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Abstract

Attempts to make brain-computer interfaces more generalizable have
seen some success. The generative model of Thielen et al. has been able
to accurately predict responses to unseen stimuli. However, this model
still requires the unseen stimuli to be presented at the same frequency.
This is because the transients are assumed to stay the same in the gen-
erative model, which is a false assumption when the presentation rate
changes. In this thesis, two methods of generalizing transient responses
across different presentation rates are investigated. The first method uses
lagged stimuli: stimuli where the rate is changed by leaving the length of
the stimulus-ON the same, but changing the length of the stimulus-OFF.
The second method uses superposition, i.e. linear addition of responses,
in order to predict transient responses at different presentation rates. The
first method using lagged stimuli showed promise. Classification accura-
cies were significantly better than chance when predicting responses to
stimuli at a rate that was different from the training rate. At the same
time, however, the correlations between the transients of the same event
at different rates were not significant. The second method using super-
position showed no significant results. Some correlations between real
transients and transients that were predicted using superposition were
significant, but the accuracies were at chance level.
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1 Introduction

Brain-Computer Interfaces (BCI) allow humans to control external devices with-
out the need for muscle control [1]. This can be greatly beneficial for those who
cannot communicate via conventional ways, like locked-in patients (LIP) [2, 3].
BCIs can rely on different kinds of brain signals, for instance slow cortical poten-
tials [3], sensorimotor rhythms [4], or visually evoked potentials (VEP) [1, 5, 6].
The latter signals currently allow for the highest information transfer rate, with
some VEP-based BCI spellers able to reach a speed of 60 characters per minute
[6].

The BCI cycle consists of six distinct stages, as defined in [7]: stimulation,
measurement, preprocessing, feature extraction, prediction, and output. This
thesis will mostly focus on prediction. The basis of VEP-based BCIs is the fact
that foveated and attended flickering targets create a stronger brain response
than targets outside the attended area [1]. VEPs arise from the occipital cortex,
since visual information is processed there [8, 9]. The stimuli are mapped to
computer commands, which determines the output, and by attending a stimulus,
this stimulus is more easily recognized from the signal.

Code modulated visually evoked potential (c-VEP) based BCIs are a kind
of BCI that use pseudorandom binary codes to determine a flicker pattern [1].
The advantage of using pseudorandom flicker patterns over for instance a steady
flicker pattern as used in steady state visually evoked potentials (SSVEP), is that
c-VEPs are broad band signals. This makes these signals much more resilient to
noise, both externally generated noise, like other electrical devices, or internally
generated noise, like muscle movement.

Thielen et al. designed a generative model to predict the brain response to
a stimulus [8, 10]. However, the generative model has so far only been used
to predict stimulus responses within one presentation rate. If for example a
classifier has been trained on data at a presentation rate of 60Hz, the model
cannot predict what a response would look like to an event at a presentation
rate of 90Hz.

Being able to generalize learned transients across different presentation rates
can be of great use, for example in predicting the optimal stimulation frequency
for a set of codes. In the code domain, the stimuli with minimal cross- and au-
tocorrelation can be easily calculated. The responses to those stimuli, however,
can still be non-optimal, since the responses to the individual events within each
stimulus overlap, as illustrated in Figure 1.
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Figure 1: Two imaginary event responses (top and middle row),
shifted over time, giving two different overall responses (bottom
row)

In this thesis, two different methods to generalize transients across different
presentation rates will be investigated:

1) Using lagged stimuli

2) Using superposition

Both methods of generalization first require an assumption to be tested. First,
the use of lagged stimuli will be explained in Section 1.1, and afterward, in
Section 1.2, the use of superposition will be explained.

1.1 Generalizing over Lagged Data

The frequency of stimuli can be changed in different ways. The first way is
a simple stretching of the code, i.e. both the stimulus-ON, where the binary
code is 1, as well as the stimulus-OFF, or run-off, where the binary code is
0, are changed by the same ratio, as in Figure 2a. Henceforth, stimuli using
this method of changing presentation rate are called stretched. The second way
is found by introducing a lag within the code, i.e. only changing the run-off,
leaving the stimulus-ON the same length, as in Figure 2b. Henceforth, stimuli
using this method of changing presentation rate are called lagged.

When stretching a code, the stimulus-ON length changes, and so we cannot
assume that the responses to the events within the stimulus stay the same.
For lagged codes however, the size of the stimulus-ON stays the same, so it is
possible that the event-responses stay the same when a lagged code is presented
at different rates.

5



(a) Stretched codes (b) Lagged codes

Figure 2: ‘stretched’ codes versus ‘lagged’ codes. Both methods
change the frequency of the code, but in a different way.

In theory, the responses to events from lagged stimuli from one rate can be
used for stimuli at another rate, since the stimulus-ON events are equal across
the rates. This hinges on the assumption that events with the same length
stimulus-ON, but a different length stimulus-OFF, are actually equal.

