). Remember; my results are compared to those from
Van den Braak. I evaluated 10 generations, while she evaluated 100.

14

3.1 Statistical Analysis

Looking at the figures the results do not seem very promising. However, since
looks can be deceiving, I performed an isotonic trend analysis (Ellis, 2005) to find
out if statistics support my earlier claims. The isotonic trend analysis is used
to find out if there is a significant increase in performance over the generations.
In this test an expected increase is postulated from the data. There are two
questions to be answered:

• Do the results from the master tournament differ significantly from the
expected increase? If the expected increase does not differ significantly
from the master tournament results; the expected increase can be used as
a representation for these results.

• Is the expected increase significant?

In order to find out if the performance decreased, I ran the test the second
time with reversed master tournament results (the tenth generation I tested be-
came the first, the ninth the second, et cetera). If the test results do not show
a significant increase, there is no proof there is a decrease in performance. The
p values of the difference between the expected and actual results (deviation)
and the improvement (regression) can be found in Table 4 and Table 5.

In order to clarify; what is wanted is an expected result that does not differ
significantly from the actual master tournament results; while the expected
result shows a significant increase in performance in the test. To make it short,
in the test deviation has to be low (with a high p value) while regression has
to be high (with a low p value). Because we do not want to see a worsening
population; the results should be the other way around for these tests (Table
5).

The results of improvement are most interesting. There is no evidence that
the predator is improving. However; because of the small n, it is probable my
test was too small to find a difference, even when it was there. For the prey a
marginal significant difference in regression can be found (p = 0.060). It seems
the prey improves in the last part of its evolution (also see Figure 8 in appendix
B).

As can be seen in Table 5, there is no significance to be found in a decrease
of performance. This could also be the case because of my small n, but there is

15

at least no proof of a decrease; which is a good thing.

Predator Prey
p-value R2 p-value R2

Deviation 0.213 10.9% 0.965 2.5%
Regression 0.537 0.3% 0.060 3.8%

Table 4: P values and R2 of the improvement.

Predator Prey
p-value: R2 p-value: R2

Deviation 0.194 8.7% 0.663 6.1%
Regression 0.461 2.5% 0.689 0.2%

Table 5: P values and R2 of the worsening.

I would further like to point out that the R2 values for the prey point more
to an increase of performance then to a decrease. In the improvement test the
R2 for deviation is relatively small; while R2-regression is relatively big, while
it is the other way around for the worsening test. This is not the case for the
predator. Here the R2-values point towards a decreasing performance.

4 Conclusion and Discussion

From the results we can conclude that the results from the test are promising,
but not convincing. The difference between my results and the results obtained
by Van den Braak seem very large; visually as well as in the statistical analysis.

However; although the prey results show improvement, I still believe that
this experiment has some evidence it is at best very difficult to use evolutionary
robotics in real life. I believe this for multiple reasons I will discuss in the
upcoming paragraphs.

4.1 Hardware problems

The first problem I found would be that the hardware is not good enough to
run evolutionary robotic experiments. In my case; Lego Mindstorm-robots are

16

not built for these kind of experiments. The sensors (light sensor and sonar)
of the robots are very limited; this especially goes for the light-sensors (they
have a very limited range). Furthermore, the bluetooth connection I used for
communication between robots and computer, (more on this in the appendix)
was very unstable at times; which made communication very difficult and time-
consuming.
Another problem I encountered was that the batteries of the robots are depleted
in 3 hours. This still made it impossible to run trials for a long time without
supervisement.

4.2 Time problems

The battery problem and the bluetooth problem are related to the second rea-
son I believe that it is very hard to implement a real-life version of evolutionary
robotics. There is a limited time available. It takes 90 seconds to run 1 trial. In
order to run 1 generation (of 20) would take half an hour (90∗20

60 = 30). And to
run 40 generations; it took me 20 to 25 hours. Imagine how long it would take
to run 100 generations with a population-size of 100 and that 10 times like Van
den Braak did. This is simply impossible.

The time problem is especially problematic looking at the results of my
experiment. According to the results; the prey starts improving in it’s final
generations. If given more time; the prey could have pressured the predator to
improve as well; starting the arms race. Although this hypothesis is speculative,
because of the stated time problem, it seems impossible to test.

In spite of the above problems; some improvements are made; which made
the working of the experiment a bit more comfortable. While Van den Brule
had to ‘reset’ the track manually after every run; this was not necessary in my
set-up (my robots ’semi-randomly’ repositioned themselves after a trial). This
surely saved a lot of time and energy.

4.3 The reality Gap

The robots have a more difficult environment in real life; but they have less
generations to evolve in it. The only conclusion we can draw from that is that

17

the robots will do worse in real life than in simulation (assuming that the sim-
ulation is simplified in a way profitable for the robots). And in my case; only
the prey shows a marginal improvement.

4.4 Validity

Because of the fact that I ran only one experiment; I do have to question the
validity of my results. It may very well be that I just had bad luck. There is
still a lot of research that can be done to the parameter settings of evolution-
ary algorithms; it may very well be I chose very bad parameters. As I already
pointed out; my population is far too small to conclude real-life co-evolution is
impossible.

However; I still think my general conclusion stands. I do not think the
time and hardware problems I encountered were the result of bad luck or wrong
parameter settings. The reality-gap is very real. And in order to fill this gap
more is needed then only fine parameter settings and perfect hardware. In order
to find really meaningful results; these problems have to be solved.

