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Abstract

Traditionally, intelligence was thought to be associated with thinking, reason-
ing, planning etcetera. More recently there has been an increasing interest in ‘low-
level’ behavioral responses. It is likely that people make use of a combination of
a fast, ‘lower’, automatic system, and an adaptive, ‘higher’, deliberative system.
How these systems are combined to produce behavior is uncertain however. One
theory suggests the existence of a minimalistic control system that enables complex
behavior by biasing the automatic system. Here this theory about how automatic
and deliberative structures can be integrated is investigated. This is done by simu-
lating the evolution of simple neural networks in an environment with two different
states, during which the appropriateness of an action may also be different. It is
expected that purely reactive agents are not able to perform optimally in such an
environment. The theory predicts that a control structure/deliberative system will
evolve that is inhibitory/modulatory in relation to the automatic system. The con-
trol system does not need to be active all the time, only in situations for which the
automatic system alone is not adequate. In contrast to expectations, many evolved
networks did not evolve hidden units, indicating that the task may not be difficult
enough. However, the contextual input units evolved to regulate behavior in a man-
ner similar to the hypothesized control structure, supporting the theory that natural
control systems are minimalistic in nature. Further research to clarify the results is
suggested.
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1 INTRODUCTION

1 Introduction
In many ways people and other animals are much alike. We have the same cell struc-
tures, the same basic needs and some of the same innate behaviors. It is the extensive
ability to plan, reason, etcetera that seems distinctive for humankind. Because these
cognitive capacities appear to be so important for intelligence, AI programs initially
focused on modeling these kind of abilities (Russell and Norvig, 2003). After some
decades it became apparent however, that programs relying heavily on explicit planning
and reasoning are too slow to successfully interact in the real world. People, capable of
making split-second decisions, must be doing something more clever.

In response to these issues, Brooks argued in his classic paper Elephants don’t play
chess (1990) to shift focus from representation and planning to basic action and per-
ception. He developed robots with sensing-action association layers that involved no
planning at all. These robots, in contrast to their predecessors, were able to produce a
variety of behaviors similar to that of biological organisms. But obviously this could
never be a sufficient model for human cognition, since people are able to do things like
plan, philosophize, play chess and so on.

Research in Artificial Intelligence and Cognitive Science has shown that people
probably implement a combination of automatic and deliberative behavior (Evans, 2008).
Such a structure seems to combine the best of both worlds; one mode is flexible and
adaptive but slow and resource limited, while the other is quick and effortless but lacks
control (Schneider and Chein, 2003).

If the strategy of the brain is to do some things automatically with one system and
deliberately with another, the next question logically is: how do these systems interact
with each other and the world?

One possibility is that the deliberative system establishes goals and makes action
plans, while the ‘lower’ action-perception systems monitors the surroundings and action
execution. This idea underlies most AI robots to date and is called the hybrid paradigm
(Murphy, 2000).

Another possibility is that the deliberative system modifies the output of the ‘lower’
system and only plays a supportive role (Haselager et al., 2008; Miller and Cohen,
2001). It is suggested that natural cognitive systems consist of reactive layers which
account for automatic behavior and control layers which inhibit or facilitate the reactive
ones. Actions follow each other naturally, given the input from the environment and the
control system. The main distinction with the previous suggestion is that the control
system does not actually generate behavior and is not needed most of the time.

Haselager et al. (2008) suggest such a ‘minimalistic’ control structure is more likely
to evolve. Simple organisms have a small behavioral repertoire and may survive with
a reactive system only. As organisms become more complex, the coordination of their
behavior becomes more difficult, requiring ‘higher’ systems to support good behavior.
It seems natural that an additional, higher system builds on existing structures and uses
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2 BACKGROUND

these as much as possible, rather than replace it. Thus it is hypothesized that a minimal-
istic control structure evolved on top of reactive systems because of selective pressure
and an increase in environmental complexity.

The validity of this theory is investigated here. The specific question addressed in
this paper is:

Do minimalistic, modulatory control structures evolve in agents having
to deal with environments where the appropriateness of actions radi-
cally changes?

The necessary factors for the evolution of minimalistic control structures have been
identified as 1) the availability of several different actions to the agent and 2) variability
of the appropriateness of an action depending on context. It is reasoned that given these
conditions, a purely reactive agent will not be able to perform optimally and some kind
of control is needed.

To simulate these conditions, neural network controllers are evolved in an envi-
ronment with different states, using an evolutionary algorithm. The hypothesis is that
starting from a random initial population, individuals with a minimalistic, modulatory
control structure will evolve because of their advantage over other individuals under
these conditions.

Specifically, the control structure is hypothesized to have the following characteris-
tics:

1. The most frequent course of action can be performed when the control system is
not active.

2. The control system modifies automatic behavior but does not generate behavior
itself.

In the following section, theoretical background and simulation methods are dis-
cussed further. I will explain why minimalistic control structures are thought to exist
(Section 2.1), what evolutionary algorithms and neural networks are and why they are
used here (Section 2.2 and 2.3). In Section 3 all aspects of the experimental setup, such
as environment, agents and conditions, are explained. In Section 4 the results of the
simulations are presented and conclusions are drawn. In Section 5 the experiment, the
method and the results are discussed and ideas for further research are suggested.

2 Background

2.1 Minimalistic, modifying control
Support for the existence of modifying control structures in humans can be found widely
in neurological data. Several case studies and many imaging studies (Garavan et al.,
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2002; Menon et al., 2001) show that the prefrontal cortex (PFC) plays a key role in
control/inhibition of actions and damage there can result in automatic activation of be-
haviors by the environment. Based on these findings Miller and Cohen (2001) describe
the functioning of the PFC as follows.

[...] the PFC units themselves are not responsible for carrying out input-
output mappings needed for performance. Rather, they influence the activ-
ity of other units whose responsibility is making the needed mappings.

It has also been concluded by Sakagami et al. (2006) that the PFC influences auto-
matic behavior by resolving competition between behaviors, supporting behavior that
might be weaker given the current stimuli, but more appropriate given the context and
the task at hand. The suggestion that the role of the PFC is modulatory is further sup-
ported by the observation that damage in this area does not lead to motor execution
deficits (Fuster, 1997).

The existence of automatic and deliberate components in humans becomes espe-
cially apparent in patients with PFC lesions suffering from environmental dependency
syndrome (Lhermitte et al., 1986; Lhermitte, 1986). Patients with this syndrome are
compelled by the environment to perform certain actions and are unable to control this
tendency. This results in what one might call reactive behavior. As Lhermitte (1986)
puts it:

The patients’ behavior was striking, as though implicit in the environment
was an order to respond to the situation in which they found themselves.

For example, patients may use any object in their vicinity, or imitate behavior of the
researcher, even after being explicitly asked not to (Tanaka et al., 2000). The induced
behaviors can be quite complex; upon seeing a bed in his doctors’ apartment, one patient
undressed and got into bed, ready to sleep.

That such complex behavior can be triggered and performed automatically is in line
with Haselager et al. (2008)’s proposition that most daily actions can occur without
much control. Only minimal control is required because the environment provides us
with enough cues about which action to perform and how to do it. For example, many
people are familiar with the phenomenon of suddenly standing in front of one’s house
without remembering driving there, though driving is far from being a trivial task.

