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Language learning is typical a sequential process, in which one language is learned after the
other. There is reason to believe however that simultaneous language learning, or learning
words from multiple languages for one concept at same time, is more efficient. Not only can
early learners successfully learn languages simultaneously, associative learning also predicts
simultaneous learning to be advantageous in general. Moreover, the integrated nature of
the lexicon, with all languages in one storage, seems well fit for simultaneous multilingual
learning. To test the likelihood of the hypothesis that simultaneous language learning is
indeed beneficial, we developed a model of the lexicon called the Self Organizing Model
of MUltingual Processing (SOMMUP) using self-organizing maps. One map successfully
learned semantic similarities, the other one orthographic similarities. Importantly, none of
the maps developed any language-specificity. The model was able to successfully predict the
patterns in reaction times as found in specific and generalized lexical decision tasks depending
on word frequency, neighborhood density, and neighborhood frequency. Using the validated
model, we tested the effect of sequential, mixed, and simultaneous language learning. Due to
imbalances in the tests we could not draw conclusions on the results however, though signs of
relevant patterns were found. Combined, these results not only warrant further research into
the possibility of simultaneous language learning, but also have interesting consequences for
our view of the human lexicon and models thereof.

1. Introduction

Young children have the impressive ability to learn
languages at a greater pace and to a greater proficiency than
adults. Moreover, they can do so sequentially as well as
simultaneously, without obvious detrimental effects on speed
and level of acquisition (Snow, 1993). Do only children have
this ability to learn languages simultaneously and is it their
developing brain that allows for such amazing feats, or would
it also be possible, even advantageous, for adults to learn
languages simultaneously?

At first sight, language learning in children seems to be
qualitatively different from that in adults. For a long time,
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researchers believed in the existence of a critical period, in
which the brain would be optimally equipped for language
acquisition (Lenneberg, 1964). More recently, however, the
distinction between early and late learning is considered to
be less strict, and the concept of a critical period has been
questioned (Birdsong, 2005). Instead, a more quantitative
approach has been proposed: The ability to learn languages
is thought to decline gradually with age, in contrast to a sharp
decline after a circumscribed period. A gradual decline does
not only imply that at a later age it is still possible to learn
languages to a certain proficiency, but it might also entail that
simultaneous language learning is possible for late language
learners too.

Whether it is indeed possible for late learners to learn
multiple language simultaneously has not yet been subject
of research. One reason lies in the intuitive expectation
that simultaneous language learning is not beneficial at
all. At first sight, simultaneous language learning would
appear to be detrimental, because the increased cognitive
load of simultaneous learning could result in a mixing up
of languages. The abundant similarities that exist between
languages, especially for languages from the same language
family (Ruhlen, 1991), would only increase this effect,
because one would no longer be able to tell whether a
particular variant of a word belongs to one language or the
other. According to this line of reasoning, keeping languages
separate in the process of learning is needed to keep them
separate in the lexicon, as well as in actual usage.

However, the correctness of this intuitive account can
be questioned for several reasons. For instance, some
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interactions between languages are unavoidable and also
emerge in sequential learning in the form of transfer (Odlin,
1989) from the native language to foreign languages and vice
versa (Pavlenko & Jarvis, 2002). These can actually have
both positive and negative effects on the rate of acquisition.
The effect is positive for shared parts of languages, such as
cognates1 (Lotto & Groot, 1998), but is negative for aspects
that differ, such as phonemes in the foreign language that
do not exist in the native language (Gathercole & Thorn,
1998; Groot, 2006). This interaction between languages
is in line with the demonstration that the human lexicon
consists of one store for all words, irrespective of language,
rather than of several stores, one for each language (Dijkstra,
2005). This counterintuitive organisation of the human
lexicon also has consequences for simultaneous learning,
because if words from all languages end up in one big store
even after sequential learning, there is no direct reason left to
expect detrimental language mixing effects of simultaneous
learning.

In sum, whether late simultaneous language learning
is possible, even beneficial, remains an open question,
waiting to be answered. Three different outcomes of
research into this issue are possible. In the worst case,
the greater cognitive load of simultaneous language learning
and the smaller segregation between languages could lead
to a decreased rate of foreign language acquisition, both
for similar and dissimilar language aspects. We call this
possibility the ’Interference hypothesis’. Alternatively, one
could expect facilitation for similarities between languages,
but detrimental effects for dissimilarities, as in the case of
transfer. If this is the case, the question remains which effect
is the strongest; A cost-benefit analysis would then determine
whether or not simultaneous language learning is worth the
effort. This hypothesis we call the ’Similarity-dependent
facilitation hypothesis’. The third possible effect is that both
similarities and dissimilarities are learned more effectively
due to the active (conscious) and simultaneous comparison
between the words in different languages, allowing them to
be stored more effectively in the integrated lexicon. This
implies that the learning of both similarities and differences
between languages should be influenced positively. This
last hypothesis we will refer to as the ’Facilitation due to
comparison hypothesis’.

The goal of the present study was to assess these
hypotheses (see table 1) and their associated predictions
on how late simultaneous learning influences language
learning. The obvious way to test them would be to let
human participants learn lists of words from existing or
non-existing languages simultaneously and sequentially, and
to examine the effect on error rate, error types, and speed
of acquisition. However, we instead adopted a different
approach, namely to construct a model of the human lexicon
with which these hypotheses can be tested both qualitatively
and quantitatively. Following this approach, all aspects are
under the control of the experimenter, in contrast to studies
with human subjects. Human subjects can, for example,
know more of a language than they consciously report, use
unpredictable learning strategies, or just not pay attention.

Table 1
Three possible hypotheses concerning the effect of
simultaneous language learning, with the minus sign
(’-’) signaling a negative effect and the plus sign (’+’) a
positive effect on learning.

Hypothesis Similarities Dissimilarities
Interference - -

Similarity-dependent
+ -facilitation

Facilitation
+ +due to comparison

The drawback of building a model instead of doing human
experiments is that the validity of a model is hard to verify;
one can only try to make the model as plausible as possible,
paving the way for subsequent studies in human subjects.
So the second goal of the study was to develop a model
which was structurally plausible and would also allow us to
study the way and the speed in which a multilingual lexicon
develops.

In sum, first a model of the fully learned multilingual
lexicon we called SOMMUP (Self-Organizing Model
of MUltilingual Processing) was built and validated.
After confirming that the learned performance of the
model was in accordance with data from experiments,
we attempted to determine to what extent the model’s
language acquisition method, simultaneously or sequentially,
influenced error rates and speed of acquisition. Finally,
we formulated proposals for behavioral experiments to test
model predictions, as well as a proposal for a user model on
the basis of the cognitive model. In total, this amounts to
a quantitative test of the hypotheses in a new model of the
bilingual lexicon and the acquisition thereof, in order to shed
light on the advantages or disadvantages of a simultaneous
instead of sequential language acquisition approach.

2. Sequential versus
simultaneous learning

As a preliminary to model construction, we will first
consider differences between the different forms of learning
and counterarguments against the intuitive account of a
detrimental effect of simultaneous learning. Sequential and
simultaneous learning modes are not as distinct as they might
seem, but form the extremes of a continuum. Sequential
language learning on the one end involves learning one
language after another. First, one becomes proficient in a
language, and then, possibly after some time, one starts to
learn the next. This is the mode of learning often seen
in specialized language courses. On the other end of the
continuum is totally simultaneous learning, in which words
for a concept are presented at the same time in multiple

1 For explanations of the vocabulary, the reader is referred to
appendix A, in which the most important psycholinguistic concepts
are listed for reference.
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languages. In-between forms of learning also exist. For
example, in high school multiple languages are learned
within the same time period, but with separate sessions for
each language. This latter type of learning we will refer to as
mixed learning.

The focus of the current study is to determine to what
extent these different forms of learning affect speed and
accuracy of learning. There are at least two important factors
that may codetermine the learning effect:

1. The structure of the human lexicon
2. The effect of simultaneous learning
When considered in combination, there appear to be good

reasons to expect different effects than intuitively expected
by most. An elaboration of these reasons follows in the
subsequent sections.

2.1 The structure of the human lexicon

It seems trivial that simultaneous language learning can
only take place successfully if the lexicon is able to
differentiate the language streams of two or more languages
that arrive more or less in parallel. In other words, it
should not depend on sequential input to keep the languages
separate. Intuitively, an advantage of sequential language
learning is the clear segregation of languages, facilitating
separate storage in the human language system. This
segregation could help to keep languages apart in both
perception and production. However, it turns out that
the human language system actually has an integrated
organization. Simultaneous lexical access in multiple
languages has been demonstrated to be part and parcel
of human language processing, implying that simultaneous
learning may be less problematic or detrimental to the
learning process than expected. Considerable evidence
converges on this view of an integrated, simultaneously
accessed lexicon (see Dijkstra, 2005). In the following, we
consider three lines of evidence in support of the integrated
nature of the lexicon. Studies like the reviewed ones will be
important later for testing the cognitive model we developed.

The first line of evidence in support of an integrated
lexicon involves interlingual homographs. The rationale
underlying this research is that, if the lexicon is integrated
across languages, interlingual homographs should yield
different response times than non-homographs, because the
active readings from both languages can affect processing.
This effect should only be present for bilinguals, as they
know the multiple readings of the word, and no such
effect should be present for monolinguals. Many studies
confirm this view. For instance, Lemhöfer and Dijkstra
(2004) tested Dutch-English bilinguals in both an English
and a generalized lexical decision task. In an English
(L2)2 lexical decision task, they found that homographs
were recognized faster than English control words. In a
generalized lexical decision task, homographs were again
found to be recognized faster than L2 control words, but
about equally fast as L1 control words. Lemhöfer and
Dijkstra state that this difference between tasks is probably
due to a difference in the homographs’ relative frequency

in the two languages: L1 words are subjectively much
more frequent than L2 words. This difference in subjective
frequency leads to faster recognition of L1 (Dutch) words
compared to L2 (English) words. In the English lexical
decision task, the slow recognition for the L2 reading
of homographs is facilitated by the faster L1 recognition,
resulting in in-between reaction times. In the generalized
lexical decision task on the other hand, the L1 reading
of a homograph can be used exclusively to recognize the
homograph, making recognition of homographs as fast as the
recognition of non-homograph L1 words. The contribution
of the slower L2 reading to the reaction time is probably
negligible in this case. Other researchers confirmed that no
homograph effect exists for monolinguals (Studnitz & Green,
2002).

The second line of evidence focuses on the
cross-linguistic effect of interlingual neighbors. If the
lexicon is integrated, an effect of the number of interlingual
neighbors on word recognition is expected, just as there
is an effect of intralingual neighbors (Andrews, 1989;
Grainger, 1990). This is exactly what was found by Grainger
and Dijkstra (1992), who reported that the number of
neighbors in L1 influences recognition of words in L2 in
a lexical decision task. The more neighbors a word had
in L1 compared to L2, the slower the responses of the
participants were. L2 words with more neighbors in L2
than in L1 were recognized faster, possibly because the
same-language neighbors help to recognize the word as a
member of a particular language. In a follow-up study, Van
Heuven, Dijkstra, and Grainger (1998) replicated the earlier
results in both progressive demasking and lexical decision
experiments: The greater the number of neighbors in L1, the
slower the reaction times on L2 recognition.

The third and last line of evidence concerns the effect
of context and prior knowledge of the expected language
on word recognition. If a specific language context
or prior knowledge could help the language system to
exclude words from non-target languages, access would be
language-specific and words in different languages would
still be separable to a certain degree. To test this effect,
Dijkstra et al. (2000) did three experiments using mixed
lists of Dutch-English homographs that were either of
high-frequency in one language and low-frequency in the
other, or of low-frequency in both. In the first task,
participants had to judge which language a word belonged
to (a language decision task), while in the other two tasks
they only had to respond to items either in Dutch or English
(a go/no-go go task). Results were comparable to the results
discussed earlier for homographs, with a striking additional
effect: Participants often missed the low-frequency meaning
of a word if a high-frequency one also existed in the other
language, even if they did not need to respond to the language
of the high-frequency word. For example, subjects failed
to correctly classify the English-Dutch homograph ANGEL

2 For the clarification of conventions such as the L1-L2
distinction and the representation of orthography and semantics, see
appendix B.
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as a Dutch word, as the English reading is more frequent
than the Dutch one. This finding shows that information
about the target language cannot be used to exclude words
from a non-target language. Other potential evidence for the
language membership of a target word, like the language of
the previous word in a list (Studnitz & Green, 1997; Thomas
& Allport, 2000) or prime, unconscious knowledge of
expected language (Bruijn, Dijkstra, Chwilla, & Schriefers,
2001), can also hardly be used to facilitate word recognition.
In total, the available evidence clearly points to a language
non-selective access procedure and an integrated lexicon.

To summarize, research has found many interlingual
interactions in language comprehension. Taken together,
the currently dominant view is that the lexicon is
integrated and is accessed in a language non-selective
way. Instead, bottom-up competition between semantically
similar concepts and orthographic similar words, across
languages, guides the process of lexical access. The
implication is that, as the language system is using a
mixed representation of words from different languages and
language context effects hardly influence lexical selection,
there is no direct reason to expect negative effects of
simultaneous language learning on the representations on the
lexical level; a facilitatory effect is at least as likely.

2.2 The effect of simultaneous learning

Even though bilinguals possess an integrated lexicon, they
are still able to distinguish the languages of the words within
the lexicon, both when judging the language of a word, as
when producing speech. This property of words, which
could well be extralexical (Dijkstra & Heuven, 2002), needs
to be learned during language acquisition and hence could
be distorted by simultaneous learning due to the mixing of
languages. Intermixing of words from different languages
during acquisition does indeed occur (Odlin, 1989), though
with both positive and negative effects that depend on the
specific similarities and dissimilarities between languages.
There are, however, no strong reasons to expect increased
language confusion due to simultaneous learning; in fact,
less confusion appears more likely.

When one learns a new language, abundant interactions
occur between the native and foreign language, due to
transfer from one language to the other and back. Especially
lexical transfer, i.e., the transfer of words from one language
to another, takes place quite frequently (MacWhinney,
2005). A high degree of transfer implies that, initially, L2
learners use their L1 lexical knowledge in L2 understanding,
making L2 totally dependent on L1 (MacWhinney, 2005).
With increased L2 proficiency, this dependence decreases
and L2 develops a language system of its own, especially
when L2 language structure is significantly different from
L1. High proficiency in L2 can even lead to opposite
transfer, from the foreign to the native language (Pavlenko
& Jarvis, 2002). This makes sense, because in general
the direction of transfer is determined by the relative
strength of the languages, modulated by the applicability
of the rules, categories, and words from one language to

another (Pienemann, Biase, Kawaguchi, & Hȧkansson, 2005;
MacWhinney, 2005). In addition, as mentioned, transfer
between languages can have both positive and negative
effects, since similarities between languages are learned
faster due to transfer, while differences are often found to
be more difficult to acquire (De Groot & Van Hell, 2005).

Although transfer allows language learners to make
use, to some extent, of cross-language similarities, this
transfer is mostly an automatic process. It may result
in overgeneralization, but, since only salient similarities
transfer, also in missing out on similarities that remain
hidden due to slight differences in, for example, word form.
For instance, the similarity between NOTTE, NOCHE and
NUIT, is understandable from a historical perspective, but is
not striking enough to automatically facilitate learning when
learned separate from each other. In addition, in the case of
multiple non-native languages, transfer mainly occurs from
the stronger L1 to the weaker non-native languages and to a
lesser degree between the non-native languages.

Thus, a differential effect of simultaneous compared to
sequential learning is not a case of intermixing versus
non-intermixing of languages. Neither is it a case of
positive versus negative effects of such intermixing, because
intermixing with both kinds of effects is also found
in sequential learning. Rather, the remaining question
is whether this intermixing will become worse when a
languages are learned simultaneously or that simultaneous
learning will actually lead to less intermixing and improved
language learning.

To answer this question, we now turn to the study
of associative learning, which is thought to be the basis
of most, if not all, of the learning in both animals and
humans (Lieberman, 2000; Skinner, 1953). Associative
learning is based on the development of associations between
stimuli, primarily induced by simultaneous presentation.
In vocabulary learning, the foreign word is normally
presented together with the native translation or a (graphical
representation of) the concept in order to form such an
association. This method is called paired associative learning
(De Groot & Van Hell, 2005). If one would apply
this method in a simultaneous way, one stimulus would
be presented together with its translational equivalents in
multiple languages and the learners would need to learn the
similarities and differences between them: They have to learn
to discriminate the different words for the same concept,
making their task essentially a discrimination conditioning
task.

In contrast to research on language learning, for
discrimination conditioning comparisons have been made
between simultaneous and sequential learning. In a variety
of tests, e.g., on object naming (Cuvo et al., 1980) and
concept learning (Tennyson, Tennyson, & Rothen, 1980),
simultaneous discrimination conditioning proved more
effective than successive discrimination conditioning with
respect to learning speed, number of errors, and retention.
The explanation often given is that simultaneous presentation
allows for easier comparison and discrimination, allowing
for better separation and storage of the stimuli. On the other
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hand, successive presentation, certainly over a long period
of time, results more in generalization than discrimination.
Apparently, instead of making distinctions between slightly
different words for the same concept, the representation of
the native word is generalized as much as possible to try to
incorporate the new words, so no distinction between native
and foreign words is made until this is absolutely necessary.
This slows down the process of learning to distinguish words
from different languages in sequential learning, in contrast to
the facilitating effect found in simultaneous learning.

Even if one is skeptical about the extent to which words
can be reduced to simple stimuli, there is evidence that
simultaneous presentation also facilitates rule formation and
reasoning skills (Lee, 1982). Rule formation in this case
involves the induction of rules upon the confrontation of
the stimuli only, both implicitly and explicitly. There are
plenty of rules in the comparison between words in different
languages that could help the discovery of similarities and
differences between translational equivalents.

This is nicely shown by a number of European projects
that focused on determining the rules of conversion
between languages on the basis of the similarities and
differences between languages, and tried to put the results
of this comparison to use in teaching. Examples are the
Eurom4 (Castagne, 2001), Galanet (Degache, 2003), IGLO
(Mondahl, 2002), and EuroCom projects (McCann, Klein,
& Stegmann, 2003). The first and second concentrated
on the similarities between the Romance languages (Italian,
Spanish, Portuguese, French), the second on Germanic
languages (Danish, Norwegian, Swedish, Icelandic, English,
Dutch, German), and the third on all languages in the
European Union. The EuroCom project, the largest project
and the only one still active, distinguishes seven sieves,
or conversion rules, which are mostly based on lexical
similarities and are depicted in table 2. Knowing these
conversion rules could, according to the founders of the
projects, greatly facilitate language learning. These projects
confirm that, at least for European languages, translational
equivalents are often so orthographically similar that they
can be converted into each other using rules. Thus, they
are similar enough to expect a facilitating effect on language
learning.

Instead of explicitly teaching these rules, the current
study assumes that language learners can derive these
rules themselves to some extent when confronted with
simultaneous language learning. In addition, teaching the
rules to the language learners should lead to even further
facilitation. In contrast, sequential learning is expected
to separate languages too much, hindering an active and
elaborate comparison for useful similarities and differences.

We conclude that the expectation that simultaneous
language learning will result in increased confusion between
languages is not founded on empirical evidence. Admittedly,
in language learning intermixing of languages occurs, but it
also does in sequential learning, for better and for worse.
Moreover, there is no reason to expect that the confusion
effect increases with simultaneous learning. To the contrary,
experimental studies on simultaneous versus sequential

conditioning have shown that simultaneous presentation of
stimuli facilitates both stimulus discrimination and rule
formation. These are expected to facilitate the acquisition
of words in foreign languages, which would be in line with
the ’Facilitation due to comparison hypothesis’.

