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| - Abstract

Purpose — The integration of disruptive technologies (i.e. 10T, Machine Learning) and Datafication
as one, a concept that is known as the Internet of Materials (IoM), is underexposed in academic
literature. This thesis contributes to literature by describing the content (roles, goals and process) of
the oM concept; proposing a conceptual framework that explains the involved (Industry 4.0)
technologies and its benefits; and identifying how loM can be used to benefit the Circular Economy
by using circular (business) strategies.

Methodology — In this research thesis, a systematic ‘literature review methodology’ of the Circular
Economy and the Industry 4.0 was conducted. Furthermore, empirical data was obtained from semi-
structured interviews to support academic literature findings and identify practical applications.
Findings — The goals of loM (provide insight in material degradation, product redesign, material
tracking and the quantified-self) have positive effects on Circular Supply Chain Management and
contributes to a Circular Economy by enhancing closed-loop material/product life-cycles and by
proposing (material-) efficiency in manufacturing operations and logistic operations.

Practical implications — Refinement of circular business models & strategies; Improve inter-supply-
chain collaborations. Change mindset of management to prioritize sustainable investments.

Future research — “To what extent does the adaptation of more complex digital technologies benefit
the loM configuration?”; “What is the cost vs benefit ratio of integrating an IoM into organizations?”;
“Does high-energy consumption of Deep Learning techniques limit the applicability of deep learning

oriented loM configurations?”.

Keywords — Internet of Materials (loM), Industry 4.0, Datafication, Internet of Things (loT), Digital
Technology, Circular Supply Chain Management (CSCM), Smart Manufacturing, Cloud Computing.
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IV - Definition list:

10-Retention strategies of CE (10Rs): “Several circularity strategies exist to reduce the consumption
of natural resources and materials, and minimise the production of waste. They can be ordered for
priority according to their levels of circularity, forming the 10Rs” (Potting et al., 2017, p4).

1st industrial revolution: “the first industrial revolution begins began at the end of the 18th century
and is was represented by mechanical production plants based on water and steam power” (Lu, 2017,

pl)
2nd industrial revolution: “the second industrial revolution starts started at the beginning of the 20th
century with the symbol of mass labor production based on electrical energy” (Lu, 2017, p1)

3D-printing: “the manufacturing of solid objects by the deposition of layers of material (such as plastic)
in accordance with specifications that are stored and displayed in electronic form as a digital model”
(Merriam-Webster dictionary, n.d.)

3rd industrial revolution: “the third industrial revolution begins began in the 1970s with the
characteristic of automatic production based on electronics and internet technology” (Lu, 2017, p1)

4th industrial revolution: “the fourth industrial revolution, namely Industry 4.0, is ongoing, with the
characteristics of cyber physical systems production, based on heterogeneous data and knowledge

integration” (Lu, 2017, p1).
Additive manufacturing technology: [See: ‘3D-printing’]

Artificial intelligence (Al): “Artificial intelligence is an umbrella term that entails the theory and
development of computer systems able to perform tasks normally requiring human intelligence, such
as visual perception, speech recognition, decision-making, and translation between languages” (Lexico
dictionary, n.d.

Autonomous robot technology: “Technology in which a robot that is designed and engineered to deal
with its environment on its own, and work for extended periods of time without human intervention.
Autonomous robots often have sophisticated features that can help them to understand their physical
environment and automate parts of their maintenance and direction that used to be done by human
hands” (Techopedia dictionary, n.d.)

Big Data: “Big data refers to the large, diverse sets of information that grow at ever-increasing rates. It
encompasses the volume of information, the velocity or speed at which it is created and collected, and
the variety or scope of the data points being covered” (Investopedia dictionary, 2021)

Big Data analytics (BDA): “Big data analytics refers to the strategy of analyzing large volumes of data,
or Big Data. This Big Data is gathered from a wide variety of sources, including social networks, videos,
digital images, sensors, and sales transaction records. The aim in analyzing all this data is to uncover
patterns and connections that might otherwise be invisible, and that might provide valuable insights
about the users who created it.” (Techopedia dictionary, n.d.)

Circular economy (CE): “an economic system that replaces the ‘end-of-life’ concept with reducing,
alternatively reusing, recycling and recovering materials in production/distribution and consumption
processes. It operates at the micro level (products, companies, consumers), meso level (eco-industrial
parks) and macro level (city, region, nation and beyond), with the aim to accomplish sustainable
development, thus simultaneously creating environmental quality, economic prosperity and social
equity, to the benefit of current and future generations" (Kirchherr et al., 2017, p224-225)

Circular strategies: [See: “10-Retention strategies of CE’]

Circular Supply Chain Management (CSCM): ‘the coordinated forward and Reverse Supply Chain
Managements via purposeful business ecosystem integration for value creation from products/
services, by-products and useful waste flows through prolonged life cycles that improve the economic,
social and environmental sustainability of organizations” (Batista et al., 2018, p446)

Cloud computing technology: “Cloud computing is the delivery of different services through the
Internet. These resources include tools and applications like data storage, servers, databases,
networking, and software. Rather than keeping files on a proprietary hard drive or local storage device,
cloud-based storage makes it possible to save them to a remote database. As long as an electronic
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device has access to the web, it has access to the data and the software programs to run it.”
(Investopedia dictionary, 2020)

Computational Materials Science: “In computational material science, data is used in modeling,
simulations, for theories, and informatics with the purpose to better understand materials” (LeSar, 2013)

Computer Science: “Computer science is the study of both computer hardware and software design.
It encompasses both the study of theoretical algorithms and the practical problems involved in
implementing them through computer hardware & software. The study of computer science has many
branches, including artificial intelligence, software engineering, programming and computer graphics.
The need for computer science as a discipline has grown as computers become more integrated into
our day-to-day lives and technology continues to advance” (Techopedia dictionary, n.d.)

Cyber-physical systems / environment: “CPS is the merger of “cyber” as electric and electronic
systems with “physical” things. The “cyber component” allows the “physical component” (such as
mechanical systems) to interact with the physical world by creating a virtual copy of it. This virtual copy
will include the “physical component” of the CPS (i.e., a cyber representation) through the digitalization
of data and information. By this, CPS can be assumed as a range of transformative technologies to
manage interconnected computational and physical capabilities” (Trappey et al., 2016)

Cyber security technology: “Cybersecurity technology refers to preventative methods used to protect
information from being stolen, compromised or attacked. It requires an understanding of potential
information threats, such as viruses and other malicious code” (Techopedia dictionary, n.d.)

Datafication: “Datafication refers to the process by which subjects, objects, and practices are
transformed into digital data. Associated with the rise of digital technologies, digitization, and Big Data,
many scholars argue datafication is intensifying as more dimensions of social life play out in digital
spaces.” (Southerton, 2020)

Digitalisation: “Digitization is the process of converting analog signals or information of any form into
a digital format that can be understood by computer systems or electronic devices. The term is used
when converting information, like text, images or voices and sounds, into binary code. Digitized
information is easier to store, access and transmit, and digitization is used by a number of consumer
electronic devices.” (Techopedia dictionary, n.d.)

Digital modeling and fabrication: “Digital modeling and fabrication is a design and production process
that combines 3-D modeling or computing-aided design with additive and subtractive manufacturing.
Additive manufacturing is also known as 3-D printing. The purpose of digital modeling and fabrication
is to allow designers to create physical models that can be used to test the success of a design. Digital
modeling and fabrication's potential uses span a variety of industries, from manufacturing to architecture

to fashion.” (Cole, 2014)

Digital technology: “The branch of scientific or engineering knowledge that deals with the creation and
practical use of digita/ or computerized devices, methods, systems, etc” (Dictionary.com, n.d.)

Digital twin: “A digital twin is a fully mapped digital version of something existing in the physical world.
People talk about digital twins in describing digital systems that are set up to simulate or correlate to
real-world systems” (Techopedia, n.d.)

Disruptive technologies: “Disruptive technology is an innovation that significantly alters the way that
consumers, industries, or businesses operate. A disruptive technology sweeps away the systems or
habits it replaces because it has attributes that are recognizably superior” (Investopedia dictionary, n.d.)

Electrical Engineering: ‘the branch of engineering that deals with the practical application of the theory
of electricity to the construction of machinery, power supplies, etc.” (Dictionary.com, n.d.)

Horizontal and Vertical systems: [See: ‘cyber-physical environment’]
Industry 4.0: [See: ‘4th industrial revolution’]

Information technology (IT): [Similar to computer science] “The technology involving the
development, maintenance, and use of computer systems, software, and networks for the processing
and distribution of data” (Merriam-Webster dictionary, 2020)

Internet of Things (IoT): “The Internet of Things (loT) is a computing concept that describes the idea
of everyday physical objects being connected to the internet and being able to identify themselves to



other devices and send and receive data. The term is closely identified with radio frequency
identification (RFID) as the method of communication, although it also may include other sensor
technologies, wireless technologies or QR codes” (Techopedia dictionary, n.d.)

Linear economy: “The linear economy is a traditional economy model based on a 'take-make-
consume-throw away' approach of resources” (Eionet.Europe, n.d.)

Machine learning (ML): “Machine learning is an application of artificial intelligence that provides
systems the ability to automatically learn and improve from experience without being explicitly
programmed. Machine learning focuses on the development of computer programs that can access
data and use it to learn for themselves” (Expert.ai Dictionary)

Material physics: “The scientific study of the properties and applications of materials of construction
or manufacture (such as ceramics, metals, polymers, and composites)” (Merriam-Webster dictionary,

2020)

Material science: [See: ‘Material Physics’]

Operational Technology (OT): “Operational technology (OT) is hardware and software that detects or
causes a change, through the direct monitoring and/or control of industrial equipment, assets,
processes and events.” (Gartner, n.d.)

Reverse Supply Chain Management: “Reverse supply chain management (RSCM) is defined as
the effective implementation of the series of activities involved in collecting a product from any stage
of the forward supply chain to either dispose it or recover value. In the Reverse Supply Chain
Management, there are a sequence of steps required to pick up the used product and to carry out the
most suitable product disposition strategy like reuse, remanufacturing and/or recycling. The Reverse
Supply Chain Management initiates with accumulation of products from different stages of the supply
chain which includes firms as well as customers. These members of the supply chain are generally
widely dispersed geographically.” (Karamchandani et al., 2017)

Smartification: “Smartification refers to the digital refinement of an existing product by embedding
digital technologies and smart services. Primary product-determining factors still must be accounted
for and a product’s primary function must remain in place. When new technologies are embedded,
completely new digital performances are offered” (Schuh et al., 2019)

Smart manufacturing (SM): “Smart manufacturing is the notion of orchestrating physical and digital
processes within factories and across other supply chain functions to optimize current and future supply
and demand requirements. This is accomplished by transforming and improving ways in which people,
process and technology operate to deliver the critical information needed to impact decision quality,
efficiency, cost and agqility” (Gartner, n.d.)

Sustainable supply chain management (SSCM): “We define Sustainable Supply Chain Management
(SSCM) as a set of managerial practices that include all of the following: Environmental impact as an
imperative; Consideration of all stages across the entire value chain for each product; and a multi-
disciplinary perspective, encompassing the entire product life-cycle.” (Gupta & Palsule-Desai, 2011)




1. Introduction

1.1 Problem statement

Most economic systems tend to answer three basic questions; ‘What to produce?’,
‘How to produce it?’, and ‘In what quantities to produce it?’. Competitive economic
systems are coordinated by ‘prices’ and would lead to a production of goods and
services which are valued most highly by the consumers (Coase, 2005). Our society
is driven by a desire for material needs, products are manufactured with raw materials
and thrown-away after usage (Gardetti, 2019). Due to a take-make-waste economy,
known as a linear economy, the earth can no longer sustain itself and disruptive
changes towards a more sustainable economy are essential (Ellen MacArthur
Foundation, 2015). Our planet has its limits and the unsustainable and non-durable
take-make-dispose system is the reason for exceeding the environmental boundaries
(Rockstrom et al,. 2009). These planetary boundaries make us question the continuity
of the linear economy and experts deem a global Circular Economy (CE) to be the
solution, “an industrial system that is restorative or regenerative by intention and
design” (MacArthur 2013).