This leads to the first section of this research: providing evidence that events
with the same length stimulus-ON, but different length stimulus-OFF have func-
tionally similar transient responses. After this, generalization will be attempted
across different rates using lagged stimuli.

1.2 Generalizing over Stretched Data

For stretched stimuli however, this event-response equivalence across rates does
not hold. Predicting the event responses at one presentation rate, when the
event responses at another rate are known, requires a manipulation of the event
responses.

The underlying theory which would allow prediction across different pre-
sentation rates for stretched stimuli comes from linear systems theory. Linear
systems have a key property, called superposition [11], which is defined as

T [x1(t) + x2(t)] = T [x1(t)] + T [x2(t)]

Here, xn(t) is an input at time t and T is the system transformation, i.e.
the output. In terms of VEPs, superposition means that the response to two
events is the sum of the responses to the individual events. This is illustrated
in Figure 3.
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Figure 3: Two simulated events with their response, shifted to
align end-to-start, and a longer pulse, exactly the sum of the two
individual events, with its response, equal to the sum of the indi-
vidual responses. This demonstration only holds if VEPs obey to
the rules of superposition.

For example, if a classifier is trained on stretched data at 120Hz, but testing
data is collected at 60Hz, in theory the transient responses could be predicted
by using the long response at 120Hz as a short response at 60Hz, after which
superposition of two short 60Hz responses predicts the long response at 60Hz.
This is illustrated in Figure 4a. When generalizing from 120Hz to 40Hz, the
short event response at 40Hz is theoretically equivalent to the superposition of
the short and long event responses at 120Hz, and the long event response at
40Hz is the superposition of two short event responses at 40Hz, as illustrated in
Figure 4b.

7



(a) Superposition to 60Hz (b) Superposition to 40Hz

Figure 4: Representation of the superposition of stimuli for
stretched data needed to generalize from 120Hz to 60Hz and 40Hz.
For generalization from 120Hz to 60Hz, no superposition is needed
to find the short event response at 60Hz. For the generalization
from 120Hz to 40Hz however, the short event response at 40Hz
is the superposition of the short- and the long event response at
120Hz.

Superposition is not a new concept in the field of BCI. The generative model
assumes that superposition holds for VEPs from event responses to stimulus
response, i.e. the stimulus response is calculated as the superposition of all
event responses. The results from the generative model seem to be reliable
enough to warrant this assumption [5, 8, 10]. There also has been evidence
that the SSVEP responses can be explained as the superposition of transient
responses [12]. However, no research has been done yet for superposition from
event response to event response, and with that the ability to predict responses
across rates for stretched data, in VEPs.

This leads to the second section of this research: providing evidence that
superposition holds from event response to event response. After this, general-
ization will be attempted across different rates using the superposition of event
responses.

2 Methods

2.1 Experimental Setup

The data used in this experiment was originally gathered by Borhanazad et al.
[5]. Borhanazad et al. used the following experimental setup.

There were ten participants taking part in the experiment with stretched
stimuli, and three participants taking part in the experiment with lagged stim-
uli. The participants were presented with an array of eight RGB LED lights,
each covered with a transparent sheet showing a picture of an animal. The
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participants sat 35 to 50 centimeters away from the array, chosen by the partic-
ipant to give them a comfortable view of each LED. The presentation rates that
were used differed for stretched and lagged stimuli. The stretched stimuli were
presented at 40, 60, 90 and 120Hz, while the lagged stimuli were presented at
40, 60, 90, 120 and 180Hz. There was one run for each stimulation frequency,
meaning there were four runs for the stretched stimuli, or five runs for the lagged
stimuli. The different rates were presented in random order. Each run consisted
of 10 trials, and each trial in turn consisted of the cue of a randomly chosen
LED for one second, followed by 4.2 seconds of flashing, followed by one second
of rest. Between each run, participants were allowed a short break to prevent
fatigue.

The codes that were used in this experiment to determine the flickering
pattern of the LEDs were Gold codes. The most frequently used pseudoran-
dom codes used for c-VEP are maximum length sequences (m-sequences), and
although m-sequences have excellent cross-correlation, their autocorrelation is
often poor [8]. Gold codes are an alternative to m-sequences, and have both
good cross-correlation (although worse than m-sequences) but also good auto-
correlation [13]. Gold codes are generated from two m-sequences with length
2n−1, and a maximum cross-correlation of 2(n+2)/2 where n is the size of the
linear feedback shift register.

Borhanazad et al. tested two different kinds of stimuli: stretched and lagged
stimuli, as explained in the introduction and shown in Figure 2. Both of these
datasets will be used. This means that there was a different number of partici-
pants for the two kinds of stimuli.

For the stretched codes, the experiment started with a training session, fol-
lowed by calibration, followed by a testing session. However, since these testing
sessions used early stopping, not every participant has the same amount of data,
making for unfair comparison. So instead, 10-fold cross-validation (i.e. leave-
one-out cross-validation) was used on the training data for this experiment. For
lagged codes, only a training session took place. Hence, for the lagged experi-
ment, 10-fold cross-validation was used on the training data.

