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Abstract

In recent years, deep neural networks (DNNs) have come to dominate varied
domains in the field of machine learning. Particularly novel are accomplishments in
deep reinforcement learning and the successes of DNNs as feature models in neuro-
scientific studies, e.g. in the case of functional magnetic resonance imaging (fMRI)
experiments investigating visual and auditory perception. This study represents
the juncture of these two branches and aims to locate mechanisms of perceptual
decision making by identifying the neural correlates of Deep Q Networks (DQNs).

In an fMRI experiment, 12 subjects played three conceptually different ATARI
video games for which DQNs have been shown to achieve human-level performance.
The Q-values and Hidden values of the DQN were used as feature regressors in a
representational similarity analysis, analyzing correlation with the blood oxygen
level dependant both at the scope of regions of interest and voxel searchlights.

The DQN generated features showed elevated correlations in occipital lobe. Ac-
tions caused heightened correlations in both visual- and motor-related areas. Fur-
thermore, positive correlations were found in frontal lobe for Games. Albeit, sta-
tistical significance could not be established for these correlations.

Qualitatively, neural correlates were identified for all regressors in line with cur-
rent neuroscientifc understanding. Potentially beneficial adjustments to the DQN
and the study design were recognized, which might allow to fully exploit this new
experimental paradigm in the future.

Key words: Deep Q Network, functional magnetic resonance imaging, Q-learning,
decision making, representational similarity analysis



Introduction

On a daily basis, humans make countless decisions to navigate through their lives. Some decisions
elude our consciousness because they are without (major) consequences or have become habitual,
e.g. tying our shoes. Many decisions, however, incur rewards or punishments and thus require
conscious deliberation of the possible choices. Such decisions vary in the time available to reach a
decision, ranging from fast-paced reactions to long-term planning, and their complexity, i.e. how
uncertain the reward-structure of a problem is. How humans (and animals) estimate, evaluate and
develop behavioural policies is the focus of reinforcement learning (RL) neuroscience (Sutton and
Barto, 1998).

RL is a framework of machine learning, in which agents optimize their behavioural policies with
respect to rewards and punishments by interacting with the environment (Sutton and Barto, 1998).
Several algorithms, e.g. temporal difference learning and Q-learning (Tesauro, 1995; Watkins and
Dayan, 1992), have been proposed as models of how systems could learn optimal policies. These
algorithms have been mathematically proven to converge, and to function in practical settings with
artificial systems. They also led to many insights into human learning and decision-making by
applying them as models both in psychological and neuroscientific investigations (Schultz, 2015).

Recently, Q-learning has been successfully combined with deep neural networks (DNN). Mnih
et al. (2015) introduced the Deep Q Network (DQN), a convolutional neural network (CNNN) that is
capable of learning policies for various ATARI 2600 videogames en par with human performances.
The DQN achieves this feat simply by playing the game, with no other information than the
visual input, the possible actions, and the games’ rewards. Since its introduction the DQN has
gained popularity, inciting various improvements (Van Hasselt et al., 2015; Nair et al., 2015) and
applications, e.g. in the field of autonomous driving (Schmidhuber, 2015).

Deep Learning itself has become a fundamental technique in the machine learning community
in the last decade (LeCun et al., 2015), claiming state-of-the-art performance in many applica-
tions; reaching from image classification (Simonyan and Zisserman, 2014) over language translation
(Bahdanau et al., 2014) to predicting financial trends (Langkvist et al., 2014), even excluding the
aforementioned DQNs.

Recently, neuroscientific studies employed DNNs as models of cognitive mechanisms and rep-
resentations in the human brain (Kriegeskorte, 2015), particularly in the domain of perceptual
processing, as that is the area where DNNs originally garnered success (Krizhevsky et al., 2012)
and which they are especially suited for (LeCun et al., 2015). Giiclii and van Gerven (2015a)
found a hierarchical complexity in the various layers of CNNs, trained to classify images, similar
to the gradient found in the ventral stream of visual processing, by mapping the unit activations
to the blood oxygen level dependant (BOLD); an analogous discovery was made for the dorsal
stream with a functional magnetic resonance imaging (fMRI) experiment using movies (Giiglii
and van Gerven, 2015b). Other studies support the expressiveness of CNNs as a model for the
human visual cortex (Khaligh-Razavi and Kriegeskorte, 2014; Yamins and DiCarlo, 2016). Beyond
visual processing, Giiclii et al. (2016) also found neural correlates of learned features in auditory
processing.

This study unified these two strands of developments by investigating the neural correlates
of features as generated by self-trained DQNs in an fMRI experiment of continuous video game-
play. The recoreded BOLD responses were correlated with the Q-VALUES and HIDDEN VALUES
of the DQN model using representational similarity analysis (RSA). Additional regressors, namely
GAMES, MANUAL ACTIONS, and IN-GAME ACTION, were introduced to provide control measures
and validate this progressive experimental paradigm.

With this methodology we found qualitatively positive correlations both for the DQN features



and additional regressors, which are consistent with the current state of perception and action neu-
roscience. However, we were not able to match the DQN features to neural regions and mechanisms
associated with reward estimation and evaluation, e.g. in striatal or frontal regions. Nonetheless,
we were able to establish that this experimental paradigm has merit, and by identifying its pitfalls
we were able to propose correctional measures for future applications.

Methods

Subjects

A total of 12 healthy subjects (age 21-29, 9 male and 3 female, 10 right-handed and 2 left-handed)
participated in this study. Handedness was not a constraint in this study, as the tethyx joystick
(Fig. 1 (A)) used in the experiment allowed for gameplay with each hand and the analysis did not
distinguish between hemispheres. Video game experience and aptitude were not used as criteria
in the selection of participants. However, a questionnaire was given to inquire these factors. (The
questionnaire can be found in the Supplementary Material; it was ultimately not used in the
analysis to divide the participant pool). The study was approved by the local ethics committee of
Radboud University and the Donders Centre for Cognitive Neuroimaging.