Apart from being efficient, such a system is also thought to be evolutionary plausi-
ble; it is unlikely an entirely new system comes to replace the old one, given the small
steps evolution is thought to take one at a time. If complex cognitive systems evolved
from simpler ones, it makes sense that they would use the ‘old’ system as much as
possible.
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2.2 Evolutionary Algorithms
To simulate the evolutionary process under the proposed conditions, Evolutionary Al-
gorithms (EA) are used (Eiben and Smith, 2008). Evolutionary algorithms are programs
for finding solutions to problems using principles taken from biological evolution. The
idea behind EAs is that the same mechanisms used by evolution for solving the ‘prob-
lem’ of survival can also be applied to many other ‘problems’. EAs are often employed
for solving complex problems for which no obvious or simple solutions exist. How-
ever, they can also be used to answer questions about evolution and selection, and there
has been an increasing interest in EAs for answering other questions about biological
organisms (Ruppin, 2002).

In general, EA’s have the following form. The program starts with a number of ran-
dom solutions, called individuals, which form the initial population. The individuals are
coded in ‘genes’, which should represent all relevant characteristics of the individual.
Each individual is assigned a fitness by the fitness-function, which indicates how good
an individual is as a solution. The higher ones fitness, the higher the chances of sur-
viving and reproducing. Selected individuals generate offspring by recombining their
genes with others and random mutation in those genes. On average, successive popula-
tions will consist of better individuals, because good individuals have a better chance of
reproducing and thus contributing their good genes to the next generation.

Evolutionary Algorithms are useful in this study, because they use the most funda-
mental principles from natural evolution and find individuals that are suitable for the en-
vironment. If minimalistic, modulatory control structures indeed have an (evolutionary)
advantage over other architectures, the populations in evolutionary algorithms should
converge to this solution.

The simulations are greatly simplified compared to reality. The goal is to test the
principles of minimal control structures rather than to simulate the evolution of a specific
biological organism. It can also be noted that it is difficult to say something about
the factors that resulted in present biological structures, partly because of exaptation.
Given the flexibility of the brain, this must be especially true for cognitive functions;
structures that evolved for one purpose can come to serve another over time. Still, if
the proposed control structure develops naturally under the given conditions, it provides
support for the theory in addition to neurological evidence. This study differs from
hand-made computational models in that it tests not only whether the model would
work, but whether it is likely to come to existence.

2.3 Artificial Neural Networks
Artificial neural networks (ANN) are sets of interconnected artificial units with charac-
teristics that are inspired by networks of biological neurons. Each unit in the network
has a certain activation that may change over time as the units influence each others
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activity through the connections. A typical neural network has input and output units,
through which it is connected to the outside world, and hidden units, which only have
connections to and from other units. It is analogous to the brain of an organism re-
ceiving input from the world through its sensors, which activates certain neurons. This
activation is then used to activate other neurons in the network, i.e. information being
processed in the brain. Finally, those neurons activate certain motor neurons to produce
output. The network’s behavior is determined by the (weights of) connections between
units and how the units combine incoming activation to produce output activation.

There are several reasons for selecting neural networks as controllers for evolving
agents. One reason is that given the ‘right’ network, the agent can show virtually any
behavior. This is desirable because in setting restrictions to the behavior of the agent,
the results could be strongly biased towards what is expected.

Another reason to choose ANN is that they are relatively easy to represent in such a
way that evolutionary operators can manipulate their components meaningfully. Biases,
connection weights and other features can be changed simply by adding or subtracting
values. In other words, they are fit to be evolved by evolutionary algorithms (Husbands
et al., 1995). Both their topology and connections can be evolved, setting little restric-
tions to the inner workings of the control system as well.

Finally, in Evolutionary Robotics, a field that deals with developing robot controllers
by using (forms of) EA, ANN are often used as controllers (Nolfi and Floreano, 2001).
For simulated as well as real agents, neural network controllers have been successfully
evolved in the past for environments similar to the one proposed. Therefore, we can be
fairly confident that with the right settings, the agents will be able to carry out the task
to some extent, and analyzing them will tell us something about how they are able to do
this. After all, the proof of the pudding is the eating.

The evolutionary algorithm will be used to evolve both network size and connec-
tion weights. In contrast to the most common neural networks, the networks here will
not learn throughout their lifetime. With other words, the connection weights of the
networks do not change while the agent is running in the environment. Evolution and
learning are similar in the sense that they adapt individuals to the environment, though
their time span is different. Including both would make the results more difficult to
interpret however and this aspect was left out in this initial study. Some more attention
will be given to this issue in Section 5.

Research in neural network control structures often use fixed network sizes, com-
paring different types of networks. For the current study this is not adequate, because
we are looking for the best possible control structure. If the network size were fixed,
the connections would adapt to that particular network and all units would be likely to
have some functions, even if they are not strictly necessary. Another possibility would
be to run multiple EAs, with different fixed network sizes and compare these to each
other. But this approach neglects the competition between networks of different sizes as
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3 EXPERIMENTAL SETUP

presumably occured in nature.

3 Experimental setup
As explained above, the hypothesis that in an environment where control is necessary,
minimalistic control structures evolve, is tested by simulation of evolution of neural net-
works under certain conditions. In this section the experimental setup is described in
more detail. First the environment (Section 3.1) and agents (Section 3.2) are described.
The evolutionary algorithm is covered in Section 3.3, and in Section 3.4 the experimen-
tal conditions are presented.

3.1 The environment
The task of the agent is to ‘survive’ in a computer simulated environment of 200 by 200
pixels, shown in Figure 1. The environment contains 5 areas of interest (‘targets’) with
a radius of 10 pixels, two of which are ‘bad’ and three which are ‘good’.

The environment is infinite in the sense that there are no walls and the agent cannot
get out. If the agent moves off the right border, it will turn up near the left border and
likewise for up and down. Its vision works in a similar manner; if the agent is standing
in the lower-left corner and looking south, it will be able to perceive T1 (Figure 1).

Figure 1: The environment of the agent. Light circles indicate good targets, dark circles
indicate bad targets. The agent is pictured as a dot and its field of view is indicated
by black lines. Everything within the quarter circle bordered by the two outer lines is
visible to the agent. The small black circles indicate the three starting points of the
agent. Left: environment in state 1. Right: environment in state 2.

The score of an agent for one run equals the total number of ‘good’ visits x reward
minus total ‘bad’ visits x penalty. Five points are given for each time an agent visits a
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3.2 The neural network agent 3 EXPERIMENTAL SETUP

‘good’ target, given it had not already received points for that target directly before. In
other words, no points are rewarded for visiting the same target over and over again. An
exception to this rule is made if the status of the target has changed since the agent’s last
visit. Five points are subtracted in a similar fashion for ‘bad’ targets.

At the end of the run, one point is subtracted for every two additional units in the
network. This penalty is introduced because a small network which achieves the same
score as a big network is more efficient, thus preferable. The penalty was kept small so
it would only make an actual difference if the agents of different sizes scored exactly
the same. Also, by only setting a penalty for every two units, there is room to explore
the use of extra units without immediately being penalized.

