
1 
 

Intelligent Monsters: Downfall of the 

Gamer 
Making game AI more interesting with predictive processing 

 

Name 

Bannink, W.R.J. (Ward) 

ward.bannink@student.ru.nl 

 

Student administration number 

s4235061 

 

Study 

Artificial Intelligence, Radboud University Nijmegen 

 

Supervisors 

Kwisthout, J.H.P. (Johan) 

j.kwisthout@donders.ru.nl 

 

Otworowska, M.E. (Maria) 

m.otworowska@donders.ru.nl 



2 
 

1. Abstract 
 

Due to the lack of recent development in game AI, new ideas may very well reinvigorate research and 

development in this area. This study aims to do exactly that with predictive processing. The predictive 

processing account proposes that the human brain attempts to predict future states, and that it 

subsequently tries to minimize the error of these predictions. The aims of this study to create a game 

AI using predictive processing to predict player moves in a grid-based world. As this study was meant 

to be explorative, an informal pilot was carried out, as opposed to a formal experiment. Five 

participants would play the game under observance, and provide feedback when done. Multiple rounds 

were played against an AI utilizing predictive processing, as well as against a simple AI that simply 

chased the player. Feedback and impressions from the gameplay suggest that the participants preferred 

the predictive AI above the simple AI. 

 

 

2. Preface 
This bachelor thesis has been written by W.R.J. Bannink, student artificial intelligence at the Radboud 

University of Nijmegen. For deciding what to do me thesis on, I was offered multiple projects to 

participate in for my thesis, among which was the predictive processing project. As I am really 

interested in the development of games and artificial intelligence, the Predict Project caught my 

attention, because it could be a very interesting thing to use with game AI. After having clarified my 

intentions and preferences with my supervisor, we devised a way to combine game AI and predictive 

processing, the result of which written in this thesis. 

Before we begin, I’d like to mention the following people who have helped me throughout the process 

of this project. First and foremost, my supervisors: Johan Kwisthout, and Maria Otworowska without 

whom I’d never have been able to complete this. Furthermore I would like to thank Robert-Jan 

Bannink, Maria Bannink, Job Bannink, Sven Herden, Jesse Fenneman, Maaike ter Borg, Harmen 

Prins, Maaike Deelstra, Daniel Stremmelaar, Auke Rozema, and Daan Vos for their support and 

helping me to get through.  

  



3 
 

Table of Contents 
1. Abstract ............................................................................................................................................... 2 

2. Preface ................................................................................................................................................. 2 

3. Introduction ......................................................................................................................................... 4 

3.1 Intro ............................................................................................................................................... 4 

3.2 Setup .............................................................................................................................................. 5 

3.3 Predictive Processing .................................................................................................................... 6 

3.4 Important terms, distinctions, and formulae .................................................................................. 6 

4. Model .................................................................................................................................................. 7 

4.1 Introductory world example .......................................................................................................... 7 

4.2 Main world model ....................................................................................................................... 11 

5. Methods ............................................................................................................................................. 13 

5.1 Information trace of the AI .......................................................................................................... 13 

5.2 Program mechanisms .................................................................................................................. 15 

5.3 Anecdotal pilot setup ................................................................................................................... 17 

6. Observations ...................................................................................................................................... 18 

6.1 Impressions of the gameplay ....................................................................................................... 18 

6.2 Feedback and commentary .......................................................................................................... 18 

6.3 Anecdotal results ......................................................................................................................... 19 

7. Conclusion ......................................................................................................................................... 20 

8. Discussion ......................................................................................................................................... 20 

9. Further Research ................................................................................................................................ 21 

10. References ....................................................................................................................................... 22 

11. Appendix .......................................................................................................................................... 23 

11.1 A ................................................................................................................................................. 23 

11.2 B ................................................................................................................................................. 24 

 

 

  



4 
 

 

3. Introduction 
 

3.1 Intro 
For the past few years the development of artificial intelligence in games has been rather stale 

(Yannakakis, 2012). A lot of games nowadays are using the same kind of algorithms over and over 

again, with some of them making small additions to the trusted formula, or fake difficulty by letting 

the AI (artificial intelligence) cheat. While there have been some attempts at making an AI appear 

more human-like, this tends to take the form of making the AI imitate human behaviour (Wang, 

Subagdja, Tan, Ng, 2009). While this can be efficient and impressive, it doesn’t actually make the 

artificial intelligence ‘intelligent’.  