(A) (B) (C) Figure 1: (A) Tethyx Fyber Op-

00475 tic Response Joystick: non-magnetic /

/ non-electronic (B) Space Invaders: space

4 shooter, player defends Earth against an army

of approaching aliens (1980) (C) Enduro:

racing game, player has to overtake as many

cars as possible (1983) (D) Q¥*bert: puzzle

game, player has to color all blocks by jump-
ing on them while avoiding NPCs (1988)

Stimuli
Three ATARI 2600 video games were used in this study (Fig. 1(B)-(D)):

e Space Invaders, a space shooter in which the player has to defend the Earth against a horde
of attacking aliens;

e Enduro, a racing game in which the player has to overtake a number of competitors each
day;

e and Q*bert, a puzzle game in which the player has to color a pyramid of boxes in a specific
color by jumping on boxes under the threat of various computer opponents.

Presentation and gameplay was achieved by using the emulation capabilities of the Arcade Learning
Environment (ALE). Games were chosen according to several criteria: human level performance
of the DQN as determined by Mnih et al. (2015), reasonable number of controls, varying balance of
reacting and planning behavior to succeed. Looking at the entirety of ATARI games, the range of
planning is limited to short-term plans at the most, as the DQN struggles with games that require
long-term strategies.



Experimental Design

Training The subjects were given short manuals to the games and instructed to read them. The
manuals explained the objective of the game, described the controls and resulting actions, and
noted any peculiarities of the game, e.g. the non-player characters and their abilities in the game
Q*bert. (The manuals can be found in the Supplementary Material). Then they proceeded to
play each game for the duration of 15 minutes in front of a notebook with the actual tethyx joystick
used in the fMRI scanner. They were given additional two minutes per game in the fMRI scanner
to get used to playing the games in supine position.

Experiment The subjects played three rounds of all three games, each game being played for
six minutes without interruption. If the subject reached a Game Ower-state, the game would
automatically start anew. Independent of the respective situation, one run ended after six minutes.
In all rounds, the order of games was fixed as seen in (Fig. 1B-D). We recorded the subject’s
videostream as frame-wise images, and their control inputs in each frame.

fMRI Data Acquisition

MRI data was collected at the Donders Centre for Cognitive Neuroimaging, Nijmegen. Functional
BOLD volumes were acquired with a 3T-scanner (Prisma; Siemens) using a 32-channel head coil.
A multi-band EPI sequence of TR = 0.7 s was used, i.e. for each run of six minutes, 530 fMRI
volumes were collected. 64 slices with voxel size 2.4 x 2.4 x 2.4 mm? were obtained. Additionally,
a T1-weighted volume of higher resolution was collected for co-registration (1.0 x 1.0 x 1.0 mm?).

fMRI Data Preprocessing

All preprocessing steps were performed with the SPM12 toolbox. First, the volumes were spatially
re-aligned to the first volume. Then, the volumes were slice-time corrected to the first of the 64
slices. For the purposes of masking and group analysis, the volumes were translated into MNI-
space. Finally, the individual runs were detrended. To account for the delay in haemodynamic
response, the first and last 20 volumes of each run were discarded. For the GAME-regressor, the
analysis was performed over the entire session by concatenating the individual nine runs (after the
aforementioned steps of detrending and discarding). In the case of the other regressors, the RSA
was performed on single runs and the results averaged over games, subjects, and runs.

Behavioral Data Preprocessing

Four perceptual and behavioral features were considered. First, the different games were considered.
Second, the player’s actions were investigated. Here, we performed two analyses: one for the manual
actions performed by the player, and the other for the available actions in each game. Possible
manual actions were button press, horizontal joystick movement, vertical joystick movement, and
the joystick resting position. An action was considered to be performed for its entire duration, not
just its onset (or offset). Given the time-window of 0.7 s between TRs and assuming a stable frame-
rate of 60 Hz, 42 actions were recorded per TR. For each TR, the ratio for all actions was computed
and taken as the regressor.! The procedure was the same for the in-game actions. However, unlike
MANUAL ACTIONS, each IN-GAME ACTION was considered separate, e.g. right and left movement

!The emulator cannot maintain this frame-rate perfectly, particularly at the start of the game the emulator needs
a couple of seconds to stabilize the framerate. The description uses the ideal example. Computations for the analysis
used the actual number of actions performed between each TR, not ideal approximations.



is bagged as horizontal movement for MANUAL ACTIONS, and action combinations (e.g. button +
right) were considered positives for both button and horizontal movement, whereas they might be
considered a unique action by game and DQN.

The other two features were the Q-VALUES and HIDDEN VALUES of the (un)trained DQN. In
the following, the basics of this feature model and their extraction are explained. For further
information, please consult (Mnih et al., 2015).

Deep Q Network (DQN)
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The DQN is a CNN that is conventional in its architecture compared to standard CNNs used for
classification purposes (Krizhevsky et al., 2012), but special in its way to learn. It is designed to
learn a gameplay strategy for ATARI video games using end-to-end reinforcement learning without
any prior knowledge except the number of a game’s possible actions (this technically only lessens
the computational burden, as the training would still work with all possible actions that the ATARI
controller offers). The game’s state-space, the effect of the actions, and its objective have to be
inferred during the training procedure. Mmnih et al. (2015) showed that this approach leads to
human-level or better performance for a range of ATARI games.

Its architecture consists of three convolutional and one fully-connected layer (Fig. 2). It is
fed the last 4 frames (resized to 84 x 84, grey-scale) as input. The output nodes represent the
expected cumulative reward for each action. During evaluation (gameplay), the node with the
highest expected reward is chosen by the DQN.

The convolutional neural network is designed to approximate the optimal action-value function,
formalized as

Q*(s,a) = HlTEriX]E[’r‘t + ATl + Vg + st =s,ar = a,m].

which is the maximum sum of rewards r; discounted by ~ at each time-step t, as defined by
the Bellman equation. This maximum can be achieved with a behaviour policy 7 = P(als), by
responding to an observation (s) with an action (a) (Mnih et al., 2015).