Not all classifiers performed equally well. So in order to ensure that the
data was both realistic, but that the conditions would still be close to optimal,
a subset of the users was made for the stretched data by selecting those who
had an average classification rate of at least 80%. Since there were only three
participants for the lagged data, the data from all three was used.

2.2 General Analysis Pipeline

An analysis pipeline was set up to do the following. The training data was
taken in order to calibrate the generative model. In essence, this means that
the classifiers now know the generalized event responses to the events within
the stimulus.

The generative model can then use the calibrated classifiers and the stimuli
matrices to predict the EEG response to those stimuli. It does this by performing
convolution: every event evokes an event response, and the stimulus response is
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the sum of the event responses shifted over time in accordance with the event
onset.

In practice the generative model does as follows: a design matrix M is
generated for each stimulus. These design matrices have one axis reflecting the
event, one axis reflecting EEG time samples, and one axis reflecting the event
response time samples. For each event, the first column then shows a 1 whenever
an event of that type is presented. In the next row, the next column shows a 1,
until the last column contains a 1.

Calibration has been done by presenting a certain stimulus that contains all
possible events. From this, the event responses R are calculated as R = M+X,
where M+ is the pseudo-inverse of M . The template response to stimulus j,
Tj , is then calculated as Tj = MjR.

During testing, the measured EEG signal is compared to each template, and
the template that has the highest correlation with the measured signal is chosen
as the attended code.

It should be noted that the transient responses have an arbitrary amplitude.
This also means that a transient is completely equivalent if it is flipped over the
horizontal axis, and during training, a direction is chosen arbitrarily. In order
to ground these transients, the spatial filter is used, and the transients are set to
be positive around channel Oz. This means that if training results in a spatial
filter that is negative at channel Oz, both the spatial filter and the temporal
filter, i.e. the transients, are negated. This becomes relevant when comparing
transients using correlation.

Another important note is regarding the event definition. In the generative
model, the transients are determined per event, but the event definitions can
be changed. One way of defining the events is short versus long pulses, i.e. 10
or 100 versus 110 or 1100. Here, the run-off is assumed to not matter. Another
way would be to also distinguish between the different run-off lengths, i.e. 10
versus 100 versus 110 versus 1100. Here, the run-off is assumed to matter. The
former definition will be referred to as duration, the latter will be referred to as
components.

2.3 Statistical Tests

All hypotheses, barring the third hypothesis, are tested in two ways.

A) using correlations to test transient similarities.

B) using accuracies to test classifier performance.

Transient similarity is tested using Pearson’s correlation. The Pearson’s
correlation is calculated as

ρ(x, y) =
1

N − 1

N∑
i=1

(
xi − x̄
σx

)(
yi − ȳ
σy

)
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where x and y are two transients, each of N samples, x̄ and ȳ the means of
x and y respectively, and σx and σy are the standard deviations of x and y
respectively.

When a t-test is performed on correlations, a Fisher transformation is needed
first [14]. The Fisher transformation is defined as

z =
1

2
ln

(
1 + ρ

1− ρ

)
= arctanh(ρ)

where ρ is the Pearson’s correlation, ln is the natural logarithm and arctanh
is the inverse hyperbolic tangent function.

This same principle can be used to get meaningful averages from correlations,
which is not the case by default. By first performing a Fisher transformation
on a set of correlations, and then averaging, the resulting values can be used
meaningfully in a t-test. Also, if a correlation is desired again after averaging,
the averaged z-value can be transformed back to a correlation by using the
inverse of the function:

ρ =
e2z − 1

e2z + 1
= tanh(z)

2.4 Hypothesis 1: Run-off

For the first part of the run-off hypothesis, only the lagged data is examined.
First, the average correlation between all transients of the same event are taken
over all rates, and compared. If indeed the run-off length does not matter, the
event-responses for the same event across all rates should be roughly equivalent.
The average correlation will be taken across all rates, of course excluding the
correlation with the responses for the same rate. So, for each user, for each
event, a correlation table is made containing the correlations between all event-
responses. The diagonal, containing the correlations for each rate with itself,
is removed, and the tables are averaged to get one average correlation for each
user, for each event. This is done for both duration-trained classifiers, with two
events, and components-trained classifiers, with four events.

Next, the components-trained classifiers are used to determine the correla-
tions between the two short events (10 and 100) and the two long events (110
and 1100), per user. If the correlations are significantly higher than zero, that
means that those two events, are relatively similar.

Cross-validation is also performed, in order to get an estimate of the differ-
ence in performance. Whether a longer run-off matters or not is determined by
looking at the difference in performance between duration-trained classifiers and
components-trained classifiers. If in fact 10 and 100 are perceived as different
events, components should perform significantly higher than duration-trained
classifiers. If not, duration-trained classifiers and components-trained classifiers
should perform roughly equal.