My theory is that as things currently stand, there is room for improvement in the department of game 

AI, as there is a steady increase in the computing power of computers and developers are allowed to 

spend more resources on AI (Nareyek, 2004). Nowadays, AI tends to display rather predictable and 

static behaviour, whereas humans tend to be a lot more unpredictable. Which may be a reason why a 

lot of people prefer to play multiplayer games, as humans are simply more interesting to play against. 

In order to improve AI in this area I have investigated whether the following things can create more 

human-like behaviour: 

  - constructing a generative model of the player’s behaviour 

 - making predictions according to this model 

 - adapting behaviour and/or the model using prediction errors 

To do this, I have used a concept from a new theory in neuroscience, namely predictive processing 

(Kwisthout, Bekkering, & van Rooij (in press)). There is a good opportunity to make an AI that 

utilises concepts from predictive processing, one that is more humane than the general AI. There will 

have to be a balance between the performance and fun-factor, as an AI that will correctly predict 

everything all the time isn’t any fun to play against. On the other hand, an AI that isn’t predictable, 

seems to employ different strategies, and generally appear more human-like is received better 

(http://www.kurzweilai.net/ai-game-bots-more-human-like-than-half-of-human-competitors). 

For this research, I have investigated the following research question: ‘Can predictive processing be 

used to produce a more realistic artificial intelligence in games?’ As previously stated, the project this 

thesis is part of has predictive processing as its main topic. Apart from that, I want to find a job in 

game development after finishing my education. These two things combined allowed me to work on 

something that fit within the frame of the project, as well as accumulate experience with creating a 

game. Both of which will be beneficial later on, as predictive processing sounds like an interesting 

thing to use within games. In order to get an answer to this research question I have used the game I 

created as a testing ground. Participants have been invited to play a number of rounds against a simple 

AI and the predictive processing AI and judge them on various components. 

 

Lastly, for this part, follows the general outline of the thesis. The remainder of the introduction 

consists of three parts; ‘Setup’, ‘Predictive Processing’, and ‘Important terms, distinctions, and 

formulae’. In the setup, background information is provided on the game created for this project, and 

on the game itself in a nutshell. Predictive processing will briefly explain the idea behind the 

predictive processing account. The important terms, distinctions, and formulae will provide the reader 

with some important terms that are used in the thesis. 

After the introduction comes ‘Model’, where everything about the theoretic model I have used for the 

game is explained. This part is split up in ‘Introductory world example’ that makes the reader 

http://www.kurzweilai.net/ai-game-bots-more-human-like-than-half-of-human-competitors


5 
 

accustomed with how predictive processing was used to create the AI. This is done by means of an 

exemplary, smaller, world. ‘Main world model’ then takes the exemplary world, and scales it up to the 

actual world used within the game, and shows what was done in order to create a working AI utilizing 

predictive processing.  

In ‘Methods’, more specific information is given on the game itself. It is split up in three parts. 

‘Information trace of the AI’ shows an exemplary game in progress and offers insight into the AI. Like 

what the AI knows, and what its intended path is. ‘Program mechanisms’ outlines the classes used 

within the code, briefly explains what task they had within the game, and mentions some of the 

important functions. ‘Anecdotal pilot setup’ contains information about the informal ‘experiment’ that 

was carried out. 

‘Observations’ provides information about ‘Impressions of the gameplay’, ‘Feedback and 

commentary’, and ‘Anecdotal results’. Together, these form an impression of what the game was like 

for the participants, and some noteworthy observations.  