European, Japanese and Chinese governments, are implementing incentives
and regulations to pursue CE principles (Ghisellini, Cialani & Ulgiati, 2016; Mathews
& Tans, 2016) by setting basic requirements for the CE transition and stimulating the
creation of new policies enhancing sustainability (Padilla-Rivera et al., 2020).
Simultaneously, corporations have started to implement circular strategies to be less
dependent on raw materials while improving financial objectives. Global companies
have the power to force the change of implementing a CE in our daily life, instead, the
majority choose to prioritize revenues over circularity (MacArthur 2013; Geipele et al.,
2018). The CE provides new business opportunities for organizations while solving
multiple ecological issues at the same time (MacArthur 2013). Unfortunately, these
governmental and corporate circular strategies have been insufficiently and not
systematized (Kristoffersen et al., 2019; Kristoffersen et al., 2020), as a result, the
world is only 9% circular and the trend is heading in the wrong direction (Circle
Economy, 2019). Legislative adjustments and Corporate Social Responsibility
stimulants mainly focus on economic-environment perspectives, while social aspects

(CE support) are still missing (Padilla-Rivera et al., 2020). Cultural barriers, such as a

7



lack of interest, knowledge or engagement throughout the entire value chain can make
sure that the circular movement remains slow (Hart et al., 2019). The challenge to
change the mindset of society concerning the concept of CE remains unsolved
(Geipele et al., 2018), but literature on societal change has indicated that disruptive
innovations can be used as a tool to establish or speed up this societal change (Shin
& Lee, 2011). We live in an industrial age that can opportunize the evolution of
technology better known as Industry 4.0. This era is known for new (business)
opportunities of storing data in clouds and disruptive technologies (i.e., l0T). Industry
4.0 is transforming the next generation of product/ design. To accelerate this
transformation, industrial sectors have planned to commit $907 billion US dollars per
annum to industry 4.0 (Geissbauer, Vedso & Schrouf, 2016). Prior research on CE
indicates that the application of these digital technologies (i.e, Internet of Things (IoT)
technology) and the trend of digitalization can aid the acceleration towards a worldwide
CE (Hart et al., 2019; Kristoffersen et al., 2020). Due to the ability to track products
and materials, with 10T technology (i.e., sensors) and collect highly valuable data on
material use through the entire product life cycle (Madakam et al., 2015). In 2018 it
was expected that the number of interconnected devices would reach 50 billion
devices by 2020 along with an estimated (loT) market value of $14.4 trillion (Miao et
al., 2018). Large corporations have driven the development of the 10T to benefit from
the foresight and predictability that it offers.

As mentioned earlier, it is possible to overcome certain barriers to the CE by
adapting emerging (digital) technologies (de Sousa Jabbour, et al., 2018) due to
Industry 4.0. So far, some literature has addressed the relationship between Industry
4.0 and organisational sustainability (e.g. Stock and Seliger 2016; Trentesaux et al.
2016; Waibel et al. 2017). Some of the digital technologies of Industry 4.0 have merged
to form the concept ‘Smart manufacturing’ (SM). This concept already exists for about
a decade and has been extensively addressed by academic literature (Davis et al.,
2012; Davis et al., 2015; Kusiak, 2018; Kusiak, 2019) and has also been frequently
linked to the circular economy (Kristoffersen et al., 2020; Gray-Hawkins & Lazaroiu,
2020; Ghoreishi & Happonen, 2020). So far, leading manufacturers have begun
implementing SM in their factories, turning them into smart factories (Sjodin, Parida,

Leksell, & Petrovic, 2018). However, most firms still lack insight into the challenges



and resources for implementing smart factories (Shi et al., 2020). Therefore, it can be
argued that a knowledge gap exists related to how organisations should set-up and
integrate these new technologies towards sustainable operations management and
the achievement of CE strategies. Although, Industry 4.0, Smart Manufacturing,
Remanufacturing, Circular Supply Chain Management and Circular Economy have
been researched extensively as a concept, studies that research the relationship
among these 3 concepts are limited (de Sousa Jabbour et al., 2018; Bag et al., 2020).
In addition, there may be a knowledge gap related to how organisations implement
circular business strategies to build the path towards more sustainable operation
management, while taking into consideration the current technological tendencies of
Industry 4.0 (de Sousa Jabbour et al., 2018). A concept related to this emphasis has
arisen in existing literature, a young concept that lacks academic research but seems
to be promising. It combines the improvement of manufacturing- and logistic
operations along with the applications of circular strategies. Ahmet Hosney (2015) was
the first author to propose this concept as “Internet of Materials (loM), and described
it as a means to bring together ‘Materials’ and ‘Analytics’ into ‘Material Analytics’. It
has a high level of predictive power due to the combination of Big Data and Machine
Learning. But the question remains whether the IoM can be an important means to
achieve improvements to Material-design, Smart Manufacturing- and logistic
operations, and thus contribute to a worldwide Circular Economy. So far, the concept
has been researched to a limited extent and most of the published literature has been
written from a technical perspective. This study will investigate the ‘Internet of Material’
by gathering existing oM literature to describe the content (roles, goals and process)
of the concept. Furthermore, literature is then used to create a conceptual framework
that explains the involved (industry 4.0) technologies and its benefits. The final step of
this master thesis is to identify how the Internet of Material can be used to benefit the
Circular Economy by linking it to circular strategies. The latter will be presented with a

framework containing the link between loM and CE.



1.2 Research objective

The main focus of this thesis is to get a better understanding of the role, goals and
process of the concept Internet of Materials (loM), by performing an exploratory study
of academic literature on the loM concept. A concept that was introduced by A. Hosny
in 2015. This thesis will validate the accuracy of existing conceptualisations of the oM.
In addition, this thesis explores the identified gap in literature by researching the
relationship between IoM, the principles of Circular Economy and Industry 4.0
approaches. The author will contribute to literature by proposing a new conceptual

framework for loM from a business perspective.

With this in mind, the master thesis has two central questions.

The first research question is:

“ How are technologies used to conceptualise the Internet of Materials ?”

The second research question is:

“ How can the Internet of Materials as a concept benefit the Circular Economy ?”

In order to answer these research questions by exploring all developments in the area
of research and find gaps in knowledge that need to be addressed. Related concepts
that are studied are Circular Economy, Industry 4.0 Technologies, Smart
Manufacturing/ remanufacturing and Sustainable Supply Chain Management/
Reverse Supply Chain Management. In addition, the author of this thesis has
performed semi structured interviews to gather (practical) information by industry and
technology experts and combine these insights with findings from the extensive

literature review.
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1.3 Research design

The thesis starts off with a literature review chapter (2). The literature review contains
background information on the Circular Economy, Industry 4.0 and loM. The following
chapter (3) contains the research methodology of this research. The fourth chapter (4)
is dedicated to describe the content of the loM based on academic findings. The fifth
chapter (5) proposes a conceptual framework containing the involved IoM
technologies; and a conceptual framework consisting where the relation between loM
and CE is displayed. The discussion, in chapter (6), contains research implications,
limitations and future research. In the final chapter (7) a conclusion of the most

important findings is given.

INTRODUCTON Chapter 1. Introduction
Chapter 2. Literature review
' THEORETICAL
' FRAMEWORK Chapter 3. Methodology
Chapter 4. Introducing
the Internet of Material
: RESEARCH Chapter 5. Conceptualising
| ANALYSIS the Internet of Material
. Chapter 6.Discussion
CONCLUSION T
Chapter 7. Coneclusion
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2. Literature review

This chapter provides a critical examination of existing research on the Circular
Economy and the Industry 4.0. The purpose of this chapter is to examine what a CE
entails; The role of corporations in the transition towards CE; Barriers and enablers of
the CE; What the Industry 4.0 entails; Find existing literature on the Industry 4.0 linked
to CE; Provide existing literature on the term IoM.

2.1. An introduction to the Circular economy

In this traditional economy system - the linear economy - products are manufactured
from raw materials, purchased by consumers and eventually disposed as waste after
usage (Braungart, McDonough & Bollinger, 2017). This modern economic system,
based on a “take-make-dispose” philosophy, is not sustainable and will give trouble to
the planetary limits (Frosch & Gallopoulos, 1989; Pagoropoulos et al., 2017). Products
are increasingly becoming commodities and resource scarcity is becoming a reality for
a large variety of materials (Pagoropoulos et al., 2017). Thus CE contrasts the linear
economy. The CE has been identified by academics and practitioners as a means to
increase sustainability through reducing, reusing and recycling products and
resources (Ghisellini et al.,, 2016). The most renown definition of the CE as an
economic system has been framed in 2013 and revised in 2015 by the Ellen MacArthur
Foundation: “A Circular Economy is one that is restorative and regenerative by design
and aims to keep products, components, and materials at their highest utility and value
at all times, distinguishing between technical and biological cycles" (Ellen MacArthur
Foundation, 2015). A more extensive definition is given by Kirchherr et al. (2017, p224-
225), the article defined CE as: “an economic system that replaces the ‘end-of-life’
concept with reducing, alternatively reusing, recycling and recovering materials in
production/ distribution and consumption processes. It operates at the micro level
(products, companies, consumers), meso level (eco-industrial parks) and macro level
(city, region, nation and beyond), with the aim to accomplish sustainable development,
thus simultaneously creating environmental quality, economic prosperity and social
equity, to the benefit of current and future generations".

New methods to extend the life of products have long been sought since it can

accelerate the shift from a linear to a CE (Garrido-Hidalgo et al., 2020). Organizations
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are still cautious to extend their efforts towards adoption of CE principles in order to
increase circularity and further enhance the lifecycle of resources (Liu & Bai, 2014).
The production and consumption in the Circular Economy is focused on restoring the
value of used resources (de Sousa Jabbour et al., 2018). Multiple closed-loop cycles
of remanufacturing, recycling and of reuse, can make sure that raw materials retain
their physical properties and value for as long as possible (Jonker et al., 2017). The
ultimate goal of a closing loop system is first of all to ‘design out’ waste, and if there is
waste, to recycle it (Reike et al., 2018). The classic representation of CE is based on
a biological cycle and a technical cycle. The biological cycle within CE has the
opportunity to become completely zero waste, while the technological cycle could have
the potential to generate heat from much of its waste (Ellen MacArthur Foundation,
2015). There is a need to dematerialise and (re)designed products with the aim to
improve life cycles, by implementing recycling measures (closing), making efficiency
improvements (narrowing), or extending the life cycle (slowing or extending) for
products. Throughout the years literature has formed multiple R-imperative — starting
with 3Rs and eventually forming 10Rs — refuse, rethink, reduce, reuse, repair,
refurbish, remanufacture, repurpose, recycle and recover (Geissdoerfer et al., 2018).
These 10R-imperative can be seen as circular strategies that have different gradation
of circularity: from most to least circular (Reike et al., 2018; Kirchherr et al., 2017). The

10Rs are explained individually in Appx B, Fig.16.

2.1.1 Corporate contribution to Circular Economy

When defining the current state of the CE, it is clear that the concept of CE gained
momentum - in the past decade - among business and policymakers on its potential
to contribute to sustainable development (Geissdoerfer et al., 2017; Ghisellini et al.,
2016). It is increasingly seen as a partial or complete solution to gain and maintain
sustainable developments (Geissdoerfer et al., 2017). Industries have started looking
for opportunities towards a CE, making it more than just a theoretical concept
(Govindan, et al., 2018). Furthermore, incentives and regulations by governments to
make environmentally friendly products have stimulated the organizations to focus on
sustainability (Zhu, Geng & Lai, 2010).
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Literature underlines that Supply Chain management (SCM) plays a crucial role
in the transitioning towards a CE. It can identify new ways to add-value, get insight in
product consumption and aid in value recovery (Barber et al., 2012). Prior to 2017,
literature on the Circular Supply Chain was rather rare (Homrich et al., 2017) and
usually referred to closed loop supply chains (Govindan et al., 2015). After 2017,
additional academic literature on supply chains and CE appeared and the term
Circular Supply Chain Management (CSCM) became more popular. CSCM consists
of the sorting out and coordinating the supply chain to close loops, with the intention
to maximize benefits of resources, products, energy consumption and synergize it to
attain more sustainability across the supply chain (Marconi et al., 2018). When further
considering the current state of the CE, it is necessary to develop more sustainable
business models as it provides the bases for companies to better contribute to a CE
(Witjes & Lozano, 2016). It paves the road for the rising number of diversified circular
business models (Bocken et al., 2016) (Appx B, Fig.16). Compared to current business
models, circular business models have a different value creation that drives the supply
chain into retention loops (Geissdoerfer et al., 2018). Geissdoerfer et al. (2018) makes
a distinction between CE loops and highlights the following approaches: “closing
loops, slowing loops, intensifying loops, narrowing loops, and dematerialising loops”
(Appx B, Fig.17 for more explanation). What makes the CE so special is that it values
both the forward and the reverse flows of materials, components and products (Kumar
& Putnam, 2008). By focussing on the forward and reverse flows, waste can be
minimized and the objects can be used for as long as possible while keeping the
operating costs at the bare minimum (Kumar & Putnam, 2008; Jonker et al., 2017).
Once products reach the end-of-life stage the Reverse Supply Chain becomes
responsible for management of operations to reduce the amount of non-reusable and
unrecyclable resources (Garrido-Hidalgo et al., 2020). To optimize the idea of Reverse
Supply Chain Management, the circular strategies or ten retention options (10Rs) can
be integrated within organisations (Blomsma et al., 2019). The adoption of circular
strategies in the supply chain industry is somewhat modest (Circle Economy, 2020;
Haas et al., 2015; Planing, 2015; de Sousa-Zomer et al., 2018), although the interest
in Reverse Supply Chain Management has grown a lot in recent years (Genovese et

al., 2017). Even though the Reverse Supply Chain offers many benefits to
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organisations and the Circular Economy, there is a necessity to manage and monitor
every single product stage, which has generated a considerable number of
uncertainties for companies (Jerbia et al., 2018).