A one-sided t-test with α = 0.05 is performed on both the (Fisher trans-
formed) correlations and the accuracies. A t-test on correlations can give insight
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into whether the transients are significantly similar, but if the p-value is higher
than the significance level, this does not give any proof for the transients being
different.

The first null hypothesis (1AHnull) is that the correlations between the events
with the same number of ones, but different run-off lengths are not significantly
different from zero.

The first alternative hypothesis (1AHa) is that the correlations between the
events with the same number of ones, but different run-off lengths, are signifi-
cantly higher than zero.

The second null hypothesis (1BHnull) is that the accuracies from components-
trained classifiers do not perform significantly different from duration-trained
classifiers.

The second alternative hypothesis (1BHa) is that the accuracies from components-
trained classifiers do perform significantly higher than duration-trained classi-
fiers.

2.5 Hypothesis 2: Superposition

The superposition hypothesis starts with the same general analysis pipeline,
run on both duration-trained classifiers and components-trained classifiers, on
stretched data. The pipeline is run until the point where the event responses
are predicted. Then, one of the event responses can be predicted from the other
event responses using superposition, and the real and constructed transients can
be compared via both correlation or classifier performance.

For duration events, the long response is predicted as the superposition of
two short event responses, one of those shifted by one bit. This is realized by
padding two copies of the short event response with zeros, so that one bit worth
of zeros (which is the sampling frequency over the presentation rate in terms
of samples) is added to the start of one copy, and the end of the other. Next,
those two copies are added element-wise, and the result is cut back to the size
of the original event response.

For components events, the same is done, but rather than with the response
to two short events, the response to 10 and 100 are used. The response to 10
is shifted forward one bit, meaning it gets padded with zeros at the start, and
the response to 100 gets padded with zeros at the end. Again, the two padded
transients are added element-wise, and the result is cut back to the size of the
original event response.

For duration events, the correlation between the short event response and the
long event response is measured, as well as between the long event response and
the constructed long event response. For components events, three correlations
are calculated: between the responses to 10 and 110, the responses to 100 and
110, and finally between the constructed response to 110 and the actual response
to 110.

Once these correlations are calculated, a gain in correlation can be calcu-
lated. Imagine that a classifier was only trained on short events, but is then
tested on codes that contain long events as well. The question is: would it then
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be beneficial to perform superposition, in order to estimate the response to the
long event? In other words, does superposition have some predictive power?
For the transients of duration-trained classifiers, the gain is simply calculated
as

gaindur = corr(110(0), 110(0)con)− corr(110(0), 10(0))

and for components-trained classifiers, the gain is calculated as

gaincom = min(∆corr10,∆corr100)

where
∆corr10 = corr(110, 110con)− corr(110, 10)

and
∆corr100 = corr(110, 110con)− corr(110, 100)

i.e. the minimum gain, compared to the two constituent event responses.
Finally, the classifiers are tested using 10-fold cross-validation. The construc-

tion of the transients is inserted into the cross-validation process, meaning that
first, the classifier is trained on the training set, then the transients-construction
is performed, and then the classifier is applied to the validation set, using those
transients containing one constructed event response.

Again, a one-sided t-test with α = 0.05 is performed on both the (trans-
formed) correlations and the accuracies, this time between the constructed tran-
sients and normal transients.

The first null hypothesis (2AHnull) is that both the correlations between
the normal transients and constructed transients, as well as the gains, are not
significantly different from zero.

The first alternative hypothesis (2AHa) is that the correlations between the
normal transients and constructed transients, as well as the gains, are signifi-
cantly higher than zero.

The second null hypothesis (2BHnull) is that the accuracies from the classifiers
with constructed transients are not significantly different from chance level.

The second alternative hypothesis (2BHa) is that the accuracies from the
classifiers with constructed transients are significantly higher than chance level.

2.6 Hypothesis 3: Generalization Using Lagged Data

For the next hypothesis, the transients trained on the lagged data are actually
generalized. The classifiers are trained on data from one presentation rate, and
tested on the data from another rate.

For each user and event definition (duration and components), for each rate
as the training rate, all rates are used as testing rates. These accuracies are
then collapsed to an average per user, per event definition. Again, a one-sided
t-test with α = 0.05 is performed on the classification accuracies.

The null hypothesis (3Hnull) is that the average accuracies are not significant
difference from chance level.

The alternative hypothesis (3Ha) is that the average accuracies are significant
higher than chance level.
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2.7 Hypothesis 4: Generalization Using Superposition

It is important to realize that in order to use superposition, the training rate
needs to be an integer multiple of the testing rate. This means that the testing
rate is at its largest half the training rate, since then the short event at the
testing rate would become the long event at the training rate (see Figure 4).