2.3 Summary: the likelihood of simultaneous
learning

To summarize, the expectation that simultaneous language
learning will have a negative influence on language
acquisition seems based on two premises, which on closer
inspection both do not hold. The first states that the lexicon
is not made to process languages simultaneously and needs
sequential learning to keep languages apart. However,
the lexicon is not organized on the basis of language
membership, but on the basis of orthographic similarity.
Moreover, lexical access is language aspecific: Or languages
are accessed simultaneously all the time. As such, there
should be no difference for the lexical processing between
simultaneously and sequentially presented languages. The
second premiss concerns the acquisition process itself,
predicting more interference when stimuli are presented
together. Evidence from associative learning shows the
opposite though: Simultaneous presentation is beneficial for
the learning of discriminations, which is essentially what
needs to be learned in the acquisition of a new language.
Without a clear basis for the common-sense notion, it is again
an open question whether simultaneous language learning
will work or not in practice. We aim to provide the first
answers to this question in this thesis.

3. SOMMUP: A new model of
multilingual vocabulary learning

We took a modeling approach in order to answer the
question what the effect of simultaneous language learning
is. This means we required a valid model of the multilingual
lexicon. Because there is no existing model that completely
incorporates the properties of the lexicon as described in
section 2.1 and is actually a learning model that allows to test
the hypotheses, a new model is proposed. The new model,
called SOMMUP, was built, first concentrating on general
plausibility and then zooming in on the effect of learning
schemes. In this section, the design of the new model,
structure, data, training and performed tests are described.

3.1 Design of the model

A number of choices had to be made in order to construct
a plausible and usable model of the lexicon and lexical
learning. These choices were largely based on properties of
the human lexicon as given in the previous chapter. More
details on the choices and their implications are provided in
the subsequent sections.

3.1.1 Restriction of the domain. Language learning is a
large domain, because many aspects of a language have to be
learned (e.g., grammar, orthography, phonology) and many
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Table 2
The seven sieves distinguished by EuroCom for facilitated learning of most of the European languages, focusing on vocabulary
acquisition.
Nr. Sieve focus Description
1 International vocabulary Focuses on the 5000 words which are shared across languages, largely

based on Latin or Romance.
2 Pan-Romance vocabulary About 500 words that are common to the Romance language family.
3 Sound correspondences Educates the sound correspondence formulas, or letter combinations

which diverged during the development of languages, but actually share
a common root and meaning.

4 Spelling and pronunciation Establishes the conversion rules from spelling to sound, showing
which regularly occurring letter combinations in different languages
correspond to common sounds.

5 Pan-Romance syntactic structures Educates the nine basic sentence types found in Romance languages.
6 Morphosyntactic elements Provides the basic formula for discovering the common grammatical

elements.
7 Pre- and suffixes Describes the common and specific pre- and suffixes, allowing to

separate these parts from the root words for easier identification.

words and rules exist. As a consequence, the first choice in
the design of any model of multilingual language learning is
in terms of content: Which aspects should be incorporated
and which should be excluded? In our case, we restrict our
model to vocabulary learning, leaving all grammar rules out
of the model. This choice significantly reduces the required
complexity of the model, but still keeps its applicability to
real world situations, because the vocabulary is thought to be
the most important part of a foreign language to be mastered
(De Groot & Van Hell, 2005).

A second restrictive choice concerns whether
orthographic and/or phonological aspects of vocabulary
should be included in addition to semantics and language
membership. Orthography has the advantage that it is
(mostly) equal across alphabetic languages, whereas
phonology shows more variations in sound repertoire and is
harder to encode. Moreover, more databases of orthography
are available than of phonology. Because a large dataset
containing words in a significant number of languages is
required for a model of multilingual learning, this makes
orthography the preferred aspect of language to include.
The choice for orthography implies that some effects, such
as phonological neighborhood effects, cannot be accounted
for by the model when they are not accompanied by
orthographic neighborhood effects (e.g., the English word
LANE and Dutch word LEEN).

In summary, the model was restricted to vocabulary
learning using semantics, language, and orthography, which
constitute three essential ingredients for successful word
translation.

3.1.2 Localist vs. distributed model. Models can be of a
localist or a distributed type. A localist model uses single
nodes to represent single symbolic entities, while distributed
networks use the pattern of activation in a number of nodes
to represent such entities. The choice for a localist or
distributed model depends largely on the purpose of the

project. We wished to build a learning model that ideally
should scale well when concepts and words are added in the
future.

For this purpose, a localist model does not seem to be
the best choice. In this model type, one node would be
assigned to each concept or word form, as, for example, in
the Bilingual Interactive Activation model (BIA)(Dijkstra &
Heuven, 2002). The implication is a linear increase in the
number of nodes with the number of concepts and words,
achieving no dimension reduction at all of a given input
database. Even more importantly, the weights within these
models are often set by hand and no learning or development
occurs.

The second type, that of distributed models, is inspired
by the biological neural coding of information: It is the
combined pattern of activations in a group of nodes that
represents a concept or word, which is an efficient way
of reducing dimensionality. Moreover, distributed models
in general are learning models for which a wide range
of learning algorithms exists. Therefor, a distributed
model appears the best choice for our model, implying
that distributed representations for semantics, language
membership, and orthography are needed.

3.1.3 Choice of algorithm. As the next step in setting
up the model, we needed to choose a learning algorithm
from the existing series of learning algorithms for distributed
networks. The algorithm should be able to incorporate the
most important aspects of the lexicon and the word learning
process. In this regard, the lexical competition for both
words and concepts, based on similarities and dissimilarities
within and between languages, is of great importance. In
addition, the algorithm should be able to learn to recode
between combinations of semantics, language membership,
and orthography in several directions. This latter restriction
makes many algorithms unusable, because most are only
suited for learning in one direction, and only allow learning
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in other directions by explicitly training the model also for
these directions. Two algorithms that do not have these
restrictions are Radial Basis Function (RBF) networks and
Self Organizing Maps (SOMs).

RBF networks are built of neurons incorporating different
kinds of non-linear function, the so-called basis functions
(Bishop, 2006). The properties of these functions are often
trained first, after which a linear combination of the basis
functions fitting the output is found in a second training step.
The basis functions can be chosen to be bidirectional, if
functions are used with such properties (e.g., Gaussians as in
Deneve, Latham, & Pouget, 2001). However, RBF networks
used in such a bidirectional way are often not trained, but
set by hand and are not suited for representing neighborhood
relations.

In contrast, SOMs have been used extensively to represent
neighborhood relations (Kohonen, 2001). SOMs were
developed to distribute multidimensional data on a lower
dimensional map, often as low as two dimensions. In
the context of language learning and multilingualism (Li,
1999, 2000, 2001; Li & Farkas, 2002; Li, Farkas, Zhao,
& MacWhinney, 2004; Li, Zhao, & MacWhinney, 2007),
this approach has proven to be fruitful, and it provides an
effective and intuitive way of explaining neighborhood and
other effects. Learning by SOMs is also regarded as a
biologically plausible way of learning, implementable even
by mere neuronal Hebbian learning.

Importantly, the SOM-algorithm is an unsupervised
algorithm, i.e., there is no feedback-signal to drive learning.
This might seem to be a problem, because the model needs
to learn translations, for which feedback is standardly used.
Li and colleagues also built a SOM model of bilingual
language learning and found a solution to this problem (Li
& Farkas, 2002). They trained the network by linking two
SOMs, representing phonology and semantics, with Hebbian
learning. Training of the associations between the semantics
and phonology SOMs occurred by presenting data to both,
which can be thought of as representing an input and a target,
and correlating the activations in the maps using Hebbian
learning. After learning, the weights between the two SOMs
represented the correlations between the unique word and
unique semantic representations. In this way, activating
a word in the phonology SOM automatically activated the
appropriate language-specific concept in the other SOM and
the other way around. However, this method is not applicable
to language unspecific semantic representations with a
separate language representation, because there is no longer
an unique one-to-one relation between words and concepts:
The mapping problem of phonology to semantics is no
longer linearly separable and cannot be resolved by Hebbian
learning. Interestingly, mere unsupervised learning in a SOM
can instead be used to learn the input-to-output mappings, a
process called autoassociative mapping (Kohonen, 2001). By
means of this technique, the activated units in the semantics
and phonology or orthography maps, combined with the
language information, can be mapped together on yet another
SOM to learn the associations, which suits the current
purposes well (see figure 1A for an explanation).

A possible disadvantage of the use of SOMs becomes
apparent from the work of Li and colleagues: These models
are essentially localist in nature, because following learning,
each concept or word is linked to one representational unit
and far more units are needed than there are words or
concepts. This goes against the principle of dimensionality
reduction. Using interpolation methods (Göppert &
Rosenstiel, 1993, 1995, 1997; Aupetit, Couturier, &
Massotte, 2000; Campos & Carpenter, 2000; Flentge,
2006) that allow to determine points in-between nodes,
this shortcoming can be corrected. However, preliminary
tests indicated that the autoassociative capabilities of SOMs
depend heavily on one unit per pattern in case there is
no direct relation between the neighborhoods in the to
be associated subspaces. Figure 1B graphically depicts
this problem. This meant that we had to use a localist
representation in the hidden layer. In theory, more
generalization might be reached by turning each neuron into
a convertor for a small part of the subspaces, a convertor that
is ’mappable’ from one subspace to the other, a combination
of NG and RBF networks (figure 1C). Time limitations on
the project prohibited the implementation of this solution.

In sum, in the new model the SOM algorithm was
incorporated, because it can be used bidirectionally and is
sensitive to neighborhood relations and lexical competition.
Another SOM was incorporated for the mapping from
orthography to semantics. Preliminary tests indicate that
this mapping could only be achieved by means of a localist
representation, which means no dimension reduction was
reached, even though theoretically interpolation methods
should be able to resolve this problem.

3.1.4 Representation of semantics. A major issue
regarding the representation of semantics is whether concept
representations are shared between languages or not. Apart
from this point, the semantic representation must be
sufficiently high in resolution to allow for a detailed
discrimination of concepts, and it must be upscalable,
because the lexicon needs to incorporate a large number of
concepts.

Li and colleagues (Li & Farkas, 2002; Li et al., 2004)
chose to encode the semantic properties of a word by
means of the accompanying words in native texts for both
their DevLex and SOMBIP model. For example, the
fact that RIVER is frequently accompanied by WATER
tells us something about its meaning. In addition, it
tells us something about the semantic similarity of RIVER
and BOAT, because BOAT will also frequently be found
in combination with WATER. However, this approach
automatically results in language-specific representations,
because the accompanying words in a native text are
in a specific language, and therefore different for
different languages. This is in strong contrast with the
language-independent representations that are thought to be
present in the brain and used in a number of other models
(e.g., Dijkstra & Heuven, 2002).

For obtaining proper language aspecific semantic
representations, at least three approaches exist. The
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Figure 1. A. A simplified schematic view of autoassociative mapping of two-dimensional data on a one-dimensional SOM. The axes
represent the input and output part of the data. The SOM is represented by the large filled circles, the model vectors, and the black line,
which describes the surface defined by the model vectors. The blue line indicates the data vector x, of which applying only the input part
(xin) should lead to the appropriate output part (xout). The closest model vector is denoted by 1, the second by 2. Only taking the output part
of model vector 1 leads to an overestimation of xout (upper red line), while using model vector 2 leads to an underestimation (lower red line).
Taking the weighted average with respect to distances d1 and d2 of model vectors 1 and 2 leads to a correct approximation (middle dashed
red line). B. If the data is not as regular, meaning that the input coordinates cannot be converted to the output coordinates as straightforward
as in the case described by A, applying a weighted average does not lead to a correct approximation: the red dashed line is not on top of the
output part of the blue line. C. A possible solution to the non-mappable input and output data of panel B is to train each unit to describe a
function that converts the input to output data and vice versa. Instead of learning functions for each unit, functions could be learned for the
space between each pair of units.

most obvious approach is to encode semantic properties
of words by means of conceptual features, for example,
representing an object’s size and its color. However, it is
hard to determine how many and what features are needed
to obtain a fine-grained distinction between a large number
of concepts, and many, more abstract, concepts are hard to
reduce to features (e.g., game). A second procedure is to
apply Li and Farkas’ (Li & Farkas, 2002; Li et al., 2004)
method to texts from one language only. This results in
a language aspecific representation of semantic meaning.
Instead of using different texts for each language, only
the texts for, for example, English can then be used to
represent all semantic properties. A third approach would
be to take the distance between concepts in networks
describing semantic relations, so-called semantic networks,
as a measure of similarity. This method is used, together
with text based measures, in the DevLex model (Li et al.,
2004). Using texts or semantic networks both can offer a
high resolution representation, with the semantic network
being the most extendible, as long as any added words are
also included in the semantic network. A disadvantage here
is the relative unavailability of data. Only a few databases of
sufficiently large semantic networks exist and often only for
English concepts. The same is true for texts with sufficient
semantic information to distinguish a set of words, balanced
with respect to the amount of information available for each
word, are not easily found. Moreover, semantic networks or
texts in one language offer word meanings for that language
only, implying that subtle differences in meaning between
translational equivalents are not captured.

Of the three methods just discussed, the use of a

sufficiently large semantic network offers the most flexibility
and highest resolution. We opted for inclusion of
the semantic network WordNet (Fellbaum, 1998), which
represents the word meaning for about 150.000 English
words. Because words from all languages are mapped
onto the English meaning, this approach fails to take
into account the differences in exact meaning between
languages. Unfortunately, the Global WordNet project
has not progressed sufficiently to allow WordNet based
representations for all languages we are interested in
(Vossen, 1998; Fellbaum & Vossen, 2007) and not all
projects that are part of the Global WordNet project are freely
available, otherwise these language-specific WordNets could
have been used. Nevertheless, the lack of language-specific
semantic representations is not expected to affect the results
of the model in any way related to the characteristics of
the human lexicon or the hypotheses regarding the effect of
simultaneous learning.

3.1.5 Representation of language. To model word
translation using language-specific orthography and
language aspecific conceptual information, language
membership information is needed. Otherwise, it would not
be possible to proceed from language aspecific semantics
to language-specific orthography. However, there is no
consensus on whether language membership should be
explicitly included in a model (French & Jacquet, 2004).
On the one extreme, explicit language nodes are used
that represent language activation and may bias the word
selection process depending on context. This approach
is implemented, for instance, in the first version of the
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Bilingual Interactive Activation model (BIA) (Dijkstra &
Van Heuven, 1998). However, as mentioned in section
2.1, empirical studies indicate that language context does
not strongly affect lexical selection. An alternative method
is to keep language membership as a completely implicit
representation. This still allows word translation if both
the orthographic and semantic representations contain
enough information to keep languages apart. In the
SOMBIP model, for example, the semantic and orthographic
representations are language-specific, which implicates no
language representation is needed (Li & Farkas, 2002).
However, when a shared conceptual representation between
languages is assumed, this is not feasible.

An intermediate approach is to represent language
information, as required for the translation of words
without context, but give it a low weight compared to
orthography and semantics, resulting in a small effect on
the translation but not enough to totally exclude words from
other languages. A possible distributed representation is a
bit-wise code with the length of the number of languages,
i.e., a string of zeros for non-target languages and a one
for the target language. Importantly, each representation
of language membership should be unrelated to all others,
because the languages are initially assumed to be unrelated.
Any underlying language similarities and relations should
be determined by the model itself and should not be
predefined in the language representation. In other words,
the distributed representations of the languages should be
orthogonal.

3.1.6 Representation of orthography. With respect to
orthography, it is important that letter identity, letter order,
and possibly letter similarity are captured. The most
biologically plausible and still rather efficient method for
this purpose, compared to alternatives like position encoding,
currently is using open bigram counts (Dehaene, Cohen,
Sigman, & Vinckier, 2005). N-grams represent all sequential
letter combinations of length n in a word, in the case of
bigrams 2 (e.g., a bigram representation of TREE is t, tr,
re, ee, e ). Open bigrams are a generalization of bigrams and
include all combinations of two subsequent letters in a word,
with or without in-between letters. The more letters there are
between the two letters of the bigram, the lower the value
assigned to the bigram (e.g., an open bigram representation
of TREE is tr, t e, re, r e and ee, where t e and r e have a
lower count value, e.g., 0.6, while the rest has count 1). It is
also possible to capture letter similarity using open bigrams,
for example, by generalizing the activation on a bigram to
bigrams with similar letters (e.g., activation from the bigram
p p generalizes to p b). Because the method is seen as most
similar to the one used in human cognition, it is also most
likely to be the method resulting in human-like behavior.

However, preliminary tests showed that open bigrams
did not result in correct orthographic maps for the dataset
used and that many bigrams were needed to capture all the
differences between words. Instead, we therefore chose to
use orthographic edit distances between words (Damerau,
1964; Levenshtein, 1966). Thus, each word was represented

by its orthographic distance to all other words. This approach
allowed for fine grained distinctions, while the number
of features could be reduced by using the distances to
just a subset of words, because there is much redundant
information in the edit distances to all other words. Letter
position and letter identity are not directly captured using
edit distances, but edit distance does allow a determination of
the orthographic similarity between words. Letter similarity
could also be captured by setting lower switching costs for
more similar letters, but this proved not to be necessary for
the purposes of this thesis.

Table 3
The choices made for the most important aspects of the
model.

Aspect Choice
Domain Vocabulary learning, mapping

orthography to semantics,
modulated by language.

Model type Distributed
Algorithm Self Organizing Map

Representations
Semantic Language aspecific edit distances in

WordNet
Language Bit-wise numerical representation

with a low weight compared to
orthography and semantics

Orthography Edit distances

3.1.7 Summary. In sum, the selected properties of the
model were as indicated in table 3. This set of choices
combines to a model with topographical representations in
all layers, due to the SOMs, and with language aspecific
semantic and orthographic representations, resembling the
dominant view of human language processing (Dijkstra,
2005). Moreover, the model makes only a few assumptions
with respect to the representations of languages, word
semantics and word forms. The main assumption is that all
three are represented in a distributed way. More specifically,
we used a orthogonal representations for language, without
any assumptions on language relatedness, and edit distances
for word forms and semantics. Essentially, this mainly
assumes that human cognition can assess similarity for both
words and concepts, and not directly what features it uses.

3.2 Implementation
As was discussed in the previous section on the design,

the model was implemented using the SOM algorithm.
In the next section, this algorithm is briefly described.
Furthermore, the structure of the model is discussed. All
implementations were done using the SOM Toolbox for
Matlab (Vesanto, Himberg, Alhoniemi, & Parhankangas,
2000).

3.2.1 Algorithm. The model was implemented using
the Self-Organizing Map (SOM) algorithm, applied for
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autoassociative mapping. For more details than the short
overview given here, the interested reader is referred to
Kohonen (2001).

The SOM algorithm describes a way to represent
multidimensional data on a lower dimensional, often
two-dimensional, map. This is done by defining a grid of
reference points and a metric that defines the distance from
the reference points to the data points. Next, the reference
points are updated iteratively or batch-wise to reduce the total
distance between reference and data points. Reference points
that are close together, learn together to develop and maintain
the topological representation.

Formally, this can be described in the following way.
The algorithm starts with a dataset containing vectors xk =
[η1, η2, . . . , ηn] ∈ <, with n the dimensionality of the
data. To model this data, a set of model vectors mi =
µi1, µi2, . . . , µin ∈ < is defined at random, with n again being
the dimensionality and i the number of the model vector.
These model vectors, or units, all have indices defined by the
topology of the map. For most purposes, a rectangular map
is used, with the ratio between dimensions determined by
the ratio of the two most dominant eigenvectors in the data.
In such a rectangular map, the indices can be described by
r ∈ <2. For example, the first node on the second row would
have index r = (2, 1). Combined, a SOM is thus defined
by a set of model vectors µ, with indexes r organized in a
rectangular map, on which the data vectors x are projected.