2.1.2 Barriers and enablers of the Circular Supply Chains

Hart et al. (2019) defined several barriers and enablers in a Circular Economy (CE)
particularly for the supply chain industry. The assumption here is that the closer
corporations get to resolving or dismantling these barriers, the better the progress
towards CE (Hart et al., 2019). In the supply chain industry, these barriers can occur
due to legislation and policy requirements; business leader mindsets; business
models; the Economy; customer and employee understanding; manufacturing
processes; product design; and the recovery of materials (Adam et al., 2019).
Numerous attempts at regulatory cooperation over the years have shown that it takes
a long-term commitment to implement regulatory changes (Lester & Barbee, 2013).
The lack of a consistent regulatory framework, obstructing laws, regulations and
incentives, are experienced as regulatory barriers (Hart et al., 2019) and need to be
improved to aid the CE (Kirchherr et al., 2018). In addition, a lack of inter-
organisational and B2B collaboration can be identified as cultural barriers. It reduces
the knowledge, skills and engagement within the organization but also throughout the
supply chain (Hart et al., 2019). According to Kassen (2019, pl): “The development of
official e-collaborative platforms provides new promising opportunities to promote
mutually beneficial cooperation between government and citizens, and boost public
sector innovations”. Thus, by improving intra- and interorganizational collaboration,
the regulatory and cultural barriers mentioned above can be improved. When
considering the implementation of CE principles within an organisation and its supply
chain, organisations are confronted with financial barriers. Generally, organisations
tend to focus on market concerns rather than the fiscal environment (Hart et al., 2019).
The perceived uncertainty regarding costs, return on investments and timeline
concerns for implementation of CE principles often results in ‘perceived difficulty to
present strong business-cases for circular models’ and finitial reluctance from
corporations to allocate funds for these ambitious goals’ (Geng & Doberstein 2008; Su

et al., 2013). So far, around 70% of companies are planning to invest in CE but only
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12% have linked their digital and circular strategies (Gartner, 2020b). To overcome
the barrier, additional data availability can provide the option to perform business
analytics for better decision-making (Hart et al., 2019). Big Data — “one of the most
valuable assets for organisations, where large data sets may reveal patterns, trends
and association” (Oxford Online Dictionary, 2020) — can generate data-driven insights
that lead to preferable decisions and business moves. It reduces risks and costs and
helps an organisation operate more efficiently (Srai et al., 2016). According to
Cavanillas, Curry and Wabhister (2016, p10), “the Big Data value chain is one of the
key economic assets of the future”. Combining data with digital technologies can
leverage various circular strategies, from operational processes to corporate
strategies (Kristoffersen et al., 2020). Unfortunately this is not a definitive solution
since companies have expressed a need for guidance on how to leverage ‘data’ and
‘digital technologies’ to optimise resource efficiency and productivity for a specific

circular strategy (Kristoffersen et al., 2019; Kristoffersen et al., 2020).
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2.2 Circularity through technology

2.2.1 Circular Supply Chain in the Fourth Industrial Revolution.

The western world has known multiple stages of industrial revolution driven by the
invention of new ideas or technologies changing the existing society and economy
(Fig.1). The first and second industrial revolution featured the use of inventions to
increase the production speed with physical systems (water or steam powered
machines and electric powered machines). The third industrial revolution occured in
the 1960s and introduced cyber systems within the production industry featuring
automated production through electronics & information technology (digitization). The
2020s is the era of the fourth industrial revolution. The industry 4.0 features the
connection of physical and cyber systems and is highlighted by the use of (new) digital
technologies. Appx B (Industry 4.0 ecosystems), provides a visualisation of the

opportunities from Industry 4.0 for remanufacturing and its key enablers.

late 18th century early 20th century 1960s 2020s
1st industrial 2nd industrial 3rd industrial 4th industrial
revolution revolution revolution revolution
physical systems physical systems cyber systems cyber-physical

systems

Intelligent product by
combining cyber &
physical systems with
loT networks

E 9.
Qachanlcal Ioom> Qarassembly Iln> Qoﬁles product|o> Smart power grid

Figure 1. The industrial revolutions (Adapted from: Lasi et al., 2014)

Mechanical ) Automized
production through tr::?osj ﬂrg?eué;ﬂc?g production through
water and steam g Electronics & IT

As mentioned above, the new industry 4.0 is all about making business smarter and
more automated. It converges Information Technology (IT) and Operational
Technology (OT) in order to create a cyber-physical environment (Lasi et al., 2014).
By connecting ‘physical and cyber systems’, supply chain logistics, production and
customer service are all connected through the internet (Kagermann et al., 2016). A
combination of ‘Big Data and Internet of Things’ enables global machine

interconnectedness, smart manufacturing systems, and smart connection of devices
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(Tjahjono et al., 2017). By adding additional technologies to the mix, more extensive
applications can be created. Fig.2 provides an overview of the involved technologies
to enable the smatrtification of the business processes.

Trend of the 'Industry 4.0'

T
Digital technologies

/N S A SN N SN N S SR

5 ; . Internet of _— ] Horizontal and| | Autonomous Cloud Simulation / Additive New or
Ciﬁ;‘r;oel gur!ty Things inf;?lliﬂ Celrflce Bfﬂgﬁ:;f" vertical robot Computing Digital Twins | [manufacturing unused i
[ ay technology 9 ylcs systems technology technology technology technology technologies | |

Figure 2. Some digital technologies enabling the Industry 4.0 (Reproduced from: Immerman, 2020).

The digital technologies are used to improve the production and manufacturing
environment, including the supply chain practices (Tjahjono et al., 2017), by making
the processes intelligent or smart. The creation of these ‘intelligent’ systems enables
mass customization, better quality and improved productivity (Zhong et al., 2017).

The importance of Industry 4.0 to the Circular Economy cannot be
underestimated. Multiple articles have stated that by bringing together the physical
and digital worlds, technologies that can be used to accelerate the development of CE
(de Sousa Jabbour et al., 2018; lyer, 2018; Tjahjono, et al., 2017; Rajput & Singh,
2019). Thus the Industry 4.0 configurations may have the potential to overcome
important barriers to CE (Sousa Jabbour et al., 2018; Wilts & Berg, 2017). However,
no articles directly connect the 10Rs of CE (discussed in Paragraph 2.1, p14) to the
Industry 4.0. Modgil et al. (2021) does state that “These technologies” (technologies
of Fig.2), “are capable of harnessing Big Data capabilities to help reuse, recycle and
reduce the use of resources, thus supporting the objectives of the Circular Economy”
(pl1). The rapid discovery of new technologies and the exponential growth of IoT
applications are key to making the transition towards Circular Supply Chains possible
(Lasi et al., 2014; Stock & Seliger 2016; James et al., 2015; Shrouf et al., 2014). Full
collaboration, transparency and data sharing between supplier, manufacturers and
customers, provided by the 10T, can help track the product from the product design,
manufacturing and product dispatch until the end-of-life of the product (Tjahjono et al.,
2017).
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2.2.1.1 Technologies in the Industry 4.0

Big Data and the Internet of Things play a very important role in most of the Industry
4.0 configurations and are often interconnected (Tjahjono et al., 2017). loT technology
can be used to gather data from physical objects embedded sensors (GSMA, 2014)
which objects are connected via the internet (Spring & Araujo 2017) and retrieve real-
time information through the sensors (Rajput & Singh, 2019).

The real-time information (of I0T) is saved as Big Data and has the capability to
monitor production processes and consumption patterns (Moreno & Charnley, 2016;
Pagoropoulos, Pigosso & McAloone, 2017). Before Big Data can be interpreted into
new insights it has to be translated with data analytics techniques (Rajput & Singh,
2019; Kortuem & Kawsar, 2010). So far, large amounts of Big Data remains
uninterpreted due to the fact that organisations require better tools and methods to
extract insights for 1oT data (James et al., 2015). Machine learning (ML) techniques
have enabled the analysis of Big Data sets (Qiu et al., 2016) and more ML techniques
are developed in rapid succession (Khan et al., 2020). These existing and future ML
techniques can be integrated into the 10T system in order to make it an autonome and

self-analysing system (Lee et al., 2016; Adi et al., 2020). See Figure 3 for imagery.

Internet of Things
(loT)

Machine Learning

Big data (ML)
|

Big Data Analytics
(BDA)

Figure 3. Cohesion of technologies Industry 4.0

To the Circular Economy, the value of l1oT and Big Data is hard to deny since by
adopting 10T and Big Data, the performance of systems and processes can be
optimized. Data insights can be used to enhance the product and machine life-cycles
and learn how to best redesign a machine or product (James et al., 2015). Fig.4
explains some of the benefits of Big Data Analytics to organisations and the Circular

Economy.
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Benefits of Big data
analytics to the CE
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Figure 4. Benefits of Big Data according to existing literature (Produced by author S.F. Gerards, 2021)

2.2.1.1 Industry 4.0 in practice

One of the main technological configurations behind Industry 4.0 is Smart
Manufacturing (Sony, 2020). Smart manufacturing (SM) has been created to be a new
and more advanced solution that connects cyber and physical systems in order to
improve manufacturing systems. Kusiak (2018) defines Smart manufacturing as: “a
fully integrated, collaborative manufacturing system that responds in real-time to meet
changing demands and conditions in the factory, in the supply network and in customer
needs”. SM allows machines to communicate with one-another without the need of
human involvement (Lasi et al., 2014; Stock & Seliger 2016; Shrouf et al., 2014;
Deloitte, 2014) meanwhile it can provide real time information on production,
machines, and the flow of components (Zhong, Wang & Zu, 2017). By making use of
Big Data Analytics, Smart Manufacturing can enhance complicated processes and
help manage and improve the supply chains (Deloitte, 2014).

Additionally, the Industry 4.0 has enabled other advanced manufacturing
configurations such as “Digital modeling and fabrication” and the “Internet of
Materials”. The first, “Digital modeling and fabrication”, is regularly discussed subjects
in academic literature and in practice; oM is sporadically mentioned in literature
however does not have a consistent definition. What is actually known about the

Internet of Material is discussed in the next Paragraph.
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2.3 Internet of Materials (loM)

The Internet has become more complicated and technological applications such as
the 10T have appeared. Carlsson et al. (2017) identify the next step to be an Internet
of Material (IoM) application, but what is an IoM application? After extensive literature
search, only two articles and one published book have been written with the Internet
of Materials used as a key term. The literature explains the concept from a technical
perspective.

Ahmet Hosny introduced the term Internet of Materials (loM) in 2015 and
described it as a combination of Sensory Technology, Machine Learning and Internet
of Things (Hosny, 2015). Among many other technical statements, he states that the
prediction power is what could make the Internet of Materials a useful configuration to
organisations (Hosny, 2015). A few years later the term was actively used by Liaskos
(2020) and in an article by Abowd (2020). Liaskos used the term ‘Internet of Materials’
in 2020 for the title of his book and defines it as “the integration of artificial materials
with the loT ecosystem ... to talk to materials with software commands and tune their
physical properties accordingly” (p1 & p4). He argues that IoM covers several scientific
disciplines such as: Material Physics, Electrical Engineering, Manufacturing of
Electronics, Communications, and Computer Science. Abowd (2020) however, argues
that current technologies allow us to connect a physical object to digital
representations of that object and explains that the Internet of Material is a combination
of Computational Materials Science and Internet of Things technologies (Abowd,
2020). Even though the terms to describe the IoM do not match, the underlying

meaning has some common ground (see Fig.5).
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Figure 5. The term Internet of Material in existing literature

Hosny (2015), Abowd (2020) and Liaskos (2020) all discuss the application of Internet
of Things to connect its hardware as well as the identification of material physicals to
change the properties accordingly. By integrating datafication and IoT a user interface
can be created that is not only a self sustaining mechanism for material sustainability
but also helps with other Industry 4.0 applications (Mavropoulos, 2018). Meaning, oM
could be a strong benefactor to aid in the transition towards a worldwide CE.
Meanwhile it helps drive growth & efficiency and supports material utility, value &
sustainability (Carlsson et al., 2017). Chapter 4 will drive deeper into the content and
technical layout of the Internet of Material. Chapter 5 discusses the involved
technologies of the IoM and along with the link between the loM and CE.

[To conclude: this study addresses a significant gap in literature by providing the
content of an Internet of Material and proposing two conceptual loM frameworks, one

involved technologies and one linking between loM and CE]
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3. Methodology

The chapter ‘methodology’ describes and justifies the data collection methods, writing
process and method of analysis. First, the research strategy is discussed.
Subsequently, the data collection methods, the analysing techniques and research
ethics is described in detail.

3.1 Research strategy

The aim of this thesis is to get a better understanding of how a combination of
technologies can be used to form the Internet of Materials and how this benefits the
Circular Economy.