So, in order to generalize across rates for the available stretched data, the
classifiers at 120Hz are taken as the base classifiers. From the rates that were
used, 40Hz and 60Hz can express 120Hz as an integer multiple. If the ratio
between the training rate (120Hz) and testing rate is even, the short stimulus,
and thus the short response according to linear systems theory, can be expressed
as the superposition of solely the long stimuli or responses at the training rate
(see Figure 4a). If the ratio between the training and testing rate is uneven, the
short event response, is set to be the superposition of a number of long event
responses plus the superposition of one short event response (see Figure 4b).

First, a t-test with α = 0.05 is performed on the correlations, in order to see
if the constructed transients are significantly different from the real transients.
Second, another t-test is performed on the accuracy, to see whether they perform
significantly better than chance level.

The first null hypothesis (4AHnull) is that the average correlation between
the constructed transients at either 40Hz or 60Hz and the real transients at
either 40Hz or 60Hz is not significantly different from zero.

The first alternative hypothesis (4AHa) is that the average correlation be-
tween the constructed transients at either 40Hz or 60Hz and the real transients
at either 40Hz or 60Hz is significantly higher than zero.

The second null hypothesis (4BHnull) is that the average accuracy using the
constructed transients at either 40Hz or 60Hz is not significantly different from
chance level.

The second alternative hypothesis (4BHa) is that the average accuracy using
the constructed transients at either 40Hz or 60Hz is significantly higher from
chance level.

2.8 Summary of the Hypotheses

To clarify and summarize the four hypotheses and their interaction, see the ta-
ble below.
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H Name Stimulus Research Question Example
1H Run-off test Lagged Does the run-off

length matter for the
transient response in
lagged data?

Is the response to 10
the same as to 100, the
same as to any event of
the form 10+?

2H Superposition
test

Stretched Can event responses be
predicted accurately
using superposition in
stretched data?

Can for duration-
trained classifiers, the
response to 110(0)
be predicted as the
superposition of two
responses to 10(0)?

3H Generalization
on lagged data

Lagged Can lagged data be
used to generalize tran-
sients over presenta-
tion rates?

Can transients trained
on lagged data at 90Hz
be used to classify data
at 60Hz?

4H Generalization
using super-
position

Stretched Can superposition be
used to generalize tran-
sients over presenta-
tion rates for stretched
data?

Can the transient re-
sponses at 120Hz be
manipulated, using su-
perposition, in order to
classify data at 60Hz?

3 Results

3.1 Hypothesis 1: Run-off

The event responses were plotted per user, per event, over all rates. The re-
sponses for event type duration are plotted in Figure 5a, and the responses for
event type components are plotted in Figure 5b.
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(a) Event responses for event type duration

(b) Event responses for event type components

Figure 5: Event responses per user, per event for all rates, including
the average response for lagged data.

For the first part of the run-off hypothesis, the transients for the lagged data
were examined. The correlations for each user, per event, averaged over all rates
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were:

User e10(0) e110(0)
S1 0.1854 0.1313
S2 0.0327 0.0197
S3 0.3838 0.2399

for duration, and

User e10 e100 e110 e1100
S1 0.4586 0.4530 0.2791 0.2390
S2 0.0644 0.2325 0.1511 0.1698
S3 -0.0934 -0.1575 -0.0874 -0.1464

for components.

A t-test was performed to see if those correlations between the responses to
events with the same number of ones were significantly different from zero, i.e.
if the transients were significantly similar.

Event p-value reject 1AHnull

Duration 0.1873 no
Components 0.4421 no

The correlations between the responses to the short and long events of the
components-trained classifiers are averaged per user, and shown per rate in
Figure 6.
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Figure 6: The correlations between either the short events (10 or
100) or the long events (110 or 1100) for components per rate,
for lagged data. The error bars indicate the highest and lowest
correlation.

Both the correlations between the long and short events for components, as
shown in Figure 6, were significantly similar.

Event p-value reject 1AHnull

Short 9.437e-04 yes
Long 3.620e-04 yes

The accuracies achieved on lagged stimuli, using either duration-trained clas-
sifiers or components-trained classifiers, were averaged over users, and are shown
per event type in Figure 6 and Figure 7.
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Figure 7: The classification accuracy per rate, for duration- and
components-trained classifiers, for lagged data. The error bars
indicate the highest and lowest performance.

Another t-test was performed to see if the accuracies between the duration-
trained classifiers and components-trained classifiers were significantly different.

Experiment p-value reject 1BHnull

Accuracy 0.4830 no

3.2 Hypothesis 2: Superposition

To get an understanding of what the constructed transients look like, compared
to both the real transient and its constituent parts, Figures 8, 9, 10 and 11 are
shown below. Figure 8 (duration) and Figure 10 (components) show instances
where there is a gain in correlation, i.e. the superposition is beneficial, while
Figure 9 (duration) and Figure 11 (components) show instances where there is
a loss in correlation, i.e. the superposition is not beneficial.
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Figure 8: The event responses for type duration, including the
constructed long response, for subject 2, at 120Hz, for stretched
data. Superposition results in a gain in correlation in this case.