During training, the DQN is iteratively updated according to the gradients computed with the
loss function

L; (92) = E(s,a,r,s’)NU(D) [T + mas}x Q(8/7 a/; 91_) - Q(S, a; 07,)]

in which ~ is the discount factor determining the agent’s horizon, 6; are the DQN’s parameters
at iteration ¢ computing the actual ouput, while 6, are the network parameters used to compute
the target at iteration i. The target network parameters ;" are only updated with the Q-network



parameters (6;) at fixed intervals and are held constant between individual updates (Mnih et al.,
2015). To this end, minibatches of 4-frame sequences are randomly selected from the algorithms
memory replay ((s,a,r,s") ~ U(D)), which contains up to 1.000.000 of the last steps.

Model Architecture The DQN maps the sensory inputs, i.e. the game screen (in form of the last
four frames), to Q-values for all available actions in any given game. The exact architecture is as
follows. The input consists of an 84 x 84 x 4 image, which is the concatenation of the last 4 images
(re-sized and in terms of luminance). The first convolution layer contains 32 filter of 8 x 8 with stride
4 on the input layer and applies a rectifier non-linearity. The second convolutional layer contains
64 filter of 4 x 4 with stride 2 and applies a rectifier non-linearity. The third convolutional layer
contains 64 filter of 3 x 3 with stride 1 and applies a rectifier. This is followed by a fully-connected
linear layer of 512 rectifier units. The output layer is a fully-connected linear layer with a single
node for each possible action (see Fig. 2 and compare (Mnih et al., 2015)).

Training The DQN was trained for each game according to the parameters given in Mnih et al.
(2015). For each game, networks the fully-trained network (200 epochs) and a randomly initialized,
or untrained, network were taken to compute the Q-VALUES and HIDDEN VALUES used in the
analysis. A python-theano-lasagne implementation was used to train and compute the DQNs (link
to the original github repository and the repository containing adaptations can be found in the
Supplementary Material).

Feature extraction The Q-VALUE feature represents the expected reward (activation value of
output node) of the chosen action at each frame. Further approaches, e.g. comparing the best
(determined by DQN) with the one actually chosen by the subject, or taking the whole output layer
as a regressor, were discarded as the Q-values for all available actions were almost indistinguishable
for most frames.

The HIDDEN VALUES feature contains all activation values of the 512 nodes in the fully-
connected layer. As can be seen in the Supplementary Material, this feature vector is more
distinctive than the Q-value feature scalar.

For each node, the forward pass (calculation of activation given the frame-wise video-stream
and action log) through the DQN was performed at each frame. The resulting activation series of
each node was convolved with a canonical haemodynamic function. Consequently, the regressors
were sampled at the time of the TRs.

Representation Similarity Analysis (RSA)

RSA enables to relate information and representations from different modalities (Kriegeskorte et al.,
2008); in our case it allows the correlation of the DQN as a computational model (and other
regressors like actions) and the fMRI BOLD responses. This is achieved by comparing the patterns
in so-called representational Dissimilarity Matrices (DSMs). For our purpose, the comparison is
performed for a DSM of the respective feature regressor and one of the BOLD recording.

Regarding the DSM of the BOLD recording, there are different options to define the scope of
voxels under consideration: according to regions of interest (ROIs) or voxel searchlights. Further
details on these two modalities are provided in subsections below. Both approaches were used with
the exception of the GAME-regressor, as the searchlight RSA exceeded the computational ressources
available.

A DSM is a square symmetric matrix measuring the representational distance between two
states. There are various distance measures that have to be defined. One for the calculation of the



Table 1: Distance Matrix and Correlation Measures for Individual Regressors and Approaches

Regressor Approach Target DSM Voxel DSM
Game ROI Binary Pearson’s r
Manual Action ROI Spearman’s r Spearman’s r
Manual Action Voxel Searchlight | Spearman’s r Pearson’s r

In-Game Action
In-Game Action
Q-Value
Q-Value
Hidden Values
Hidden Values

ROI
Voxel Searchlight
ROI
Voxel Searchlight
ROI
Voxel Searchlight

7

b
Spearman’s r
Spearman’s r
Euclidean distance
Euclidean distance
Spearman’s r
Spearman’s r

Spearman’s r
Pearson’s r
Spearman’s r
Pearson’s r
Spearman’s r
Pearson’s r

distance within the feature or target DSM, another for the representational distance of the voxel
DSM. There are a variety of distance measures we used: binary, euclidean distance, Pearson’s r,
and Spearman’s r. Finally, a distance measure for correlating both DSM is necessary which was
Pearson’s r in all cases. Modality and regressor dependant use of distance measures is detailed in
Table 1.

Playing video-games is a time-continuous task, unlike most decision-making related fMRI studies
that apply designs with discrete decision events to accommodate the nature of fMRI, i.e. time-
sparse collection of brain volumes. To accommodate the continuous nature of the task and the
sparse recording with fMRI, the states are the time points of the fMRI pulse. (For visualizations
of DSM for all regressors, please refer to the Supplementary Material Fig. 1-5.)

Region of Interest (ROI)

First, we performed RSA with respects to ROIs. This means, for the calculation of the DSM all
voxels within a ROI are considered. The ROIs were defined with the SPM-extension WFU pickatlas,
according to the IBASPM116 atlas (compare Supplementary Material, Table 1: whole atlas
with abbreviations, acronyms were taken from Moore (1991).; Supplementary Material, Fig.
8 & 9: projections of respective ROIs).

Given the task of playing video games and the feature model at hand, not all ROIs are of
relevance. While we performed RSA for all ROIs, the results reported are limited to those areas
that were a-priori under investigation due to task and model, and those that showed surprising
results (The remaining results can be found in the Supplementary Material). In the following,
the important areas are detailed and justified.

The DQN, as described, is a machine learning model applying RL concepts to learn autonomous
decision-making policies. The striatum has long been established as the center of human learning
and decision-making (Schultz, 2015) and its subdivisions have been shown to perform a variety of
tasks to these effects, e.g. caudate (Cd) and putamen (Pu) play roles in reward expectation and
the computation of reward expectation errors (Haruno and Kawato, 2006). The pallidum (Gp) is
involved in the selection of motor programs (Grillner et al., 2005). The thalamus (Th) serves as a
focal point of information flow in the human cortex, where sensory information are relayed to other
regions in the cortex (Sherman and Guillery, 2002).