The fitness of agents is defined as their average score in the environment over 3 runs
of 500 time-steps each:

Fitness =
1
3
·

3

∑
i=1

(Scorei−b
Nunits

2
c)

The agent’s starting positions were predetermined at (150,150), (90,70), and (20,30)
(Figure 1; left). These positions were chosen randomly with the only constraint they
should be at least 20 pixels away from targets. Predetermined positions were chosen
because on one hand determining the fitness on basis of a single starting position would
result in agents that carry out the task ‘blindly’ instead of learning the general task. On
the other hand, entirely random positions leave too much room for ‘(un)lucky’ agents
unless the agents are tested on a large number of starting positions. Conducting so
many runs for each individual would slow down the EA considerably however. Thus, a
compromise was made by testing each agent on the same set of multiple starting points.

3.2 The neural network agent
All agents are controlled by neural networks. The type of neural networks and updating
rule used here, as well as the parameter ranges, are derived from Beer and Gallagher
(1992) and Beer (2009). An example of the kind of networks used is shown in Figure 2.
At each time-step, the network updates the activation of the input units corresponding
to the agents’ current position and direction. The remaining units compute their activa-
tion using the incoming activation from the previous time-step using the updating rule
described later. At each time-step the output of the network is used to determine its next
position. The networks always have 7 input and 2 output units. The number of hidden
units can vary from 0 to 14.

The networks are fully connected, meaning every unit has incoming connections
from every unit, including self-connections. Only the input units have no incoming
connections since they are set externally.
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3.2 The neural network agent 3 EXPERIMENTAL SETUP

Figure 2: Example network with the required 7 input units and 2 output units. This
particular network has 2 additional ‘hidden’ units.

3.2.1 Input

The agents receive information about the environment through 7 input units. Five of
these correspond to the 5 targets in the environment and are named I1 - I5 for future
reference. The activation of these units is in the range [0,1] and depends on the direction
the agent is facing and the distance between agent and target. Each agent starts with a
direction of 0◦, which corresponds to facing southwards. The agent has a perceptual
field of 90◦, 45◦ left and right from its direction, and a sight range (SightRange) of 50
pixels, as depicted in Figure 1.

If a target is outside the agent’s perceptual field, the activation of the corresponding
unit is always 0. If a target is within the field, the activation AIi of input uniti corre-
sponding with targeti linearly decreases with the perceived distance between agent and
targeti:

AIi = 1− Distance(agent, targeti)
SightRange

The two remaining input units, C1 and C2, indicate the state (‘Context’) of the envi-
ronment. If the environment is in state 1 C1 = 1 and C2 = 0, if it’s in state 2 C1 = 0 and
C2 = 1. The activation of all input units is entirely determined by the environment; they
do not receive activation from other units or each other. Note that the agent is always
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3.2 The neural network agent 3 EXPERIMENTAL SETUP

able to recognize the targets because each target is assigned a different input unit, but
that the input itself does not indicate whether a target is good or not.

3.2.2 Updating the network

The activity of the hidden and output units is defined as follows:

Auniti,t+1 = Auniti,t +C ∗ (−Auniti,t + In(uniti))

In(uniti) =
n

∑
j=0

1
1+ e−((A(unit j,t)−BIAS)∗w j,i)

A(uniti, t) is the activation of uniti on time-step t. In(uniti) is the total activation
uniti receives through its connections from others (and itself) and w j,i is the weight of
the connection from j to i. The weight can take all real values between -5 and 5.

BIAS and C are constants that are the same for all units in the network and have
ranges [-1,1] and [0,1] respectively. The BIAS enables the units in the network to either
have a higher or lower starting activation, depending on the sign of the constant. This
gives the network the freedom to for example be active without any external activation
to begin with. The constant C modifies the amount of influence the current input has on
the activation of the unit. With other words, it weighs how important past activation is
compared to the current percept.

3.2.3 Output

The agent’s movement is controlled by the two output units, O1 and O2. At each time-
step the activity of the output units, as determined according to the rule in Section 3.2.2,
is taken to compute the next position of the agent.

O1 determines the speed of the agent on time t according to:

Speedt =


0 if AO1,t ≤ 0
AO1,t ∗MaxS if 0 < AO1,t < 1
MaxS if AO1,t ≥ 1

Here AO1,t is the activation of unit O1 on time t and MaxS is the maximum distance
the agent can travel in one time-step, which is 10 pixels.

Similarly, O2 determines the turning angle relative to the agent’s current direction
Directiont according to

Turnt =


−MaxT if AO2,t ≤−1
AO2,t ∗MaxT if −1 < AO2,t < 1
MaxT if AO2,t ≥ 1
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3.3 Evolving agents 3 EXPERIMENTAL SETUP

Here AO2,t is the activation of unit O2 on time t and MaxT is the maximum turning
angle of 90◦, where −MaxT corresponds to a 90◦ left turn and MaxT to a 90◦ right
turn. The absolute direction the agent is traveling in is computed as Directiont+1 =
Turnt +Directiont . Directiont+1 is then rescaled between 0◦ and 360◦. For example,
if Directiont is 350◦ and Turnt is 20◦, Directiont+1 would be 10◦. The agent’s next
position is a shift from its current position in direction Directiont+1 with Speedt+1 pixels
distance.

3.3 Evolving agents
For the evolutionary algorithm, the neural network agents were represented as vectors of
doubles. Each double constitutes a ‘gene’ of the individual. The length of the genome
is variable, since the number of hidden units can vary from 0 to 14. The network size
thus can vary from 9 to 25 units. The first three genes always represent the following
network attributes: N total number of units in the network, C and BIAS. The other genes
represent the weights of the incoming connections for each unit.

Figure 3 shows an example genome for a network with 2 hidden units. The first
three variables (11.0; 0.3; 0.4) are the values for N, C and BIAS. The values thereafter
are weights of connections between units. First the weights of the connections to output
unit O1 are represented. They come in the following order: connections from I1 - I5,
C1 and C2, O1 (self-connection) and O2, and finally connections from H1 an H2. After
all connections to O1 have been represented, the next N values represent connections to
O2. Following O1 and O2 come the connections to H1 and H2. Because the network
is fully connected, each unit always has N incoming connections. Input units need not
be represented, since they have no incoming connections. The hidden units have been
placed at the end of the genome so they are easily added or removed.

Network size, like the other values, is also represented as a double though it obvi-
ously needs to be discrete. The value is floored to obtain a whole number. For example,
N = 11.8 would constitute a network with 11 units. If the network size decreases due to
mutation, the last added unit and its incoming and outgoing connections are removed.
If the network increases in size, a unit with random incoming and outgoing connections
is added.

Because of an error in the program, the evolutionary algorithm rounded the network
sizes instead of flooring them; this resulted in a discrepancy between the module cre-
ating the individuals and the module evaluating them. So for example if N = 11.8, the
EA would create a 12-unit network, making 63 genes. Meanwhile, the evaluator would
assume the individual has 11 units, thus would only read the first 47 genes. This means
that a change in N has a different effect on the network than previously planned. A few
evolutionary runs were repeated after correcting the error, but no noteworthy difference
was found in either network size, fitness or behavior of the evolved agents.