Figure 9: The event responses for type duration, including the
constructed long response, for subject 7, at 40Hz, for stretched
data. Superposition results in a loss in correlation in this case.
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Figure 10: The event responses for type components, including
constructed the 110 response, for subject 2, at 60Hz, for stretched
data. Superposition results in a gain in correlation in this case.

Figure 11: The event responses for type components, including
the constructed 110 response, for subject 5, at 40Hz, for stretched
data. Superposition results in a loss in correlation in this case.

First, the correlations between the true long response and the constructed
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long response were calculated for duration, and the correlations between the true
response to event 110 and the constructed response to event 110 were calculated
for components. These are plotted in Figure 12.

Figure 12: The average correlations between the real long or 110
response and the constructed long or 110 response

Next, a t-test with was performed on those correlations.

Event p-value reject 2AHnull

Duration 2.344e-3 yes
Components 1.607e-3 yes

After that, the correlation gains were calculated with regards to the constituent
parts, which are shown in Figure 13.
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Figure 13: The average correlations gains when comparing the
constructed long or 110 response to their constituent parts.

Another t-test was performed on the gains, so see if the construction is ben-
eficial when compared to the constituent parts.

Event p-value reject 2AHnull

Duration 3.520e-3 yes
Components 0.4159 no

For the second part of the superposition hypothesis, the accuracies were
measured. Either the real transients were used, or the transients where one
of the event responses was constructed, were used. To illustrate, three users
were selected such that with the non-constructed transients, one user had high
accuracy, one user had mediocre accuracy and one user had low accuracy, both
for duration and components. The accuracies for these three users are shown in
Figure 14.
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Figure 14: The accuracies for three users on stretched data, for
all rates, for both duration and components, for either the real
transients, and the transients where one of the event responses
was replaced by a version constructed using superposition.

A third t-test was performed on the accuracies, using the constructed long
response or 110 response, with chance level accounted for.

Event p-value reject 2BHnull

Duration 0.053567 no
Components 0.030639 yes

3.3 Hypothesis 3: Generalization Using Lagged Data

The lagged generalization experiment was the only experiment where just the
accuracies were tested, and not the correlations, since those were already tested
in the run-off experiment (Section 3.1).

The accuracies per user, per event type, for all training rates and all testing
rates are shown in Figure 15.
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Figure 15: The accuracies per user, per event type, for all training
rates and all testing rates on lagged data.

A t-test was performed on the average accuracies of the classifiers per user
for lagged data, training on one rate, and testing on all rates. Chance level was
accounted for, and the instances where the train- and test rate were equal were
removed, in order to test only the generalized rates.

Event p-value reject 3Hnull

Duration 2.652e-04 yes
Components 7.886e-2 no

3.4 Hypothesis 4: Generalization Using Superposition

To get an understanding of what the predicted transients look like, Figure 16
and 17 are two examples that show the real transients at 40 and 60Hz against
the transients predicted from 120Hz using superposition, as well as the responses
at 120Hz. Figure 16 is from a subject that had relatively high correlation, while
Figure 17 is from a subject with very low correlation.
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Figure 16: The transients at 40Hz and 60Hz, both real and pre-
dicted using superposition from 120Hz for stretched data, for sub-
ject 9. The predicted transients look somewhat like the real tran-
sients.

Figure 17: The transients at 40Hz and 60Hz, both real and pre-
dicted using superposition from 120Hz for stretched data, for sub-
ject 1. The predicted transients look very little like the real tran-
sients.
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The correlations between the real event responses at 40 and 60Hz and the
event responses constructed from 120Hz transients, per user, are shown below
in Figure 18.

Figure 18: The correlations for all users between the real transients
at 40Hz and 60Hz and the transients constructed from 120Hz for
stretched data.

A t-test was performed on those correlations, to see if the two transients
were significantly similar.

Testing rate p-value reject 4Hnull

40Hz 0.9476 no
60Hz 0.4727 no

The accuracies that were achieved using the constructed transients are shown
in Figure 19 for a few subjects. These subjects were chosen so that one had
relatively high accuracies, one had relatively mediocre accuracies, and one had
poor accuracies. Note that there is no data point at 90Hz, since it is impossible
to use superposition generalize to 90Hz from 120Hz. This is because 120

90 is not
a whole number, as explained in Section 2.7.
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Figure 19: The classification accuracies for a subset of users, at
40Hz and 60Hz, using the transients constructed from 120Hz.

The second t-test was performed on the accuracies, corrected for chance.