Next, after random initialization of the reference vectors,
the map can be trained in a sequential or a batched way. For
sequential learning, the map is trained using the update rule:

mi(t + 1) = mi(t) + hci(t)[d(x,mi)] (1)

The last part of the formula describes the distance d
between input vector x and model vector mi. Usually, the
standard Euclidean distance measure d(xi,m j) = ||xi −m j|| =√

(
∑

(xi
2 − m j

2) is used. The degree to not only the winning
model vectors, the Best Matching Unit (BMU) with index
c, are updated, but also of neighboring units, denoted with
index i, is defined by the neighborhood function hci. This
neighborhood function is essential to develop or maintain
the map topology, as it makes neighboring units learn in a
comparable direction and thus represent comparable values.
The neighborhood function defines what this influence looks
like, for which often a Gaussian shape is used,

hci(t) = α(t) ∗ exp
(
−
||rc − ri||

2

2σ(t)2

)
(2)

where α(t) is a scalar-valued learning rate factor and
the parameter σ(t) defines the width of the neighborhood
function. Both decrease over time t to allow for finer
distinctions. In addition to the neighborhood function,
neighborhood is also defined by the shape of the connections
units make: These can be either square, only connections
to the horizontal and vertical neighbors, or hexagonal,
with connections to the horizontal, vertical and diagonal
neighbors. The latter is less biased towards horizontal and

vertical orientations in the map development and is often the
shape of choice.

Batch-learning follows the same line of reasoning, except
that all vectors in the input data are presented at once. This
means that in batch-learning, after initialization, the model
vectors are set to the weighted average of the input vectors in
their neighborhood:

mi(e + 1) =

∑N
i=1 hi(di)∑N

i=1 hi
(3)

where di defines the distances of all N input vectors to
node i, which is determined by comparing the data vectors
x to the current reference vector positions mi(e), modulated
by neighborhood hi(e). For clarity, t is replaced by e
in the batched version of the formula, because instead of
iterating over individual patterns, batched learning iterates
over epochs.

The advantage of the batch version of the SOM
algorithm is that it converges faster to an optimal solution.
For the purpose of manipulating the learning scheme in
multilingual learning, both types of learning could proof
important though, as sequential SOM training resembles
sequential concept-word presentations, while batch training
is better comparable to simultaneous presentation of multiple
associations. Preliminary tests pointed out, however, that
batched learning did not work if not all patterns from the
set are presented. Because, with only partial data, the model
vectors change to the mean of only the presented part of the
neighborhood, leading to the loss of representation of already
learned patterns that are not included in the partial data.
Details on how simultaneous learning was implemented
instead follow in section 6.1.

The quality of a SOM is often determined using
two measurements (Kohonen, 2001), the first based on
the remaining error in the map and the second on the
preservation of topology. The remaining error is called
the average quantization error, calculated as the squared
sum over the difference between the data vectors and
the corresponding BMUs, or ||x − mc||. An often used
measurement of topology quality is based on the fact that
when the representation is topological, the reference vectors
closest to a data vector should be neighbors of each other.
This can be formalized by calculating the proportion of data
patterns for which the two closest reference vectors are not
adjacent on the map: the lower this proportion, the better the
topology. Note that for large maps, the topology value is slow
to decrease because the large number of nodes increases the
chance that two nodes are not located next to each other.

As the SOM algorithm is in essence unsupervised,
an alternative way is needed to make the network learn
word-language-concept associations. This can be done by
making use of the pattern completion abilities of SOMs,
also called autoassociative mapping. For clarification, let us
divide a data vector x into an input and output part, called
xin and xout, which also results in an input and output part for
the model vectors, respectively min and mout. If a network is
trained on the combined vectors x, representing both input
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and output, the model vectors learn to represent both the
input and output side of the data. If the map is subsequently
tested on only the input part xin, which is compared to the
min part, the same BMUs should be found as when the entire
vector would be presented, as long as there is sufficient
redundancy in the data. In the current application, there is
such redundancy: if two of the factors orthography, language
and semantics are known, the third is also uniquely defined.
This means that an approximation of xout (one of the three
factors) can be found by looking at the output part of the
winning node, mout

c . It is an approximation because the
winning node mc is normally situated near vector xout, not
exactly on it.
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Figure 2. A schematic overview of the structure of the model. The
model consists of four layers (orthography, translation, semantics,
and language membership), of which the first three are SOMs. The
numbers on the sides of each layer represent the number of model
vectors, or nodes, along the length and width of the layers. The
inputs to the orthographic and semantics layer are shown in the
rectangular boxes on the sides. The layers are connected by lines,
depicting that the output of one layer is used as features for the
next map. For example, the Levenshtein-Schepens (L-S) distances
are the features for the orthography map and the coordinates of the
BMUs in the orthography and semantics SOMs, combined with the
language information, are the features for the translation layer.

3.2.2 Structure. In the brain, semantics and orthography
are stored in separate areas, with strong interconnections
in-between (Münte, Heinze, & Mangun, 1993; Crosson
et al., 1999; Tagamets, Novick, Chalmers, & Friedman,
2000). An analogous division in structure was used in
the model, with a separate SOM for orthography and for
semantics, plus a translation SOM in-between, which in turn
was mediated by a language layer representing contextual
language information. The complete model is shown in
figure 2.

The orthography and semantics SOMs were both
two-dimensional SOMs. The ratio between the two sides of
the rectangular maps was chosen to roughly correspond to
the relative length of the two dominant eigenvectors of the
two datasets, which should facilitate topology development
(Kohonen, 2001). For consistency and to improve resolution,
we also used three times the number of words and concepts
in the orthography and semantics map, as in the hidden map,

resulting in 10353 (119 times 87) and 1470 (49 times 30)
units in these two maps respectively.

The third factor, language, was represented as a
one-dimensional layer with the number of units equal to the
number of languages, with no topographical properties. This
is not to say there is such a language representation in the
brain; instead the incorporated language signal should be
viewed as a contextual signal guiding the translation process
and as such has no direct corresponding neural correlate.

These three layers, orthography, semantics, and language,
were combined in another SOM, the hidden layer we call
translation layer. The data vectors for the translation
layer consisted of three parts (orthography, language and
semantics) and instead of autoassociative mapping with
only an input and output side, a three way mapping was
used. In other words, after learning, any two parts of
the hidden data vector should point to an unique BMU,
so orthography and language should define the appropriate
semantics, semantics and language the orthography, and
semantics and orthography the language. The data used
for the autoassociative mapping from the orthography and
semantics SOM were the locations of the BMUs. So both
SOMs received a pattern, which activated a certain BMU,
of which the position was sent to the translation SOM
and combined with the language representation to train the
hidden layer. For this translation layer, the number of units
was chosen to be three times the number of patterns, resulting
in a 115 times 90 units map.

In total, a large number of units was used to represent all
words and concepts. To be clear, we do not expect the brain
to use such an inefficient representation. Instead, the nodes
in the model should be viewed as ’resources’: The more
nodes are close to a word, concept, or relation, the better
it is represented and hence known. In section 5.1 we use
this rationale to define activation and subsequently reaction
time measures which should make clear how this works out
in practice.

Table 4
The most important properties of the data set.

Property Value
Number of concepts 490

Number of languages 8
Number of words 3920

Average word length (SD) 5.77 (1.96)
Average frequency (SD) 96 (203)

3.3 Data
We used a dataset generously provided by Theophilos

Vamvakos (Vamvakos, 2006) to both train and test the model.
The original dataset contains translations for nouns in 13
languages, of which we selected all languages with the Latin
alphabet, resulting in a selection of eight languages: English,
Dutch, German, French, Italian, Portuguese, Spanish, and
Catalan. In addition, nouns for which not all translations
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Table 5
The number of homographs, cognates and false friends in the dataset for each combination of two languages. The values are
depicted as homographs (cognates/false friends). Values on the diagonal represent homonyms within a language.
Languages English French Italian Spanish Portuguese German Dutch Catalan

English 0 (0/0) 32 (29/3) 1 (1/0) 6 (6/0) 4 (2/2) 20 (20/0) 22 (21/1) 7 (7/0)
French 32 (29/3) 8 (0/8) 4 (4/0) 12 (11/1) 10 (9/1) 11 (11/0) 10 (9/1) 41 (38/3)
Italian 1 (1/0) 4 (4/0) 4 (0/4) 57 (57/0) 61 (61/0) 2 (2/0) 2 (2/0) 35 (33/2)

Spanish 6 (6/0) 12 (11/1) 57 (57/0) 2 (0/2) 126 (126/0) 0 (0/0) 1 (0/1) 76 (75/1)
Portuguese 4 (2/2) 10 (9/1) 61 (61/0) 126 (126/0) 2 (0/2) 2 (2/0) 2 (1/1) 66 (63/3)

German 20 (20/0) 11 (11/0) 2 (2/0) 0 (0/0) 2 (2/0) 2 (0/2) 59 (57/2) 4 (4/0)
Dutch 22 (21/1) 10 (9/1) 2 (2/0) 2 (0/2) 2 (1/1) 59 (57/2) 4 (0/4) 5 (2/3)

Catalan 7 (7/0) 41 (38/3) 35 (33/2) 76 (75/1) 66 (63/3) 4 (4/0) 5 (2/3) 12 (0/12)
Total 92 (86/6) 128 (111/17) 166 (160/6) 280 (275/5) 273 (264/9) 100 (96/4) 105 (92/13) 246 (222/24)

were available were removed and characters with an
accent were converted to the non-accentuated characters.
Articles were also removed, because we were interested in
recognizing words from different languages in the absence
of such strong cues. In total, this left 490 concepts in 8
languages, totaling 3920 words.

For the semantic representation of each concept in the
dataset, the distance to all other concepts in the dataset
was derived from WordNet (Fellbaum, 1998) using the
distance rule as proposed by Lin (1998) and implemented by
Greenwood (2007). WordNet contains the semantic relations
such as hypernyms, hyponyms, holonyms, and meronyms
and the lexical categories of about 150.000 English words.
The distance measure as developed by Lin is calculated
by dividing the number of common semantic properties of
two concepts by the total number of properties of the two
concepts. This means the value always ranges from 0 to 1.
Applying this distance measure results to the current dataset
resulted in 490 values between 0 to 1 (mean: 0.07, SD: 0.12)
as a distributed representation of each concept.

For the orthographic representation, each word in the
dataset was converted into a sequence of edit distances
to all words. The edit distance was calculated using
the Levenshtein formula (Levenshtein, 1966), which
calculates the minimal number of operations required
to change one word in the other. Operations taken
into account are additions, deletions, and substitutions.
Alternatively, the Damerau-Levenshtein distance could
be used (Damerau, 1964), also including transpositions.
However, transpositions are not thought to induce
neighborhood effects, though recent evidence suggests
otherwise (Acha & Perea, 2008). We extended the distance
formula by applying normalisation, as proposed by Schepens
(2008). To keep the number of dimensions in bounds, only
the distances to a selection of 490 words out of all words
were used, resulting in edit distances ranging from 0 to 26
(mean: 5.90, SD: 1.82) for all 3920 words.

Lastly, for the language representation, a bit-wise
representation was used, with the first bit representing
English, the second French, etc. resulting in a string of 8
bits, the number of languages, with one being true. This

representation is orthogonal, as required by the design (see
section 3.1).

These data were combined with the word frequency
information found in the CELEX database for English
words (Baayen, Piepenbrock, & Gulikers, 1995) to also
account for frequency effects. The frequencies, ranging
from 1 per 100,000 to up to 1971 per 100,000 (mean:
96, SD: 203), were reduced to ten bins with an equal
number of patterns. The bins were numbered 1 to 10,
with the bin number representing the number of times the
total pattern (orthography, language and semantics) was
presented to the network in the training phase. We also
tried to use the frequency from CELEX directly as the
frequency of presentation. This worked to some extent, but
due to the large variation in frequencies the training time
increased considerably, because the low frequent patterns
were presented too little to be learned. With more training
time available, this would be a good option though. For
now, possible effects of frequency should be testable using
this simplified measure of frequency. We will refer to this
binned frequency as the frequency of a word for the rest of
this thesis, although it only really roughly corresponds with
the actual word frequencies.

Correct topography development and convergence in the
SOM algorithm is helped by normalization of the data, in
order to make sure all components in the data have the same
influence (Kohonen, 2001). We normalized each feature for
orthography and semantics to have equal variance. The data
for language we left unchanged, because we wanted it to have
a lower impact than the other data vectors.

Preliminary tests using this data pointed out a problem
though. Using the representations for both orthography
and semantics proved computationally complex due to the
high dimensionality of both the data and model vectors.
Luckily, both the orthography and semantics representations
contained a significant degree of redundant information, due
to the interrelatedness of edit distances: The edit distance
from A to B and A to C is also informative about the edit
distance from B to C. The redundancy allowed us to use a
subset of 100 out of the 490 edit distances as features, while
this did not influence the map development significantly.
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More detailed properties of the dataset, such as word
lengths and number of homographs, are shown in table 4 and
5.

3.4 Model training

Prior to training, the model was initialized randomly
within the ranges defined by the data, because there is no a
priori reason to expect an ordered start of the human lexicon.
Next, the network was trained using sequential learning (see
section 3.2) and the default parameter values for such a
network (Kohonen, 2001). This meant the starting value for
the neighborhood width was half the width of that particular
SOM and the learning rate started at 0.5, both decreasing
linearly over the total number of trials, which was 100 for
the complete model. The learning rate decreased to 0, the
neighborhood radius in the orthography and semantics SOM
to 1 and in the translation layer to 0. Decreasing the SOM
neighborhood radius to 0 in the translation layer was done to
ensure development of localist representations. Afterwards,
a finetuning session was done, starting with a learningrate
of 0.05 and a neighborhood of 1. Over another 100 trials,
the learning rate again reduced to 0, while the neighborhood
was constant for the orthography and semantics SOM and
decreased to zero for the translation SOM.

Table 6
An overview of all the tests performed on the model.

Test Subtest
Qualitative properties

Map structure
Language-specificity
Homograph representation

Quantitative properties
Monolingual frequency
and neighborhood effects
Homograph effects
Neighborhood effects
Language information effect

Effect of learning scheme
Sequential learning
Mixed learning
Simultaneous learning

For the specific tests as mentioned in the next section and
described in detail in the following chapters, two additional
versions of the main model were trained on subsets of the
data, as shown in table 7. This was done to ease comparison
with experimental data. The sizes of the maps were scaled
appropriately for the decreased number of patterns, which
decreased training time without influencing results. All other
properties of the model remained the same.

3.5 Model tests

The model was tested in three ways, as listed in table 6
and described in the subsequent chapters:

Table 7
The three versions of the model. The column called ’Model’
shows the name of the model as it is referred to in the text.
’Data’ shows which languages were included and ’Epochs’
how many trials the model was trained during the rough and
finetune phase. ’Proficiency’ shows whether there was an
imbalance in the proficiency for the different languages.

Model Data Epochs Proficiencya

Monolingual English 2 ∗ 1000 Balanced
Bilingual English, Dutch 2 ∗ 1000 Imbalanced (1/5)

Multilingual All eight 2 ∗ 100 Balanced

a Proficiency was modified by presenting one language more often
than the other. The numbers show the multiplier for the frequencies of
the words for each language, if applicable.

• Qualitative tests, focused on the structural validity of
the model.
• Quantitative tests, comparing the performance of the

model to reaction time data from behavioral experiments.
• Learning tests, testing the effect of different learning

schemes on the speed of language acquisition.
Details on the tests used and results found are given in each
chapter separately.

All analyses mentioned in these chapters were done using
either one of two methods. When the test involved the
difference between groups, a two-sided unpaired t-test was
used. When it involved quantitative variables, multiple linear
regression was applied. In this case, the β-values are reported
as slope values and the p-values for the β-values are given, as
well as the F, p and R2 values of the total effect. In either
case, the significance border was taken to be .05, while less
than .1 was considered marginally significant. All analyses
and plots were done in Matlab (Mathworks, 2008).

4. Qualitative test of model
validity: internal structure

To reiterate, we built a model of the human multilingual
lexicon to predict whether simultaneous language learning is
beneficial, compared to sequential language learning. The
model was implemented using SOMs and it was trained to
learn to convert concepts to words and vice versa in eight
languages.

Next, two types of tests of model validity were
performed. First the qualitative validity of the model
was tested, as described in this chapter. Three aspects
were considered qualitative properties of the model. The
first was the translation performance, or how well the
model translated and which alternatives it considered. The
second qualitative property was the representations that
developed in the maps contained in the model. More
specifically, the degree to which the model was either
language-specific versus aspecific was determined. Thirdly,
we analysed the representations for cognates, false friends
and non-homographs to see whether shared or separate
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representations were used.

4.1 Translation performance

After training, the first of the three qualitative tests
focused on the translation performance of the model, letting
the model translate sets of words from one language into
another language and checking for the activation of intra-
and interlingual neighbors. Translations were modeled by
two passes through the network: first from orthography
and language membership to semantics (e.g., STONE and
English to stone) and then from semantics and the target
language to orthography (e.g., stone and Dutch to STEEN).

After training, the multilingual version of the model
showed a quantization error of 0.54, 3.48 and 4.24 on the
semantics, translation and orthography SOM respectively.
The topology error was 1, meaning that the topology was
not yet fully learned, though the large number of units makes
it hard to decrease this value much. With these scores, the
model succeeded in learning the associations from words
to concepts and vice versa for all eight languages to some
proficiency, with 784 of the 3920 words converted to the right
concept and 491 conversions from concept to the right word.
This also allowed the model to translate from one language
to another by applying the two conversions successively,
resulting in 2736 correct translations or about 45 of the 490
correct translations per language pair in one direction.

Although a success rate of a only 11% is small, note that
this was mainly due to the short training time, only 100
epochs, while several thousand epochs is deemed normal for
randomly initialized SOMs (Kohonen, 2001). This implies
the model should be considered a not fully proficient learner
yet. A second source of increased error rate is the unbalanced
frequency distribution, even with the altered frequencies
(see section 3.3). The average frequency of the successful
translations was 9 (SD: 1.6) , which differed significantly
from the overall average of 5.5 (SD: 2.9) (p < .001).
This means the lower frequency ones were not presented
frequently enough to become learned to the full extent and
the patterns presented more frequently pulled too many of the
model vectors towards them, dominating map development.
This fits the picture of a low proficient language learner,
mainly knowing high frequent words. A third source of
increased difficulty for the model, causing longer training
times, was the small influence of the language membership
signal, leading to language errors. Lack of time kept
us from training the model further, though older training
sessions indicated that further learning improved translation
performance, as well as map and reaction time results, but
did not qualitatively change any of the results reported here.

The correct and incorrect translations allowed us to look
at the alternatives the model considered and the kind of
errors it made. Both alternatives and errors should be
orthographically and/or semantically related. Moreover,
the orthographic alternatives/errors should be language
aspecific, just as found experimentally (see section 2.1). This
was indeed what was found for most of the cases, as shown
for a number of examples in table 8. More elaboration

on the neighbors considered and the effect of neighbors
follows in section 5.3. So even though the model made
a large number of errors, the errors made sense to a large
extent. This probably also explains why the results on
other tests did not differ qualitatively when the model was
trained further in older tests: The model developed a global
structure on the basis of similarity, of which mostly the
details changed with extended learning. These first results
also showed that the representation that the model developed
was probably integrated across languages, since alternatives
of all languages were taken into account.

4.2 Map properties and language-specificity
The second series of tests focused on the structural

properties of the model by visualizing the maps that arose.
Note that the structure within the maps was not set by
hand, but developed throughout the learning process. The
tests specifically focused on the effect of language in the
model: To what extent did language-specific or aspecific
representations develop in the three SOMs?