Video-gaming is inherently a visual experience and the convolutional hierarchy of the DQN is
inspired by human visual processing, which is known to be primarily performed in the occipital
lobe. The first cortical structure in visual processing is V1, which is concentrated in the calcarine
fissure (ces) (Rockland and Ojima, 2003; Engel et al., 1994). Mid-level visual representations can
be found in the cuneus (Cun) (Vanni et al., 2001). In the current literature, the distinction between
individual areas of the occipital lobe is rarely done according to IBASPM116, but commonly visual



areas V1-V5 and higher order areas like MT. Nonetheless, the occipital areas are established in
their role in visual processing, therefore it follows that the inferior occipital gyrus (IOG), middle
occipital gyrus (MOcG), and superior occipital gyrus (SOG) be included in the results.

The parietal lobe is involved in multi-modal sensory integration (Lewis and Van Essen, 2000).
It is considered the location of the dorsal stream of vision (Ungerleider and Haxby, 1994), i.e.
processing spatial and motion information, and has been implicated in performing visuomotor
transformations (Fogassi and Luppino, 2005). The precuneus (PCu) is implicated in visuo-spatial
imagery and self-processing operations (Cavanna and Trimble, 2006). Spatial orientation as well
as visuo-motor transformations are surmised to be functions of the superior parietal lobule (SPL)
(Caminiti et al., 1996). The inferior parietal lobule (IPL) is also involved in spatial perception
and visuomotor integration (Andersen, 2011). Lastly, the postcentral gyrus (PoG) is home of the
primary somatosensory cortex, and thus the center of tactile processing (Kaas et al., 1979; Kurth
et al., 2000).

The frontal lobe is involved in a variety of functions that relate to video gaming: reward,
attention, memory, planning, and motivation (Miyake et al., 2000). These higher order functions
are difficult to examine even with fMRI and there is still considerable research to be performed
to understand the frontal lobe in its entirety. The superior frontal gyrus (SFG) contributes to
working memory and spatial awareness (Du Boisgueheneuc et al., 2006). The inferior frontal gyrus
(BA45) is surmised to play a role in attentional control (Hampshire et al., 2010), among other
functions. The orbitofrontal cortex, consisting of superior frontal orbital gyrus (OrGS), middle
frontal orbital gyrus (OrGM), and inferior frontal orbital gyrus (BA47), is indicated in emotion
and reward-oriented decision-making (Bechara et al., 2000; Rolls, 2000). Primary motor cortex, as
the name suggests, is heavily involved in the execution of movement and located in the precentral
gyrus (PrG) (Hari et al., 1998; Karni et al., 1998). Also involved in movement, particularly in
balance and planning, is the supplementary motor area (SMA) (Roland et al., 1980; Goldberg,
1985). Both motor areas play a huge role in finger movement (Shibasaki et al., 1993). Other
frontal regions according to the atlas and subsequently investigated are superior frontal medial
gyrus (SFGm), middle frontal gyrus (MFG), and inferior frontal gyrus pars opercularis (BA44).

Although anatomically these regions belong to two lobes, PrG, PoG, and SMA will sometimes
be referred to as the motor-related areas in the remainder of this work.

Game worlds, as the real world, are comprised of objects, and the player has to identify these
objects to successfully navigate these worlds, e.g. recognize the potential threats in the game
Q*bert. The temporal lobe is considered to be part of the ventral stream of visual processing,
e.g. object identification (Ungerleider and Haxby, 1994). The inferior (ITG) and middle (MTG)
temporal gyri contribute to the visual processing of objects (Chao et al., 1999; Booth and Rolls,
1998). The fusiform gyrus (FuG) is commonly known as the ‘face area’, i.e. where facial features
are processed and faces identified (Kanwisher et al., 1997), but this is not its only function. It is
also surmised as the location of V4«, which is involved in color processing (Bartels and Zeki, 2000).

Searchlight

In a second step, we applied RSA on so-called spherical searchlights over the whole brain, i.e. voxel
neighbourhoods of a specified diameter d (in our case d = 3). For each voxel in the brain, the sphere
is determined, the dissimilarity between the sphere’s voxels is calculated and then correlated to the
DSM of the individual regressors (Kriegeskorte et al., 2006). After this, the results for the sphere
were related to the respective ROIs for reporting.

Numerical results for all ROIs, both for the ROI and voxel searchlight-analysis, can be found
in their entirety in the Supplementary Material. For the searchlight results, it has to be noted



that in this draft the maximal voxel for each region after averaging over all subjects and runs is
reported. In the Supplementary Material, both the maximal searchlight as well as each ROI's
average are listed.

Group Analysis

Given the nature of the task and the application of RSA in the manner described, i.e. with regressors
that are so closely related (except for the GAME-regressor), the resulting correlations for both ROIs
and voxel searchlights were (with very few exceptions) at least slightly positive. This means that
standard statistical tests, which compare effects against a null-hypothesis were not applicable. The
alternative approach of permutation testing, where the regressors are randomly mixed up for a
large number of test-runs, was also not feasible because of the immense computation load of RSA
for DSMs of this size.

As a result, no statistical measure could be applied. Thus, the following results are purely
descriptive, comparing mean correlations over subjects, runs, and/or games for ROIs and voxel
searchlights against average correlations over all regions or searchlights. Also to be noted, the
thresholds and scale boundaries for the brain depictions were chosen arbitrarily. (Illustrations with
optimized boundaries can be found in the Supplementary Material.)

Consequently, each result by itself does not imply a neural correlate. However, given the number
of tests (region of interest and voxel searchlight, various regressors) and the existing literature a
picture emerges that allows for qualitative interpretation.