This paper took the article of Hosny (2015), Material Analytics: Knowledge
From Mechanical Behavior Data, Harvard University Graduate School of Design, as a
starting point to come to an initial concept of the oM. Since the article of Hosny (2015)
is about material analytics, the initial loM concept was substantiated with limited text.
Additional literature on the Internet of Materials is scarce and often very technical. The
first step within this thesis was to identify the current state of the Circular Economy
and the role of technology within the Circular Economy. These parts are written in the
first two chapters of literature review and are mostly based on academic literature and
sporadically based on organisational or governmental documents. The next step in
this thesis was to try and merge existing literature about the oM and come to a
conclusion to what the 1oM is, what the IoM will be in the near future and how the l1oM
can be used to aid the CE. This part is written in the last Paragraph of the literature
review and is followed by the small conclusion with the gap in current literature in
relation to the current applicabilities of the Internet of Materials.

The result section mostly used academic literature. Semi-structured interviews
are solely used to get familiar with the technologies and understand their
interdependencies. The interviews were conducted to identify the dynamics of involved
technologies of the initial loM concept. By discussing the involved technologies,
interviewees provided insights into new I|oM applications due to the recent
technological advancements and trends. The result section is divided into three parts.
The first part of the result section provides the reader with the initial goals along with

an overview of the technical steps of the IoM both are derived from existing IoM
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literature. The second part explains the oM process, supported by literature and
qguotes from the semi-structured interviews. The third part provides the final oM

framework along with its benefits to the CE.

3.2 Data collection

Literature research

This thesis used the systematic literature review (SLR) methodology (Mariano et al.,
2017) in the fields of CE, loT and Data analytics. Fisch and Block (2018) describes the
process of how SLRs have to be structured: (1) Planning of the strategy for literature
review; (2) Conduct the literature review; (3) Report the findings of literature review.
The list of papers were acquired through three internet search engines: ‘Web of
Science’ by Clarivate Analytics, ‘Business Source Complete’ by EBSCO and ‘Google
Scholar’ by Google LLC. These search engines are databases for academic scientific
research journals, books and organisational documents. The requirements and
general search techniques are provided by the Radboud University Library. Specific
journal papers and organisational documents were selected for conducting the review

of literature and were found through block search and snowballing techniques.

| Setting the research objectives ‘

Step 1. ¢
| Defining keywords |
Search boundaries Search term Range of time
Step =.

Applying exclusion criteria

v

Validating search results

‘ Defining the conceptual boundaries

Step 3. .l,
‘ Cross-reference the data ‘

Figure 6. Steps in the data acquisition of academic literature
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Empirical research

The primary data has been collected through semi-structured interviewing. This
technique is well suited for exploring the perception and opinion of respondents
regarding complex and sometimes sensitive issues, which provides access to more
information and the clarification of answers (Barriball & While 1994). The alternative —
unstructured interviews — have no pre-planned questions. This thesis needed a certain
degree of topic management to conceptualise the loM, thus, semi structured was
preferred over unstructured interviewing. In general, semi-structured interviews are
prefered to be conducted face-to-face with the respondent but the ongoing corona-
pandemic made it impossible to conduct face to face interviews. Instead, the
interviews were conducted through online video communication network ‘Zoom’. An
interview guide was developed for topic management guidance (Appx A — Interview
guide) and contains a list of topics that were covered in the interview. Prior to the
interview, consensus for recording was requested before the actual interview was
conducted. The recordings were transcribed manually after which coding took place

to identify which themes are relevant to be discussed in the results (Fig.7).
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Figure 7. Data collection process.
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This thesis made use of multiple sampling methods in order to get the desirable and
appropriate participants. Snowball sampling and theoretical sampling methods were
used for the acquisition of interviewees. Both of these methods are part of the
overarching purposive sampling method in which participants are selected
strategically (non-probability sampling). The main sampling method was ‘theoretical
sampling’. The less frequently used sampling method was ‘snowball sampling’. In this
form of sampling, earlier participants were asked to help get new participants (Bryman
2012). This thesis used academic literature and supported the findings with empirical
data. Since the empirical data is only used for supporting arguments, the author
decided to set the preferred amount of interviews to ten interviews. A total of 9
interviews of 1,5 hours in length have been performed with industry experts in the
following fields; 10T, Sensor Technology, Programming, Engineering, Data Science,
Machine Learning, Al and Algorithms. Interviewees had either a technical and
business administration background. The last interview with Ahmed Hosny, the author
who introduced the concept Internet of Materials, unfortunately retracted his offer to

participate.

3.3 Analysis technique

This thesis aims to get important data from existing literature. To investigate the
contribution of the literature and the empirical data both at once, an operationalization
of the research concept has been created and can be found in Appx A. The document
was continuously adjusted throughout the research. The literature that was used to
write each paragraph was cross-checked with interview results to reject the findings.
Even though the interviews were analysed with the atlas.ti software, the findings were
not considered decisive. Therefore, when cross-checking the interviews with the
academic literature, the cross-checking process and citations selection was done

manually.
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3.4 Research Ethics

“Research ethics are moral principles that guide researchers to conduct and report
research without deception or intention to harm the participants of the study or
members of the society as a whole, whether knowingly or unknowingly” (Barrow,
Brannan, Khandhar, 2020, p1). This thesis takes into account certain research ethics
in particular. First, the author will try to be honest and objective throughout the
research. When gathering sources on online databases permission will be asked or
proper login codes will be used. Furthermore, results are reported according to the
APA regulations and without plagiatry. Primary data is gathered transparently and prior
to the interview consent to record and process the data is requested.

Due to the Corona epidemic, the government has implied specific regulation
concerning personal contact. During the interviews, there was no direct contact
between the interviewer and the interviewee. In addition, the interviewees will remain

anonymous.
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4. Combining literature with empirical data.

The last Paragraph of the literature review discusses the available literature on the
term Internet of Material (loM). The findings support the emphasis that oM is a
combination of specific Digital technologies to acquire data-driven decision making. In
this Chapter, the proposed concepts of Hosny (2015), Abowd (2020) and Liaskos
(2020) are further explored and general ideas and key objectives are discussed. Within
this Chapter certain statements from empirical data (interviews) are added to support
the conceptualisation and applications of the Internet of Materials.

4.1 Key objectives of loM

4.1.1 IoM - Research pathings

From the article of Hosny (2015), the research pathings of the Internet of Materials
have been established (Fig.8). First, sensors need to be placed in the right locations
within an object. It has to measure without interference and exactly what it intends to
measure. Then, the sensor-data should be transmitted and stored in the cloud. At this
moment, stored data is raw and uninterpretable data. And last, the data should be
analysed to extract insights which can lead to data-driven (solely based on data) or

data-informed (based on data and alternative inputs) decisions.

Embed sensor Store data Apply business
in object in cloud analytics

Transmit data Analyse the B
fo cloud stored data ~ - ) ]

3 = 3 Data-driven i

\L decision making .

b4

Figure 8. Basic research pathings of the oM (adapted from Hosny, 2015).

The analytics techniques which are appropriate for the business analytics depending
on the volume, variety and velocity of the stored data (Laney 2001). Large and
complex data should consider to be analysed with Machine Learning techniques (Big

Data Analytics will be explained more extensively in Paragraph 4.1.4.3).
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4.1.2 IoM - The role and goal.

According to Hosny (2015) and supported by Abowd (2020) and Liaskos (2020), the
use of IoM can lead to three important insights. First, the oM can play an important
role by helping to understand materials (1) which can be used to minimize degradation
of a product. Second, it can inform you how to (re)design a product (2), -e.g. to make
it more durable or easier to repair; and third, it can gather interpretable data from the
quantified-self (3), which can be an added value for customer as well as manufacturer.
Abowd (2020) and Liaskos (2020) discuss an additional role: monitor, track & trace
materials/products (4). This role is quite similar to the first role (material degradation)

but organisations can also gain insights into the life-cycle of the product or material.

Material degradation

It is difficult to detect changes in material behavior, in other words degradation, this is
why often material failure can occur at any moment (Hosny 2015). It is often seen that
products are manufactured with minimizing material cost. However since exceeding
planetary boundaries has become a problem, there is an increased focus on the life
cycle of materials (LeSar, 2013). Multiple closed-loop cycles of remanufacturing,
recycling and reuse, can make sure that material value is sustained as long as possible
(Jonker et al., 2017; Morlet et al., 2016; Braungart et al., 2017). To aid this endeavor,
information regarding degradation can be extracted with technology such as image
processing methods (Xia et al., 2020). Interviewee 3 continues with an example of
material degradation “In case of a washing machine, there are some sensory
capabilities inside the washing machine, it can notify the manufacturer in case of a
malfunction. This would be both an Internet of Things case and an Internet of Materials
case. It could be exactly the same algorithm to detect whether the machine is
misbehaving “

Hosny (2015) explains that data generated through an loM can accelerate our
understanding of fatigue and help build more accurate predictive models. The
empirical data within this research indicates that by sharing data on materials
degradation with other companies, the product can be tracked and collected for
circularizing the supply chain or for recycling purposes (Interviewee 1 & 3). By

informing on material degradation, the 1oM can play an important part in the CE.
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Product redesign

Redesign is one of the circular strategies which needs to be focussed on in order to
close the loop and make a CE work (Jawahir & Bradley, 2016). According to
Kagermann (2015), cutting edge technologies can help with the transition towards
circularity. The oM can benefit through data analytics since it offers insights into how
products can be adjusted or redesigned (Hosny, 2015). For the Circular Economy, the
identification of product (re-)design possibilities can have great additional values (Den
Hollander, Bakker & Hultink, 2017).

Quantified-self

The last goal of the oM which is described by Hosny (2015) is to gain information
about the quantified-self. “The quantified self is the practice of using wearable devices
and other modern technologies to collect personalized data about one’s own life and
health (Fernando, 2021 p1)”. It tracks the physical, behavioural, environmental and
biological aspects of their day to day lives and offers human-object interaction models.
The quantified-self does not have a direct link to improve the CE, but by applying data
science to the ‘personally identifiable information’ it is possible to create human-object
interaction models and identify current or new trendsettings and interests and thus

follow the progress of the Circular Economy.

Material tracking

There is a lack of information on the life cycle of products, along with deficiencies of
advanced technologies when considering cleaner production (Geng & Doberstein,
2008; Su et al., 2013). The emergence of Information technology, enabled companies
to track materials and identify wasteful processes in the entire Supply Chain (Preston,
2012). By tracking raw material from the moment of extraction till the moment of
disposal, valuable information can be generated for organisations that are willing to
make their entire supply chain circular (Preston, 2012). Interviewee 3 acknowledges
material tracking as an important feature of the loM: “The Internet of Materials is part
of a supply chain, where IoM plays a role in material life cycles. It means that you can

track assets in the entire life cycle until it has been disposed of or disassembled”. An
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efficient tracking system can make it possible for organisations to recall products and
find the factors that cause problems (Ping et al., 2018) and can be a way to identify
working conditions in less transparent emerging economies (llin, Shirokova, Lepekhin,
2017).

4.1.3 The IoT technology in oM

As mentioned in the last section of the literature review, the IoM is strongly connected
to the Internet of Things. But it is hard to see the difference between loM and IoT. The
interviews of this thesis indicated that the definition of ‘loT technology’ is perceived
very differently. Some interviewees describe I0T as a technology that enables
interconnectivity between objects, devices and systems through the use of an internet
connection. These ‘things’ exchange data and store it (similar to the initial definition of
loT from 1999). Others would say that the IoM and the IoT are somewhat identical but
would depend on the use-case of 10T (both including machine learning technology).
Interviewee 3 states a key distinction between IoT and loM; “How the Internet of
Materials would differ compared to 10T depends on the type of sensors and on the
guestion or relationship that you are trying to find on your algorithm, your Machine
Learning algorithm”. Thus, when considering this statement, the Internet of Materials
is similar to the 10T but has a specific goal and use-case. A similarity between the two
fronts is that the 0T technology is used as the bodywork to bind multiple other
technologies. By adding multiple building blocks (often technologies) to the IoT
function — connecting objects and devices — it would lead to a more complex loT

system.
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4.1.4 1oM process - 4 phases

The IoM is a continuous process that consists of four phases: (1) Data generation,
acquisition and storing; (2) Data sharing; (3) Data analytics; (4) Data-driven decision
making. Fig.9 shows the phases and indispensable oM related technologies or oM
benefactors. This Paragraph dives deeper into the content of these phases and

explains why they are relevant to the 1oM process.
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4.1.4.1 Phase 1. Data generation, acquisition and storing

Phase 1 in the oM process is the ‘data generation, acquisition and storage’. According
to Rabl & Jacobsen (2012) “It would be beneficial to have a data generator that can
generate the data in different phases consistently ... in order to support the various
steps of Big Data processing” (p2). The internet of materials has the ability to gather
data from multiple sources within a product and throughout the supply chain at once
(Abowd, 2020). The first part explains the data generation of the lIoM. Here, different
kinds of data and certain technologies to send and receive data are explained. The
second part, data acquisition, is split into two categories, namely data acquisition

during the logistic process and data acquisition during the product usage process.
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Data generation

Data can be distinguished into three kinds of data, namely machine, human and
business-generated data (Saggi & Jain, 2018) (Appx B, Fig.19). The loM makes use
of mainly machine generated data and occasionally — when it is inserted manually into
the cloud platform — a combination of machine and business generated data. In order
to send data to and from objects or devices, multiple technologies can be used.
Bluetooth, ZigBee and WiFi are solutions for short range applications while LoRa,
SigFox and Narrow-Band loT for long range applications” (Pereira, Correia &
Carvalho, 2018). Meanwhile each of these technologies differ in power usage: “Low
power solutions are Bluetooth 5, LoRa and Sigfox, while WiFi, Narrow-Band loT and
ZigBee technologies consume significantly more” (Pereira et al., 2018). Furthermore,
the release of the 5G network serves the same applications as some of the above but
also enables additional possibilities such as processing massive amounts of data,
using complex communication technologies and mining data by applying stronger and

more advanced sensors within the loT framework (Wang et al., 2018).