Semantics SOM

Body

Substances

Places

Man-made

Time

Animals

Persons

FoodAbstract

Figure 3. The semantics SOM, with all concepts in red and names
for clusters in white. Concept names were automatically applied to
the BMUs of the patterns, while clusters were interpreted by hand.
Each hexagon represents one unit and the colors indicate similarity:
a large shift in color means a large shift in similarity.

The semantic map received language aspecific
input on the similarity of the concepts, meaning no
language-specificity was to be expected there. This is indeed



A SELF-ORGANIZING MODEL OF SEQUENTIAL AND SIMULTANEOUS LATE LANGUAGE LEARNING 15

Table 8
Example translations as performed by the model, showing the conversion from a word and a language to a concept and from
a concept and another language to a word, including the activated alternatives. Both correct and incorrect translations are
shown. Note the interlingual nature of the considered orthographic alternatives and the orthographic and semantic nature of
the errors.

Word Language Concept Alternatives Language Word Alternatives
Correct
FRIEND English friend doctor, king French AMI FAIM, PAI

KOPF German head mouth, tooth Italian TESTA PESTA, ESTAT
AREIA Portugueese sand mud, dust Dutch ZAND WAND, HANF

DICCIONARIO Spanish dictionary wall, castle Catalan DICCONARI DICTIONARY
DIZIONARIO

Errors
STOMACH English mouth brain, kidney Dutch MOND MONK, MOON
WOMAN English friend dwarf, father French CONSUMENT CONSUMER, CONSUMATORE
WERKEN Dutch service auction, kiss Spanish SERVICIO SERVIZIO, SERVICO

WINE English tea cheese, coffee French THEE THE, CHEESE
DIMANCHE French day night, week German MONTAG ZONDAG, MONAT

what we found: The map was purely organized on the
basis of semantic similarity. A number of categories could
be identified in the structure, namely humans, man-made
objects, substances, body parts, food, places and abstract
concepts, as shown in figure 3. Some concepts were falsely
localized (for example, some foods between the places),
showing the network did not settle fully yet. Overall, the
structure is internally quite consistent, which can also be
judged by the homogeneity of color within regions, and was
confirmed in reruns.

In contrast to the semantic map, the orthographic map
did receive different inputs for each language. Still there
was no explicit language membership information, only
implicit information in the language-specific orthography.
This did not turn out to be a significant factor though:
The map that developed for orthography was organized
on orthographic similarity only, irrespective of language
membership. However, the map turned out to be less
well organized than the semantic SOM, shown by regions
with less homogeneous colors. Neighboring patterns were
not always the most similar ones, which older tests point
out does improve with additional training. This decreased
organisation did turn out to cause some problems with the
quantitative tests though, as will be considered in chapter 5.

To analyse the representation in greater detail, we looked
at where words for the different languages were located on
the orthography map. Figure 5A shows the result of this
analysis, where for each language the activation spots on
the orthographic map are shown. Clearly, it is an integrated
representation, as there are no definable regions for any
of the languages, but words for all languages are scattered
all over the map. The number of common hits between
languages, i.e., equal nodes activated by words for the same
concepts in different languages, confirms this picture (see
table 9). If the representations were totally separate, no
shared representation should exist, while this table shows a
large number of shared representations. When one compares

Orthography SOM

Figure 4. A graphical depiction of the orthography SOM, using
the same representation as used in figure 3. Only a small subset
of words of a few languages is shown for clarity, in black. Visible
is the organization by orthographic similarity (e.g., AAS, AS and
ASSO, as well as PULSO, PULS, RUIDO are close together) and
the lack of organization by language (e.g., the words for BOW and
BOOG, as well as LIGHT and LICHT are on top of each other).

these values with the homograph information in table 5 the
same pattern can be seen, though the number of common
hits overestimates the number of homographs. The latter
seems to be due to two reasons. First, especially in this
low proficient version of the model, the high frequent words
function as attractors, meaning that high frequent words
are activated instead of words in their neighborhood. This
increases the number of common hits, because multiple
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Table 9
The number of times the word for a particular concept was represented by the same unit in the orthography SOM and the
mean distance between words in different languages for the same concept. A higher number of equal common units or a lower
distance represents a higher language similarity. Note the similarity with table 5.
Languages Catalan Dutch English French German Italian Portuguese Spanish

Catalan 20 (11.4) 25 (2.8) 54 (5.4) 15 (11.9) 69 (0.5) 88 (0.8) 108 (1.3)
Dutch 20 (11.4) 40 (13.3) 24 (17.7) 37 (4.7) 14 (12) 8 (11.8) 10 (12.3)

English 25 (2.8) 40 (13.3) 49 (1.2) 25 (9.2) 17 (3.2) 17 (3.5) 21 (4)
French 54 (5.4) 24 (17.7) 49 (1.2) 21 (10.3) 16 (5.7) 24 (6) 26 (6.5)

German 15 (11.9) 37 (4.7) 25 (9.2) 21 (10.3) 10 (12.2) 7 (12) 7 (12.5)
Italian 69 (0.5) 14 (12) 17 (3.2) 16 (5.7) 10 (12.2) 86 (0.6) 83 (1)

Portuguese 88 (0.8) 8 (11.8) 17 (3.5) 24 (6) 7 (12) 86 (0.6) 160 (0.7)
Spanish 108 (1.3) 10 (12.3) 21 (4) 26 (6.5) 7 (12.5) 83 (1) 160 (0.7)

Total 379 (34.1) 153 (83.2) 194 (37.1) 214 (52.8) 122 (72.9) 295 (35.2) 390 (25.3) 415 (38.3)

Figure 5. Representation of language-specificity in the
orthography (A) and translation (B) SOM. Each dot indicates a node
activated by a certain language (see legend), its size indicating the
number of times it was activated for that specific language. This
clearly shows the lack of organization by language: The colors are
intermingled over the entire map. The colors are overlayed, so the
last added languages are overrepresented in the pictures compared
to the first presented ones. The order in the legend shows the order
of presentation.

words end up at the BMU of the high frequent patterns.
Second, near-homographs, which are not taken into account
in table 5, can activate the same BMU if the similarity is large
enough.

To get a higher resolution impression of the similarity
of the languages, the distances between words for the
same concept across language are also shown in table 6.
Languages which are similar should have low distances for
translational equivalents. The distances showed that the
orthography SOM correctly reflects language similarity, as
illustrated in figure 6, which confirms the results by Schepens

Figure 6. A dendogram of language similarity in the orthography
SOM, based on the distances for words for the same concept as
shown in table 9. The vertical axis reflects the distance and on the
horizontal axis the languages are shown. The shorter the path along
the blue line from one language to the other, the more similar they
are.

(2008). Combined, the common hits and distances show
that the orthographic SOM is organized on orthographic
similarity, not on language information, though language
similarity is correctly reflected in its organization.

The translation layer was the only layer in the model that
did receive language membership information, meaning that
language-specific representations could arise there. Still, as
the semantic and orthographic representations turned out to
be language aspecific and should be dominant compared to
the language membership information (see section 3.1.5), an
organization on the basis of semantics and/or orthography
seemed more likely. The latter indeed proved to be the case:
The translation layer was primarily organized on semantic
and orthographic similarity, with only a minor effect of
language. To scrutinize the latter effect, the same analysis
was done as was done for the orthography SOM (see figure
5B). Again, no identifiable language-specificity was found.

To quantify the effect of language membership
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Translation SOM

Figure 7. An overview of the translation SOM, with a small
number of example translations using the same representation as
3 and 4. Data in the translation SOM consists of both a semantics,
language membership, and orthography part. The organization as
can be seen on the map is primarily on semantics and orthography.
For example, look at the words for bow, of which especially two
small groups exist: one with orthography like ARC and one with
orthography resembling BOW. The same is true for the words for
crayfish, with the Dutch translation at a different location than
most of the others, except one, which is falsely positioned near the
Dutch translation. Note that patterns straight beneath each other
mean they are located at the same BMU.

information on the translation layer, we compared the
lengths of the language, semantics, and orthography parts of
the data vectors in the hidden layer, as calculated by the dot
product of the data vector. The lengths of the three parts of
the data vectors are directly related to the average distance
these parts have to the model vectors. To see why, first notice
that the coordinates of model vectors are within the ranges
defined by the data. This means the part of the coordinates
of a model vector which depend on orthography are within
the range of the orthography values, the part depending on
language are within the range of the language values, and
the part depending on semantics are within the range of
the semantics values. Next, take into account that when
patterns are presented to the translation layer, the distance
between the data and model vectors over all these three parts
is calculated. It is this total distance which subsequently
determines BMU selection. The larger the distance for a
specific part, the more influence it has. The critical point is
that the smaller the data and model vectors for a particular
part are, the smaller the possible distance between the two
and hence the smaller their influence on the calculation of
the total distance. The language layer part of the hidden data
vectors was expected to have the shortest distance and thus
the smallest effect. It turned out the ratio between the three

parts, semantics, language and orthography, was 13/1/12,
confirming the minor role language played compared to the
other two factors.

4.3 Homograph encoding

The last qualitative aspect we tested was the
representation of homographs and non-homographs. The
representation of these word types is interesting, because
they have both language-specific and language aspecific
properties. Cognates share both meaning and orthography
(e.g. the English-Dutch homograph BED), implying they
should be represented in the same way across languages
in both the semantic and orthographic SOMs, while a
small language-specific difference can be expected in
the translation layer due to the effect of the language
membership signal. False friends should differ in the
semantic layer, while being equal in the orthography layer
and somewhat divergent in the translation layer (e.g. the
English-Dutch homograph ROOM). Non-homographs on
the other hand should have zero distance in the semantic
SOM and an on average large distance in the orthography
SOM.

To test the representation of different item types, we
first calculated the distance between words in the data.
The distance was calculated for semantics, translations
(semantics, language and orthography) and orthography. On
the basis of these distances, three groups were defined:
non-homographs (larger than 0 distance for orthography
and 0 distance for semantics), cognates (0 distance for
orthography and semantics), and false friends (0 distance
for orthography and larger than 0 distance for semantics).
Next, the distances for the items in these groups were
also calculated in the model, but this time not the distance
between data vectors was calculated, but the distance
between the BMUs that were activated after applying the
data to the model. A distance of zero reflected an integrated
representation, while non-zero distances represented distinct
representations, allowing to test the representation the model
used, compared to the actual distances as present in the data.
The expectation was that the model would develop efficient
representations, using as few nodes as possible and thus
use shared representations (distance zero) where possible.
Moreover, if the model successfully captured the properties
of the different types of homographs, the distances in the
model should mimic the distances in the data.

The result of this analysis is shown in figures 8A and B.
Comparing the two panels makes it apparent that the model
correctly captures the properties of the three word types as
present in the data. Cognates turn out to have integrated
representations for both orthography and semantics, reflected
by zero distances between the representations, while false
friends only share their representation for orthography. In
the translation layer, cognates hardly differ, while false
friends differ to a degree directly related to the size of the
semantic difference. Non-homographs show the opposite
pattern of false friends, with shared semantics, but different
orthographic representations. Homographs thus have no
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Figure 8. Average distances between semantics (S), orthography
(O) and the complete translation (T) in both the data (A) and the
model (B). For the data, these distances were calculated between
all data vectors. For the network on the other hand, the distances
between the activated units for each pattern were used. The mean
distances are shown for non-homographs (blue), false friends (red)
and cognates (green) respectively.

distinct status in the model, but are represented quantitatively
different from non-homographs. The bottom line is that the
model used shared representations where possible and the
distance between representations reflected the similarity in
the data.

4.4 Summary: an integrated lexicon

In this chapter the qualitative properties of the SOMMUP
model were analysed. It turned out the model was able
to translate to some extent between the eight languages,
making sensible errors and activating related neighbors in
the process. Moreover, it did so using a totally integrated
lexicon, as nowhere in the model language-specificity could
be found: The concepts were shared across languages,
the orthography for all languages ended up intermixed on
one map, and the language effect on the translation map
proved to be only minor. This also resulted in shared
representations where possible, meaning that cognates used
shared representations for both orthography and semantics,
while false friends used a shared orthography representation
across languages. Combined, even though the model needs
further training, it already incorporates the most important
aspects of the human lexicon, as described in section 2.1.
The implications of these findings and a comparison to the
human lexicon and another model is described in the general
discussion (section 7.2).

5. Quantitative test of model
validity: experimental findings

As discussed in section 2.1, there are three lines of
experimental evidence that together form the basis of the
integrated view of the human lexicon: homograph studies,
neighborhood studies, and the effect of prior language
membership information. The series of tests considered
in this chapter was aimed at a comparison between the
performance of the model and these experimental findings.
These tests essentially tried to determine whether the
structural properties of the model as reported in the previous
chapter also leads to the behavioral properties thought to be
induced by these same structural properties in humans.

As mentioned in section 3.4, two additional networks
were trained for these tests. The first represented a
monolingual speaker and contained only the 490 English
words of which it correctly understood 271 and could
’produce’ 274 after 2000 trials. Quantization errors were
0.52, 1.63 and 2.48 in the semantics, translation, and
orthography SOM respectively. This version of the model
was used to test the general activation and reaction time
effects (see section 5.1). The second model was intended to
represent a bilingual lexicon with an asymmetric proficiency:
English and Dutch words were trained with a relative
frequency of 1 to 5, which resulted in 53 correct translations
from Dutch to English and 88 from English to Dutch after
2000 trials. The quantization error values ended up to be
0.42, 2.63 and 6.08 for the three SOMs. This model was
used to test for differential neighborhood effects in specific
and generalized lexical decision tasks (see section 5.3). The
complete, eight language model was used to test the effect of
multiple times cognates (see section 5.2).

For all of these tests, first a measurement of reaction time
had to be defined, which was subsequently used with the aim
to replicate the experimental findings as found in humans.

5.1 Definition of reaction time
Three properties of reaction times in human language

understanding are important for this purpose (Grainger,
1990) and relevant for the intra- and interlingual effects
we try to incorporate in our model. First of all, human
reaction times show a clear frequency effect: High frequent
words are recognized faster than low frequent words.
Secondly, the neighborhood density of a word has an
influence on the reaction times: The more neighbors and
the closer the neighbors are, the more influence. The
direction of this influence is task-dependent. For example,
for a language-specific lexical decision task, intralingual
neighbors lead to facilitation and interlingual neighbors to
inhibition, while in a generalized lexical decision task both
lead to facilitation. Thirdly, the neighborhood effect is
modulated by frequency: High frequent neighbors have more
influence than low frequent ones.

We incorporated these aspects into a reaction time
measure in a three-step process. First, we defined a measure
for the activation of patterns (word, concept or language) and
their neighbors within a SOM. Secondly, we defined how
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the flow of activation progressed and finally we converted
these activation measures to reaction times. The complete
procedure used to determine the reaction times is shown in
figure 9.

5.1.1 Activation of within-SOM alternatives.
Representations involving activations of words, concepts
and languages are often used in models of the lexicon
and are thought to represent the likelihood that a word
is selected (Dijkstra & De Smedt, 1996). Hence, the
more evidence there is, for example, for a certain word,
the higher its activation. This evidence can be direct,
meaning that a specific word is activated, or indirect, due
to similarity/neighborhood effects from another pattern
that is activated. Often, frequency effects are linked to the
activation metaphor as well: The more frequent words are,
the less evidence is needed for words to become activated.
This implies that both the neighborhood and frequency
effects on reaction times should already be incorporated in
the definition of the activation measure. To model activations
we thus needed to determine a measure for both similarity
and frequency in the model.

Similarity is encoded automatically in SOMs, because the
distance between nodes represents the similarity between the
associated patterns: Words or concepts near the presented
pattern on the map should receive more activation than words
and concepts further away. To quantify this, the distances
between the BMU of a word and the BMUs of all possible
alternatives were determined. These distances should
correctly reflect the degree of similarity as represented by the
network. Alternatively, the measure could have been based
on the distances between words in the data. However, if
modeled in this way, the model and its ’proficiency’ would
not matter, because the distances could be calculated without
reference to the model. With sufficient training, the similarity
in the model should however converge to the similarity in the
data.

To represent the frequency effect, we chose to use the
distance of a pattern to its BMU, because the more often
a pattern is presented, the closer it ends up to its BMU.
To see the rationale behind this approach, view a SOM as
there being strings between a pattern and the nodes, which
patterns can use to pull nodes towards them. Now, if a
pattern is presented more frequently, it gets to pull more
often, resulting in the BMU ending up close to the pattern.

Mathematically, the effect of similarity and frequency can
be combined into a measure of the activation of pattern j
given the presentation of pattern i as follows:

α
f req
i, j = 1 − norm(log(dx j,BMU j )) (4)

αsim
i, j = exp

(−(1 − norm(dBMUi,BMU j )
2

2σ2

)
(5)

αi, j = α
f req
i, j ∗ α

sim
i, j (6)

The first function calculates the effect of frequency, the
second of similarity and the third combines the other two into

the total activation. Both the frequency effect and similarity
effect depend on the function d, representing the Euclidean
distance either between the neighboring pattern (x j) and
its BMU or between the BMUs of two patterns. For the
frequency effect, as the distance of a pattern to its BMU is
small and the value approaches 0 like an inverse logarithmic
function, we converted it to a more linear range by applying
a logarithmic function. Afterwards, to make sure both effects
would have about the same influence, both distance measures
were normalized to a [0 − 1] range and inverted, as shown in
the formula. For the neighborhood function, we afterwards
applied a Gaussian function to the similarity measure with a
σ value of 0.05, because only close neighbors are thought to
be activated. Note that the activation measure is also applied
for the actually presented target ( j = i). In this case, αsim

i, j

will be 1, because the BMUs are equal, but α f req
i, j still has an

effect. The further the target is away from its BMU, the less
activation it will receive, representing a frequency effect for
the target pattern.
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Figure 10. The relation between frequency of the target pattern
and its activation (panels A and C), as well as the relation between
the similarity of a neighbor in comparison to the presented pattern
and the activation (panels B and D), both for orthography and
semantics (upper and lower panels respectively). The similarity
is based on the similarity in the data. The results shown are for
the monolingual network. These patterns are representative for the
other versions of the model and other languages.

To verify that the activations were indeed related to target
frequency and the similarity between target and neighbors,
we plotted the relation between frequency and α f req, as well
as between the distance from a pattern to its neighbors and
αsim in the monolingual version of the model (see figure
10). This indeed showed the expected effects in both the
orthography and semantics layer. There was a positive effect
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Figure 9. A schematic overview of the calculation of reaction times. Red crosses indicate pattern, blue dots depict model vectors which are
possible BMUs. A. In each layer to which a pattern was presented, the within-SOM activations were calculated. This was done in three steps.
First the BMU for the pattern was found. Next, the distance from the BMU to the BMUs of neighboring patterns was determined and, using
a Gaussian function, converted to a similarity measure. In addition, the distance between both the target pattern and neighbors to their BMUs
was calculated and converted to a measure of the frequency effect. The product of frequency- and distance-based activations determined the
total activation of neighboring patterns. B. All patterns which received activation in this way, also activated the corresponding node in the
translation layer and subsequent layers, though the change in activation was modulated by the initial activation. This way, activation of both
the target pattern and the neighbors reached all layers. C. For each layer, the result of the activation flow determined an activation profile.
The activation of the target pattern was combined, using either summation (facilitation) or subtraction (inhibition), with the activation of its
neighbors to result in a reaction time measure per layer. D. The sum over the reaction time measures per layer resulted in the total reaction
time.
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of frequency on α f req (slope: .37, F(1, 488) = 262.27, p <
.0001, R2 = .35) and a decrease (slope: −.21, F(1, 488) =
33.15, p < .0001, R2 = .064)) in activation αsim the further
away neighboring patterns were, which on visual inspection
had a Gaussian-like shape. In the orthography layer results,
the Gaussian is less well-shaped and more words are seen
as equal, shown by an activation of 1, than should be the
case. This is probably due to the less well evolved structure
of the orthography layer. The product of the frequency and
similarity-dependent activation as shown in figure 10 defined
the total activation α in one layer for each pattern in response
to any pattern presented.