In ‘Conclusion’ I will take the gathered information and observations and draw conclusions from 

them. But seeing as this was a pilot instead of an actual experiment, these are not facts. Following up 

is ‘Discussion’, in which possible explanations for the observations are given. 

Lastly, ‘Further research’ offers some idea to research that build further upon the pilot. ‘References’ 

contain the references to the sources of information used in this thesis, and in ‘Appendix’ the code for 

two important functions is to be found.  

 

3.2 Setup 
To explore whether predictive processing mechanisms can offer a valuable contribution to game AI 

behaviour, I have made an AI for a dungeon crawler type of game, which can be compared to the well-

known Wumpus (from the game ‘Hunt the Wumpus, developed by Gregory Yob). 

A dungeon crawler typically is a game in 

which the player navigates through a 

labyrinthine environment, the dungeon, in 

search of gold, powerful loot, and monsters to 

slay. Most of the time, there isn’t a lot of 

story involved in dungeon crawlers, resulting 

in straight to the point games that can still be somewhat complex due to the amount of options the 

game can offer. This usually takes the form of different races, classes, and items to make the player 

stronger. Hunt the Wumpus is similar to a dungeon crawler; the player is armed with a bow and tasked 

to hunt the creature known as the Wumpus. Each turn he/she can explore a different room, or fire the 

bow to a room. If the arrow is shot to a room containing the Wumpus, the player wins, although there 

could be multiple wumpi in a single cave. If he/she steps into the room where Wumpus is located, the 

player loses. Furthermore, some feedback is provided to the player about where the Wumpus is. 

Namely, the player can smell the Wumpus from two rooms away. A lot of guesswork and manually 

drawing out the maps was needed for this game as it was text-based. 

In the case of the game for this project, the world consists of a two-dimensional grid, filled with 

certain features like rocks, water, and pots of gold, the Wumpus (the monster trying to eat the player) 

as well as an entrance and exit for the player. The game consists of a player moving within the grid, 

trying to gather as much gold as possible to increase the player’s score, and then move to the exit, all 

the while avoiding, or attempting to kill, the Wumpus. It is easier to guess where the Wumpus is in 

this game, as there are line of sight mechanics that determines whether player and Wumpus are visible 

to each other. 

Illustration 1 A screenshot of the game in progress 



6 
 

 

3.3 Predictive Processing 
The predictive processing account proposes that the human brain is a hierarchically organized 

structure that tests hypotheses (Kwisthout, Bekkering, van Rooij, 2016). It does so by making 

predictions about its environment, and subsequently attempts to minimize the error of these 

predictions (Clark, 2012). This hierarchy is organized in increasingly abstract probabilistic predictions, 

and the hypothesized causes that drive the predictions. At each level of the hierarchy, the predictions 

about the inputs are compared with the actual inputs, and possible prediction errors are minimized 

(Kwisthout, Bekkering, van Rooij, 2016). The generative models generate the hypotheses used within 

the account based on the inputs (Yoshida, Dickey, Sturt, 2013), but how these models are created and 

change over time hasn’t been looked into much yet. 

The inputs to the brain are assumed to be predicted in a hierarchical manner by the generative causal 

models. Of all of these inputs, the only bits that get actually processed are the yet unexplained parts, 

which are the prediction errors. These stem from the inherent stochastic nature of the world 

(Kwisthout, Bekkering, van Rooij, 2016). To make sense of what caused these errors, the brain tries to 

explain the prediction errors away with various mechanisms. Among these are adding additional 

observations (Friston, Adams, Perrinet, Breakspear, 2012), actively intervening in the world (Brown, 

Friston, Bestmann, 2011), updating the hypotheses (Friston, 2002), or revising the model (Friston, 

2003). 

3.4 Important terms, distinctions, and formulae 
- Probability distribution over the actions: for each specific action the probability of the player 

carrying out that action 

- Observed probability distribution: the probability distribution that corresponds with the observed 

player action. If the action is fully observable, the distribution will be deterministic. 