Data acquisition

This part explains how sensors are used in order to identify and track a product. The
first aspect that is essential to this process is to equip products or material batches
with a sensor that holds information about the object. A ‘passive’ radio-frequency
identification (RFID) chip can execute this process without needing an energy source
asitis (Ping et al., 2018). The information held by the chip are called electronic product
codes (EPCs) and can contain all kinds of ‘what’, ‘when’ ‘where’ and ‘why’ information
(Gnimpieba et al., 2015). The chip can be read by a RFID reader and sent to the
appointed cloud platform(s) with a transmission system such as a General packet
radio service (Gnimpieba et al., 2015). This process is carried out without any human
interaction. In addition to the simple tracking function, it is also possible to add an
action to the process such as a user-notification or an automated mechanical action.
Interviewee 4. illustrates an identical process that can deliver valuable insights: “RFID
chips on products are key tracking mechanisms to follow object distribution and
material use. By scanning the chip frequently during the product life cycle. Key insights
are gathered on product location and/ or the state of the product. Sensors technology

enables the interconnection with data storing servers. By adding sensors to objects
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the data can be gathered such as; GPS- location, temperature, vibration, humidity

during transportation or use. All relevant data to collect for research purposes ”.

[data acquisition in consumer] In general, when a product or object is being used by a
company, consumer or client, it does not gather raw data of the usage process. By
adding sensors to the product or object, it becomes smart and data can be extracted.
In order for this to work, the interaction between certain technologies are relevant.

The first technology which is relevant for data acquisition is sensory technology. In
comparison to the tracking sensors (discussed in the previous alinea), the sensors
which are used for smart objects are more advanced. These sensors can be physical
sensors, chemical sensors and biosensors (Ping et al., 2018) and help the IoT — the
second technology which is relevant for the data acquisition — ‘make sense of and
‘identify changes within’ the environment. As mentioned in previous chapters, loT has
the ability to let technical devices (i.e., sensors) communicate and share information
with one another, and make decisions without any human involvement (Al-Fugaha et
al., 2015). These decisions can be based on human actions, for example raising the
room temperature with your smartphone; opening a gate in front of your house when

you arrive with your car, based on a pre-set of predetermined rules (interviewee 9).

Data storing

In the late-1990s, cloud computing was introduced. Cloud computing is defined as:
‘the practice of storing regularly used computer data on multiple servers that can be
accessed through the Internet” (Merriam-Webster Dictionary 2020b). Multiple
companies (such as Google, Amazon and IBM) started researching and offering cloud
computing web services that can be either private, shared or hybrid platforms. Some
organisations choose to use offsite data storage to avoid important data loss or
sensitive data leakages. The oM uses cloud computing technology to enable the
process of automated data analytics through Machine Learning. Data analytics will be

discussed in Paragraph 4.1.4.3.
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4.1.4.2 Phase 2. Data Sharing

This phase within the loM framework is about data sharing. Data sharing is one of the
capabilities of the IoM through the 10T technology. Certain technologies, such as IoT,
Cloud Computing, GPS/GPRS and RFID can be used to create a collaborative cloud-
based platform that can help with positioning, identification, communication, tracking
and data sharing (Gnimpieba et al., 2015). The shared platforms of the cloud
computing technology— mentioned in the paragraph 4.1.4.1 — enables partners to have
access to layers of supply chain related data which can be used to check and track
the products or materials throughout the logistic process. In the context of the Circular
Economy, supply chain relationships can have a positive effect on circularity through
cross-sector collaboration and the implementation of cascading resource flows, thus
access to these data streams can enable a Circular Supply Chain (De Angelis et al.,
2018). Meanwhile, transparency and traceability in the supply chain enforces social
security (Francisco et al., 2018), such as fair trade products or good labour conditions.
Demand-driven supply networks can also enable business-to-business collaboration
which improves demand chain management (Gnimpieba et al., 2015). “Demand-
driven supply networks can help suppliers react, anticipate and collaborate to the
consumer’s order which decreases stock levels and reduces out of service rates"
(Gnimpieba et al., 2015). Aside from data sharing with supply chain partners, data can
likewise be shared with repairing-, refurbishing- or recycling companies to stimulate
the CE movement; or with governments to promote improving regulatory compliance
and more efficient government communication with businesses (van de Kaa, Janssen
& Rezaei, 2018).

A clear weakness of unified platforms is that an unified data system can make
it harder to limit access and detect misuse due to the fact that more people have
access to all data (Sinclair & Smith, 2008). Section 5.2.4. will explain the importance

of inter-supply-chain collaboration for organisational performance and to the CE.

4.1.4.3 Phase 3. Data Analytics

This phase is about Big Data Analytics within the IoM process. The 1oM technology
acquires machine and business generated data whereatfter, it is used to interpret the

Big Data with data analytics. Analytics that concern large amounts of data needs
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advanced analytic techniques to operate and is called Big Data Analytics (Russom,
2011). Big Data can be defined as: “Extremely large data sets that may be analysed
computationally to reveal patterns, trends, and associations, especially relating to
human behaviour and interactions.” (Oxford Online Dictionary 2020). The evolution
and extensive growth of traditional data into Big Data, has rendered previous
analysation methods useless (Dey et al., 2018). The 3Vs — volume, variety and velocity
— are the three main features of Big Data (Laney, 2001) (Appx B, Fig.18 for more on
the Vs of Big Data). The volume of the available data has grown way-over 10 times in
the last decade and can no longer be handled by traditional analytics (Dey et al., 2018).
The variety of data types and speed at which new data arrives demand new solutions
to process the data and perform analytics and machine learning techniques are clearly
more appropriate to capture hidden insights from Big Data (Dey et al., 2018). The
development of new Machine Learning techniques and algorithms actually requires
large data sets in order to learn and discover patterns in data (Dey et al., 2018). So
far, multiple Machine Learning techniques have been discovered to analyse Big Data
(Qiu et al., 2016) and more techniques are created in rapid succession (Khan et al.,
2020). Existing and future machine learning techniques can be integrated into the 10T
system in order to make the lIoT an autonome and self-analysing system (Lee et al.,
2016; Adi et al., 2020), which makes the oM. Relevant and appropriate information is
essential to make good choices. Sauter (2010) states that “/mprovements in artificial
intelligence technologies have allowed the systems to demonstrate more sophisticated
reasoning and even some learning (p17)”. When considering IoM as a Decision
Support System, information that is acquired from Big Data Analytics will be useful to
the business intelligence and analytics to strengthen decision making during choice

processes (Sauter, 2010).

4.1.4.4 Phase 4. Data-driven decision making

An integrated oM system can provide attractive features to multiple parties and
departments, however, the implementation of the loM brings along many changes. For
organizations to facilitate organizational change, there has to be a cause. When the

necessity to change is perceived to be high, those involved are more likely to support
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the change (Edmonds, 2011). The following Paragraphs will describe the stakeholders
(MT, R&D-dep., IT-dep. & the supply chain) that are directly involved in the loM

process.

Management Team
It is clear by now that there is a need to create changes in value chains, from product
(re)design, new operational systems of production and consumption, and material
recovery by restoring the value of used resources (Ghaffar et al., 2019; Geissdoerfer
etal., 2017). However, what will top and middle management teams get out of the use
of the Internet of Materials? According to Geng and Doberstein (2008), a supply chain
that is fully automated would be “more flexible, sustainable, self-organized, secured,
interoperable and highly embedded with information and communication technology*.
The loT technology within the loM configuration offers new options regarding ‘business
models’ and ‘maintenance, replacement and disposal’ due to the technological
possibilities and data orientation (Spring & Araujo, 2017). When organisations
consider changes to implement circular strategies, manufacturing companies have to
change their business models (Manzini & Vezzoli, 2003), while other companies need
to make adjustments throughout the entire value chain (Fonseca et al., 2018). Top-
Management can use the IoM to improve their decision making through data analytics;
Collaborate with other parties along the supply chain; Monitor products during their
lifecycle to identify product improvements and monitor the performance of a

department or production line (interviewee 1 & 3).

R&D-department
The ‘Industry 4.0’ is undoubtedly related to increasing R&D projects. It brings a number
of cutting-edge solutions that can be used globally (Svarcova et al., 2019). The
integration of an loM can deliver great values to the R&D department since it can be
a tool to gather data from used and unused products and materials.

As Paragraph 4.1.2 describes, data can be used to analyze product or material
characteristics (understand materials), e.g. in order to identify which parts of the
product have the highest failure rates (Mboli, Thakker & Mishra, 2020). The interpreted

data is then used to create new product designs or improve current designs. Redesign
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can have different functions: improve performance, make it more sustainable, lower
the cost, or make your product more reliable. To make it more sustainable, R&D can
improve the accessibility of weak parts so that these parts can be more easily replaced
or repaired, thus resulting in that the product does not have to be disposed of, when
it's broken.

Computational material science can benefit from the identification of
problematic materials. Sinnott (2021) wrote an article about computational material
science and described it as: “The application of modern computational methods alone
or in conjunction with experimental techniques to discover new materials and
investigate existing inorganic materials”. This science can help to create new materials
with different properties which can replace vulnerable product parts. New parts can be
created to be substitutive and more durable meanwhile being better for the
environment.

Manufacturing setups are featured to share a dual responsibility (Yang et al.,
2018). On one hand, a substantial return on investment is expected. On the other side
negative impacts on the environment are to be addressed (Elhabashy et al., 2019). As
mentioned in the literature review, technologies such as the 10T, Big Data, Atrtificial
Intelligence and Cloud Computing can help improve high-quality product
manufacturing. Meanwhile, keeping the costs minimal. Unfortunately, “From a
technical approach the possibilities with data tracking devices are endless, from a
practical perspective including sensoring technology in product manufacturing is still
rare! The reality is that even though the technology exists, there is still a limited number
of products with embedded sensor devices (interviewee 1)”. The IoT can help reduce
the human data entry efforts meaning data is generated without the interference of
human actions. “The potential for sustainable production lies in collaboration and data
management since the product components require environmental measures in order
to evaluate their environmental impact (Gmelin & Seuring, 2014)”. The data
collaboration between suppliers can create data that can facilitate teamwork across
the supply chain which eventually helps with the development of new production
processes (Gmelin & Seuring, 2014). The implementation of CE also depends on the

adoption of cleaner production (Sousa-Zomer et al., 2018).
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IT-department

Business analytics needs to be viewed as a part of the organization’s strategic assets
(Chen & Siau, 2020). To effectively use and promote business analytics, it is
necessary for organizations to have a flexible IT infrastructure (Chen & Siau, 2020).
Firms should consider outsourcing the IT infrastructure, when certain support functions
are done faster, cheaper, or better by an external organization (Lankford & Parsa,
1999). SMEs that are using Industry 4.0 concepts are benefiting from keeping the
practices in-house but are often outsourcing R&D activities due to the lack of human,
financial and technical resources (Lalic et al., 2018). MNCs are better off insourcing
the IT-infrastructure since outsourcing can lead to ‘Loss of control of the activity’; ‘Lead
to hidden and unforeseen costs’; ‘Loss of IT expertise’ and more (Aubert, Patry &
Rivard, 1998; Interviewee 1). The IT knowledge through data engineers, data
scientists and data analysts needs to be acquired internally to integrate the 1oM within
the organisational infrastructure (Interviewee 5). In-house knowledge is necessary to
keep control of the data acquisition, data analysis and data interpretation (interviewee
1). Processes such as online data storage or the algorithm- and application
development can better be outsourced to organisations such as Microsoft, Google and
Amazon to save time and money (interviewee 5). A lack of human, financial and
technical resources can be perceived as a barrier for SMEs to make use of the loM
technology. By partly or entirely outsourcing this process, most of these resource

requirements can be minimized (Belcourt, 2006).