5.1.2 Flow of activation. Only calculating activations
within SOMs is not enough however, as there are effects
which are dependent on combinations of factors, which
can be modeled by a flow of activation from one
layer to another. The most prominent example is the
language-dependent orthographic neighborhood effect, such
as the differential effect of intra- and interlingual neighbors
in a language-specific lexical decision task (Gainger &
Dijkstra, 1992; Heuven et al., 1998). Because there is no
information on language membership within the orthography
layer, language membership had to be determined elsewhere.
One possible way is to determine the language of neighbors
in the same way as was done for the target. This means
passing the activation of both target and neighbors from the
orthography layer to the translation layer and subsequently
to the language layer, which then represents language
membership activation of both targets and neighbors.

The flow of activation was processed as follows. For
each pattern on all involved input SOMs and the translation
SOM, the within-SOM activations were calculated. These
values were used as initial activation values αi

j,i and sender
activation αs

j,i for the activated input layers. For the
hidden layer, the within-SOM activation formed the initial
recipient activation αr

j,i. Next, the pattern itself and the
neighbors activated the translation layer. This was calculated
by multiplying the recipient and sender activations, which
meant the activations in the translation layer were modulated
by the activations in the source layer. In other words, the
less activation a neighbor received, the less activation it got
to send to its corresponding BMU in the translation layer.
The sum of activations induced by a pattern and all its
neighbors in this way, over all inputs involved, resulted in
a total activation in the translation layer. As it was then
the turn of translation layer to send activation to the other
layers, this total activation formed the sender activation αs

j,i
of the translation layer. The nodes in the translation layer
activated their corresponding nodes in the other layers, for
which a recipient activation αr

j, j was calculated on the basis
of the output location. This output recipient activation was
multiplied by the total activation in the translation layer,
resulting in the total activation in the output layer. This
process can be described by the following equation:

αr′
j,i = αi

j,i +

S∑
s

N∑
j

(αs
i, j ∗ α

r
j, j) (7)

Where αr′
j, j represents the total activation of the pattern j

in the layer which is in this case recipient activation. Variable
αr

j, j represents its old activation, αi
j,i its initial activation and

αs
j, j the activation of the sending layer. Note that only αr

j, j
is used, meaning that the neighbors a pattern could activate
in the receiving layer are not included in the calculation of
the activation. For each pattern, the sum over all sending
layers and over the product of activations of all patterns in
the receiving and sending layer (where N denotes the number
of patterns), results in the total activation in the receiving
layer. This was done first for the translation layer, taking
the activations in all three layers (numbers of layers S is
3) into account, and then for the output layers, adding the
newly found activations in the translation layer to the already
determined initial within-SOM activations.

5.1.3 Converting activations to reaction times. Next,
using the activation measure, the reaction times could be
determined in a way comparable to the BIA+ model (Dijkstra
& Heuven, 2002). Actually, the activations as calculated by
formula 4 to 7 should be interpretable by the task module of
the BIA+, because that module interprets the same kind of
activations as produced by our model. Two possible ways of
converting activations to reaction times are defined in BIA+
and other models: subtraction and addition, representing
inhibition and facilitation respectively. Inhibition is relevant
when the alternatives are actually competitors to the target
pattern; while facilitation is applicable when the other
patterns could also be regarded as correct targets for the
task. Compare for example a specific lexical decision task,
in which all languages different than the target language are
competitors, with a generalized lexical decision task, where
all languages are equally correct. In-between, it is also
possible to model no effect of neighbors by not taking the
activations of neighbors into account.

To calculate task-dependent reaction times, we applied the
following formula:

RT T
i = 1 − norm

(
αi,i +

N∑
j

i, j

simT
i, j ∗ αi, j

)
(8)

In words, this formula states that the sum of the activation
of the neighbors is combined with the target activation.
Subsequently it is normalized and inverted in order to make
all reaction times fall within a [0 − 1] range. Whether
the combination is facilitation or inhibition, represented
by addition and subtraction, depends upon the similarity
variable simT

i, j, which represents the task T dependent
similarity of the neighbor, being any value between −1 and
1. A sim score of −1 results in inhibition from the specific
neighbor, while a 1 results in facilitation. In-between values
are appropriate when a neighbor can have a certain degree of
task-dependent similarity, for example in semantic priming
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where semantic primes have a positive or negative influence
depending on the degree of similarity (e.g. Neely, 1976, for a
review, see Neely, 1991). For the purposes of this thesis, we
only used the extremes, the −1 and 1 values, because for the
difference between specific and generalized lexical decision
no gradual similarity is required.

This measure of reaction time could be applied to each
layer, after which the sum over the reaction times for the
semantics, orthography and language layer yielded the total
reaction time. All layers were used, instead of specific layers
depending on the task, because we expect lexical processing
to be automatized to such a degree that all factors play a role
in all tasks.
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Figure 11. Mean reaction times over all words depending on the
frequency of a word (A), distance to all neighbors within range (B),
and frequency of these neighbors (C). Each blue circle represents
one word, the red lines show the fits using all three factors in a
multiple regression analysis.

Before continuing to the actual tests of experimental
results, we first tested whether the measure of reaction times
we defined was correct in general. This was done by testing
the relation between frequency and neighbors on the one
hand and the reaction times on the other. We did so in
the monolingual version of the model, tested on a lexical
decision task, in which neighbors are expected to facilitate.
To quantify the effect, we tested the relation between the
three components in the data on the one hand and the reaction
times generated in the network on the other. Only the
effect of orthographic neighbors is discussed, though the
effect of semantic neighbors is comparable. These tests
confirmed that frequency of the target, frequency of the
neighbors, and the number of neighbors influenced reaction
time significantly (F(3, 386) = 33.93, p < .0001, R2 =
.17). Reaction time decreased with increasing frequency (see
figure 11A) (slope: −.25, p < .0001). In addition, reaction
times increased with the number of neighbors (slope: .29,
p < .1), as it should (see figure 11B and C). There was
no significant effect of the frequency of neighbors however
(slope: −.07, p > .1).

Though the total explained variance, .17, is rather small,
please note the intrinsic non-linearity involved in the reaction
times. This non-linearity is caused by the Gaussian
neighborhood function and taking the product of neighbor
frequency and distance. In addition, the total reaction time
is also influenced by the effects in other layers due to the
summation over the three layers. More importantly, the
similarity relation is based on the similarity in the data. It

turned out the model had not yet developed the same order in
neighbors as present in the data. If we did the same analysis
using the neighbors as found by the model, the R2 increased
to .26 (F(2, 487) = 82.42, p < 0001) and the slopes all
became significant with values in the expected directions
(−.24 for frequency and .16 for neighbor activation, both
p < .0001). This means that with increased learning, which
causes the model to learn the correct neighborhoods, the
result would become better.

5.2 Homograph effect

We tested the homograph effect in the bilingual version
of the model trained on two languages to a different extent,
representing asymmetric proficiencies. More specifically, we
tested both specific and generalized lexical decision, because
the effect of homographs are different for the two tasks (see
section 2.1). To mimic a language-specific lexical decision
task, the words were presented together with information on
language membership. For the generalized lexical decision,
no language information was given. The important difference
was that in the specific lexical decision task, activations in
the language layer were assumed to be competitive, and thus
inhibitory, while in the generalized lexical decision task they
were considered facilitatory. The expectation was that on
average, in both tasks, L2 words would be recognized slower
than L1 words. In the specific lexical decision task, false
friends were expected to be in-between the reaction times for
L2 and L1 and cognates should be comparable to L1. In the
generalized lexical decision on the other hand, false friends
should be closer to L1 and cognates should be recognized
even faster.
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Figure 12. Average reaction times of the model for L2 controls
(L2), false friends (FF), homographs (H), cognates (C) and L1
controls (L1), in both a specific and generalized lexical decision
task (A and B), showing faster reaction times for homographs and
L1 controls compared to L2 controls. Panel C shows the effect of
the number of languages a cognate is present in. 0 indicates words
being no cognate at all, 1 indicates one time cognates, hence present
in two languages, etc. * indicates significance at least at the .005
level.

The relation between, on the one hand, the number of
times a word is a cognate, number of times it is a false
friend and the proficiency, and on the other hand, reaction
times, turned out to be significant in both the specific lexical
decision (F(3, 976) = 64.78, p < .0001, R2 = .17) and
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generalized lexical decision case (F(3, 976) = 142.04, p <
.0001, R2 = .30). Further analysis of this significant effect
showed a number of interesting results. First of all, there was
a clear proficiency effect in the reaction times: reaction times
for L2 words were significantly higher than for L1 words
in both the generalized and specific lexical decision tasks
(proficiency dependent slope: −.12 and −.17, p < .0001).
Secondly, there was a mean reaction time difference between
generalized and specific lexical decision tasks (.72 and .76,
p < .0001). Thirdly, there was a significant difference
in reaction times for homographs (including cognates) and
L2 words in the specific lexical decision task (slope: −.19,
p < .0001), but not with L1 words (p > .1). In contrast,
in the generalized lexical decision task, also the difference
with the L1 words became significant as the reaction times
for cognates further decreased (p < .0001). Lastly, there was
no significant effect of a word being a false friend in both
the specific and generalized lexical decision task (p > .1)
due to the small number of false friends in this subset of
the data. In total, this means the effect of cognates actually
became smaller between the two tasks (−.18 to −.14), but
the effect of proficiency increased (from −.12 to −.17). The
pattern in results, with a reaction time difference between
L1 and L2 and cognates being recognized about as fast as
L1 words in a specific lexical decision task, but faster in
a generalized lexical decision task, confirms the results as
reported by Lemhöfer and Dijkstra (2004).

As a second analysis of the homograph effect, we
tested the model trained on eight languages on the cognate
effect to see whether it mattered whether a word was a
cognate in more than one language pair, as has been found
experimentally (Lemhofer, Dijkstra, & Michel, 2004). We
confirmed that being a cognate also lead to facilitation in the
eight language network. More importantly, the two times
and three times cognates showed an even greater facilitation
(slope: −.19, F(1, 3918) = 131.2777, p < .0001, R2 = .04).
No conclusion can be drawn for the four times cognates, as
only 1 was present, compared to 235 one time, 70 two time
and 17 three time cognates. When tested for significance
using a t-test for differences between reaction times for the
subset of cognates and the total dataset, it indeed turned
out the results for one, two and three times cognates were
significantly different (p < .001), which was not the case
for the four times cognates (p > .1). The explanation why
the reaction times appear to rise for the four times cognates
is the fact that the frequency of that specific cognate is low:
The word was ANANAS (meaning pineapple), which had
a CELEX frequency of 3, implying that it belonged to the
category with the lowest number of presentations.

5.3 Neighborhood effect

In order to see whether the model could also explain
neighborhood effects as found in human participants, we
tested the effect of both intra- and interlingual neighbors in
the bilingual model. First, we looked at the general effect
of both types of neighbors, assuming competition in the
orthography and semantics layer but no effect of neighbors

in the language layer. Next, we tried to specifically test
the difference in effects of neighbors in a specific versus
generalized lexical decision task.

Figure 13. Graphs showing the effect of neighbors in general,
without language competition (A), as well as the differential effect
of neighbors in the specific lexical decision task (B) compared to
the generalized lexical decision task (C). The x-axis shows the
normalized sum of activation of neighbors, the y-axis the reaction
times. Separate lines indicate the results for L1 (Dutch, straight) and
L2 (English, dashed) and intra- and interlingual neighbors (green
and red respectively). The sum of A and B corresponds to an
approximation of the reaction times for a specific lexical decision
task and the sum of A and C to the reaction times for a generalized
lexical decision task.

Overall, both types of neighbors had an effect
(F(5, 484) ≥ 1248.31, p < .0001, R2 ≥ .93) (see figure
13A) and mostly in the same direction (−.59 for intralingual
neighbors on L1 recognition, .056 for L2 neighbors on L1
recognition, −.16 of L2 neighbors on L2 recognition and
−.59 of L1 neighbors on L2 recognition, p < .05 for all).
The direction and magnitude of the effect of neighbors
depended on the language proficiency, as L1 neighbors had
a larger effect than L2 neighbors both within and between
languages. This is line with experimental results (Heuven et
al., 1998).

When we zoomed in on the differential effect of
intra- versus extralingual neighbors in the specific versus
generalized lexical decision task, we were confronted with
the wrong neighbors being selected by the model, just as
mentioned earlier for the reaction times. To counter this,
we again used the neighbors as found by the model instead
of the neighbors in the data, which should be the result
after sufficient training of the model. Using this approach,
the reaction times could be explained with a R2 of at least
.62 in the L1 specific, L1 generalized, L2 specific and
L2 generalized lexical decision case (F(5, 484) ≥ 158.58,
p < .0001). More specifically, on the one hand we found
intralingual neighbors to facilitate in the specific lexical
decision task, with a slope of −.36 for L1 and −.099 for L2
(both p < .0001). Interlingual neighbors on the other hand
induced no change in the L1 case (slope: -.02, p < .05) and
inhibition in the L2 case (slope: .47, p < .0001). In contrast,
both types of neighbors were found to mostly facilitate in the
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generalized lexical decision task: slopes of −.40 and −.41
for L1 intralingual and interlingual neighbors and −.36 for
L2 interlingual neighbors (all p < .0001). In all cases there
was proficiency modulated the neighborhood effect, leading
to no facilitation effect of L2 intralingual neighbors in the
generalized lexical decision task (p > .1)

5.4 Effect of language information

The effect of information on language membership was
assessed by testing whether the model interpreted false
friends differently with or without knowledge on what
language to expect. More specifically, we wanted to see
whether the model preferred the low frequent meaning of
a false friend in the cued language, or the high frequent
meaning in the non-target language. For example, if the
model needs to determine whether ANGEL is a Dutch
word, it could fail to do so successfully due to the fact
that the English reading is more frequent and thus more
easily activated, irrespective of the availability of language
information. To do so, we tested the model on the 65 false
friends differing in frequency only, with and without input on
the language membership layer. As quantitative measure of
correctness, we used the distance between the output and the
actual meaning in the semantic layer for the two languages:
The smaller the distance for one meaning, the more likely the
model was to select that meaning instead of the other.
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Figure 14. The effect of language information on the meaning
detected for false friends. Each circle represents one false friend
with differing frequency, with the actual difference between the high
and low frequent meaning depicted on the x-axis. The y-axis shows
the distance to the high frequent meaning, with 0 implying correct
recognition of the high frequent meaning and 1 meaning correct
recognition of the low frequent meaning. Panel A shows the results
without language membership information, B with L2 membership
information, and panel C with L1 membership information.

It turned out there was no significant effect of language
information (p > .1): With and without language
information, the same meaning of false friends was activated
(see figure 14A). Concerning the effect of frequency, the
number of false friends with large enough differences in
frequency proved to be too small to detect a significant
difference (p > .1) (see figure 14B and C). The model
should probably be trained further and ideally with more
false friends and real frequencies for the latter test to have
real value.

5.5 Summary: replication of experimental findings

To summarize, even though the performance of the
model requires improvement, the model captured almost
all the tested patterns in reaction times. The first pattern
replicated in the model was that reaction times decrease
with word frequency and proficiency. Secondly, both
intra- and interlingual neighbors influenced the reaction
times, depending on the number and language proficiency
of the neighbors. This effect of neighbors depended on
the kind of tasks, with opposite effects for intra- and
interlingual neighbors in a specific lexical decision task and
only facilitatory effects in the generalized version of the
task. Thirdly, also word type effects were explained, with
lower reaction times for cognates compared to non-cognates,
decreasing even further for multiple times cognates. The
fourth kind of effects, related to false friends, proved not be
testable due to the small number of false friends in the dataset
and the high error count in the model. In total, the results are
promising and further training and testing should be done.
What the next steps could be specifically, is described in the
General Discussion (section 7.2).

6. The effect of learning scheme

With the validity of the model confirmed, we continued
by testing the effect of learning scheme, in order
to determine which hypothesis concerning simultaneous
language learning is the most likely to be correct (see table
1).

6.1 Definition of learning schemes

To test the learning schemes in the model, the three
different ways of late language learning were operationalized
as follows:
• Sequential learning: First the native language was

trained, then the first foreign language, followed by the next,
until each language was trained.
• Mixed learning: Words from all foreign languages were

presented intermixed in a random fashion.
• Simultaneous learning: Words from all languages for

one concept were grouped and presented together. The
groups were presented randomly.

As the focus is on late learning, prior to the learning
schemes the models were trained on a ’native’ language,
which was taken to be English. This training was done
for 80 trials using a high learning rate and radius. Next,
the late learning phase consisted of 10 trials per language
using a low learning rate and radius, as in the finetuning
phase as mentioned in section 3.4. As such, the number of
presentations of each word and each language was balanced
over the three schemes. The difference in learning rate
and radius was done to model the difference between early
and late learning, where in late learning the learning rate
is thought to be lower due to decreased plasticity and
the presence of already known language(s) (O’Reilly &
Munakata, 2000).
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...
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Figure 15. The three tested learning schemes (’Seq’: sequential scheme, ’Mix’: mixed, ’Sim’: simultaneous), including examples of trials.
The native part is the same for all schemes. Only English words are learned in the native phase and it starts with a high learning rate and
radius, which decreases over time (depicted by the red line). This phase was trained for 80 trials. The nonnative, late learning part differed
between the schemes. In the sequential scheme, the native language was repeated and then followed by the other languages. In the mixed
scheme, words from all languages were presented intermixed. In the simultaneous scheme, words for the same concept were presented
together. The nonnative phase took 10 trials per language and used a low learning rate and neighborhood radius. ’. . . ’ indicates the same
type of trials followed as shown as examples.

To quantify the results, total quantization error and
map-specific quantization error were measured. This
provided an indication of the rate of acquisition, both overall
and on the different aspects of language learning: semantics,
translations, and orthography. The latter was done because
for the different schemes, also different effects could arise
on the three parts. Simultaneous learning for example is
expected to facilitate orthographic discriminations, while
semantically it does not necessarily have to be beneficial.
To consider the acquisition process in greater detail, the
model was tested after each 5 trials on the number of correct
translations from native language to foreign languages and
vice versa. Again, we expected possible differences between
the models on the proficiency for the two directions of
translation. The combination of overall measures and more
specific measures allowed us to study both the overall and
specific proficiency effects of the learning schemes.

When comparing the sequential learning scheme with
the other schemes, two important aspects turned out to be
unbalanced which would probably influence results. The
first unbalance was that the sequential learning scheme
was more likely to forget previously learned languages.
This was caused by the fact that the sequential scheme
presented languages only during a certain period, after which
the languages were not repeated anymore, while the other

learning schemes repeated all the languages all the time.
To counter this possible unbalance, we took the maximum
number of correct translations over the training sequence for
each language as a second, corrected, performance measure.
This meant that for the sequential learning scheme, the last
trial within a language-specific block was selected, while
in the other schemes one of the latter trials overall would
be chosen. This performance measure actually favored the
sequential learning scheme, because using that scheme it was
possible for the model to focus on one language during a
block, while forgetting the others. Still, we regarded this
direction of unbalance to be fair in light of our hypothesis
that simultaneous language learning is beneficial compared
to sequential learning.