5 Suggestions for further Research

In this section I will do some suggestions for further research.

5.1 Search for optimal parameters

As I already said in my conclusion; my parameter-setting is quite arbitrary.
There is still a lot of research that can be done in order to find optimal parameter
settings; up until now there are no guidelines to do this. I would like to point
towards the research of Eiben and Schut (2008), who are already working on
just this.

5.2 Solving time limitations

In order to solve the time limitations I encountered; a lot of work has to be
done on simulation software. If simulations simulate real life experiments more
accurate; the reality gap may become smaller. If it is small enough; results of

18

simulation may successfully be implemented in real-life. This will not only solve
the time-problems there are; but also will overcome the reality gap.

5.3 Hardware setup

Probably better results can be obtained using better hardware then I did. Es-
pecially because of the time limitations faced using real robots it is important
that the robots can make use of accurate sensors; a long lasting battery and a
stable bluetooth connection.

5.4 Decreasing the search space

While it is very difficult to gather large amounts of data; it may be necessary
to decrease the search space. Easier problems would require less data to show
significant results. It would also be more difficult to generalize; but since it is
more difficult to say anything about non-significant results; this does not seem
like a big obstacle.

References

Dawkins, R., & Krebs, J. (1979). Arms races between and within species.
Proceedings of the Royal Society of London B, 205, 489-511.

Eiben, A., & Schut, M. (2008). New ways to calibrate evolutionary algorithms.
Advances in Metaheuristics for Hard Optimization, Natural Computing
Series, Springer, 153-177.

Ellis, J. (2005). Testing the hypotheses about the order of means in anova. Un-
published Manuscript, Nijmegen Institute for Congnition and Information,
Nijmegen, The Netherlands.

Elman, J. (1993). Learning and development in neural networks: the importance
of starting small. Cognition, 48, 71-99.

Goosen, A. (2007). Evolving in advance: Interleaving simulated and physical
environments in robot evolution. Unpublished Bachelor Thesis, Radboud
University Nijmegen.

Holland, J. (1975). Adaptation in natural and articial systems: An introductory
analysis with applications to biology, control, and articial intel ligence. The
MIT Press.

19

Nolfi, S. (2000). Evorobot 1.1 user manual (technical report). Rome, Italy:
Institute of psychology.

Nolfi, S., & Floreano, F. (1998). Coevolving predator and prey robots: Do arms
races arise in artificial evolution? Artificial Life.

Nolfi, S., & Floreano, F. (2000). Evolutionary robotics: The biology, intelli-
gence, and technology of self-organizing machines. Cambridge, MA: MIT
Press/Bradford.

Van den Braak, S. (2005). Co-evolutionary robotics in simulation. Unpublished
Master Thesis, Radboud University Nijmegen.

Van den Brule, R. (2008). The search for a bridge over the reality gap effects of
interleaving interval duration and quantity. Unpublished Bachelor Thesis,
Radboud University Nijmegen.

Van Valen, L. (1973). A new evolutionary law. Evolutionary Theory 1, 1-30.

20

Appendix A: Programming on PC and Mindstorms

In this appendix, I will explain some parts of the process I went through to
program the robots and the pc.

Programming on the pc

I used the pc as the master, to control both the hunter and the prey. The
programming language I used was c++, and the compiler I used was Dev-CPP.
The pc was responsible for generating and mutating the synapses of the net-
work, keeping the score and saving the data. With every new run the pc would
send a new genotype to both the predator and the prey.

The library I used for bluetooth communication was the NXT Bluetooth c++
library from Anders (http : //www.norgesgade14.dk/bluetoothlibrary.php). This
library made it possible to send (and receive) strings to the robots. After a lot of
experimenting with this library (documentation on it was almost non-existent)
I was able to send the network relatively fast to the robots (would take up to 10
seconds (in comparison: in my first attempts it would take up to 2 minutes)).
After the network was sent, the program would wait for the score of the robots
(which the predator sent; the prey has precisely the opposite score), and after
that a new run would start. When a complete generation was finished, the old
generation was saved; and a new generation was generated.

Programming on the robots

The software on the robots contained the program to run the neural network.
The programming language I used was Not eXactly C (NXC) and the compiler
I used was Bricx Command Center (BricxCC). The robots ran the enhanced
NBC/NXC firmware (version 1.05). The individual robots were responsible for
executing one run. They both started after they received their genotype; and
finished when either the predator captured the prey; or the time ran out. At
that point the predator would send the score back to the pc (the score for the
predator was calculated from that), the robots would perform some semi-random
movement to reset the stage and the algorithm would restart.

21

Programming schematics

In Figure 7 you can see how the program works.

Figure 7: The programming schematics. In straight lines all the processes that run
on the pc; only ‘Run trial’ runs on the robots. Everything inside the dotted line
are processes of an individual; everything outside the dotted line are processes of a
generation.

22

Appendix B: Graphs of the results

In these graphs (figure 8) the results of the predator and prey can be seen, as
well as the estimated improvement.

(a) Prey

(b) Predator

Figure 8: Actual and estimated results for predator and prey. Note that I evaluated
every fourth generation; in order to find the generation evaluated; the number of
generations has to be multiplied with four.

23