Inter-supply-chain collaboration

Back in 2004, Mark Barratt wrote that a “supply chain collaboration has proven difficult
to implement although still has the potential to offer significantly improved
performance”, This was mostly due to the lack of clarity of what organisations were
collaborating over. Technology has been promoted to be a key enabler of inter-
organisational collaboration (Barratt, 2004). Nowadays, technological innovations are
everywhere within society, which makes supply chain collaboration once again
relevant to organisations. The relationship between the individual partners of the
supply chain is essential for maximizing sustainable performance as well as economic

benefits (Gupta et al., 2019). Multi-layered collaboration offers opportunities for
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transforming corporations and their business models to more sustainable forms
(Shrivastava & Guimaraes-Costa, 2017). Meanwhile, the supply chain collaboration
and integration positively affects Supply Chain performance and can also positively
affect CE implementation (Gupta et al., 2019). The empirical evidence within the
master thesis has indicated that the oM can play an important role in facilitating
collaboration when tracking materials or products and thus plays an important role in
the transition of the CE (interviewee 1 & 3). For example, not only recyclers, but also
other value chain players such as collection sites or sorting facilities can store data on
materials into the IoM to increase transparency on materials flows. Supply-chain
collaboration demands transparency of information (Cui et al.,, 2020). The loT
technology makes it possible to set up e-collaborative platforms to generate
transparency of information and provide inter- and intra-organisational collaboration
(Gnimpieba et al., 2015). The platform can provide data sharing capabilities and —
when combined with the right sensors — enables the tracking and tracing of goods
(Gnimpieba et al., 2015; Al-Fugaha et al., 2015).

. In addition to recyclers, other players along the value chain, like collection sites and
sorting facilities, can input data into the IoM to increase transparency on materials

flows.
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5. The Internet of Material

5.1 Conceptualizing the IoM

Paragraph 4.1 indicated that in order to reach the oM objectives — Inform on material
tracking, material degradation, product redesign and quantified-self — a combination
of basic 10T technology; simple and advanced sensor technologies; and Machine
Learning technology has to be configured (see Fig.10, p42).

The Basic loT technology consists of three layers: a sensor layer, data
transmission layer, storage layer (Gnimpieba et al, 2015). The complexity of the
sensors in the sensor layer depend on the use-case. The transmission layer is
responsible for the data transfer from and to the connected devices. The technologies
which can be relevant to the transmission layer are the 3G/4G/5G, Bluetooth, WiFi,
NFC, RFID, SigFox, ZigBee, and the Lora network. These technologies have specific
features serving the best possible use-case and take into account the maximum power
consumption and minimum network range (VI - Appx B, Fig.21). Cloud Computing
enables the data storage in online data storage systems. Hybrid or shared cloud
platforms have the possibility to collaborate with partners by simultaneously granting
access to the data streams. The sensors which are used in the IoM, are identical to
those used in the IoT. The main difference is that in an lIoM configuration, multiple
sensors are used at once to gather a more diverse range of data. An example of an
loM integration within a product would be a product that simultaneously pinpoints the
GPS-location, measures temperature, measures humidity, identifies vibration, finds
degradation spots and gathers user-data. Machine learning is often used to improve
automation within organisations that use large databases. As mentioned in Paragraph
4.1.4.3, the variety of data types and speed at which new data arrives demand new
solutions to process the data and perform analytics. These machine learning
techniques are clearly more appropriate to capture hidden insights from Big Data (Dey
et al., 2018). By integrating machine learning, the system becomes an autonome and
self-analysing system (Lee et al., 2016; Adi et al., 2020). It is key to generate valuable
data in this process to answer material related questions. The integration of 10T and
loM are similar in terms of generating data by binding technologies and connecting
objects/ devices. The difference is that 1oM focuses on generating data that can

answer “material” related questions, by using Machine Learning algorithms. And
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thrives to find relationships that can aid in making products, machines or logistics more
efficient and sustainable. Thus, the Internet of Materials is similar to the I0T but has a
specific goal. In this case, I0T layers are used to generate data that can aid in
optimizing loM goals (i.e., product redesign, material tracking, identification of material
degradation and the quantified-self). Therefore, machine algorithms need to generate
insights and/or find a relationship in material/product use of 1) Customer products, 2)
Manufacturing operations or 3) (Reversed) logistic operations.

Technologies in the loM configuration
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Figure 10. The loM concept with all joint technologies (Produced by author: S.F. Gerards, 2021)
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5.2 Combining the loM with the CE

The three authors, Hosny (2015), Abowd (2020) and Liaskos (2020), unintentionally
presented goals of the oM that benefit circular strategies of the Circular Economy
(Fig.11). The goals within each article can be redirected to the goals ‘Material
degradation, Product redesign, Tracking materials and Quantified-self application’
which were formulated by this master thesis in paragraph 4.1.2. The first three goals
can directly benefit the Circular Economy transition by improving transparency within
the supply chain and by gathering data that can be used for data-driven or data-
informed decision making. Quantified-self application benefits the CE through the
ability to use its data to make human-object interaction models.

Internet of Material (loM)

Internet of Materials Internet of Materials Internet of Materials
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| i ! t [
: 1 ¥ ¥ v ¥ ¥
i £ Machine : Electrical || Materials Computer | | Manufacturing | |
Computational Internet of | Internet of 1 : Sensory b g - : i Communications omp - el
material science Things Things ea[r_]i]II;g technology i engineering | | physics science of electronics
[ [ H T I I T T
¥ ¥
v v . o
mprove decision™ ‘onnect physica; . . o - 'ﬁﬁfﬁéﬁiﬁg&u
ma.kmg based on objects to digital ‘Acquire quantified-y” Inform product or Identify material
epresentations self data material redesign degradation

—Talk to materials with softuare ~
] rummauds and tune their phy 51cal J
pmpeme atmrdmﬂl\

| refuse | |rwemanufacmre| ‘ repurpose | | recover ‘
rethink | | Teuse | ‘ repair | | recycle ‘
| reduce | | refurbish |
[Smarter product use Extend lifespan of product and its [Useful application off
and manufacture parts material
Circular Strategies (10Rs)

| In reverse supply chain
| management thereisa

| necessity to manage and Reverse supply chain
' monitor every single i

| product stage

| (Jerbiaetal, 2018) v 'L

Circular supply chain

Figure 11. Connectlng the loM with the 10Rs Circular Strategies (Produced by author: S.F. Gerards, 2021)

By applying circular strategies, forward and reverse resource-flows can be monitored
and waste can be minimized (Kumar & Putnam, 2008; Jonker et al., 2017). The

application of loM can constantly and automatically monitor products for reusability
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and failure by “selecting each constituting components and testing whether it still
works” (Mboli et al., 2020, p8). By linking structural health monitoring with material
informatics, it is possible to understand material degradation (Hosny, 2015) which can
lead to material/product redesign, with the aim to lengthen the life cycle of a product
or component (Fig.12).

The relationship between the individual partners in the supply chain is essential for
maximizing sustainable performance as well as economic benefits (Gupta et al.,
2019). loT technology is identified as an enabler for inter-supply-chain collaboration
(Barratt, 2004) through a platform for e-collaboration (data collection, storing & sharing
in the Cloud). Meanwhile, creating opportunities for the transformation of more
sustainable corporate business models (Shrivastava & Guimardes-Costa, 2017). In
addition, adapting IoT technologies for loM goals should improve inter-supply-chain
collaboration and strengthen the integration of loM. The promotion of inter-supply-
chain collaboration is expected to have positive effects on CE (Gupta et al., 2019).
More specifically, it can facilitate information transparency e.g. when tracking
materials/products, which results in valuable insights to acquire a completely Circular
Supply Chain (Gnimpieba et al., 2015; Interview 1 & 3). Witjes & Lozano (2016)
emphasizes the need for new sustainable business models to improve CE (Witjes &
Lozano, 2016). Circular business models have a different value creation and drive the
supply chain into retention loops (Geissdoerfer et al., 2018). Human-object interaction
models (enabled by loM) can identify current and new trends benefitting the creation

of new circular business models.
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loM and the Circular Economy
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Figure 12. Circular benefit of the loM (Produced by author: S.F. Gerards, 2021)

Quantified-self
application

More complex oM configurations to aid the CE

Basic loT technology combined with other digital technologies can lead to more
complex IoT configurations. Technologies such as Digital-Twin simulation, Blockchain
and Artificial Intelligence can be relevant to the loT depending on the use-case (i.e.,
loM related questions). For example, Digital-Twin technology combined with the 10T,
Artificial Intelligence (Machine Learning), and Software Analysis — including spatial
network diagrams — can be applied in the manufacturing industry to create real-time
digital simulation models (Chen & Huang, 2020), which can boost the Circular
Economy by overcoming physical barriers regarding dismantling, reproduction and
guality testing of an object, building or product; or either the storage and transportation

of products or materials (van den Bosch, 2021).
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6. Discussion

This thesis has presented the technologies that are required for the initial formation of
loM technology as well as the explanation on how this technology can benefit the
Circular Economy. The results from the academic literature search provide a clear
understanding of the involved technologies along with the benefit of certain individual
technologies for the Circular Economy. Meanwhile, the empirical data provides the
opinions of technology experts in terms of how a combination of technologies can
deliver additional benefits. In this chapter, the results are further discussed. First, the
results of the academic literature and empirical data are reviewed. Then, certain
suggestions for future research are given in context to the application of the IoM.

6.1 Discussion of the results

6.1.1 Practical Implications of the thesis results.

The results gave certain practical implications that can benefit organisations when
applying the oM. The following benefits will be discussed: 1oM to overcome barriers;
loM to improve R&D (Product improvement and Component replaceability); loM to aid

with a Circular Supply Chain.

6.1.1.1 Overcome barriers

As mentioned in the literature review, the CE is being held back by specific barriers
such as cultural and regulatory barriers (Hart et al, 2019). Other literature suggests
that supply chain collaboration and integration positively affects supply chain
performance and can also positively affect CE implementation (Gupta et al., 2019).
This means that in order to benefit from better performance in the supply chain or a
better CE implementation, inter and intra supply chain collaboration is important. As
mentioned in the literature review, Kassen (2019) explains that e-collaborative
platforms can enable cooperation between government and citizens, and boost public
sector innovations. Thus, through the IoT and cloud computing platforms, the oM can
facilitate e-collaboration with the supply chain or with governments to overcome the
cultural and regulatory barriers and improve SC performance and CE

implementations.
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6.1.1.2 Improve R&D - Product improvement

R&D departments are continuously searching to improve previous and develop next
generation products. Among other things, the oM provides the opportunity to gather
data of the quantified-self and material degradation; and provide Big Data Analytics
with Machine Learning techniques. Predictive analysis provided by the gathered
guantified-self application can be useful to understanding future market trends
(Dalhammar, 2016; Casarejos et al., 2018) and enables organisations to better
understand how their products are or can be used (Wilberg et al., 2017). Data acquired
from material degradation can be used to provide insight into the product's weakest
components. With this information, R&D can focus on these aspects during product
redesign which makes the product more durable thus lengthening the product life

cycle.

6.1.1.3 Improve R&D - Component replaceability

Ever since the industrial revolution, products have been designed with a lower
durability to break at a certain time to maximize profits (Friedel, 2013). This
phenomenon is called ‘planned obsolescence’ and is a means to ensure continuity for
organisations and long-lasting profits by eliminating the second hand markets (lizuka,
2007). To improve the lifespan of products, repairing became more important but
unfortunately, organisations reacted and made it harder to repair their product.
Additionally, consumers who would repair their product at (often cheaper) independent
repair shops, would risk losing the warranty since the product was not repaired by one
of their certified partners (Svensson et al.,, 2018). These decisions led to a
countermovement called the ‘Right to Repair’ has emerged. According to Hanley,
Kelloway & Vaheesan, (2020, p3) the “ Right to Repair activists has advocated for
state-level legislation that would require manufacturers to make critical parts, tools,
and software available to independent technicians and consumers ”. Since people are
becoming more aware of planned obsolescence, customers and new legislations are
increasingly demanding to improve the component replaceability. The IoM can be
used to be one step ahead of the competition by identifying how products can be
designed to improve the replaceability of the weaker product components (which can

also be identified through material degradation data of loM).
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6.1.1.4 Creating a Circular Supply Chain.

The rising population and increasing scarcity of natural resource availability forces
organisations to adapt. Competition is becoming more fierce while the scarcity of
natural resources drives up the prices. Circular changes in the supply chain can
improve survivability of organisations. In order to implement circular activities,
compliance of suppliers is required. Large multinational enterprises have the power to
influence markets and societies (Geels & Schot, 2007) they can pressure suppliers to
change but often experience a lack of tools to do so (Bai & Sarkis, 2020). Technologies
can provide opportunities to ensure compliance and transparency across the supply
chain (Johnsen et al., 2018). The IoT technology (integrated into the oM configuration)
can provide transparency by tracking and tracing the product throughout the entire
logistic process and an online platform to enable inter-supply-chain collaboration
(Gnimpieba et al., 2015).

6.1.2 Barriers and limitations of the loM concept

The Internet of Materials can reach its full potential when government, top-
management and individuals embrace data-driven decision making. Unfortunately, the
concept also has its limitations and barriers. This paragraph discusses limitations and

barriers that can emerge when the 1oM is broadly implemented in society.