The second imbalance however worked against the
sequential type of learning. This imbalance was cause by
the fact that the native language, which was used as source
or target language in all translations, was only learned during
the native phase and the first sequential phase and afterwards
not anymore. Also training the model on the native
language during the sequential steps would have corrected
the problem, at the same time increasing comparability with
the natural situation. It would however also further facilitate
the sequential learning scheme and make the number of
presentations for the native language unbalanced over the
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three schemes. In the end, this imbalance was not corrected,
which turned out to induce some difficulties.

6.2 Performance on different learning schemes

The results of the tests described in the previous section,
focused on the effect of the different learning schemes, are
shown in figure 16. Before considering the general and
specific performance differences between the three schemes,
some general effects that can be seen in panel A and B
are noteworthy. Firstly, performance started near zero (on
average on 2.13, SD: 2.83), even though the native training
period was performed beforehand. This means at least native
language performance was expected to be better, while it
actually showed on average only 8.67 correct translations
at the start. This low starting performance turned out to
be due to the finetuning phase being necessary for actual
correct performance. The fast rise in proficiency of the
native language directly after the start supported this view.
Secondly, for all three learning schemes, it was clear the
native language was learned best: On average over the entire
time course it showed 58.00 correct translations, compared
to 19.03 for the other languages (p < .0001). Using
sequential learning however, the proficiency of the native
language did drop over time (from 104 to 51), due to the
fact it was not trained anymore after the first epoch, as was
mentioned as a possibly unbalance. Thirdly, there was a clear
difference in the pattern in translation performance over time
between the sequential scheme on the one side and mixed
and simultaneous schemes on the other side. The results for
the sequential scheme were marked by ups and downs of
performance corresponding to the moments of presentation
of the languages in the sequence. In the other schemes,
there was hardly a difference in performance between the
non-native languages. Finally, related languages seemed
to ’help’ each other in the sequential learning process,
which makes sense given the larger overlap between these
languages. This can for example be seen when Spanish was
presented, which also induced an increase in proficiency for
Portuguese and the same was true for English and French
(refer to tables 5 and 9 and figure 6 for an overview of the
language similarities).

Next, we turned to the comparison between the learning
schemes performance-wise, of which the results are shown
in the right column of figure 16. What was immediately
striking was the large discrepancy between the corrected and
uncorrected performance scores of the sequentially trained
network: The corrected score for translations from the native
language to the foreign languages was 626, compared to 152
uncorrected, and for the opposite translations the values were
589 and 132 respectively. If we compared the corrected
performance values, the performance of the sequentially
trained network was far better than the other two schemes
(on average 607.5, compared to 383.5 and 438.5 for the
mixed and simultaneous trained network respectively). If one
instead focused on the uncorrected values, the sequentially
trained network performed the worst of all three (142,
compared to 360.5 and 438.5). For the other two schemes,

there was not such a large difference between the schemes,
though overall the simultaneous language learning seemed to
perform better than mixed learning.

A comparable pattern, though inverted, was present in the
quantization errors (see figure 16C). A small difference was
the fact that the simultaneously trained network had a higher
quantization error value than the mixed network (99.59 and
91.02 respectively), while its translation performance was
actually better. Still, the problem of opposite rankings due
to the large difference between corrected and uncorrected
scores for the sequential learning scheme was also present in
the quantization errors, making it hard to answer the question
on the overall effect of learning scheme.

The second question was whether also specific proficiency
difference arose for the different learning schemes. This
indeed seemed to be the case, both on the basis of the
performance scores and the quantization errors. The first
difference was a difference in performance between the two
directions of translation for the three learning schemes. The
sequentially trained network performed better in translations
from the native language to the foreign languages (626 and
589), while the simultaneously trained network preferred
translations from foreign languages to the native language
(395 and 482). A smaller difference in the same direction
was present for the mixed network (378 and 389). The meant
the outcome of the learning process was different in the three
learning schemes, though this difference was small. The
difference in effect for the sequentially trained network might
well be due to the lack of presentation of the native language.
Further tests are thus needed to really draw conclusions on
the basis of these results.

A second specific difference in proficiency was present
in the quantization error in the three parts of the network.
Overall, the pattern was the same for all three learning
schemes, with the lowest error for the semantic SOM, the
second lowest for the translation SOM, and the highest value
for the orthography SOM. If we compared the specific error
scores between the networks, small differences were visible.
The sequentially trained network for example showed the
lowest error scores on the semantics (4.29, compared to 6.00
and 9.22 for the mixed and simultaneous network), while the
other two error scores for the sequentially trained network
were equal or higher than the scores in the other versions
of the model (63.91 for semantics, compared to 68.42 and
67.40, and 127.66 for orthography, compared to 106.64 and
122.84). The simultaneously trained network did not show
the expected facilitatory effect for the orthography SOM,
but rather performed equally or worse on all three aspects
compared to the other models.

Where does this leave us on the question of the effect of
simultaneous language learning? The answer is, due to the
non-interpretability of the results, as of yet undecided. The
tests were not balanced enough, resulting in large differences
between the corrected and uncorrected error values for the
sequentially trained network. These differences were too
large to draw any conclusions, because it made the pattern
in results opposite. Nevertheless, the analysis did show that
mixed and simultaneous language learning can be performed,
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Figure 16. Graphs showing the results for the three different learning schemes for late learning. The first three columns show the results
for the sequential, mixed, and simultaneous scheme respectively. The fourth column shows the summary of the first three, comparing the
uncorrected (dark blue) and corrected (dark red) performance scores for the three different learning schemes. For the line graphs, the x-axis
depicts the number of epochs per language, starting at the end of the native learning period. In the sequential case, the number of epochs
per language actually corresponds to 80 epochs, as all languages were presented sequentially. Due to the difference in number of epochs,
less errors values were recorded for the mixed and simultaneous learning scheme. The red dashed vertical lines indicate the start of the
presentation of a new language. The colors of the other lines indicate the performance for translations to and from specific languages.
Performance on translations from the native language to the other languages is depicted in panel A and from the foreign languages to the
native language in panel B. In panel C, the quantization errors summed over all SOMs for each language are shown. For a more detailed
analysis on the level of the separate SOMs, panel D shows both the corrected and uncorrected quantization errors summed over the languages
in the three different parts of the model, orthography (ortho), translation (trans), and semantics (sem).
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at least in the model. Moreover, the results showed
hints of differences between the three learning schemes in
what is learned, both in translation direction preference
and the relative proficiency on the main constituents of
vocabulary learning as concerned by the model: orthography,
translations, and semantics.

6.3 Summary
In this chapter we focused on the effect of three different

learning schemes on the rate of language acquisition in
the model. This implied that the model was trained in
three ways: sequentially, presenting one language after
the other; mixed, presenting all languages intermixed;
and simultaneously, presenting words from all languages
grouped by concept. Two imbalances in the learning
schemes proved to complicate accurate comparison. The
first imbalance was that in the sequential learning scheme
previously learned languages were forgotten, which was not
the case in the other schemes. The second imbalance was the
fact that the native language was not trained anymore after
the first few epochs in again the sequential learning scheme.
When corrected for the first imbalance, the sequential
learning scheme fared best of all schemes. Without the
correction however, performance in the sequential scheme
was the worst of all three schemes. It was not clear
which of the two measures can be regarded the correct
one. In addition to the differences in overall performance,
there were also signs of differences on specific aspects
of the performance. More specifically, the three schemes
seemed to differ in the performance for forward versus
backward translations and for the performance on semantics,
translations, and orthography separately. In conclusion,
all three learning schemes were feasible in the model and
showed effects on the rate of acquisition, but no well-founded
and convincing comparison could be made. What the
implications are and what the next steps should be in order
to more effectively show the effect of simultaneous language
learning is discussed in the next chapter, specifically in
section 7.1.

7. General Discussion
The purpose of this thesis was twofold. The main

objective was to show whether it is beneficial to learn
languages simultaneously instead of sequentially. We tested
this using a modeling approach, for which a valid model of
the multilingual lexicon and language learning was required.
This constituted the second objective. In the end, only the
second objective was reached, while more work is required
in order to reach the first objective. In short, the proposed
SOMMUP model as proposed in this thesis showed both the
same kind of structural properties as thought to be true for the
human lexicon, as well as output comparable to experimental
data in humans. However, tests of the effect of learning
scheme in the validated model failed to show convincing
results.

What the implications of the results are and what still can
or needs to be done is discussed in this chapter. First the

prime focus, the effect of simultaneous language learning,
is considered, followed by model validity. After this
discussion of the main results, extensions and improvements
are proposed, as well as a possible practical application in
the domain of Computer Assisted Language Learning.

7.1 The effect of simultaneous language learning
The first goal, to determine the effect of simultaneous

language learning on speed of language acquisition, was
tested in the model after it had been validated (see next
section). As put forward in the introduction, three possible
hypotheses can be formalized on the effect of simultaneous
language learning (see table 1). Of these hypotheses,
we expected the ’Facilitation due to comparison’ to be
correct, implying simultaneous language learning should be
beneficial. To find out whether this is likely to be correct,
we trained the SOMMUP model in three ways: sequentially,
presenting the languages after each other; mixed, presenting
all languages intermixed; and simultaneous, grouping the
presented words by concept. It was up to the model to
show how it performed after being trained with the different
language learning schemes, which should subsequently be
generalizable to human language learning.

7.1.1 Effect of learning schemes in the model. It turned
out the choice of learning scheme had a significant effect
on the rate of acquisition in the model, for the better and
the worse. Actually, whether it was for the better or
the worse was not easy to determine. This was caused
by an in imbalance in the learning schemes, which made
the sequential learning scheme incomparable to the other
schemes. When we corrected for a part of this imbalance
by changing the final error scores, the sequential learning
scheme performed best of the three schemes. When we did
not correct however, the pattern reversed and simultaneous
instead of sequential language learning showed the best
performance, followed with only a small difference by the
mixed learning scheme. Due to this opposite pattern, we
are reluctant to draw hard conclusions on the basis of these
results, but a possible solution, some interesting patterns, and
possible improvements can be discussed.

The main unbalance between the different learning
schemes was due to the forgetting of previously learned
languages in the sequential approach. Partly this is because
of the interference present in most neural networks, partly
forgetting could also be expected in humans if languages are
no longer used. To counter the interference, representations
for words from already learned languages could be made less
prone to change. More precise, this could mean that the
more often the same BMU is selected for a word, the less
likely the BMU is to move to a different word. This would
have the interesting side-effect that the model would try, even
harder than in the current setup, to represent new languages
using the old representations, just as humans seem to do
(MacWhinney, 2005). This solution would also solve the
second imbalance, the lack of sufficient training on the native
language in the sequential learning scheme. Due to the fact
that words from the native language are encountered the most
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often, they would be the least likely to change or be forgotten
in this alternative setup. This compares well to the pattern of
language development as found in humans, where long or
early learned languages are not easily forgotten. The change
would thus probably increase model validity. Moreover, this
change would apply equally to all three learning schemes,
not introducing new imbalances such as the current post-hoc
correction of the performance scores actually did.

Even though it is impossible to draw hard conclusions
on the basis of the current results, it is possible to draw
some tentative conclusions. The first tentative conclusion
is that mixed and simultaneous learning can at least lead to
reasonable translation results. The mixed and simultaneously
trained models did learn the translations to some extent,
without severe detrimental effects of the alternative ways
of presentation. A second tentative conclusion is that
there might be differences in the pattern in subsequent
performance depending on the learning scheme used.
Sequential learning seems best for translations from the
native languages to other languages, while simultaneous
learning seems better for the opposite translations. An
interesting follow-up question regarding these differences
would be to see whether differences in performance are based
on significant differences in the underlying structure of the
lexicon. I.e., will the different learning schemes lead to
different organizations in the lexicon? This was not tested
yet, but could well be in the future. The third tentative
conclusion is that this kind of modeling of acquisition
processes in psycholinguistically plausible models could
be valuable, but has its problems, at least in the current
setup. Some improvements in addition to the one already
mentioned should be able to increase applicability of the
model for the current purposes. Firstly, the model should
be trained longer, both on the native language and on the
specific learning schemes. Not only should training time be
increased, also repetitions of training sessions should be done
to test reproducibility. Secondly, more analyses needs to be
done on the developmental aspects of the model to be sure
the ways of learning of the model and humans are actually
comparable. This can show whether learning results of the
model are actually generalizable, which requires more than
only sharing general underlying principles. For example,
it would be relevant to test rate and order of language
acquisition, for early as well as late learners, to see in greater
detail whether the model acquires the same words first and
makes the same mistakes in the process of learning. Now,
we focused our analysis of model validity mainly on the
structural properties and not so much on the developmental
properties.

A third possible improvement is related to one of the
reasons to expect simultaneous learning to be beneficial
compared to sequential learning. Specifically, it is related
to the fact that simultaneous learning is expected to lead
to better discrimination of alternative words, an expectation
based on results in associative learning (see section 2.2). This
expectation can be explicitly tested in the model by a small
extension. This extension would require that never the same
BMUs are activated for different patterns presented in a short

time of time. When the words for a concept in different
languages are then presented to the network, a number of
BMUs equal to the number of unique words is determined.
Next, each word is linked to the BMU which is relatively the
closest compared to the others, without linking more than
one word per BMU. This should force the model to make
distinctions fast. This extension can also be applied to the
other learning schemes, as they can also have similar words
after each other which would otherwise activate the same
BMUs. A comparison of the model with and without this
extension is interesting for future tests of learning schemes
in the model.

In short, the current findings did not lead to the expected
results, but there are sufficient ideas for improvement to
expect better results in the future.

7.1.2 Effect of learning schemes in humans. Even though
the current tests did not work out as expected, using a
psycholinguistic model such as the SOMMUP model to
predict psycholinguistically and educational scientifically
learning effects remains an interesting possibility. For
psycholinguistics, it is a test of the implications of a certain
view on the lexicon, such as the integrated lexicon in
this case. For educational sciences, the reverse is the
case, as relating to psycholinguistic models can help to
determine what it is that causes the effects found in human
learning. The latter is not yet the case for the effect of
simultaneous language learning, because no human studies
have been done yet. As put forward in the introduction,
this is understandable from the commonsense perspective
that simultaneous language learning will not work. As
put forward in chapter 2 however, there is no strong basis
for this commonsense notion, warranting research into the
topic. This research could be done in parallel to further
development of the model, in which case the model acts
as theoretical framework for the actual experiment and the
experiment as a test of the model.

Such an experiment on the effect of simultaneous learning
could be setup in the following way. A selection of
languages should be made. Known and unknown languages
should be included to see whether the presentation of
translational equivalents from known languages can facilitate
the learning of words from new languages, due to the active
comparison process. Both related and unrelated languages
should be included to be able to check for the effects of
similarity between languages and between individual words,
as proposed to be a factor by the ’Similarity-dependent
facilitation hypothesis’. For a more controlled test, fictitious
languages could also be used. Using these languages,
the procedure would be to show a concept for a certain
period, either using pictures or the word in the native
language. The participant would then be asked to translate
the word in a number of languages. Different numbers
of simultaneously presented languages should be tested to
check for possible attention and memory related restrictions,
which were not explicitly taken into account in the model.
After the user has given his answer, feedback should be
given and the user should have a set time to review the
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translational equivalents before the next concept is presented.
During learning, the number of errors for each language
should be recorded as well as the total time it takes. If
fictitious languages are used, the test of sequential learning
could be done within-subject with a new set of languages,
which removes the potential effect of differences in language
learning skills between participants, because the comparison
is done within-participants.

After the controlled experimental phase,
computer-assisted learning methods could be used (see
section 7.4) to test the effectivity of simultaneous language
learning in practice. The advantage of such a test is that the
participants are intrinsically motivated to learn the words
well and data gathering can be automatized, allowing for
a test of actual applicability. The uncontrolledness limits
the possible scientific conclusions one can draw however.
Both approaches should ideally be tested, to answer both
the questions from the psycholinguistic and educational
sciences point of view.

7.2 The validity of the model
As stated previously, the second goal was to make a

plausible model of the human lexicon. The validity of the
model is considered in the next sections, in direct comparison
with the human lexicon itself, as well as relatively compared
to the most direct competitor: the SOMBIP model. Finally,
we analysed which specific properties of the SOMMUP
model were responsible for the current results in order to
get an impression of the robustness of the findings and of
possible alternative setups.

7.2.1 Comparison to the human lexicon. To recite briefly,
the human lexicon shows the following four properties
(Dijkstra, 2005). Firstly, orthography is organized in an
integrated manner, meaning that words from all languages
are stored together, without any organization on the
basis of language membership. Secondly, semantics are
shared across languages: Conceptual information is not
language-specific, but only one instance of each concept
is stored. Thirdly, the influence of language information
on lexical processing is only minor and mainly contextual.
Lastly, special word types, such as homographs, do
not have special representations, but use a representation
quantitatively different from non-homographs. Now, the
question is how the SOMMUP model compares on these
properties.

The answer is that our model seems to incorporate all
four aspects. On the one side, words from all languages
are located next to each other on one common map and can
interact: Neighborhoods for orthography are both intra- and
interlingual, resulting in errors due to similar orthography
within and across languages. The semantic representation
on the other side is ordered by semantic similarity and is
totally language aspecific. This similarity-based structure
results in similar concepts to be considered candidates for
selection, as well as errors based on semantic similarity, in
the same way as experimentally found for humans (Damian,
Vigliocco, & Levelt, 2001; Vigliocco, Lauer, Damian, &

Levelt, 2002; Schnur, Brecher, Rossi, & Schwartz, 2004).
Language membership plays a minor role in the relation
between orthography and semantics, just as it does in
humans (see section 2.1) and it was intended to do (see
section 3.1). It allows to separate translations to such
extent that they are not confused. Most variations in
orthography or meaning have a larger impact than a change
in language membership information however. Regarding
the fourth aspect, the representation of special word types,
it was found homographs are not considered special in the
model. Rather, they are considered quantitatively different:
Shared representations are used where possible, meaning that
cognates use shared representations for both semantics and
orthography, while false friends only share the orthographic
representations. Combined, our model captures the most
important qualitative properties of the human lexicon.

On top of incorporating the correct qualitative properties
of the human lexicon, the model was also able to predict
the direction of change in reaction times in a range of tasks.
We constructed a reaction time measure based on frequency
and similarity, formalized by taking the distance from data
to model vectors and between model vectors respectively.
Using this measure we were able to explain not only
frequency and neighborhood effects, but also homograph,
proficiency, task and language effects. Importantly, the
model showed both intra- and interlingual effects, confirming
the integrated nature of the underlying artificial lexicon.
Language-dependent effects on reaction times did require a
language representation in the current setup though, of which
the validity is subject of debate (French & Jacquet, 2004).
We do think alternative setups are possible (see section
7.2.3). Also, we want to stress that we expect language
information to be a contextual cue, related to the context
of frequent usage of words, and no module representing
’language membership’ is thought to be required. It is
regarded mere one of the many properties words can be more
or less similar on.

The combination of the qualitative and quantitative results
leads to the most important implication of the current
findings. This is the fact that the reaction times as found
experimentally can indeed be the result of an integrated
lexicon, as also confirmed in other models such as the BIA+
model (Dijkstra & Heuven, 2002). What is special about
this model is its developmental and unrestrained nature: The
model developed through training and only few assumptions
were needed to constrain the training process. The main
assumption behind the entire model was that lexical learning
and representation is based on similarity, being similarity
in orthography, semantics, or the relation between the two,
with language membership being a non-dominant aspect
words can be similar on. Depending on their similarity,
words and concepts could next facilitate or inhibit each other.
For the reaction times, this assumption was combined with
the assumption that representations improve with additional
learning, represented by the frequency effect. Together,
these two assumptions allowed for the explanation of a wide
variety of effects, without the need of qualitative distinction
between word types, or other significant assumptions.
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This makes for a quite parsimonious explanation of the
experimental data and could be regarded a minimalist
framework for models of multilingualism in general.