The fitness of each agent is determined by running them in the environment 3 times
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3.3 Evolving agents 3 EXPERIMENTAL SETUP

Figure 3: Example genome of a network with 11 units: 7 input, 2 hidden and 2 output
units. Each row represents the incoming connections for one unit. For each unit the
connections come from I1, I2, I3, I4, I5, C1, C2, O1, O2, H1 and H2, in that order.
Values are rounded to one decimal here for clarity purposes.

for 500 time-steps and averaging the scores, as described in Section 3.1. In order to
produce the next generation, individuals from the current population are selected to be-
come parents using Tournament selection. This means that six individuals are randomly
selected from the population and the one with the highest fitness among those becomes
a parent. Using random selection means that relatively bad individuals also have a real-
istic chance to reproduce; they do not need to compete with the best of their population,
only with the five random others. Six is a relatively large for such a tournament and was
chosen because of the relatively large population size.

Individuals for the next generation are created by crossing over two parents and
mutating their genes. Two parents will result in two children. Which and whether
genes are crossed over and/or mutated is based on chance. For crossover the weights
of the incoming connections for one neuron are taken as one block. So for example,
all incoming connections of O1 are switched between parent 1 and 2. This was done
because one neuron is one functional unit and switching units is expected to deliver
better results than switching connections (Yamauchi and Beer, 1994). If the parents
have a different network size, the smallest network is taken as guideline for how many
crossovers are possible.

Uniform crossover with chance 0.33 was used. This means that for each (block of)
genes, there is a 1/3 chance that the parents will swap these genes. On average, the
new individual will have 1/3 of the genes of one parent and 2/3 of the genes of the other
parent. After crossover, every gene is mutated with a chance of 0.1. If a gene is mutated,
a random number from a Gaussian distribution with standard deviation 1 and average 0
is taken and added to the gene.

An overview of the most important settings is given in Table 1. Pilot runs were
conducted to assess the effect of different parameter values. Tests were done varying
mutation rate, crossover rate, population size, tournament size, network size penalty,
target rewards/penalties and number of generations. In general making these param-

14



3.4 Experimental conditions 3 EXPERIMENTAL SETUP

eters slightly smaller or larger seemed to have little positive effect. Only population
size, number of generations and tournament size were increased compared to the ini-
tial settings, because the fitness of the agents under these conditions was found to be
significantly higher.

For the implementation of the evolutionary algorithm, code was used from the freely
available ECJ package 1.

Parameter Value
Population size 200
Generation# 300
Genome size [21, 453]
Bias [-1, 1]
C(onstant) [0, 1]
Network weights [-5, 5]
Operator Type Value
Selection Tournament 6
Mutation Gaussian Chance = 0.1

Average = 0
Stdev. = 1

Crossover Uniform Chance = 0.33

Table 1: Overview of the settings of the evolutionary algorithm.

3.4 Experimental conditions
The evolutionary algorithm was run under three different conditions. In the experimen-
tal condition A, the environment is in state 1 (Figure 1; left) 80% of the time and in
state 2 (Figure 1; right) 20% of the time. Specifically, between time-steps 200 and 300,
some targets that were good become bad and vice versa. Thus, the agents need to adapt
their behavior to the changing environment. Logically, there is no need to develop an
entirely new behavioral repertoire. The agent can make use of old behaviors such as
‘approaching’ or ‘avoiding’ a target; it only needs to modify which target to approach
and which to avoid.

As control conditions, the simulations were also run for environments that were in
either state 1 (condition B) or state 2 (condition C) during the entire lifespan of the
agent.

All agents ‘know’ in which state the environment is through the activation of the
C-units. If the environment is in state 1, C1 = 1 and C2 = 0. In state 2 the activation
pattern is reversed.

1Available on http://cs.gmu.edu/ eclab/projects/ecj/

15



4 SIMULATION RESULTS

The experiment was repeated for 10 different randomly initialized populations to
obtain reliable results. The resulting networks from the three conditions were compared
in fitness, behavior and network dynamics.

4 Simulation results
In this section the results of the simulations are presented. First the results are evaluated
by looking at the development of fitness over generations and the behavior of the evolved
agents from condition A, B and C (Section 4.1 and 4.2). Then the networks underlying
the behavior are studied in more detail in Section 4.3 and 4.4. A summary of the results
is given in Section 4.5.

4.1 Fitness
The development of the best and average fitness of the populations over generations
is shown in Figure 4. Because there is a difference in the highest obtainable scores
between conditions, the fitness has been normalized using the maximum score. It is
improbable any agent would actually achieve this score, since the agent would have to
act perfectly efficient in every time-step. The maximum score was 356 for condition
A, 356 for condition B and 413 for condition C (see Appendix A how these scores are
obtained). Table 2 shows the average score of the agent per time-step.

Average in state 1 Average in state 2
Condition A 0.1529 0.07333
Condition B 0.2022
Condition C 0.1994

Table 2: Average points per time-step obtained by the best agents from each condition,
averaged over 10 evolutionary runs

Figure 4 suggests that the evolved agents from all conditions have learned to cope
with the environment to some degree. Comparing the results from condition A with B
and C, it is clear that the fitness in condition A is lowest. The task is more difficult in
condition A, but the agents should have achieved scores similar to other conditions in
the end, since the fitness is shown in percentage of what can be obtained. The highest
fitness in condition A rises steadily until approximately generation 170, but then it evens
out. The average fitness of the population keeps growing until the 300th generation and
presumably thereafter, which suggests that the population is converging to one solution.

There is also a considerable difference between condition B and C in fitness. How-
ever, this gap seems to be closing, as the best agents from C continue to improve even
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Figure 4: Mean and highest fitness for conditions A, B and C over generations, nor-
malized to percentage of the maximum obtainable score in the condition. Results were
averaged over 10 runs of the EA.

close to the 300th generation. Thus, there may be no difference if the EA is run for more
generations.

Running the EA for more generations is unlikely to deliver fitter individuals for
conditions A and B, given that in those conditions the best fitness is no longer rising in
the later generations.

4.2 Behavior
To determine how and to what extent the EA evolved agents that can handle the task, the
behavior of the agents was studied. For this analysis, the best agent of the last generation
of each evolutionary run was used. It is reasonable to assume that these agents represent
the solution each evolutionary run has found for the environment and will converge to.

First the agents from condition B and C are described, then the agents from condition
A.

4.2.1 State 1 or 2

In condition B, the environment is always in state 1. Figure 5 B1 and B2 show the
behavior of a typical agent from this condition in the first 200 time-steps. The agent
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starts at position (20,30) and starts to travel in a circle. It quickly encounters target
T5 and slowly approaches the good targets by using the corners. It takes some more
time-steps for the agent to fine-tune its behavior (Figure 5 B2). The path of the agent
varies very little once it has found a route. Between which targets the agent travels often
depends on the agents’ starting position. Most agents tend to travel between T3 and T5,
which is also the optimal solution for state 1: the minimal distance between them is 53
pixels (6 steps), whereas this is 62 pixels for T1 - T5 (7 steps) and 88 pixels for T1 and
T3 (9 steps).

In condition C, the environment is always in state 2. The strategy of these agents is
quite similar to those from condition B; they have one preferred route and hardly deviate
from it once it has been found (Figure 5; C1 and C2). The scoring mainly depends on
how fast the agent is able to find the right targets and route. Many agents travel the most
efficient route (T2 - T4), but other routes are also observed.