6.1.2.1 Managerial issues

Top Managers are responsible for both the return on investment and to realise a
reduction of the environmental impact of products, manufacturing- and logistic
processes (Yang et al., 2018; Elhabashy et al., 2019). A new business mind-set helps
corporations to move towards sustainable developments (McDowall et al., 2017;
Manzini & Vezzoli, 2003), as sustainable strategies and business models provide the
basis for corporate contribution to CE (Witjes & Lozano, 2016). As mentioned in
paragraph 4.1.4.1, there is a need to create changes in value chains, from product
(re)design, new operational systems of production and consumption, and material

recovery by restoring the value of used resources (Ghaffar et al., 2019; Geissdoerfer
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et al.,, 2017). Meanwhile, top managers struggle. First of all, there is a lack of (1)
industry interest, (2) information on the life cycle of products, as well as a shortage of
advanced technologies for cleaner production (Geng & Doberstein 2008; Su et al.,
2013) (3) standardization of material reuse processes (4) interface design, difficulties
in upgrading technology, and outdated models (Rajput & Singh, 2019). Thus,
companies might experience great difficulties implementing oM, as it encounters
complex system design challenges that require coordination on many levels;
technology, circular business models, funding, organisational change, and so forth
(James et al., 2015; Hopkinson, Chen, Zhou, Wong, & Lam, 2018; Hart, et al., 2019).

6.1.2.2 Safety & privacy issues concerning data

It is essential to deal with privacy concerns concerning the rise of new technology
(Monreale et al., 2010). To regulate information sharing between businesses within a
supply chain and customs, the European Union installed the data protection law
(among other laws). The law states that “everyone has the right to respect for their
private life” (European Court of Human Rights 2010). This law makes product tracking
trickier once it reaches the consumption phase. When multiple devices are connected
to the internet, it also has more entry points to the organisational systems and thus
giving it new areas to attack and/or new interfaces to exploit (Sen, 2015). To tackle
safety and privacy concerns, organizations that use online cloud databases are
increasingly finding the requirement to anonymize the acquired personal data (Sen,
2015). Through anonymizing, data is transformed in such a way that sensitive private
information can no longer be retrieved (Monreale et al., 2010). Data Leakage
Prevention (DLP) is an effective way to prevent data loss (Purohit & Singh, 2013).
Specialists can secure databases in order to minimize the risks of security leakages
(Ahmed & Hossain, 2014). The DLP protocol detects and prevents unauthorized
attempts to copy or send sensitive data (Purohit & Singh, 2013).

6.1.2.3 Sensory issues

When organisations use sensors on their products in order to acquire data for decision
making, the empirical data derived from the interviews (interviewee 1, 4, 6, 7 and 9)

has shown that in practice there are multiple issues that come into play. Nowadays,
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organisations use sensors just for the sake of gathering data. They place the sensors
and after a while they attract the information from the device or check the data acquired
within a cloud platform. The cost of sensors, placing sensor devices on products,
sending data to data storing servers and facilitating IT Infrastructures are the biggest
limitations (interviewee 1). There is a possibility that the sensors did not acquire the
right data; or that the sensors broke two weeks after placement. Instead, organisations
need to have a clear goal of what they want to get out of the data and make a plan on
how to acquire it. Continuous monitoring is essential but costs time and money. More
advanced sensors are not always the best decision. A clear consideration has to be
made about what quality and price range the sensor needs to have. Improved sensor
capabilities and reliability is often equivalent to a higher sensor price and more
advanced sensors often use more energy. When the products — equipped with sensors
— are powered by battery-energy, high sensor energy consumption can become a

problem.

6.1.2.4 Deep learning technology

Gartner describes hyper automation as one of the 9 strategic technology trends for
2021. “Hyperautomation is the idea that anything that can be automated in an
organization, should be automated” (Panetta, 2021). Machine learning is often used
to improve automation within organisations that use large databases. Deep learning
technology is becoming the new trend and is a more advanced technique within
Machine Learning. Deep learning technology is a useful technology to quickly react to
changing business processes and requirements. It uses so-called ‘neural network
algorithms’ that analyze large volumes of data allowing the system to automatically
learn (Whiting, 2020). Unfortunately, there is a large downside to deep learning
technology. The technology is data hungry, uses a lot of processing power and
therefore consumes a lot of energy (interviewee 9; Marcus, 2018). The question
remains whether deep learning's significant increase of energy consumption
compared to previous machine learning techniques is counterintuitive to the goals and

objectives of the Circular Economy. Future research should shed light on this matter.
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6.2 Limitation of research

Exploratory research brings along the limitation of only providing observations and
insights into a specific topic. This means that it is often only generalizable for a small
target group. In order for it to be generalizable to the population at large, additional
research on the matter has to be conducted.

The aim of this master thesis was to achieve a thorough understanding of which
technology combinations were relevant to the Internet of Materials meanwhile
understanding the added value of these combinations to the Circular economy.
Therefore, at the start of the research process, the decision was made from a
grounded theory based on interviews with technology experts that were familiar with
the concept of the Circular Economy. Unfortunately, this thesis was written during the
‘Corona crisis’, which made it harder for people to participate. Furthermore, it turned
out to be difficult to find experts who are familiar with both subjects. Eventually, the
decision was made to interview the technology experts within the field of Machine
Learning, Internet of Things and Sensor technology. This led to insufficient primary
data concerning the Circular Economy. The added value of the 1oM to the CE was not
really acquired through the interviews. To still obtain the necessary information to
answer the question, valuable information was gathered from academic literature,
government documents and organizational records. Due to a minimal sample size and
time requirements, empirical data results were sometimes based on only a few
interviews and made grounded theory formation within this thesis hard.

Qualitative studies have the risk of a participant or observer bias. Interviewees
were contacted with an introduction text and topic description which could produce
bias responses. To minimize biasities, interviews were structured with interview

guidelines; interviews were recorded and transcribed.

6.3 Recommendation for future research

At first, this thesis only used a small sample size compared to academic literature
papers, and thus might contain some biases. It is advised to replicate this research to
strengthen the idea of an oM. This can be done through new exploratory research

and through confirmatory research when continuing on the ideas from this thesis.
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Aside from the replicating research, new research can also be conducted to come to
new or deeper insights. Below some of the future research suggestions are listed.

6.3.1 Identify actual benefits and costs of loM technology in practice.

The application of loM technology is technically possible, however, currently the added
value of applying the loM technology is no more than a theory. Future research should
shed light on the actual value of the 1oM technology in practice, which can be value in
terms of profit, but also value in terms of achieving sustainable operational

management decision making.

6.3.2 Investigate the added value of Deep Learning technology to oM.

As mentioned in the limitation of this master thesis, deep learning technology is a
newly used technology that cuts out human interaction within the process of data
analysis. This can be a huge added value to the oM, however, the deep learning
technology is data hungry. It uses a lot of processing power and therefore consumes
a lot of energy. Future research should investigate whether deep learning can be
implemented into loM applications. Furthermore, it should also shed light on whether
deep learning's high energy consumption is counterintuitive to the goals and objectives

of the Circular Economy.

(Similar research suggestions can be made for what ‘the tactile internet’ or ‘Fog

computing’ can mean to the Internet of Materials).

6.3.3 Impact of 5G and 6G on loM

The current and still new 5G networks and in the near future the 6G networks can have
a big impact on current technology implications (Kota & Giambene, 2019). “This
communication technology has progressed by generations but the next advance is
seen as a paradigm shift” (Alsharif & Nordin, 2017). It provides enhancements in
bandwidth, flexibility, and intelligence and can and is two to three times as powerful as
earlier 4G systems. With this improvement in mind, future research should investigate

the impact of 5G and 6G networks to the Internet of Materials application.
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7. Conclusion

Due to the linear economy, the earth can no longer sustain itself and disruptive
changes towards a more sustainable Circular Economy are essential (Ellen MacArthur
Foundation, 2015). Resource scarcity is becoming a reality for a large variety of
materials (Pagoropoulos et al., 2017). Multiple closed-loop cycles of remanufacturing,
recycling and of reuse, can make sure that raw materials retain their physical
properties and value for as long as possible (Jonker et al., 2017). The closer
corporations get to resolving or dismantling material wastage, the better the progress
towards CE (Hart et al., 2019). Governmental incentives and corporate circular
strategies have been insufficient due to uncertainty regarding cost, ROI and lack of
standardization (Kristoffersen et al., 2019; Kristoffersen et al., 2020; Geng &
Doberstein 2008; Su et al., 2013). As a result, the world is only 9% circular and the
trend is heading in the wrong direction (Circle Economy, 2019). Literature on societal
change has indicated that disruptive innovations can be used to establish or speed up
the transition towards CE (Shin & Lee, 2011). The Industry 4.0 configurations, known
for disruptive digital technologies, may have the potential to overcome important
barriers to CE (Sousa Jabbour et al., 2018; Wilts & Berg, 2017). The rapid discovery
of new technologies and the exponential growth of IoT applications are key to making
the transition towards Circular Supply Chains possible (Lasi et al., 2014; Stock &
Seliger 2016; James et al., 2015; Shrouf et al., 2014).

The findings from the literature review support the emphasis that oM is a
combination of specific digital technologies to acquire data-driven (business) decision
making. This study has validated the accuracy of prior attempts by Hosny (2015),
Abowd (2020) and Liaskos (2020) to conceptualise loM. As the author agrees with the
findings that loM can 1) play an important role gathering data on materials to minimize
material degradation. 2) IoM can use data insights for the purpose of (re)designing
products and make it more durable or easier to repair; 3) gather interpretable data
from the quantified-self, - which can be an added value for customer as well as
manufacturer, 4) monitor, track & trace materials/products, in order to gain insights
into the life-cycle of the product or material. It is also established that the oM is a

continuous process that consists of four phases: (1) (material) data generation,
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acquisition and storing; (2) (material) data sharing; (3) data analytics; (4) data-driven
decision making. Phases 1, 3 and 4 are essential to generate useful insights. While
phase 2 is essential to the inter-supply-chain collaboration. In order to collect and
analyse oM data, digital technologies such as IoT and Machine Learning are key. The
aim of oM is to provide businesses with valuable data on material use, in order to
enable data-driven decision making. To collect data on materials (IloM), 10T technology
is used that consists of three layers: 1) a sensor layer; 2) a data transmission layer;
and 3) a storage layer (Gnimpieba et al, 2015). The complexity of the sensors in the
sensor layer depend on the use-case. The IoM uses sensors simultaneously to gather
a large variety of data types, making it more reliant on machine learning algorithms to
perform Big Data Analytics. These existing and future machine learning techniques
can be integrated into the 10T system in order to make it an autonome and self-
analysing system (Lee et al., 2016; Adi et al., 2020). This is where IoT and IoM differ.
loM uses loT technology to collect data, for the purpose of finding ways to lengthen
the material life cycle of products or components. Thus, the main difference between

loT and IoM is that (different) algorithms are used to collect data.

To the Circular Economy, the value of loM and Big Data is hard to deny since
the performance of systems and processes can be optimized. When the digital
(industry 4.0) technologies and Big Data Analytics are used in cohesion, key insights
on material data (loM) can identify efficient ways to redesign products, and contribute
to (re)manufacturing- and (reverse) logistic operations. Meanwhile, support the
applications of circular strategies and build a path towards more sustainable operation
management. In addition, inter-supply-chain collaboration can improve organisational
performance and drive a supply-chain to become circular through the implementation

of cascading resource flows. Transparency in terms of data sharing is key.
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To conclude, itis established that loM has a positive effect on the transitioning towards
a CE as IoM can accelerate business understanding of material degradation and
produce more accurate predictive models. Organisations have expressed a need for
guidance, tools and methods to extract insights and the oM can lead the way by
strengthening decision making during choice processes. In addition, circular business
models and/or strategies with an integrated loM system can deliver many attractive
features for multiple parties, however to work, the IoM needs to be integrated within
the entire organisation and preferably by the entire Supply Chain.

Steven Gerards (2021): “Internet of Materials is the future, not a fantasy!”
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VI - Appendix A

Interview guide

Deel 1: Introductie

(introductie; kennismaking; uitleg van thesis; achtergrond
van interviewee)

Introductie
- (Liever je of u?)
- Ondanks dat de scriptie zal in het Engels geschreven, zal dit
interview in het Nederlands zijn.
- Toestemming voor het opnemen van het gesprek
*Ik zal vertrouwelijk met je antwoorden omgaan en zal
gegevens anoniem verwerken in mijn rapport.