Results
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Deep Q Network Analysis

During training, the DQNs performance, measured in reward gained per episode?, converged for
Space Invaders and @Q*bert, but not for Enduro, where it started to oscillated early in the training
process and did not stabilize over the 200 epochs (see Fig. 3(A)-(C)). This happened for several
random seeds.

2 An episode is a single run until the Game Over state is reached.



In the original paper (Mnih et al., 2015), the trained DQNs resulted in human-level performance:
the DQN achieved 121% for Space Invaders, 97% for Enduro, and 78% for @ *bert, compared to a
baseline score accumulated by a professional human games tester. An average player was considered
at a level of 75%. Please note, that the implementation used for this work is a different one from
the one used in the original paper, despite implementing the same principle.

However, the reported numbers were not suitable in our case, as the subjects were not video game
testers. For the purpose of comparison, we created a human baseline with training and playing time
according to the durations reported in the methods section, by one of the experimenters (compared
to the pool of participants, an adept player). It should be noted, that this baseline was established
in a seated and not supine position, which eases the difficulty of play. Fig 3 shows, that the DQN
is on a similar level as the baseline for Space Invaders and Enduro, despite the lack of convergence
for the latter. Although the DQN converged for Q*bert, the performance is significantly worse than
the baseline.

Regressor: Games
RSA - Region of Interest

The analysis using the three different GAMES as regressor revealed a positive correlation (mean over
all subjects) with major parts of the frontal lobe (see Fig. 4). Especially, the orbital gyri OrGs(r =
3.65¢73), OrGm (r = 3.00e™3), BA47 (r = 1.99¢73); compare Supplementary Material, Table
2) and the gyrus rectus (r = 3.26e73, not depicted) showed increased correlation. Additionally,
I0G (r = 1.99¢73) and ITG (r = 1.73e73) presented with above-average (ry = —0.20e~?) mean
correlation with the games. There was also an unexpected positive correlation with the olfactory
gyrus (r = 0.90e~3, not depicted). Both, the ROIs in the parietal lobe and striatum presented
exclusively with negative correlation.
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Regressor: Actions
RSA - Region of Interest

MANUAL ACTIONS, i.e. button-presses and joystick movements, showed highest correlation (over
subjects and runs) with ROIs in the occipital lobe (see Fig. 5). Over all games, there was increased
correlation in ccs (r = 6.21e72), Cun (r = 5.65¢~2), IOG (r = 4.31e72), MoCG (r = 5.01e~2), and
SOG (r = 5.84e~2) compared to an average of 7o = 3.48¢~2 (compare Supplementary Material,
Table 3). This increase was particularly pronounced in the game @ *bert, and less noticeable for
the game Enduro.
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a target dissimilarity ma-
trix (Spearman correlation)
based on MANUAL ACTIONS,
i.e. button-press, horizontal
and vertical joystick move-
ment and no action, (calcu-
lated for individual runs) for
selected regions of interest
in striatum, parietal, frontal,
occipital, and temporal lobe.
The upper graph shows the
mean for all games and runs,
the lower graph shows the
mean for each game respec-
tively. The horizontal line
shows the mean correlations
of all regions of interest ac-
cording to the IBASPM116
atlas.
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Figure 6: Mean (and
sd) of Spearman’s correla-
tion given a target dissimi-
larity matrix (Spearman cor-
relation) based on IN-GAME
AcTIONS (calculated for in-
dividual runs) for selected
regions of interest in stria-
tum, parietal, frontal, occip-
ital, and temporal lobe. The
upper graph shows the mean
for all games and runs, the
lower graph shows the mean
for each game respectively.
The horizontal line shows the
mean correlations of all re-
gions of interest according to
the IBASPM116 atlas.

ROIs in the frontal lobe were close to the average mean correlation.
correlation were the parietal and temporal ROlIs.
was the striatum. Against initial intuition, the motor-related areas PrG (r = 4.13¢72), PoG

Slightly above mean

Mostly below the average mean correlation

(r = 4.40e2), and SMA (r = 4.09¢~2) did not present the strongest correlation with this regressor,

but were consistently above-average for all games respectively.

A similar picture emerged with the analysis of the IN-GAME ACTIONS, i.e. the various actions
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and/or combinations available to the player in the individual games (see Fig. 6). The striatum
was below-average, the regions of the frontal lobe average and the temporal regions slightly above.
Moreover, the correlations of the motor-related areas were similar for the two action interpretations.
Stronger correlations were observed for the parietal regions PCu (r = 4.46e~2) and SPL (r =
4.67e~2) (compare Supplementary Material, Table 4), and overall for the ROIs in the occipital




lobe.

RSA - Searchlight

The voxel searchlight analysis was coherent with the results from the ROI analysis. For both types
of action regressors, MANUAL (see Fig. 7) and IN-GAME (see Fig. 8), the visual areas showed
the highest correlation. Additionally, the correlations in the motor-related PrG and PoG (compare
Supplementary Material, Table 7 & 8) appeared more pronounced than in the ROI analysis.
Also, the differences between the respective game became apparent. The correlations were similar
between perception- and action-oriented ROIs for Space Invaders, and presented a focus on action
or perception for Enduro and Q*bert, respectively.

Please note that the boundaries of the figure scales were determined by the average and highest
mean correlation for all games; the lower threshold being set at 120% of the average mean and the
upper threshold being set at 90% of the highest mean correlation. (for surface projections with
scales individually fixed for each game, see Supplementary Material, Fig. 10 & 11)

Enduro Q*bert

Space Invaders

ALL games
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Figure 7: Mean of Pearson’s correlation given a target dissimilarity matrix (Spearman correlation) based on MANUAL
ACTIONS, i.e. button-press, horizontal and vertical joystick movement and no action, (calculated for individual runs) for
average surface projections of full-brain searchlights measuring voxel size 3. From left to right, the color represents the
game(s) used: orange for ALL games, blue for Space Invaders, green for Enduro, and red for Q*bert.
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Figure 8: Mean of Pearson’s correlation given a target dissimilarity matrix (Spearman correlation) based on IN-GAME
AcCTIONS (calculated for individual runs) for average surface projections of full-brain searchlights measuring voxel size 3.
From left to right, the color represents the game(s) used: orange for ALL games, blue for Space Invaders, green for Enduro,
and red for Q*bert.