Overall, agents from both condition B and C learn the task reasonably. However,
their path is not optimal, because they tend to travel in circles rather than in straight
lines. Some also take unnecessary detours while traveling between targets.

Most agents scored less when put in novel starting positions, and some scored much
worse. This seems mostly to be caused by the fact that many agents search for targets by
circling around and do not actually cover a lot of distance. If the targets are not where
they are expected, it can take a long time to find them (Figure 5 B3).

Though the agents are not able to score efficiently from every starting position, they
are able to avoid bad targets from any position. It is harder to visit a target than to
avoid it; avoiding can always be accomplished by turning away sharply, but to visit a
target the agent needs to know whether it needs to go left, right or straight ahead. This is
information is not directly available to the agent, making it harder to take the appropriate
course of action.

4.2.2 State 1 and 2

In condition A, the world is in state 1 during time-steps 0 - 200 and 300 - 500 and in
state 2 during time-steps 200 - 300. Figure 6 (A1 and A2) shows the behavior of a
typical agent from condition A in state 1. The behavior of the agent in state 1 is similar
to agents from condition B: it travels in circles and slowly approaches good targets,
taking some additional steps to find an efficient path. Note that though most evolved
agents have similar strategies, the actual behavior can vary considerably over different
evolutionary runs (Figure 6; A4 and A5).

During time-steps 200 - 300, the world changes to state 2. As can be seen in Figure
6; A3, the agent’s behavior in state 2 is not similar to those of the agents from condition
C. There is visible difficulty in approaching the good targets and most agents only score
a few times. They often miss targets and tend to circle around them instead of over
them. This is curious since no points are rewarded for being close to a good target. But
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Figure 5: B: Path of best scoring agent evolved in condition B. The small black circle
indicates the starting point. Triangles indicate steps of the agent. B1: agent steps from
time 0 to 100. B2: path continued from B1 for time 100 to 200. In the first 100 steps
the agent does not score much, trying to find the best route by circling around. Once
it has found its route, its behavior hardly changes and it scores very quickly. B3: Path
of the agent for time 100 - 200 when starting from a novel position. In contrast to B2,
the agent is not scoring yet on time-steps 100 to 200. Its search strategy appears to be
inefficient for novel positions. C: Typical agent from condition C. Starting point (20,30)
as indicated by the small black circle. C1: path of agent in time 0 - 100. C2: path of
agent in time 200 - 300.
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Figure 6: Example behaviors of agents from condition A. The small black circle indi-
cates the starting point. Triangles mark steps of the agent. A1: path of a typical agent
from time 0 to 100. A2: path of agent continued from A1 for time 100 to 200. A3: path
of agent continued from A2 for time 200 - 300. A state change occurs on time 200. A4:
path of best scoring agent from condition A for time-steps 100 - 200. A5: path of worst
scoring agent from condition A for time-steps 100 - 200.
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Figure 7: An ambiguous agent from condition A in state 2, shown from 4 different
starting positions. There appears to be no clear strategy.

if they are close to the right targets, there is a higher chance they score if they drift off
from their usual path. Notably, unlike condition B or C, agents from condition A tend
to deviate from paths they are following. This enables them to deal better with novel
starting positions than either agents from B or C, but they also score less efficiently.

A striking observation is that some agents have much higher scores in state 2 than
others, while others have much higher scores in state 1 compared to the former (Table
3). Behavior analysis shows that this is due to different survival strategies: in 5 of the
10 evolutionary runs, agents evolved that had a clear reversed attraction pattern in the
state 2 compared to state 1. In state 2 they start to circle T2 and T4, which had been bad
in state 1. For the best agents from the remaining evolutionary runs no such behavior
was observed. Three of them dealt with the change by circling in a small, restricted area
until the alternative state had passed. Effectively, they were ‘waiting’ for the infrequent
situation to go away. The two remaining runs resulted in ambiguous agents who did
move around, but with unclear underlying strategy. An example of this is shown in
Figure 7.

Average in state 1 Average in state 2
Overall 0.1529 0.0733

Strategy for both state 1 and 2 0.1183 0.1267
Specialized in state 1 0.1913 0.02361

Table 3: Average points per time-step obtained by the best agents from condition A.
Scores are averaged over 10 evolutionary runs and grouped according to the agents’
strategy.

Though the task was designed to involve agents that show ‘appropriate’ behavior for
both state 1 and 2, the agents specialized in state 1 also have a valid survival strategy.
Their behavior may not be as expected, but their behavior in state 2 differs from state 1
and is good enough to get by. This is shown through the fact that agents that could score
in both states did not have a higher fitness than the other agents. There appears to be a
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trade-off between doing okay in both states and doing well only in state 1; the former
score much less in state 1 and much more in state 2 on average than the latter (Table 3).
Which strategy the evolutionary algorithm converges to depends on the random initial
population.

In summary, the agents from condition A learned to deal with the changing environ-
ment one way or another. Two different strategies are observed: one strategy is to focus
attention on state 1, another is to try to cope with both. But even agents with the second
strategy were better in state 1 than state 2; in state 1 their behavior is similar to agents
from condition B (state 1 only), but their behavior in state 2 is not similar to those from
condition C (state 2 only). Logically, state 1 is more frequent than state 2, so more can
be gained by scoring well there. Still, agents from the non-changing conditions were on
average more efficient in scoring in their respective states than agents from the chang-
ing evolutionary runs (Table 2). The latter deviated more from their path between the
targets compared to the former.

4.3 Network size
After looking at the behavior of the agent, we continue to look at the networks underly-
ing the behavior. First the development of network size over generations is examined.
The mean network sizes of the best individuals do not show differences depending on
condition (Figure 8). This is unexpected since condition A is more difficult than B or C.

The best networks from the last generation of the evolutionary runs have an average
size of approximately 9.52. There appears to be a large preference for small networks,
despite the fact there was only a 1 point penalty per 2 additional units (for comparison:
visiting a good target once is worth 5 points). This indicates that little additional gain
was found in acquiring additional units.

Figure 9, presenting the fitness of agents according to network size, also shows
no clear indication that hidden units have a positive effect on fitness. However, no
conclusive argument can be made since the number of instances for networks with 1, 2,
3 or more hidden units is very small compared to those with 0 hidden units.

Lastly, agent strategy, as discussed in the previous section, does not appear to influ-
ence network size. Only 1 of the 5 agents that specialized in state 1 had hidden units.
The same ratio holds for the other group of agents.

4.4 Revising the hypothesis and further analysis
To gain a better understanding of the inner workings of the agents from condition A,
units were disabled to make their effects on behavior visible. If the disabled units form

2The majority of agents have 9 units (5 input, 2 context and 2 output), but the average is relatively
high because there are also 12-unit networks in the population

22



4.4 Revising the hypothesis and further analysis 4 SIMULATION RESULTS

Figure 8: The network size of the fittest individuals for each condition, averaged over
the 10 evolutionary runs.

the hypothesized control structure, the most frequent behavior should occur with little
problem, since automatic behavior can occur without control. However, only 2 out
of 10 best agents from each evolutionary run possess hidden units. Tests show that
deleting any of these units has a destructive effect on behavior. Disabling these units
(i.e. set their activation to 0)3 usually also has a destructive effect, though disablement
of some hidden units did not change behavior considerably. Given that none of the
hidden units fulfill the requirements of a minimalistic control structure, one possibility
is that the hypothesis is incorrect. However, it is also possible that the hidden units are
part of the automatic system and the ability to show alternate behavior lies somewhere
else. The latter is supported by the observation that many evolved agents show variable
behavior dependent on the state of the environment without any hidden units. Thus it
is hypothesized that perhaps in this particular task the hypothesized control structure is
not to be found in additional structures, but in the C-units instead.