Testing rate p-value reject 4Hnull

40Hz 0.9476 no
60Hz 0.4727 no

4 Discussion

For the run-off hypothesis, the similarity between the transient responses to
events with the same number of ones, but a different number of zeros was in-
vestigated. The correlations between the responses to events with the same
number of ones were not significantly different from zero, meaning that there
was no statistical similarity between the transients of the same event at dif-
ferent rates for lagged data. However, at the same time, classifiers using the
event definition duration performed roughly equal to classifiers using the event
definition components, since there was no significant difference between those
two sets of classification rates. This makes it ambiguous whether the run-off
length is important to the classifier or not.

What is odd, is that it seems as if the trend lines in Figure 6 and Figure
7 are opposing: the higher the rate, the higher the correlation seems to be,
but the higher the rate, the lower the accuracy becomes. This holds for both
components and duration, but stronger for components. This could indicate
that when a classifier trains on components, it relies on those four components
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being different, and so the more similar those event responses are, the worse the
classifier performs.

Looking at the responses in Figure 5 per event, per user over all rates, it
seems like specifically subject 1 for components has quite similar responses, with
the notable exception at 40Hz. This is also confirmed by the correlation table.
As discussed in Section 2.2, the amplitudes of the transients can flip over the
horizontal and still be equivalent to the classifier. This is visible for certain
events for certain users, e.g. in the plot of short event response of duration
event types for subject 3 (Figure 5a, left bottom plot), just before 0.1s, the
yellow transient goes against the majority of the other transients.

In general, it seems like the correlations between the different events are
higher for components than duration. This gives the expectation that in the
generalization using lagged data, components will generalize better, i.e. the ac-
curacies will be higher for components-trained classifiers when the training rate
and testing rate are not equal.

In the superposition hypothesis, the principle of superposition was investi-
gated, by predicting one of the event responses within the same presentation
rate. For duration, the long event response was predicted as the superposi-
tion of two short event responses, and for components the response to 110 was
predicted as the superposition of the responses to 100 and 10.

As could be seen in the results of the superposition hypothesis (Section 3.2),
both the constructed long response for duration and the constructed response
to 110 for components had significant similarities to their real counterpart, i.e.
the correlations were strongly skewed towards 1. However, the correlations were
also relatively high between the constituent transients and the to-be-constructed
transient, meaning for duration the correlation between the short event response
and the long event response was high, and for components the correlations
between the responses to 10 or 100 and 110 were high. That means that the
gains show a more fair comparison of how useful the constructions are. And,
as shown with both the t-test and in Figure 13, the correlation gain is not
statistically significant for components, but was significant for duration. In fact,
for components, quite a few constituent transients resemble the target transient
more closely than the constructed transient (see Figures 9 and 11). However, it
seems like this is a viable method to use for duration-trained classifiers.

Just these results regarding the correlation indicate that in the generaliza-
tion over rates using superposition, the constructed transients could give high
accuracies when the duration event type is used. However, the accuracies were
not significantly higher than chance level for duration-trained classifiers, while
they were for components-trained classifiers. One explanation could be that
the components-trained classifiers still contained three out of four original tran-
sients, which leads to most of the stimulus response still staying intact. At the
same time, even if the correlations for the transients of duration-trained classi-
fiers are significantly different from zero, that does not mean they are necessarily
high. This could lead to the effect seen with the accuracies in Section 3.2.

29



In the experiment generalizing over rates using lagged stimuli, the transients
were used for rates other than the training rate, in order to see if classification
accuracy would be significantly higher than chance level. If the instances where
the training- and testing rate are the equal are excluded, the components do
not show any significant performance. For event type duration however, there
is significantly better performance.

This can also be seen from Figure 15: for at least some subjects, the lagged
duration transients seem to generalize relatively well to rates that are not too
different. For example, for subject one, when training at 120Hz, testing at 90Hz,
120Hz and 180Hz all gave decent accuracies, and arguably at 60Hz as well. It
also seems that the more extreme the difference is between the training rate and
testing rate, the less well the classifier performs.

For components, there was much worse generalization over different rates.
This goes against the prediction made from the results in the run-off hypothesis,
where the correlations were higher between the event responses for components.
One possible reason could be that it is inconsistent to use component event types
over different rates: by using component events, the assumption is made that
the run-off length matters. But at the same time, it is also assumed that the run-
off length does not matter, since a generalization is made over different lagged
rates, i.e. by increasing or decreasing the run-off length. This inconsistency
could make it difficult for the classifier to decide whether a signal should be
seen as the response to the lagged equivalent of 10 or 100.

Another problem could be that duration-trained classifiers have double the
data to learn the event responses compared to components-trained classifiers,
since two events for components,e.g. 10 and 100, are counted as the same event
for duration, e.g. 10(0).

Subject 3 performed quite poorly on lagged data, as can be seen in the
bottom row of Figure 15, even when the training and testing rate was equal.
However, removing subject three from the analysis did not make a difference in
the result.