Regressor: Q-Values

RSA - Region of Interest

For the Q-VALUE regressor (see Fig. 9), i.e. the DQN calculated expected rewards, there was no
ROI that elevated strongly over the average mean correlation of 7o = 4.72e~2 for all games (compare
Supplementary Material, Table 5), although all non-striatal regions that we focused on did
at least match it. Looking at individual games, the correlations were more distinctive. For Space
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Invaders, the occipital regions, e.g. ccs (r = 9.53¢72) and Cun (r = 8.07¢2), showed the highest
correlation, the parietal and motor regions elevated correlations, and the frontal and temporal
regions close to average correlation (7 = 5.86e~2). A similar distribution, though less pronounced,
was found for @Q*bert. The distribution of correlations was different for Enduro, where the frontal
ROIs showed the highest correlation. Nevertheless, no major spike above average correlation (rg =
4.94e7?) was detected.

Figure 9: Mean (and sd) of
Spearman’s correlation given
a target dissimilarity matrix
(euclidean distance) based
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RSA - Searchlight

The searchlight results for the Q-VALUES also showed the highest correlations in the occipital lobe
(see Fig. 10), with maxima of r = 7.12e~2 for ccs, 7 = 6.95¢ 2 for Cun, and up to 7 = 6.38¢~2 in
the occpital gyri over all games (compare Supplementary Material, Table 9 & 10). Elevation
over the average was strongest in these regions during Space Invaders, and similar for Enduro and
Q*bert.

A second, but less pronounced, peak over average (rg = 4.92e~2) in correlation could be found
in motor-related areas PrG (r = 5.44e72), PoG (r = 5.27e¢=2), SMA (r = 5.31e72) and the parietal
regions IPL (r = 5.5172) and SPL (r = 5.4272). Out of the general focus of this analysis, there
was also a strong correlation in the lingual gyrus (r = 6.3472).

For the randomly initialized DQN, i.e. the untrained network, heightened correlations in the
visual and motor regions could also be found. Their correlations were overall closer to the average
correlation than for the fully-trained network.

Fig. 10 depicts no noteworthy correlations for Q*bert, neither for the trained nor untrained
network, and a surprisingly large surface area with higher correlations for Enduro. This is due to
a considerable difference in average mean correlations over all searchlights (please refer to Table
9/10 in the Supplementary Material for the exact numbers) despite uniform scales in this
paper.

Please note that the boundaries of the figure scales is determined by the average and high-
est mean correlation for all games of the fully-trained network. The lower threshold being set at
120% of the average mean and the upper threshold being set at 90% of the highest mean corre-
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lation. (for surface projections with scales individually fixed for each game and network-type, see
Supplementary Material, Fig. 12)

Space Invaders

ALL games Enduro
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Figure 10: Mean of Pearson’s correlation given a target dissimilarity matrix (euclidean distance) based on Q-VALUES for
the chosen action as determined by the DQN (calculated for individual runs) for average surface projections of full-brain
searchlights measuring voxel size 3. The upper row depicts the mean for a network trained for 200 epochs, the lower row
depicts the mean for a randomly initialized network. From left to right, the color represents the game(s) used: orange for
ALL games, blue for Space Invaders, green for Enduro, and red for Q*bert.

Regressor: Hidden Values
RSA - Region of Interest

For the HIDDEN VALUE regressor, above average (rg = 5.49¢ 2, compare Supplementary Ma-
terial, Table 6) correlations could be found for all non-striatal regions we focused on, with strong
elevations for the occipital and parietal regions (see Fig. 11), e.g. ccs (r = 9.30e~2) and SOG
(r = 8.94¢72), and PCU (r = 7.35¢~2) and SPL (r = 7.42e~2). On the level of individual games,
these peaks in the distribution showed for Space Invaders and Q*bert. For those two games, the
motor regions showed also elevation over average. For Enduro, the distribution was different, with
overall weaker correlations in occipital and parietal lobe, but in comparison stronger correlations
in the frontal lobe.

RSA - Searchlight

Unlike the ROI analysis, strong elevations in correlations only appeared in the occipital regions
(see Fig. 12). The average correlations of all regions was ry = 9.72¢~2 (compare Supplementary
Material, Table 11 & 12); ccs presented with 7 = 16.48¢~2, Cun with r = 16.06e~2, and SOG
with r = 15.46e 2.

While there was some elevation in correlation for the parietal regions in Enduro and @ *bert,
overall the parietal and motor-related regions were closer to the average than for all other regressors
(excluding the GAME-regressor). Again, the lingual gyrus showed a heightened correlation with
r = 12.66e~2. This increase over average is very localized.

For the untrained net, the increased correlation could also be localized in the occipital regions.
As was the case with the analysis of Q-values, the increase in correlation was less pronounced for
these regions.
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Please note that the boundaries of the figure scales is determined by the average and high-
est mean correlation for all games of the fully-trained network. The lower threshold being set at
120% of the average mean and the upper threshold being set at 90% of the highest mean corre-
lation. (for surface projections with scales individually fixed for each game and network-type, see
Supplementary Material, Fig. 13)
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Figure 12: Mean of Pearson’s correlation given a target dissimilarity matrix (Spearman correlation) based on HIDDEN
VALUES, i.e. the 512 unit values of the hidden layer of the DQN (calculated for individual runs) for average surface projections
of full-brain searchlights measuring voxel size 3. The upper row depicts the mean for a network trained for 200 epochs, the
lower row depicts the mean for a randomly initialized network. From left to right, the color represents the game(s) used:
orange for ALL games, blue for Space Invaders, green for Enduro, and red for Q*bert.




Discussion

Neural correlates Despite the problems establishing statistical significance with the described
experimental and analytical design, which we will detail further below, we were able to find positive
or elevated correlations which are coherent with the existing literature in the field of neuroscience,
particularly with studies involving DNNs, for the features of the DQN and other regressors relevant
to video-gaming.