The C-units are different from other input units because they are not directly part of
the agents’ sensory system and are not under the agents’ control. They are the output of
more elaborate processing, through which the agent is able to recognize that the envi-

3The effect of activities of units being zero is not the same as deleting them; if the network has a
non-zero bias, it will propagate 0 - BIAS activity through its outgoing connections if activity is 0.
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Figure 9: Fitness of the best agents from the evolutionary runs split in groups according
to network size.

ronment has entered another state or symbolize a different internal state. For example,
they could represent the difference between day and night, rain and dry season, hunger
and thirst, etcetera. Koechlin et al. (2003) make distinctions between three kinds of
input in their proposed functional architecture of the prefrontal cortex. The model is
depicted in Figure 10. Through a series of imaging experiments they find supporting
evidence for the theory that the PFC is organized as a cascade of processes that control
behavior according to stimuli, perceptual context, and temporal episode in which the
stimuli occur. In terms of the current study, the I-units form the current stimuli, whereas
the C-units form the contextual signals.

With other words, there is a system of I- and O-units that always exhibit certain
behavior given certain stimuli, whose output is modified by the context units using other
(contextual) knowledge. In this case, the task may be simple enough for the context units
to directly influence output, rather than go through intermediate units.

To test this theory, the agents were put in the environment while the context units
were both disabled by setting them to zero4. As in the experimental condition, the
environment was in state 1 for 400 time-steps and in state 2 for 100 time-steps.

As can be seen in Table 4 row 1 and 2, the agents’ fitness drop drastically for both

4Tests were also done deleting one or both C-units, but it had a much larger decremental effect on the
agent’s behavior.
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Figure 10: Functional model the prefrontal cortex of Koechlin et al. (2003), adapted
from Koechlin et al. (2003)

state 1 and 2 when the context units are not functioning. Given that rewards and penal-
ties are worth 5 points, the values appear to indicate that the agents’ behavior is back to
random level without the C units. From the agents’ behavior it can be concluded how-
ever, that most agents still show fairly intact strategies that can be recognized as similar
to their typical behavior in either state 1 or state 2 (Figure 11). The agents were cate-
gorized systematically by testing them for a number of starting positions and observing
their search behavior and attraction/ repulsion towards each target. From the 10 ‘best’
agents, 6 have been classifiedas showing state 1 behavior (group 1), and 4 as showing
state 2 behavior (group 2). The average scores of these two separate groups is shown in
Table 4 row 3 and 4.

state 1 state 2
Normal 61.167 7.333

C1 and C2 always 0 4.167 1.167
C1/2 = 0, Group 1 18.611 -1.389
C1/2 = 0, Group 2 -17.5 5

Table 4: Average total score of best agents from the 10 evolutionary runs when C1 and
C2 are always 0. The scores are also split out for agents that are obviously attracted to
state 1 targets versus agents that are attracted to state 2 targets. Note that state 2 occurs
less frequently than state 1, so the absolute scores are necessarily lower. Of importance
is not the difference between the states however, but the difference between the normal
and disabled group, and group 1 and group 2.

As one can see, there is a considerable difference between the two groups in scoring
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Figure 11: Behavior of a typical evolved agent from condition A after both C-units have
been set to 0. It is observed the agent shows behavior appropriate for state 2. The small
black circle indicates the starting point, which is at position (150,150). Left: path of the
agent for time-steps 0 - 100. Right: path of the agent for time-steps 100 - 200.

in the two states. In other words, from disabling the C-units it can be observed that
some agents show automatic behavior that is appropriate for state 1, while others show
appropriate state 2 behavior by default. An agent that shows state 2 appropriate behavior
is shown in Figure 11.

The fact that the agents’ default behavior could either be state 1 or 2, can be ex-
plained by the fact that there was no penalty for the control system being active and
no noise or malfunctions were present. Thus, there was no reason to match the default
behavior to the most frequent situation. In real environments, where these factors do
play an important role, the agents’ default behavior is more likely to match the most
frequent state.

4.5 Summary
In all conditions agents evolved with specific strategies that enabled them to score in the
environment. Agents from condition B scored better than those from C and much better
than those from A. Expected was that the task in condition A would require networks
with additional structures in to show optimal behavior. Most agents did not evolve
hidden units however, irrespective of condition. The hidden units of the remaining few
networks do not show the characteristics of a minimalistic control system. This means
that either the theory is incorrect or no hidden units are needed to complete the task.
Since networks with hidden units did not score better than those without, the latter is
more likely to be true.

Given these results, it is hypothesized that for this task, the C-units might be suffi-
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cient as ‘control system’. Since the C-units are set externally, this would mean that the
environment is providing enough cues for the agent and no internal control system is
needed.

By manipulating the activation of the C-units it is shown that the agents have a ‘de-
fault’ preference for either state 1 or state 2 behavior. This shows that automatic behav-
ior is coded within the input-output mappings alone. Since the weights of the connec-
tions between input and output units are non-zero and the activation cannot be blocked,
the C-units can only have a modifying effect on the behavior of the system. With other
words, the observed behavior is realized by modifying the existing perception-action
system.

Though the overall behavior remains intact, fitness does decrease significantly for
both states if C-units are not functioning. With other words, action execution is not
unaffected. The main cause of the decrease in fitness appears to be the loss of accuracy.
Searching for targets also is less effective. No preference was found for matching the
automatic behavior with the most frequent state. The most obvious reason for this is
that there were no disadvantages for performing the infrequent action automatically and
the frequent one by using control, as might be the case in reality.

In summary, the results show that networks evolved that made use of external cues
by using the C-units as control system, instead of evolving additional units. For the
current level of performance no additional system appeared to be necessary. No min-
imalistic control structure such as hypothesized has evolved, but the C-units do show
similar characteristics. The C-units only modify current mapping instead of generating
new behavior and they are not needed for one of the two diffferent behaviors. Actions
are found to be less effective however if executed when C-units are inactive, which in-
dicates they were also necessary for fine-tuning behavior. The results are in line with
minimalistic control theory, showing that appropriate behavior for one state of the en-
vironment tends to become coded automatically, while the other can be realized by
modifying the automatic system.

It may be unfortunate that the C-units functioned as control system, because the
setup was such that they could not be influenced by the network itself. The networks do
not tell us how the activation of context units develops over time. Their activation is set
at a constant value and is always correct. Moreover, disabling the C-units automatically
means that the network is no longer capable of judging the difference between state 1
and 2. This means that the found effects may be artifacts of the minimal size of the
networks. In the next section this issue, among others, is discussed further.