7.2.2 Comparison to the SOMBIP model. The SOMBIP
model (Li & Farkas, 2002) is the only model of
multilingualism that is comparable to the model we
proposed. The SOMMUP and SOMBIP model use a similar
structure to explain the workings of the multilingual lexicon.
The SOMMUP model does so for a lexicon containing eight
similar European languages, while the SOMBIP incorporates
two more distinctive languages, Chinese and English. But
even though structurally the two models are similar, the
results and implications differ.

First, a closer inspection of the structural features of
both models is useful in order to see the similarities and
differences. Just as the current model, the SOMBIP model
is primarily based on two SOMs: one for phonology, instead
of orthography, and one for semantics. The data for the
phonological map is based on vectors of consonants and
vowels. Each consonant and each vowel is represented
by five feature units representing articulatory features of
the sound. Semantics are represented by co-occurrence
in native texts, resulting in language-specific semantic
representations. The semantic representations in our model,
in contrast, are language aspecific, which means our model
needs a language signal to guide translations. Another
difference is that the SOMBIP model used Hebbian learning
to link the two SOMs, correlating the most activated model
vectors in both maps, while we applied another SOM for this
purpose.

The difference in structure and data also results in
differences in the developed maps. The maps we found
were totally integrated across languages; words from all
languages were situated next to each other and concepts
were shared. In contrast, the SOMBIP model developed
language-specific representations on both the phonology and
semantics map. I.e., even though the words from both
languages were situated on the same map, as did the concepts
on the other map, each language was confined to a specific
part of the map, instead of totally integrated. This is not in
line with the currently dominant view of shared semantics
and an integrated orthography across languages (Dijkstra,
2005).

On closer inspection, these differences in the maps do not
necessarily contradict the current findings for two reasons.
For one, the way Li and Farkas modeled semantics is
more related to the functional role of a word, instead of
pure meaning. It could be that semantics and role are
distinct modules in cognition and hence are organized in
a different manner. If there are two stores, one for the
functional role and one for the meaning, also different
experimental results should be found. For example, it
could mean that in a sentence context, where usage is
more important, neighborhood effects between conceptually
related words from different languages are less likely to
occur than in concept naming. Orthographic neighborhood
effects are found to be the same in sentence processing

as in single word recognition (Perea & Pollatsek, 1998;
Pollatsek, Perea, & Binder, 1999; Rüschemeyer, Nojack, &
Limbach, 2008), though differences have also been reported
(Mulatti, Reynolds, & Besner, 2006). No study is known
to us which compares the effect of interlingual semantic
neighbors between sentence and single word processing.
A second cause of differences between the models might
be the included languages. The language-dependent way
phonology developed in the SOMBIP model could be due
to the large differences between the languages used, while
more related languages (such as the European languages
in our model) would result in more integrated maps. The
latter view is partly confirmed by the fact that less similar
languages have fewer common hits on the orthographic map,
which means they are represented further apart (see table
9): Compare, for example, the common hits of Spanish and
Catalan, as well as German and Dutch, to the common hits
of Spanish and English and German and Italian.

However, if there is only one conceptual system and
the difference in organization of the lexicon is not due
to differences in language similarity, the two models
can be regarded as two different views on the language
system. The difference between the two views has an
important implication: Interlingual neighborhood effects
are predicted to arise at different levels. In the SOMBIP
model on the one hand, there are no within-map interlingual
neighborhood effects, because both the phonology and
semantics for the two languages are essentially separate.
The only neighborhood effects that are possible are in the
associations between the maps: I.e., the phonology can
activate interlingual neighbors on the semantic map and
the semantic map can activate phonological neighbors on
the phonological map. As a result, the SOMBIP model
predicts that multiple levels of the language system need to
be involved for neighborhood effect to occur. Our model on
the other hand predicts that neighborhood effects will also
occur within-orthography or -semantics only, in addition to
neighborhood effects in the mapping between the two.

Experimental evidence should be able to clarify which of
the two accounts is correct. For such an experiment, it is
important that semantics and orthography are manipulated
separately. This could be done using a priming
task, employing primes with neighbors that are either
orthographically or semantically related to the target word. A
comparable task as used by Costa et al (1999) could be used,
with the difference that not primes themselves, but neighbors
of the primes should be related or unrelated to the target.
Ideally, four variables would be manipulated in the task:
• Word or picture targets, thought to be retrieved from the

lexicon and semantic memory respectively.
• Word or picture primes, thought to influence either the

lexicon or semantic memory.
• Primes with either orthographic or semantic neighbors

related to the target.
• The neighbors being either intralingual or interlingual

with respect to the prime.
In total this would result in sixteen trial types. If

there is any neighborhood priming effect, the intralingual
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neighbors of the primes should influence the recognition of
the target word and picture. The critical question is whether
the interlingual neighbors of the primes influence the
recognition process within one level (an effect of interlingual
orthographic neighbors on word recognition and interlingual
semantic neighbors on a picture) or only in the mapping from
one level to another (an effect of orthographic neighbors
on the recognition of a picture and of semantic neighbors
on word recognition). If the first is the case, this would
be in line with the predictions of the SOMMUP model.
If only neighborhood effects are found for the mappings
from orthography to semantics and vice versa however, the
account of the SOMBIP model seems more likely. Current
evidence makes the SOMMUP account more probable, as
there are clearly within-orthography and within-semantics
neighborhood effects (e.g., Yates, Locker Jr, & Simpson,
2003; Ferraro & Hansen, 2002; Huntsman & Lima, 2002).
Still, this could also be explained by assuming recurrency
between orthography and semantics. In that case, a smaller
effect of neighborhood in the mappings would be expected,
compared to within-level neighborhood effect, as the latter
should be faster and more primary. The just mentioned
analysis allows to quantify the difference between the two
effects and in this way see which of the two effects is more
primary. A larger between-level neighborhood effect would
favor the SOMBIP model, while no difference between the
two at all or a larger within-neighborhood effect could be
seen as evidence for the SOMMUP model.

An additional way to disentangle the views as embodied
by the SOMMUP and SOMBIP model, is to look at
the processing of nonwords, which are not expected to
be interpreted up to the semantic level. If the latter is
indeed the case, they should not show neighborhood effects
according to the SOMBIP model, while the SOMMUP
model would predict neighborhood effects to occur. As
nonwords seem to induce neighborhood effects and can
be part of neighborhoods (Pugh, Rexer, Peter, & Katz,
1994; Siakaluk, Sears, & Lupker, 2002), the account of the
SOMMUP model is again more likely.

To conclude, the two models have a slightly different
focus and also give different results and predictions (see
table 10). Depending on the degree to which it is this
difference in focus that causes the development of either
language-specific or integrated maps, different experimental
results can be expected. If the difference is due to the
difference between function and meaning, different results
can be expected for sentences and isolated words. If the
difference depends on the similarity of languages, also
in reaction times less interlingual effects should be found
when using distinct languages. If the difference is general
however, experiments testing interlingual orthographic and
semantic priming effects, or nonword stimuli and neighbors,
should be able to solve the contradiction. At the very
least the SOMMUP model forms an alternative to the
SOMBIP model, showing how the lexicon can also develop.
More elaborate tests, both in the models and in behavioral
experiments, are needed to shed more light on which of two
accounts is more likely to be correct.

7.2.3 Comparison to alternatives. In addition to the
question how the current model compares to the human
lexicon and how it compares to the best comparable
alternative model, one can ask whether all aspects of
the current model are required to come to the reported
results. The orthography and semantic SOM can be regarded
the core of the model, as they are the primary cause
of the neighborhood and frequency effects. In addition,
they are easy to interpret, giving them a certain ’face
validity’. Also the representations used in these SOMs,
language-independent orthography and shared semantics,
seem appropriate, as noted in the previous sections. But
the interpretation of the in-between part, the translation and
language layer, is less straightforward. This is also the part
which is most different from the SOMBIP model.

The translation layer is intended to represent the
similarities between conversions from semantics to
orthography and vice versa, mediated by language.
This means it features neighborhood effects based
on all three aspects. These neighborhood effects are
language-dependent, as language information guides the
selection of the correct relation. Small language activation
or asymmetric proficiencies can lead to the selection of
the relation from the wrong language and thus the wrong
word or concept. In addition, within a language the
neighborhood of relations can also lead to the selection of
an incorrect neighboring relation, even when orthography
and language membership were correctly selected. For
example, activating MAN and English, could instead
activate the relation ’WOMAN English woman’ because
both semantically and orthographically they are close
together. Also in learning, relations having similarities in
both semantics and orthography are predicted to transfer
more. Finally, the translation layer can be used to represent
recurrency effects: If a relation is activated in the translation
layer, its neighbors can be activated and their activation can
be send back to the input layer. For instance, activating
BEAR and English in a Dutch-English bilingual version
of the model will possibly also activate the relation ’BIER
Dutch beer’, leading to feedback activation for the word
BIER. This would predict that words that are semantically
and orthographically similar are more likely to be selected as
neighbors than words that are only orthographically similar.

The last aspect of the translation layer, the recurrency, is
also its main problem: All properties it can help explain,
except for the language effects, can also be explained
using recurrency. In that case, the alternative for the
first example would state that MAN activates man, which
activates its neighbor woman, which subsequently activates
the orthography for WOMAN. Language error effects could
be explained without a need of relation neighborhoods
by assuming that the wrong word was activated in the
first place or the connections between orthography and
semantics are noisy. There is no clear way to make a
distinction between the two accounts, with and without
relation neighborhoods, experimentally. And even though a
distinction does not have to be made, the translation layer can
just be viewed as representing the (recurrent) interrelation
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Table 10
An overview of the differences and shared properties of the SOMMUP and SOMBIP model.

Aspect SOMMUP SOMBIP
Algorithm SOM SOM and Hebb
Languages Similar (European Languages) Different (Chinese and English)
Word types Nouns Nouns and verbs

Word representation Orthography (edit distances) Phonology (CVC structure)
Concept representation Meaning (WordNet) Function representation (word co-occurrence)

Language representation Present (Languages nodes) Absent (Language-specific representations)
Neighborhood effects Both within and between maps Only between maps

Language-specific lexicons No, intermixed on one map Yes, separated on one map
Language-specific semantics No, shared representations Yes, separated on one map

Word class representations No, only nouns Yes, separate representations for nouns and verbs
Incorporates language similarity Yes No

Incorporates reaction times Yes (both facilitation and inhibition) No
Explains frequency effect Yes No

Detailed developmental analysis No Yes
Different learning schemes Yes No

between orthography and semantics, parsimony should urge
us to look for possible alternatives.

There is at least one alternative, inspired by the SOMBIP
model. In this alternative, language membership information
is thought to be represented in the orthography, but not
prominent enough to drive lexical organization. For the
model, this would mean that the small language effect
now embedded in the translation SOM, would instead be
added to the orthography SOM. Note that this effect is
explicitly meant to be small, it should be just one of
the features of the words and by far not strong enough
to drive map organization. This would lead to words
which are sensitive to language information, but are still
organized on the basis of orthographic similarity in a
predominantly language-independent lexicon. Preactivating
the language membership feature would then correspond to
giving contextual language information and would facilitate
the selection of the correct word. Because the orthography
holds the language information, language information is
no longer required to guide the conversion from semantics
to orthography and the relation between the two SOMs
becomes linearly separable again. This means Hebbian
learning could be used to learn the relations between the
maps, just as in the SOMBIP model.

This account is more parsimonious, as one level of
representation less is needed. Still it is expected to yield the
same results: None of the effects now featured by the model
critically depends on the neighborhoods in the translation
layer. There are however two predictions which would differ
between the two accounts. Firstly, intralingual neighbors are
predicted to be activated more than interlingual neighbors,
as the language membership feature brings intralingual
neighbors closer together. This indeed could well be the case
(Heuven et al., 1998; Lemhöfer et al., 2008). Secondly, this
setup predicts the wrong word to be activated when a wrong
relation is selected. Testing these predictions, which is at

least possible for the first prediction, could show how likely
this alternative account is. Note though that the first effect
could again also be explained with recurrency, by assuming
feedback from the translation layer to the orthography layer.

In summary, the orthography and semantic SOMs are
the driving force behind the current results. Therefore, it
is possible to explain the current results by an alternative
model, differing in the setup of the mapping between the
two SOMs. This version of the model would assume
a influence of language membership information on the
orthography, instead of on an in-between level. Still, most
of the mechanisms would remain intact, because the model
would still assume separate language-independent stores for
semantics and orthography, a small influence of language
membership, and development and organization on the basis
of similarity. Except for the differences noted, the same
results could hence be expected.

7.3 Extensions and improvements

There are a number of extensions and improvements
possible to the model, dividable in three categories: data,
network, and tasks. These changes should improve the
results and generalizability of the results and are described
next.

7.3.1 Data. The data as used for the current version of
the model was restricted in a number of ways. First of
all, only nouns were used, while also other word types
could easily be included, without requiring any adjustments
to the model. More importantly, the data was confined
to orthography and semantics only, while also phonology
plays an important role in vocabulary learning. For some
experimental effects, phonology even plays a more dominant
or sometimes opposite role compared to orthography (e.g.,
Dijkstra, Grainger, & Heuven, 1999; Jared & Kroll, 2001).
This implies that an extended version of the model should
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ideally include phonology to allow for the explanation of
more experimental findings.

Also, there is more to language learning than mere
vocabulary. A possible extension would be to also include
sentence processing in the model in order to allow the
model to learn grammar. In addition, sentence processing
could allow the model to recover the meaning of words
from the contexts in the sentences (French, 1998), instead
of through other means, such as the now used distances in
WordNet. Sentence processing does require a modification
of the model, as recurrent connections will be needed to
represent the information over time. Still, including sentence
and grammar processing allows for interesting new questions
to test, such as transfer effects in grammar acquisition and the
simultaneous acquisition of grammar.

Not only the data itself, also the representation of the
data could be improved. The edit distances which were
used for orthography and semantics offer high resolution
distinctions, but at the cost of little psycholinguistic
plausibility and high dimensionality. Instead, it is preferable
to use a representation based more strongly on the
processing known to be performed in human, for example
representing orthography as open bigrams (Dehaene et
al., 2005). This will however probably yield even less
efficient representations and did not work in our preliminary
tests. Reducing the dimensions using principal components
analysis could solve the dimensionality problem, but makes
the features no longer intuitively interpretable and even
less convertible to any cognitive constructs. An optimum
between the two goals, plausibility and efficiency, needs to
be found, in which the concern for plausibility is the most
important from a scientific point of view.

7.3.2 Network. The most obvious and important
improvement of the model is an improvement of the results:
The model needs more training to reach a higher percentage
of successful translations. Especially the orthography SOM
clearly required more time to settle, which had a negative
influence on especially the neighborhood effects reported.
Also the tests of the different learning schemes could be
improved by more intensive training.

The next most important improvement of the model
is a more efficient way of representation in the network,
which could also decrease training time. In the current
implementation, an even worse than localist representation,
namely three times the number of patterns, was needed for
topology preserving autoassociative mapping to be possible.
This is far from ideal from a computational perspective,
because complexity rises with layer size. This is especially
a problem for the translation SOM. For the other SOMs,
a more efficient representation can be used. For example,
words and concepts can be represented by the distances to
a number of reference model vectors, instead of using one
BMU per pattern. This would decrease the required number
of model vectors. We chose to not use this method to ease
comparison with the SOMBIP model and make the model
more intuitive.

For the translation layer, a solution is less easily found,

but some potential ones exist, in addition to the combination
of SOMs and RBF networks as described in section 3.1. For
example, a backpropagation network could be used, trained
in all directions. This approach loses the topographical
properties of the hidden layer, which can be countered
by either adding Hebbian learning and lateral connections
to the network (O’Reilly & Munakata, 2000) or mapping
the activations from the backpropagation units on a SOM
to order them topographically. The latter is possible
because the locations of units have no role in non-recurrent
backpropagation, meaning that they can be ordered by
another algorithm to invoke topology. Ideally though,
a multidirectional algorithm would be developed for this
purpose, either using SOMs or Hebbian learning, which
should be able to automatically learn in multiple directions
instead of having to train the network in each direction
separately. In theory, this seems possible, in practice no such
algorithm is known to us.

Another extension to the development in the hidden layer
and possibly the other layers is to use a dynamic instead of a
fixed number of nodes. This way, the model is less restricted
in its development. A number of algorithms exist for this
purpose (e.g.,Fritzke, 1995; Dittenbach, Merkl, & Rauber,
2000; Flentge, 2006). Especially the Growing Neural Gas
algorithm (Fritzke, 1995) is interesting in this regard, as
it makes no assumptions on the dimensionality to which
the data needs to be converted. The dynamic Neural Gas
algorithm tries to represent the multidimensional data within
a multidimensional space with as view nodes as possible,
resulting in an efficient representation. The drawback is
that it is harder to understand and graphically depict the
representations that develop due to the high dimensionality.

A more drastic change would be to not use separate
layers for orthography, semantics, and language, but one
multidimensional SOM. In this case, the SOM needs to be
more than two-dimensional, as early tests done to otest this
option showed that using only two dimensions made the
problem really hard to learn for the algorithm. This should
not come as a surprise, since the dominant eigenvectors
normally determine the dimensionality of the map and it
is clear there are more large eigenvectors that describe all
aspects of the data than mere two. At least two dimensions
for both orthography and semantics should be included,
as in the current implementation. Using one large SOM
has the advantage of a lower computational complexity and
less required assumptions concerning the structure of the
cognitive system. Still all neighborhood effects can be
explained, because partial maps can be viewed by only taking
a subset of model vector dimensions into account. However,
SOMs are not often used in such a way and many potential
problems exist, as we found out in our preliminary tests
and the current implementation. For one, the data needs
to be balanced to make sure that not certain aspects of the
data dominate the developing topology. If there is such
an imbalance, the entire SOM could become structured on
the basis of the semantics only, with little structure in the
orthography, or vice versa.
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7.3.3 Tasks. With regard to the comparison to
experimental results, much has still to be done. Foremost,
the current analyses only looked into the direction of
reaction time changes, but not into the actual magnitude of
the change or into an otherwise more concise comparison to
experimental results. Doing such an analysis would show
in greater detail whether the model is indeed comparable to
the human language system. Moreover, it could also help
to determine the weight of the different factors determining
reaction times. For example, what are the relative impacts of
the frequency and neighborhood effects, or the specific
reaction times for semantics, language membership,
and orthography? Further analyzing the comparison to
experimental results, forces the model to actually predict
reaction times for specific items, instead of only the rough
direction of effects. Hence it makes for a stronger test of the
model.

In addition, other experimental tasks should be tested in
the model. The current tests for instance only focused on
word recognition, while the model can actually also be used
for picture recognition, as well as production, by applying
inputs to the conceptual side only, with or without language.
In addition, the model can also be used to model results in
translation tasks. The interesting question in this regard is
whether, and to what extent, the model actually needs to
be adapted to predict reaction times in these tasks. If the
modifications are large, one could expect different systems
for recognition and production in human cognition. If this
is not the case however, a (partly) shared system seems
more likely. Previous studies point to partly the same
neural regions to be responsible for language production and
language understanding (Gernsbacher & Kaschak, 2003) on
the one hand, making it likely also the processes involved
are partly the same. On the other hand, there are reports of
a language-specific lexicon underlying language production
(Costa & Caramazza, 1999; Costa et al., 1999), which is
in stark contrast with the language-aspecific respresentations
found in recognition.

But also for word recognition studies, there are
many possible directions of extension. Both semantic
and orthographic priming studies could for example be
incorporated. This can be done by calculating the activation
for the prime and adding the activation for the actual target.
This should yield faster reaction times for targets after related
versus unrelated primes because of the competition between
activations in the SOMs. Using the task-based similarity,
task-dependent priming effects should also be explainable,
as mentioned in section 5.1.