For the GAME-regressor, i.e. the distinction of games, positive correlations were found in the
fronto-orbital gyri, as well as the IOG and ITG, which contribute to the ventral stream of visual
processing in the human brain (Reddy and Kanwisher, 2006). The latter is an expected finding,
given that the three games are visually different (compare Fig. 1(B)-(D). The cause for the positive
correlation in the frontal lobe can only be guessed considering its vast functions. Nonetheless, the
result is not surprising since the three games have varying demands in terms of attention and
planning (reactive v planning), as well as having different reward patterns no matter if we follow
the game’s internal patterns or potential schemes human players might use.

The action regressors, both MANUAL ACTIONS and IN-GAME ACTIONS, correlated with visual
and motor-related areas. The motion-related correlations were expected, though against intuition,
the correlations were weaker for motion than for visual processing. This can be explained with
the small action feature space. Ultimately, all motions were performed with hand or finger and
were rather close and often overlapping. This makes it harder to establish correlates compared
to a case where one would use different body parts. The correlations with visual mechanisms
and representations can be explained two-fold. First, in ATARI games similar perceptual states
lead often to the same action, e.g. in Enduro, a car appearing on the right side will often be
outmaneuvered with a motion to the left. Second, each action leads to perceptually very similar
outcomes in ATARI videogames, even though they only affect a part of the screen, e.g. movement
or button fire in Space Invaders. Since the BOLD signal cannot be recorded at a speed that allows
the distinction between the visuals preceding and following an action, this adds to this effect.

Q-VALUES, as determined by the DQN, were not the best option for a RSA feature value, as
they are a scalar and show little variance over a run. Consequently, RSA has to correlate minuscule
variations in the BOLD-signal. Nonetheless, correlations could be found in occipital lobe and to a
lesser degree in parietal and motor areas. This is not quite the aspired result, as it was hoped to
find correlates of expected reward in the striatum or prefrontal cortex. However, given the DQN
model the result is understandable. Mnih et al. (2015) showed with a t-SNE analysis that the
game screen could be clustered both according to their visuals as well as their associated reward,
meaning similar visual states share similar expected rewards.

Unlike the Q-VALUES, the HIDDEN VALUES from the fully-connected layer of the DQN consisted
of 512 values and thus, allowed for more distinctive DSMs. As a result, the effects are more focused
in the occipital lobe. These representations in the visual cortex are coherent with the notion of
CNNs and previous results from neuroscientific inquiries of DNNs (Giiclii and van Gerven, 2015a;
Kriegeskorte, 2015; Yamins and DiCarlo, 2016).

Deemed very positive is the fact that the correlations are stronger in the visual cortex both for
the Q-VALUES and the HIDDEN VALUES, when comparing the fully-trained and untrained networks.
This is a good indicator that the DQN actually learned meaningful representations that are similar
to the representations of human players.

Is fMRI data acquisition sufficiently fast and accurate to adopt a video game experiment?

Videogames (like other games) come in many different shapes and forms, but tend to require quick
decision-making; multiple decisions per second are typical and Mnih et al. (2015) assumed a rate
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of six decision per second for the DQN as humanly feasible. The games used in this study are
no exception. As such, fMRI is a seemingly unsuitable approach. First of all, the BOLD signal
measured is not completely understood, very slow to follow the cognitive process that caused it
(~ 6 s) and that delay may be location specific (Huettel et al., 2004). Additionally, current fMRI
scanners can record volumes at frequencies beyond to 2 Hz (TR= 0.5 s), but the possible resolution
and signal-to-noise-ratio are in a trade-off with this acquisition speed. As mentioned, the imaging
protocol used here had a TR of 0.7 s which under the given assumption of decision-speed means
up to four different action signals muddled into a single volume.

This is not to say that fMRI cannot produce meaningful results for fast-paced stimuli like movies
(Giiclit and van Gerven, 2015b). However, the interaction with the videogame makes for a more
engaging and complex cognitive process than watching a movie or listening to a piece of music.
Consequently, it becomes more difficult to isolate meaningful representations and mechanisms in
the brain.

In any event, there are no alternative imaging tools that could be applied in a more meaningful
way than fMRI. The only faster maging tools are EEG and MEG. EEG lacks the spatial resolution
(Aine, 1994), and MEG is too sensitive to motion artifacts to allow for a normal videogaming
experience (Junghofer et al., 2000).

Also worth mentioning is, that studies targeting the striatum usually use a multi-band-multi-
echo protocol , instead of a simple multi-band protocol, as it allows for a better signal in deeper
cortical regions (Huettel et al., 2004). However, multi-band-multi-echo protocols have a TR of ~ 2
s, which makes their temporal resolution even worse for video-gaming than the applied protocol and
explains why decision-making neuroscience normally applies very controlled experimental designs
with large pauses. As this study was more exploratory in nature and looked at the full-brain,
the choice for the multi-band protocol was uncontested. Nonetheless, the issue of protocol should
be considered when looking at the resulting correlations for striatal regions. The lack of elevated
correlation may entirely be caused by an incompatibility of the DQN model, but may also be
partially due to the unfavorable imaging protocol.

Imaging acquisition modalities, among them fMRI, will continue to improve allowing for faster
protocols with better signal-to-noise ratio. This alone will aid researchers in adopting similar
experimental design. There are other possibilities to address this issue even short-term. The ALE
could be easily adapted to be limited to a different frame-rate, thus decreasing the speed of the
stimuli to e.g. half (30 Hz). With this the gaming experience would be adjusted to better match
the recording speed.

RSA - effect sizes, t-tests and other issues The results of the RSA presented with two major
issues: small effect sizes, and their incompatibility with secondary analysis like t-tests. Looking
at previous studies applying RSA (Kriegeskorte, 2015; Devereux et al., 2013; Laakso and Cottrell,
2000), the effect sizes were usually on the scale of r = e~!. For this study, the results were on the
scale of r = e73 for the GAME regressor and r = e~ 2 for all other regressors, and as such they appear
to be too small to contain any meaning. This is a misconception; mathematically these effect sizes
can be explained by the unprecedented size of the dissimilarity matrices used in this approach. The
difference between the regressors’ results are by a factor of 10, which is approximately the difference
in size of their DSMs. For the GAME regressor, the DSM measures 4410 x 4410 and 490 x 490 for
all other regressors.