5 Discussion
The results of this study indicate that under certain circumstances, agent controllers
evolve that make the existence of minimalistic control structures plausible. It was found
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that the pregiven C-units evolved to take the function of and characteristics similar to
a minimalistic control structure. In this section I will first discuss the implications of
these results. Then the most important discrepancies between hypothesis and results are
discussed (Section 5.2). The validity of the experiment will be discussed in Section 5.3).
In Section 5.4 further research is suggested that could shed more light on the evolution
and nature of (biological) control systems in addition to the current study.

5.1 Implications
Minimalistic control theory can explain the neurological data found in patients and
healthy subjects on the issue of control. Though the hypothesis was not fully confirmed,
several observations from the results support the theory. First of all, the network appears
to function in a minimalistic manner. Apparently opposite reactions to the same stimuli
were realized by modification of the automatic response depending on context, rather
than coding for all behaviors directly. It shows that ‘control’ does not per se mean to be
in full control of actions and the same perception-action system can react very differ-
ently but in a meaningful manner when biased a little. This strategy is not only fruitful,
but the fact that many networks evolved with these characteristics also shows that it may
likely evolve under certain conditions.

The results underline the power of making use of available information, rather than
‘complex’ reasoning. This is in line with other research in reactive/non-reactive agents.
van Dartel et al. (2005) for example, found that even reactive agents could cope with
perceptual ambiguity in an active categorical perception task. They used the environ-
ment as external memory to compensate for the lack of internal memory. Here similar
function of the environment was found in the light of control. The activation of the
C-units is set externally, so one interpretation may be that the agent is using a kind of
external control: decisions are made ‘by’ the environment instead of an internal control
system.

Finally, the results indicate how we may proceed further in testing the hypothesis
that minimalistic control structures have an evolutionary advantage. It was found that
I-, C- and O-units alone were sufficient for the current task. This system matches the
lower two modules in Koechlin et al. (2003)’s model (Figure 10). In order to make allow
more elaborate structures to evolve, the task must become more demanding. Given the
model, it makes sense to include information about past events as a factor of importance
for determining the appropriateness of actions.

5.2 Discrepancies between hypothesis and results
Some differences exist between expectations and results. Here these differences and
possible underlying factors are discussed. Suggestions for testing these explanations
and determining the cause of discrepancies are given in Section 5.4.

28



5.2 Discrepancies between hypothesis and results 5 DISCUSSION

The most obvious discrepancy between the hypothesis and the results is that most
evolved networks do not possess hidden units. If no additional units evolve, there can be
no additional control system. There are two main explanations for the absence of addi-
tional units: 1) the task could be performed satisfactorily with the pregiven units alone
or 2) the evolutionary algorithm was unable to find better (bigger) networks though they
exist. On one hand, there appears to be no positive effect of increased network size
in the evolved networks (Figure 9). On the other hand, fitness and behavioral analysis
shows that the evolved agents do not perform optimally.

Another discrepancy is that no system could perform effectively in either state with-
out the C-units. If the C-units would function exactly like the hypothesized control
system they would not be needed at all in one of the states. As mentioned before, the
use of the C-units as control system complicates findings because their activity is set
externally and constantly. This fact may explain their constant use: their activity al-
ways needs to be integrated into the network somehow. Thus results are expected to
conform more to the hypothesis if control is performed by units whose activities can
be influenced by the network. Another possible explanation is that the theory about
minimalistic control needs revision or is incorrect. The theory was partially supported
by findings, but the similarities found could also be an artifact of the simplicity of the
evolved networks.

Thirdly, it was found that some networks choose state 2 for their automatic behav-
ior though state 1 is the most frequent. The reason for this is probably that there is no
gain associated with performing the most frequent action automatically. Whether this
explanation is sufficient can be tested by associating a cost with use of the control sys-
tem. This is only possible if the activation of the system is under control of the network,
however. In reality there is also likely to be a cost associated with occupying the control
system (unnecessarily).

Lastly, 50% of the evolutionary runs (in condition A) resulted in networks that do
not have a ‘good’ strategy for state 2. They compensate waiting in state 2 by performing
more efficiently in state 1. This is not actually in clash with the theory, but the existence
of two different strategies may be thought to be problematic. However, in this study this
strategy is not found to make a qualitative difference for the results. In both strategies
behaviors change when the state changes and both are valid for survival. Doing nothing
is also observed in nature. Think for example of animals going to sleep at night rather
than dealing with a changed environment they are not suited for. Still, a suggestion to
make sure the agent performs the task as intended in the future is to change the fitness
function such that only agents with high scores in both states can have high fitness. This
eliminates the possibility of waiting as a valid strategy.
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5.3 Validity of results
A number of questions may be raised concerning the generalizability of current results to
more realistic environments and agents. One such issue is that there necessarily is a gap
between the studied system and the real system when using simulations. The advantage
of simulations is that all factors are under control and it is possible to study systems
we otherwise could only reason about. The kind of evolutionary research conducted
here for example, would not be possible without it. The downside is that simplifica-
tions are necessary and wrong assumptions about which properties are important may
deliver unrepresentative results. The environment is much simplified compared to real
environments. And though evolutionary algorithms have some obvious similarities with
natural evolution, there are also many dissimilarities. The same is true for artificial and
biological neural networks. Therefore, conclusions extending to biological organisms
must be drawn with care.

Consider for example the differences between simulated and physical agents. From
the field of Robotics, it is well-known that controllers from simulated environments
tend to break down if directly transferred to real environments (Floreano and Mondada,
1994). It is not our purpose to design a controller for a functional physical agent, but
it cannot be guaranteed that simplifications in simulated input and output do not qual-
itatively influence the results. Past experiences have shown that evolved agents, both
physical and simulated, tend to use characteristics of the environment and body that
researchers had not expected. In physical agents these characteristics are real, but in
simulated agents they may be unintended artifacts of simplications in the environment.
Because it is so difficult to predict which elements are of importance, deciding what
may be simplified and what not may be beyond our knowledge. This problem can be
avoided partially by using physical agents that act in the real world. The disadvantage is
obviously that not as many controllers can be evaluated compared to simulated agents.

However, it would remain problematic to ascribe certain characteristics to biological
systems based on the results of the evolutionary simulation alone. The fact that the
evolutionary algorithm has found a certain solution does not mean that it is the same
solution natural evolution has found. Logically, there may be many control systems that
can account for the same behavior. To say that something can evolve is very different
from saying it did evolve. It is impossible to simulate biological evolution as it occurred,
because even very critical things depend on chance. This is also observed in EAs:
a few details can have a considerable effect on what evolves and what is lost in the
process (Bullinaria, 2001). So in that sense even a very detailed simulation of the world
and organisms may not give the absolute answer. Optimizing an EA to find the best
solutions does not give us more certainty in this matter either, since natural evolution is
not guaranteed to have taken the optimal path. But it is also not necessary to simulate
evolution as it occurred in order to answer questions about biological organisms. Here
a theory about the conditions in which organisms could have evolved is tested. While
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on its own perhaps not conclusive because programming details may have biased the
results unintentionally, more experiments in different environments and with different
agents may provide more insight and certainty in the conditions in which certain control
systems evolve.