A topic which received too little focus in the current
analyses, is language development. As mentioned, analysis
of the developmental aspect of the model is also important
for the tests of different learning schemes. Development is
tested in greater detail in the monolingual developmental
version of the SOMBIP model, the DevLex model (Li et
al., 2004). Actually, this is one of the unique strengths
of the DevLex, as well as the SOMMUP model: Both are
a developmental and structural model of the lexicon at the
same time. For the DevLex model for instance, it has been

shown how new words are represented over the course of
learning. New tests of the SOMBIP model furthermore
showed how newly learned languages are added to an
already developed monolingual lexicon. It was found new
languages developed their own confined regions in the course
of learning. Also comparing the SOMMUP model with
the SOMBIP model on these aspects, should at least show
the generalisability of the results found in the latter model.
Based on the difference in the structure which developed for
orthography in our model, compared to phonology in the
SOMBIP model, we actually expect different developmental
results. More precisely, we expect new words and concepts
to be added dispersed over the maps, instead of in a
language-specific confined region. An additional advantage
of the SOMMUP model over the SOMBIP model is that
it combines the possibility of structural and developmental
analysis with the ability to generate reaction time predictions.
This should also allow the prediction of experimental results
in language learners.

To summarize, the fact that the SOMMUP model is
a learning model, incorporating multidirectional mappings
between orthography and semantics, neighborhood and
frequency effects, and appropriate reaction time predictions
allows the test of a wide variety of experimental tasks. This
ability can and should be used to put the model to a more
scrutinized test and check whether the current framework
can be generalized to explain, and hopefully predict, more
experimental outcomes.

7.4 Possible practical application: Computer
Assisted Language Learning

The goal of Computer Assisted Language Learning
(CALL) is to facilitate language learning with intelligent
software. Often, such software is based on models of both
the domain and the learner (Beatty, 2003). These models
are hardly ever based on knowledge from psycholinguistics
though, let alone on models already developed on the basis
of such scientific knowledge. Still, it is reasonable to expect
something is to be gained from turning towards scientific
insights to improve models of the language learner (Ellis,
1995), or conversely look how a model such as proposed here
can be applied in practice.

For an effective learner model for a CALL
implementation, at least four factors are important:
• The ability to determine the cause of errors a learner

makes.
• An adjustable representation of the language

proficiency of a learner.
• A way to determine what the next steps in learning

should be.
• A computationally efficient implementation to allow

real-time processing during learning.
Our model should adhere to all these factors. We think

it is possible for our model to do so and as such convert it
to a working user model. In the following, we will briefly
sketch how. This is followed by a short description of the
specific advantages a CALL implementation would have for
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simultaneous language learning. The proposals done here
need to be tested to determine the actual applicability.

7.4.1 Interpretation of errors. With respect to the ability
to determine the cause of errors, it should first be clear
what sources of errors there possibly are. A number of
different error classifications exist (see e.g., Burt, 1959;
Duskova, 1969; Odlin, 1989). Of these, the distinction
between intra- versus interlingual errors and semantic versus
orthographic errors is most important, because these are
the main factors in vocabulary learning and hence in our
model. The maps for orthography and semantics allow for
an intuitive representation of the kinds of errors, namely by
determining the distance between the target word or concept
and the actually selected word or concept. I.e., the larger the
distance between the correct and actual answer in a certain
layer, the larger the error. Using the pattern in the errors, one
can then predict the most likely source, as shown in table 11.

To clarify this point, a short example is useful. A learner
is asked to translate the word BIKE from English to Dutch
(correct answer: FIETS). The answer of the user happens
to be BIETS. To interpret this answer, it is encoded and
presented to the orthography layer, without any language
information. Next, the language layer tells us what language
the word most likely is (Dutch in this case, as BIETS does
not resemble any high frequent English words) and what
the most likely concept is, which turns out to be the correct
concept, fiets, followed by the concept biet. In addition,
the correct answer, FIETS for the orthography map, and
fiets for the concept map, are activated. The shortest
distance in the three layers (BIETS versus FIETS, Dutch
versus Dutch, and fiets versus fiets) then determines
the most likely type of error, in this case an orthographic,
within-language error. If the user had answered AUTO
(meaning CAR in English), it is clear the user made a
conceptual error, while FAHRAD (BIKE in German) would
point to a clear language error.

This error detection scheme should at least be applicable
to the rough distinctions as considered in the example. We
expect the distances to also give a reasonable approximation
of the most likely source of a error in the case of more
complex or multiple sources of error. Using information on
language proficiency, the pattern of errors from other trials,
and earlier presentations of the same trial, this approximation
can probably be further improved. How this will work and
what improvements will be needed in practice remains to be
investigated.

7.4.2 Representation of proficiency. To be able to predict
the errors correctly, the model should also have a notion
of the language proficiency of the learner. For example, it
should not point to a confusion with German as the source of
an error when the learner does not know any German.

Proficiency could be represented by training the network
real-time during language learning. If the model learns in a
comparable way to the way humans do, this is the preferred
way of proficiency representation and updating. There are
two reasons to expect this not to work though. First,

even though the model is thought to learn in a comparable
way at the level of languages over time, this not to say it
learns at the same speed or in the same way at the level of
individual words. For instance, the model probably needs far
more repetitions than humans to learn the same translation.
Secondly, the computational complexity of learning the
model alongside the user is quite high, as considered in
section 7.4.4.
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Figure 17. A possible way to convert the SOMMUP model to a
user model by adding a proficiency module between the language
and translation layer. This layer modulates the effect of each
language node on the translation SOM for individual translations
(shown by the red hexagon). These individual proficiencies
combine to the overall proficiency for a language. The smallest
possible proficiency change is at the level of these individual
translations, but can be as large as the entire translation layer
(represented by the yellow rectangle), representing overall language
proficiency, or anywhere in-between (shown by the red Gaussian
shape).

An alternative way is to test whether the fully
learned model can be adapted to incorporate proficiency.
Because language proficiency is directly related to language
membership, the language layer is the best candidate to
represent proficiency. In comparison, language proficiency
cannot be represented in the orthography and conceptual
layers, as these are both language-independent. Moreover,
it are not primarily orthography and semantics that have to
be learned in foreign language learning, but the mapping
between the two, mediated by language. Using the language
layer to represent proficiency, should make it possible to
use a fully learned model of multiple languages and only
manipulate the weights from the language layer to the
translation layer to represent proficiency. No knowledge
of German can, for example, be represented by setting the
weights from the German node to the translation layer to
zero, making sure no German nodes in the translation layer
are activated. For more fine grained distinctions, this effect
can be made node specific: if the German word for bike
is not yet known, the weight of German to the FAHRAD
translation node can be set to zero. This way, the proficiency
can be modulated on both a general level, by modulating the
overall influence of a language node on the translation layer,
and on specific translations, through modulation of specific
associations in the translation layer.
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Table 11
An overview of the way distances in the maps could be used to determine the most likely cause of an error.
Orthography Language Semantics Interpretation error Example

- - - Correct BIKE - BIKE
Small - - Orthography BYKE - BIKE
Large - Small Semantics (small) CAR - BIKE
Large - Large Semantics (large) ELEPHANT - BIKE
Large Large - Language FIETS - BIKE
Large Large Large Total ROOS - BIKE

For large vocabularies, modulating one association at
a time seems rather cumbersome to represent proficiency,
while adapting all relations for one language seems rather
crude. Here the topographical properties of the model come
into play: If we assume that the proficiency of a user
generalizes on the basis of word and concept similarities,
proficiency can be modulated for larger, topographical
related regions. In other words, if one knows a certain
translation, one is expected to also know similar translations.
The starting point of learning a new language for the user
model would be the already known languages, with no
influence of not yet known languages, as their weights are
set to zero. Even with the foreign language nodes switched
off, the user is expected to have some proficiency in foreign
translations from the start, the ones close to the known
language(s). The most apparent example is the translation of
cognates, which should indeed be learned the fastest (Lotto
& Groot, 1998). Next, when these most close neighbors are
learned, some proficiency is expected to generalize to again
neighboring translations, etcetera.

If a user is consistent in the correctness of his answers,
the rate of proficiency change can be increased by including
a wider range of translations surrounding the performed
translations. Consistent correct answers should lead to an
increase and consistent incorrect answers to a decrease in
proficiency in this enlarged region. In contrast, if a user is
inconstant in the correctness of his answers, which means
that the model can be less certain of the proficiency changes,
the region of proficiency change remains small or even
shrinks. This way, proficiency can increase and decrease
in a potentially fast, though controllable, way, which should
allow for an efficient representation of proficiency.

7.4.3 Trial selection to facilitate learning. The
topographical properties of the model are also useful
for another purpose: the selection of new trials to remediate
deficits in proficiency. As the first of three ways, trials
can be ordered by the distance to the already known
translations: First cognates and near cognates, slowly
moving to more difficult words, less resembling known
translations. Secondly, the trials can be selected on the
basis of proficiency to influence the difficulty of learning.
Recall, proficiency is proposed to be represented by the
weights from the language layer to the translation layer.
These weights could be used to select the translations with
a particular proficiency. Trials can be chosen to fit the

current proficiency, leading to a kind of ’Zone of proximal
development’ (Vygotsky, 1978) or be chosen with a certain
difference to the current proficiency to challenge the learner.
Thirdly, if a user makes many semantic, orthographic, or
language errors, the topographical properties of the three
SOMs can be used to select words with similar properties
(to force the user to learn specific distinctions) or different
properties (to make the learner first learn the more general
differences). For example, if the learner keeps confusing
Spanish and Italian words, orthographically close words
from the two languages could be used as the next trials to
make the user learn to discriminate the hard words, or first
the more distinctive words could be presented to let the
learner focus more on the general differences.

7.4.4 Feasibility and complexity. The complexity of the
current model is its major drawback for actual application
as a user model. Especially for the large vocabularies
one would want for real world applications, the current
implementation is too inefficient. There are two sources of
this inefficiency, as already mentioned: the representation
of the data and the worse than localist representation in
the model. The representation of the data we already tried
to make more efficient by selecting a subset of distances.
Still the representation was rather high dimensional. In
addition, the representation does not allow to precisely
predict which words someone selected if it is not a word from
the dataset; The representation does not include information
on individual letters which would allow such generalization.
More efficient representations of data, which do contain letter
information for orthography, are hence needed. The second
source of inefficiency, the representation in the SOMS,
is due to the localist requirements of the autoassociative
mapping. As discussed in section 3.1 and 7.3.2, this should
be remediable by combining the SOM and RBF approach
or one of the alternative possibilities. The current approach
is at least too inefficient to allow real-time processing for
large datasets and is thus not yet ready for implementation
in actual intelligent tutoring systems. Still, the ideas behind
a possible implementation, as just proposed, could already
be tested.

7.4.5 Advantages for simultaneous learning. A
CALL-based implementation as just described can
specifically facilitate simultaneous language learning,
especially due to the help it can offer to learn to discriminate
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Figure 18. A schematic overview of a possible interface for a
CALL-implementation aimed at simultaneous language learning.
The word in the native language (A) is shown, together with the
words in the foreign languages (C) and their language cues (B).
The user would be required to fill in the words for the foreign
languages. To facilitate activation of the underlying concept, a
graphical depiction of the concept is presented (D).

languages. In addition to the ways already described
based on the user model, also the interface itself can be an
advantage. One way it can be, is by presenting different
kinds of tasks. For example, explicitly asking the learner
to select the appropriate languages for a set of words helps
learners to detect the discriminative properties of languages.
Another way is specifically focused on the importance of
concepts in the kind of simultaneous language learning we
consider here: presenting translational equivalents for one
concept together. We expect this kind of learning to be
facilitated by activating the concept through the use of media
such as pictures, sounds, and movies. Moreover, to help the
learner to discriminate the languages, it is also possible to
add cues on language membership. Using such a multimodal
approach is thought to facilitate learning in general (Hede,
2002; Levy & Stockwell, 2006). More specifically we think
it can help learners to make the most of learning multiple
languages simultaneously. An schematic overview of a
possible user interface is shown in figure 18.

7.5 General Conclusion

The SOMMUP model, as proposed in this thesis, has the
potential to become a well-rounded model. It does not only
feature the structural properties of the human lexicon, but
it can also predict patterns in reaction times and allows to
study developmental properties of this lexicon. The latter did
not work out yet for the main question of this thesis, on the
effect of simultaneous language learning, due to conflicting
results. However, the model did show that simultaneous
language learning is possible. To determine whether it is
actually beneficial, more modeling and experimental work
needs to be done. The current work gave sufficient leads
to follow up on, hopefully resulting in more research into
this scientifically and practically relevant topic. It essentially
boils down to the question whether we can do something as
late learners, namely simultaneous language learning, which

we once all could do as early learners.
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Rüschemeyer, S.-A., Nojack, A., & Limbach, M. (2008). A mouse
with a roof effects of phonological neighbors on processing
of words in sentences in a non-native language. Brain and
Language, 104(2), 132 - 144.

Schepens, J. (2008). Distributions of cognates in europe based on
the levenshtein distance. (Bachelor thesis)

Schnur, T., Brecher, A., Rossi, N., & Schwartz, M. (2004). Errors
of lexical selection during high and low semantic competition.
Brain and Language, 91(1), 7-8.

Siakaluk, P., Sears, C., & Lupker, S. (2002). Orthographic
neighborhood effects in lexical decision: The effects of nonword
orthographic neighborhood size. Journal of experimental
psychology. Human perception and performance, 28(3),
661-681.

Skinner, B. (1953). Science and human behaviour. MacMillan.
Snow. (1993). Psycholinguistics. In J. Gleason & N. Ratner (Eds.),

(p. 391-416). Fort Worth: Harcourt Brace Jovanovich.
Studnitz, R. von, & Green, D. (1997). Lexical decision and

language switching. International Journal of Bilingualism, 1(1),
3-24.

Studnitz, R. von, & Green, D. (2002). Interlingual homograph
interference in german-english bilinguals: Its modulation and
locus of control. Bilingualism: Language and Cognition, 5(1),
1-23.

Tagamets, M.-A., Novick, J. M., Chalmers, M. L., & Friedman,
R. B. (2000). A parametric approach to orthographic processing
in the brain: An fmri study. J. Cogn. Neurosci., 12(2), 281-297.

Tennyson, C. L., Tennyson, R. D., & Rothen, W. (1980). Content
structure and instructional control strategies as design variables
in concept acquisition. Journal of educational psychology, 4,
499-505.

Thomas, M., & Allport, A. (2000). Language switching costs
inbilingual visual word recognition. Journal of memory and
language, 43, 44-66.

Vamvakos, T. (2006). Panorame of the european words. Available
from http://www.users.otenet.gr/∼vamvakos/
multilingual.htm

Vesanto, J., Himberg, J., Alhoniemi, E., & Parhankangas, J. (2000).
Som toolbox for matlab.

Vigliocco, G., Lauer, M., Damian, M., & Levelt, W. (2002).
Semantic and syntactic forces in noun phrase production.
Learning, Memory, 28(1), 46-58.

Vossen, P. (Ed.). (1998). Eurowordnet. Dordrecht, Holland:
Holland: Kluwer.

Vygotsky, L. (1978). Mind and society: The development of higher
mental processes. Cambridge, MA: Harvard University Press.

Yates, M., Locker Jr, L., & Simpson, G. (2003). Semantic



A SELF-ORGANIZING MODEL OF SEQUENTIAL AND SIMULTANEOUS LATE LANGUAGE LEARNING 41

and phonological influences on the processing of words and
pseudohomophones. Memory & Cognition, 31(6), 856-866.

Appendix A
Vocabulary

Throughout this thesis a number of concepts from the
psycholinguistic literature are used. For clarity, the most
relevant concepts are defined here, in order to facilitate
understanding of the text.

Word properties
Different properties and types of words are reported in the

literature, such as:

Word frequency The number of times the words is used in
written and/or spoken language. Frequency values for
English and Dutch were gathered from the CELEX
database.

Translational equivalent Words that share meaning, but
not necessarily orthography or phonology.

Interlingual homograph 3 Words that share orthography
between languages, irrespective of a common
meaning. Examples of Dutch-English homographs are
ROOM, BED, and BANK.

Cognate 3 Interlingual homographs that not only share
orthography, but also meaning between languages.
BED and STOP are examples of Dutch-English
cognates.

False friend 3 Refers to homographs that only share
orthography across languages, but have a different
meaning. An example of a Dutch-English false friend
is ROOM, meaning cream in Dutch and room in
English.

Neighbor A neighbor of a word is a word that is similar
in orthography or semantics, within or between
languages. An orthographic neighbor has a similar
spelling, such as SHOE and SHOW (intralingual)
or BOS and BOW (Dutch-English interlingual). A
semantic neighbor on the other hand has a comparable
or related meaning. The concepts father and mother
are semantic neighbors.

Neighborhood density The number of orthographic
neighbors a word has is called the neighborhood
density. In English for example, LAKE has a large
number of neighbors (TAKE, FAKE, MAKE, STAKE,
CAKE, etc.), while fewer neighbors can be found for
QUIET: the neighborhood density for LAKE is said to
be higher than the density for QUIET.

Neighborhood frequency The neighborhood frequency
describes the word frequency of the orthographic
neighbors. LAKE for example has a high
neighborhood frequency, as on average the neighbors

are high frequent words. QUIET on the other hand
has a low neighborhood frequency.

WordNet word properties
For each English word in its database, WordNet contains

the following properties:

Hyponem : A word more specific then the target word.

Hypernem : A word more general then the target word.

Holonym : A word that names the whole of which the target
word is a part.

Meronym : A word that names a part of the concept denoted
by the target word.

Experimental tasks
The following types of experimental tasks are often

employed in psycholinguistic research into multilingualism:

Language decision task Experimental task in which
participants have to judge the language of a presented
word. Often it is a forced choice between two
languages. For example, a question in a lexical task
could be: “Is the letter string LAAT a word in English
or Dutch?”.

Lexical decision task In a lexical decision task participants
have to judge whether a letter string is a word or not in
a particular language. For example, a question could
be: “Is the letter string WATER a word in English?”.

Generalized lexical decision task In the generalized
version of the lexical decision task, participants have
to answer whether a letter string is a word in any
of the languages studied, not specifically in one. A
question for the participants could be: “Is the letter
string WATER a word in either English or Dutch?”.

Progressive demasking task In a progressive demasking
task, a participant has to a respond as soon a
word is recognized. The recognition of the letter
string is complicated by the presentation of a mask
directly following the stimulus. In the beginning
of a trial, mask presentation is longer than stimulus
presentation, but with each successive stimulus
presentation mask duration is shortened and stimulus
duration lengthened, until the word is recognized.

Priming studies In priming studies, a non-target stimulus,
related or unrelated to the target stimulus is presented,
which is intended to influence the performance on the
target. For example, presentation of the word WING

3 Note that there are multiple conventions using the notions
homographs, cognates and false friends. In part of the literature,
homographs for example refer to false friends. We instead used the
term homograph to refer to the combined group of cognates and
false friends.
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is thought to facilitate recognition of the word PLANE
because of the semantic relation, but no facilitation
effect is expected for BOTER.

Go/no go task a task in which the participant has to respond
to words from one language only, not to words from
another language.

Appendix B
Conventions

Because the distinction between orthography and
semantics is an important one, the following convention

is used:
1. The orthography of a word is denoted in capitals, like

this: HOME.
2. Concepts are represented by the typewriter notation of

the word, such as home.
To summarize, HOME denotes the English word for the

concept home.
In addition, language proficiency is denoted by referring

to the native or first language (L1), second language (L2),
third language (L3) etc., with the order of languages
representing the order of proficiency.