For secondary statistics, e.g. the t-test, (apart from the GAME regressor) all regions for the ROI
analysis and almost all voxel searchlights presented with almost exclusively positive correlations.
Consequently, the whole brain were determined to be significant. While video-gaming certainly
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presents a task, that involves many regions to some extent, such a significance obviously cannot
hold true for every regressor. As such, these tests hold no meaning and present a major problem
for this approach. At the root of this issue is the question why basically every resulting correlation
is positive.

There is no clear answer to this, but there are several aspects that might contribute to this effect.
Given the continuous task, the RSA might suffer from auto-correlations in the BOLD signal, which
could be worsened by the sparsity of the feature space for the regressors, e.g. the action space is very
limited and often overlapping and the Q-VALUES subject to miniscule changes resulting in overall
unvaried DSMs. Furthermore, video-gaming is a task that encompasses almost the entire cortex
in an interactive fashion - visual perception, movement, reaction, decision-making, and so forth.
Unlike in standard fMRI studies, where a task is usually investigated in isolation and consequently
allows for a stronger signal of the relevant brain area. Also, given the low feature and action space
of ATARI games, visuals, actions, and rewards are often connected, which might cause additional
auto-correlation.

Deep Q Network - a suitable model of the human mind playing video games? Deep Neural
Networks have gained some popularity in neuroscience in recent years, and this study aimed at
showing that the positive results would also hold for a neural network that is an actor, not just a
classifier. Despite the positive results, there are issues with the DQN as a model of human decision
making.

To simplify gradient computations, the learning algorithm clipped all rewards to either +1, 0,
or —1. This is not congruent with human reward valuations, for humans the amount of reward
matters and there are indicators that learning functions differently for rewards and punishments
(Delgado et al., 2000). In general, the reward schemes that are implemented in the games most
likely differ from the internal reward scales the human players, particularly novices who do not
pay much attention to the reward meter on the screen, apply. For example, avoiding one of the
opponents in Q*bert is not awarded in the direct way of points (but is indirectly valued, as the
expected cumulative reward is higher after training), but might be a very meaningful event for a
player, because they managed to escape from danger.

Furthermore, compared to other neuroscientific studies using deep neural networks (Giiglii and
van Gerven, 2015b; Giiglii et al., 2016; Yamins and DiCarlo, 2016), the DQN has a rather shallow
architecture with just three convolutional and one fully-connected layer. The DNNs used in (Gtiglii
and van Gerven, 2015a) have at least thrice the depth. Given that the visual complexity of ATARI
games is rather low (especially compared to natural images or today’s videogames) and the nec-
essary training time (several days per game), this is understandable, but this also means that the
representations the DQN can learn are comparably lower in complexity.

DNNs are currently a major focus of the machine learning community. Subsequently, there are
weekly extensions and improvements to this field as a whole. This shows how adaptable of the deep
learning framework is to all kinds of problems. For a study of human video gaming, there are several
paths one could take to make the model more human. First, the DQN is not limited by a reaction
time like human players are. If this constraint were added, the model might develop policies that
are closer to their human counterparts. Second, the DQN, like many other RL algorithms, suffers
from the exploration v exploitation dilemma (Mnih et al., 2015; Sutton et al., 1999). It already
contains the experience replay and iterative update to counter this, but mainly for the purpose of
optimization. Our interest in further exploration is that the calculated expected rewards should
be more distinctive, which is difficult for the algorithm to achieve if it starts to mainly experience
its successful strategy. Alternatively, the beginning of the DQN training could be exchanged for
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an instruction session, in which the DQN basically watches human gameplay to learn. This would
require crowd sourcing of such data and was beyond the scope of this work. But this would improve
training time, and could ultimately result in policies that resemble human gameplay.

Game differences The correlates of the MANUAL ACTIONS and IN-GAME ACTIONS regressors
were stronger than the DQN correlates for Enduro. A possible explanation is that the DQN,
despite learning a semi-successful policy, was not able to converge for this game. Accordingly, the
representations and action values learned were not fully developed and optimized.

Another remarkable result was that action-related correlations for Q*bert were more poignant
in the occipital regions than for the other games. Additionally, Q*bert was the only game to illicit
notable correlations in the parietal lobe, not just for the action-related regressors but also for the
DQN computed features. The cause for this is difficult to pin-point. We can only surmise that
the visuo-motor transformations that are believed to take place in SPL (Caminiti et al., 1996) are
more stable for Q*bert than for the other two games.

In this paper, we have treated the average mean correlation over one or all games as a baseline
for determining whether correlations in regions or searchlights can be qualitatively described as
meaningful, at least with some confidence. Problematic with these comparisons is, that within one
feature regressor the deviation between these average mean correlations can be quite substantial, e.g.
ry = 13.17e72 for Space Invaders and ry = 8.06e2 for Q*bert (see Supplementary Material,
Table 11). There is no constant order to these deviations, and there is also a case where these
values are very similar (see Supplementary Material, Table 4). Given the issues with statistical
significance tests, the qualitative comparison remained the only viable option in this case, and the
results are consistent with themselves and the literature. However, this aspect has to be considered
in this discussion.

Summary and Outlook This study establishes a promising precedence for the combination of
DQNs and videogaming in neuroscientific investigations. Despite the fact that statistical signifi-
cance could not be established for all regressors, the positive findings are coherent with the current
understanding of visual processing and the recent findings of neural correlates of DNNs. However,
the primary objective of finding neural correlates of reward expectation, evaluation and decision-
making could not be achieved. Reasons for this could be the DQN-model, the analysis with RSA,
and the experimental design. We were able to identify issues with all of the cogs of this study and
suggested appropriate measures for future studies attempting to take a similar approach.
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