Finally, one important simplification in the current study is the exclusion of learn-
ing. Most biological organisms are capable of some form of learning, even if they are
very simple. It may not be per se that individuals that are born very fit have the greatest
advantage, but individuals that can learn to be very fit. This has also been termed the
Baldwin effect. Being able to learn throughout one’s lifetime has the obvious advantage
of being able to adapt to unexpected changes in the environment. The current experi-
ment did not involve learning because it would have complicated findings unnecessarily
for this initial study. The effect of learning on evolved control systems may be great
however, since the advantage of a control structure is precisely increased flexibility in
behavior. By letting out learning, an important advantage and factor in the evolution of
control structures might be ignored.

5.4 Future research
The results are not conclusive in answering evolutionary questions about control sys-
tems, and further research is necessary to establish the presence and need for minimal-
istic control structures. Here I will discuss some possibilities for further research.

It has been suggested that no additional structures evolved because the current task
does not require other units and the C-units are sufficient to change behavior appro-
priately. Internal control structures are expected to evolve if the environment is more
complex. Conducting the current study on multiple levels of increasing complexity
will give more insight in general principles involved in evolved control structures. The
complexity can be raised by enabling the agent to perform more actions, other than
navigational, and add more constraints to the required actions, for example that certain
actions are performed in certain order. Whether and how results scale up is an important
issue: generalizations from simulations to biological organisms can be argued for only
if the qualitative trend in the results remains the same when the complexity of the task
is changed.

Moreover, the results of more complex tasks would also be of interest to the field of
Robotics. Up to this point, most research in evolution of artificial agents has focussed
on small ‘problems’ that may no longer be of interest from an engineering point of view.
However, there may be problems in making the environment and agent’s body highly
complex while the controller has to start from scratch. According to the Embodied
Embedded Cognition point of view, the body is an important part of the cognitive system
(van Dijk et al., 2008). Evolutionary studies also show that body and brain co-evolve; it
is unrealistic to put a ‘stupid’ brain in a high-capacity body and complex environment
(Floreano and Mondada, 1994). An option would be to evolve body and mind at the

31



5.4 Future research 5 DISCUSSION

same time (Hornby et al., 2001).
To exclude the possibility that the evolutionary algorithm may converge to small

networks too quickly, some changes to the EA are suggested. The present network size
penalty is too small to explain the fast convergence to small networks alone. Large
networks are not only disadvantaged by the penalty, but also because they have more
weights that need to be set sensibly. This costs more time, during which small networks
can gain the upperhand. This is amplified by the fact that if a network increases in size
due to mutation, the weights of the additional unit are initialized randomly. In gen-
eral, Floreano et al. (2008) observed that when evolving network topology and weights,
changes in the topology usually result in lower fitness even if they could increase fitness
later on.

Suggested is to generate the maximum number of genes for all networks and add a
gene for every unit that indicates whether the unit is active or not. The number of units
can be evolved freely and any hidden unit can be deactivated. But units and their con-
nections are not lost when the network decreases in size. Individuals in later generations
can utilize units abandoned by their ancestors, thus also giving these units more chance
to evolve connection weights that make them useful.

Given the purpose of this study it is not recommended to explicitly favor larger
networks in the beginning or to run multiple EAs with fixed sizes and then compare
the networks with each other. After all, it can be argued that some disadvantages larger
networks experience in competition with smaller networks are natural, and reason for
biological evolution to perfer a certain simplicity in organisms.

An additional possibbility is to adapt the genome of the network such that it codes
for not only which units are active, but also which connections are active. Though in
the current study it was possible to neglect connections by setting their weight (close)
to 0, this almost never happened. It is not likely all connections are needed and they
are likely to complicate finding suitable weight settings. Moreover, fully connected
networks are biologically implausible: there are only so many connections to other
neurons one neuron can handle (imagine receiving input from 10000 of your peers) and
spatial constraints also play a role in bigger systems.

Furthermore, the simulations can be made more realistic by introducing noise to the
C- and other input units. Sensors are not always reliable in the real world and agents
should not fully rely on the exact input always being correct. This could result in more
robust behavioral pathways that compensate for experienced noise in input.

Finally, as discussed previously, it would be interesting to see what the effect is of
combining evolution and learning. To make this possible, a different kind of network is
necessary. A learning rule needs to be selected that determines how the weights of the
connections are updated after feedback. Both the initial weight setting and the change
of the weights over time are of importance to the behavior of the agent. It is expected
the agent will be able to perform tasks better, and that there will be a preference for
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network configurations that are more flexible.
The suggestions made here should provide more conclusive answers to the research

question at hand. These are of course only a few of the many possible studies that can
be conducted in evolving control systems in the future.

6 Conclusion
In this study the possible evolutionary advantage of minimalistic control systems was
tested by simulating the evolution of neural controllors in a changing environment. A
minimalistic control system is defined as a control system that supports non-reactive
behavior by modifying automatic behaviors. Distinguishing characteristics are that this
system is not needed for performing frequent actions and that it only modifies behavior
instead of generating it. The idea behind this is that in general, the environment provides
us with enough cues to complete even complex tasks automatically.

It has been found that the C-units evolved to function as simple control systems, en-
abling agents to show different behaviors in the same positions. This was unexpected,
since the C-units are considered a form of input and it was thought that the task would
require networks with additional units. The C-units appear to function in a manner simi-
lar to the hypothesized, minimalistic control system. Important is that the C-units are not
‘picking’ certain behaviors, such as ‘approach T2 and T4 now’ and ‘avoid T1 and T3’.
The exact same perception-action system is active in both states of the environment, but
their outcome is simply influenced by the activity of the C-units. This observation sup-
ports the theory that only minimal control is required in many situations. Given that the
C-units are pregiven and their activation is set externally, the question remains whether
and when these kind of control units evolve by themselves. Further research is neces-
sary to establish how the results scale up to more complex environments and agents, and
whether internal control structures will have characteristics similar to the C-units and in
line with minimalistic control theory.
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A MAXIMUM SCORE

Appendices
A Maximum score
In order to compare the fitness of agents from different conditions, the maximum score
in each condition was determined. First the shortest routes are chosen by determining
the distance between the good targets of each state (Table 5 and 6). Two additional
steps were taken into account if it was necessary for the agent to turn around. The extra
steps it takes the agent to get from their starting position to the target most efficiently
is determined. The total maximum number of visits to good targets is determined for
each starting position by counting the number of hits if the minimal number of steps is
used for each distance. These scores are averaged and floored. For condition A an extra
difficulty is the state change at time 200 and 300. For this condition, the scores were
determined separately for the time segments 0− 200, 200− 300 and 300− 500. The
ending position of the agent in one time segment is taken as starting position in the next.
Then the scores for the segments were summed. An overview of the results is given in
Table 7.

Targets Distance
T1 - T3 62px (7 time-steps)
T3 - T5 53px (6 time-steps)
T1 - T5 88px (9 time-steps)

Table 5: Distance between good targets in state 1

Targets Distance
T2 - T4 44px (5 time-steps)
T4 - T5 66px (7 time-steps)
T2 - T5 61px (7 time-steps)

Table 6: Distance between good targets in state 2

Condition A Condition B Condition C
(150, 150) 360 415 355

(90, 70) 355 415 360
(20, 30) 355 410 355
Average 356 413 356

Table 7: Maximum scores for each condition from each starting position
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