Mezelf voorstellen en introductie thesis
- Eigen naam
- Bedrijffskunde master Strategic Management
- Radboud Universiteit Nijmegen
- Werk naast studie bij adviestak van Radboud UMC.
-k heb een interesse in Dataficatie, 0T en blockchain

In het kader van mijn masterscriptie voer ik een literatuuronderzoek en
een empirisch onderzoek uit met als doel om de twee verschillende
onderzoeken samen te brengen. Op deze manier hoop ik ‘Internet of
Material’ te introduceren, te verkennen en te conceptualiseren. Daarnaast
wil ik ook een link leggen tussen een IoM en een Circulaire Economie.
Uiteindelijk zal de scriptie drie frameworks bevatten

Dus tot slot, het doel van dit interview is om een beeld te krijgen wat er
volgens jou allemaal komt kijken bij “Internet of material”. Ik ben in dit
interview geinteresseerd in zowel achtergrondinformatie als feiten als je
mening over het onderwerp. Hou je dus vooral niet in.

Achtergrond van interviewee:
Woonplek, Studie, Werk en functie, Interesse(s)

Zou je zeggen dat je kennis hebt van alle drie de onderwerpen: Internet
of things, sensor technologie en machine learning?

Heb je nog vragen over het interview?

Voordat ik uitleg wat ik, aan de hand van de literatuur, versta onder
“internet of material”, zou ik graag weten wat
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Deel 2:

concept vorming

Q1. “Wat is _jouw eerste gedachte over wat een “internet of
materials” eigenlijk inhoud”?

Als we kijken naar de relatie tussen materialen en data dan zie je -— voor
zover ik weet — twee verschillende relaties.

De eerste relatie is iets zoals “Structural health monitoring”. Dit wordt
momenteel veel toegepast in de luchtvaart. Onderdelen van vliegtuigen
worden gemonitord met als doel om een waarschuwing te geven op het
moment dat er iets niet goed gaat. Het gaat vaak niet verder dan een
waarschuwingssysteem en zijn hierdoor niet schaalbaar.

Je hebt ook de relatie waarbij de data uit van materialen wordt verzameld
voor onderzoek. Denk hierbij aan “material informatics” waarbij data is
verkregen om de ontwikkeling van materialen te verbeteren (bijvoorbeeld
warmte-sensoren die data vergaren om de design van een laptop te
optimaliseren) .

Als je deze twee relaties tussen materiaal en data samenneemt kom je
bij een voorlopig concept van internet of materials.

Het doel van IoM is om met de data design continue te optimaliseren,
terwijl de degradatie van materialen kan worden bijgehouden en
ondertussen gebruiksdata kan worden vergaard (zoals hoe wij als mens
met de voorwerpen omgaan). [SG1]

Goals IoM:

Inform redesign

Quantify fatigue

Promote quantified-self applications

Q2. Zou internet of material realistisch zijn

Q3. Vanuit een IT perspectief (van de machines), wat zijn volgens
jou de stappen die nodig zijn om een internet of material te
bereiken?

*Denk hierbij mogelijk aan de drie onderwerpen Sensor technologie,
Internet of Things en Machine Learning en hoe dit in een Brede zin

opgezet of ontwikkeld dient te worden.

Q4. Mogelijke toepassingen?

Q5. Vanuit een menselijk perspectief, Zou een internet of material
op een grote schaal uitgevoerd kunnen worden?

(*wat zijn volgens jou de stappen om een Internet of material te
bereiken?)

- Is het gemeenschap er klaar voor? gezien het feit dat het wel het
privacy van personen tot een bepaald niveau zou kunnen aantasten.
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Qb5a. Het Nederlands kabinet heeft gesteld dat Nederland in 2050
een circulaire economie moet hebben. Kan “Internet of materials”
volgens jou bijdrage aan deze circulaire economie? Zo ja, waarom
wel? Zo nee waarom niet?

Q5b. Kan het ook helpen met de transitie naar een circulaire
economie?
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Deel 3: Discussie van het
theoretisch concept

Pak het model erbij en kijk naar input

Deel 4: Afsluiting

(Indien nodig een samenvatting; Feedback van interviewee)
Dankwoord

Feedback vragen

Ken je meer mensen die ik kan interviewen?

Geinteresseerd in  het resultaat bij afronding van
masterscriptie?

de
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Interview codings

Title: ATLAS ti - Code Report

Project: Internet of material

User: steven

Date: 27-12-2020 - 13:18:25

Scope: Show codes in any of the groups CE. Goals. loM or T echnologies
Code Grounded Code Groups Comment

o Anabtics 8 Goak

& Automatization 2 Goak

= Bamiers loh 32 loM

o Buidingblodks 3 o

o |CE 4 CE

= CE transition 5 CE

= CE with koM 18/ CE

s |Costs 28 Goak Cost of setting up IoM and IoM to save costs

= | Deep learning 15 Technologies Part of ML

o Degredation T Goak

L o I o O & N A )

onomon

ononon

First thoughts on loM

Framework loh
Functicnality lohd

Ins ufficient knowledge

Internet of things
long-term proces s
Machine learning
Menitoring
Outsowrcing

Purpuse of gathering data
Readiness of society

Redesign
Reliability

Rules

Safety and security
Semsos

Strategic management

Term oM

8 loM
28 oM
52 laM
1 Goak
28 Technologies
& Goak
29 Technologies
3 Goak
2 Goak
13 Goak
13 Goak
5 Goak
8 Goak
1 Goak
2 Goak
29 Technologies
2 Goak
31 oM

Both contains sensor reliability & reliability of data-driven DM

Tablel. Codings gathered from the transcriptions with atlas.ti software
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Operationalization of the research concept

Sensitizing concept

Dimensions

Aspects

Internet of Materials

Technology

Machine learning

Internet of things

Sensor technology

Big Data Analytics

Smart manufacturing

Industry 4.0

Goal

Degradation

Data-driven decision making

Automatization

Redesign

Circularity

Product tracking

Quantified-self

Data sharing

Intra-organizational
collaboration

Barriers

Costs

Knowledge requirement

Societal resistance

Safety issues

Legislation

Technology

Sensor reliability

Circular economy

Applications

Circular business model

Circular Supply chain

Circular strategies

10Rs

Technology

Machine learning

Internet of things

Sensor technology

Industry 4.0

Barriers

Cultural

Regulatory

Sectorial

Financial

Goal

Closing loop

Slowing loop

Intensifying loop

Narrowing loop

Dematerialising loop
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VII - Appendix B

Industry 4.0 ecosystem

w Sharing and
analytic platform

Monitoring Tools

Control system

:IW

NDT

Smart Mobility

Smart Life
cycle data

Remanufacturing

Industry 4.0

Smart Sensor

Robotics Smart logistic

[
M2M o Cloud
I service
Security Additive

manufacturing

Figure 14. Opportunities from Industry 4.0 for remanufacturing, and its key enablers. Reprinted from:

Yang, S., MR, A. R., Kaminski, J., & Pepin, H. (2018). Opportunities for industry 4.0 to support
remanufacturing. Applied Sciences, 8(7), 1177.
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loM process with the CE through the monitoring of material degradation

Figure 15. CE benefits of the oM process through the identification of material degradation
(adapted from Mboli, J. S., Thakker, D., & Mishra, J. L. (2020). An Internet of Things-enabled

decision support system for circular economy business model. Software: Practice and

Product

Still functional? |

NO YES

Y

Disassembled
the product

| How far gone? |

Experience)

The 10 Circular strategies (10Rs)

Refuse means making product redundant by discarding its function or by offering the same function with a
completely dissimilar product

2 |Rethink means making product use more intensive

3 |Reduce means use of lesser natural resources in manufacturing

4 Reuse means use of discarded product by another user which is still in working condition and the original
functionalities are present

5 |Repair means repairing and maintenance of defective product so that it can be used with original function

6 |Refurbish means restoring an old product to bring it up to date

7 |Remanufacture means use parts of discarded product in a new product with the same function

8 |Repurpose means use discarded product or its parts in a new product with a different function

9 |Recycle applies recycling for processing materials to obtain the same or lower quality of product

10 |Recovering use incineration of material for energy recovery

Figure 16. The 10 Circular strategies (reproduced from Kirchherr, J., Reike, D., & Hekkert, M. (2017).
Conceptualizing the Circular Economy: An analysis of 114 definitions. Resources, conservation and
recycling, 127, 221-232).
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Circular Business Models (CBM)

BM Elements Case study

type Alpha

Beta
CBM Closing loops

Gama

Delta

and remanufacturing
Slowing loops

Intensifying
loops
Narrowing
loops
Dematerialising
loops

Partnership with clients interested in
low carbon solutions

Development of partners to provide High investment on R&D for product Low waste in the
reverse logistics of used furniture  development

production stage

Product design based on
long usage stage

Internal product development and bike
assembly to ensure long usage stage and
facilitated maintenance

Bike sharing intensifies use phase

Rent service instead of product

ownership

Figure 17. Explaining the loops within Circular Business Models through case study

examples (Reprinted from Geissdoerfer, M., Morioka, S. N., de Carvalho, M. M., & Evans, S. (2018).

Business models and supply chains for the Circular Economy. Journal of cleaner production, 190, 712-

721).

The Vs of Big Data (5Vs)

Volume

Velocity |

+ Terabytes
+ Records/Arch
+ Transactions
+ Tables, Files

+ Batch
+ Real/near-time
+ Processes

+ Streams

S d SVS Of Statistical
+ Structure . . istical
+ Unstructured Blg Data + Events

+ Multi-factor + Correlations

Probabilistic * Hypothetical

+ Trustworthiness
* Authenticity
+ Origin, Reputation
= Availability
+ Accountability

Figure 18. The 5 V's of Big Data from Perwej (2017) p16
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Distinguish generated data

Big Data is generated by humans, machines or a combination of humans and machines. Data
generation processes can be broadly categorized on the basis of the source and are distinguished
between machine-generated, human-generated and organization-generated data (Ghotkar and Rokde
2016). When comparing the different type of data generation sources, each type can be distinguished

by using the 3V-imperatives (volume, velocity and variety).

1. Data from machine-generated data is extracted through various instruments such as sensors,
cameras, satellites, logfiles, bioinformatics, activity trackers, personal health care trackers and
many other sense data resources. Machine-generated data has a high velocity Machines are
capable of producing data at very high rates and the generation speed tends to be only limited by
capital budgets (Monash 2014). These two features makes machine-generated data the largest

source of Big Data.

2. Human generated data mainly comes from social media activities such as status update,
tweets, photos, videos, etc. This generation method tends to be generated in average volumes but
with an high velocity. The data is mostly semi- and unstructured and still has to be processed by

using one of the data analytic tools.

3.  Organization generated data are usually data in the form of records located in a fixed field or
file and are trustworthy and highly structured in nature (Ghotkar and Rokde 2016). It has an average
gathering speed and is gathered in relatively low volumes. The data is of a highly structured nature

and is therefore --considered as trustworthy.

# Machine-Generated Data: The machine-generated data comes from several computer networks, sensors, satellite, audio,
video streaming, mobile phone applications, and prediction of security breaches.

+ Human-Generated Data: It can be collected by people, for example: identification details having their name, address, age,
occupation, salary, qualification etc. Whereas, real streaming data can be generated by various files, documents, log files,
research, emails, and social media websites such as Facebook, Twitter, YouTube, LinkedIn.

# Business-Generated Data: The volume of business data of all companies across worldwide is estimated to double every

1.2 years such as transactional data, corporate data, and government agencies data.

Figure 19. Domains of generated data (Saggi and Jain, 2018 p768)
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dlveamon'mdnglabnmod-ﬁ% material deployment stages heavy machine leaming / data mining

one-off applications integratable within mass-production material development / selection stages
unscalable / untransfarable scalable across objects simulation data for design
ag. structural heaith monitoring / UFUX smart / prediction capabilities eg. malerial informatics / FEA
practice research

Figure 20. IoM - Linking practice to research (Hosny, 2015)

Data rate & .
Power Consumption Cost: Low © @ @ @ High
'\
100 MBps Wi-E Cellgla\r
Wi FI
Halow
1 M8ps Bluetooth
Licensed LPWAN
LTE-M
100 KBps EC-GSM
NB-loT
1 KBps
Range
>
im 10m 100m 1km 10 km

Figure 21. 10T data-transfer technologies .
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CIRCULAR BUSINESS MODEL

[ it et - Ingineraiiin™ "

[ + Waste disposal « .2 Eiﬂmg-mh :
: : _organisations | S s S, |
| WASTE 0 o Laning !
 MANAGEMENT Lo mars :
: Resource leakages 1
D e e e e e == Endaflpmam' _________ .. Recycle :
l" life cyle organisation i
i '
' PRODUCT Consumer — !
' USAGE & User Fepair ]
I [g=osa=s) 1
] 1
b o e e e e e e e e e e e Sell or _ _ Reuse _ Repairing __i
! Lease preduct  organisation 1
] 1
1 | ]
: PRODUCTION Circular end-product :
, OF END-PRODUCT manufacturer ]
I A 1
e -]
|

| |
]

PRODUCTION : -

Circular supplier(s !
| OF COMPONENTS pplier(s) € |
i T ]
: ______________ Minimizedusg = = = = = = ========== :
, RAWMATERIAL . I , |
| EXTRACTION Raw materials | 1

1
1

Figure 22. Circular business model with important components (by S.F. Gerards)