In the last generalization for stretched data, superposition was used to gen-
eralize from one rate to another, as explained in Section 2.7, and illustrated
in Figure 4. The first t-test showed that the correlations were not significantly
different from zero, as is also shown in Figure 18. The second t-test showed that
the accuracies were not significantly different from chance level, as illustrated
in Figure 19. So it seems that when all the transients are constructed, unlike in
the superposition hypothesis, where only one of the two or four transients was
constructed, both the correlations and the accuracies go down dramatically.

4.1 Limitations

The statistical tool used to show whether two transients were different was a
simple t-test performed on either the correlation or the accuracy. However,
t-tests are not very appropriate for BCI data. Specifically, using t-tests on cor-
relations is a relatively indirect measure of comparison. It would be best to
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directly compare two transient responses for equality, but due to the high auto-
correlation inherent to time-series data, this is not possible with t-tests.

Another issue this research has, is the indirect measurement that is classi-
fier performance. Similarly, it is important to keep in mind that the transient
responses that the classifier has learned are not the real brain responses, but
rather a temporal filter. Therefore, these results should be reconsidered when
taken outside of the field of BCI.

As can be seen in Figures 8, 9, 10, and 11 in Section 3.2, the event-to-event
superposition is not quite a simple linear addition. One of the most notable
differences is the larger amplitude in many of the predicted responses. This can
indicate that some normalization factor might be necessary. And, as can be seen
in Figure 9 and Figure 11, many times the general shape of the transients are
also wrong, leading to a loss of correlation. The better performing constructed
transients from the generalization using superposition do look promising, e.g. in
Figure 16 (remember that the transients can be flipped horizontally, as explained
in Section 2.2). However, specifically for 40Hz, but to a lesser extent also for
60Hz, the amplitudes of the constructed transients are much higher than the
real transients.

5 Conclusion

In this thesis, two different methods of generalizing transients across presenta-
tion rates were explored. The first method used lagged stimuli, where all events
of the same type have the same number of ones, regardless of the presenta-
tion rate. The second method used superposition in the more commonly used
stretched stimuli.

First, some evidence was gathered to find out whether the run-off lengths
mattered to the classifiers. The results showed that events with the same number
of ones, but a different number of zeros, were not similar in terms of correlation.
At the same time, the accuracies did not change significantly, whether events
with the same number of ones, but a different number of zeros were seen as the
same or as different events.

Next, the concept of superposition was explored, still within one presentation
rate. The results showed that the constructed long event response was relatively
similar to the real long event response. When the similarity of the constituent
transients was taken into account, the similarity was still significant for duration
events, but not for components events. However, the accuracies showed results
significantly above chance level for components events, but not for duration
events.

After that, the first generalization across rates was done on lagged data. The
results showed that classifiers with event type duration had significant results
on testing data that had a different presentation rate from the training data.
Classifiers trained on components did not, however.
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Finally, stretched data was generalized across rates, using superposition. The
results showed both insignificant correlation between the predicted transients
and the real transients, as well as classification accuracies around chance level.

So in conclusion, lagged data shows promise in being generalizable across
different presentation rates, specifically when the training- and testing rate are
not too far apart. It also provides evidence that stretched data cannot be
generalized over different presentation rates via a simple linear superposition.

5.1 Future work

As discussed in Section 4.1, the statistics used in this experiment were not very
suitable for EEG and BCI data. One large problem is inherent to the field of
frequentist statistics, which is the inability to prove functional equivalence. The
field of Bayesian statistics however, has developed some promising techniques,
specifically a technique called Bayesian estimation supersedes the t-test (BEST)
[15]. One potential pitfall could be that the BEST algorithm requires the def-
inition of a region of practical equivalence. This might be difficult to define for
BCI data, since it still not fully know which specific features of transients are
important for functional similarity (see the contradictory results of the super-
position hypothesis in Section 3.2). So as of now, it might be difficult to define
precisely what transients should, or should not be seen as practically equivalent.

One more event type that could be explored would be the rising and/or
falling edge, where the events 01 and 10 could either be defined as different
events, or as the same single event. This event definition assumes that the im-
portant feature is a change in the stimulus, rather than a stimulus being on.
Similar to lagged data, if the events are defined to be rising/falling edges, the
transients from one rate could theoretically be used for another rate.

As discussed in Section 1.2, superposition is an idea from linear systems the-
ory. If c-VEPs are in fact true linear systems, other features from linear systems
theory could be exploited. This entails approximating a Dirac delta function,
which would be a true impulse, defined as δ(x) = 0 for x 6= 0 and δ(x)→ +∞ for
x = 0. This can be approximated in VEPs by learning the response to e.g. the
short event at 360Hz. Theoretically, one could estimate the response to complex
stimuli while only having measured the response to this one, very short impulse,
by exploiting the property of superposition. However, before any further steps
towards further generalization are taken, the generalization of stretched data
needs to be vastly improved.

One last, but major drawback of this experiment was the lack of data, specif-
ically for the lagged experiments, where there were only three subjects, of which
one performed consistently very poorly. Therefore, it is recommended to re-do
the experiment on lagged stimuli, with more subjects.
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