- Predicted probability distribution: the probability distribution that is calculated by the program and is 

based both on the current world state, and the player strategy. 

- Prediction error: the difference between the observed probability distribution and the predicted 

probability distribution. 

- Prediction error minimalization; a method that seeks to minimize the size of the prediction error by 

updating or modifying the generative models. 

- Kullback-Leibler divergence: a measure that is used to calculate how much two probability 

distributions differ from each other. In predictive processing, this is used to indicate the size of the 

prediction error. It is calculated with the following formula: 

𝐷𝐾𝐿(𝑃𝑟(𝑂𝑏𝑠) ||𝑃𝑟(𝑃𝑟𝑒𝑑)) =  ∑ 𝑃𝑟𝑂𝑏𝑠(𝑝) 𝑙𝑜𝑔2  (
𝑃𝑟𝑂𝑏𝑠(𝑝)

𝑃𝑟𝑃𝑟𝑒𝑑(𝑝)
)

𝑝∈Ω(𝑂𝑏𝑠)

 

- Line of sight: the mechanism used to determine whether the player and Wumpus can see each other, 

abbreviated to LOS. When there is LOS, the Wumpus is able to observe player actions and use them to 

predict future player actions. 

- Pot of gold: on object that can be located at locations within the game field. When the player walks 

over a pot of gold, it is picked up and the player’s total gold gets increased by 10.  

  



7 
 

 

4. Model 
 

This section contains information about the employed model. Before explaining things in a more 

detailed version, some more formal definitions of the model, and of variables and values used within 

the model are provided here. 

There are two strategies that the AI assumes the player to utilize; gold-first, and exit-first. As together 

these two make up the probability distribution over the strategies, each strategy has a probability of 

P(Strategy = s) = x. Where s is either gold-first or exit-first, and x is the probability for that strategy to 

be assumed by the AI. 

The actions a player can take consist of moving in one of the four cardinal directions; north, east, 

south, and west. As with the probability for a strategy, the probability for an action can be described as 

P(Action = a) = x, where a is one of the possible actions a player can take, and x is the probability 

assigned to that action.  

More on that, these probabilities are calculated based on the assumed strategy and world state. Let’s 

assume that we have some world state w, and some assumed strategy s. In accordance with this, the 

actual probability for an action would be P(Action = a | w, s) = x. 

The world state itself is something like a screenshot of the world, or in the case the game field. 

Different world states can be created by, for example, due to player movement, and picking up pots of 

gold. It can be seen as a Bayesian network, with the starting state being the root node. As actions are 

taken the network expands, creating a new node depending on the chosen action of player and AI, and 

creating possible successor nodes depending on the possible actions for the player and AI. 

 

4.1 Introductory world example 
Performing all of the computations necessary to have a functioning game played out within a decently-

sized world would be quite the complex task, due to all the possibilities that have to be considered 

when predicting a single action. As of such, the general thinking process of the AI 

will be illustrated by means of a smaller exemplary world, shown to the right. This 

world contains a player, a single pot of gold, and the exit. In this case, the AI 

assumes the player will utilize one of two strategies at a time: either gold-first, or 

exit-first. As there is no Wumpus within the world state, this leaves the player 

with 4 possible actions; moving either vertical or horizontal.  

The foundation of action prediction is based on the current world state, and probabilities of 

employment of the strategies by the player (see Illustration 1). The employed strategy indicates the 

player’s believed intentions and goals, whereas the world state pertains the status quo of the game. 

These two things combined allow the AI to make predictions. These predictions take the form of a 

probability for each action, which are conditionally dependent on the strategies and state of the world. 

Actions that are consistent with the assumed strategies thus have a high probability, while those that 

don’t will get a low probability. There is a reason these actions are assigned a low probability instead 

of plain zero. This is because when a zero probability would be assigned to these actions, and the 

player takes them anyway, there would be infinite prediction errors. These infinite prediction errors 

stem from the resulting outcome of the Kullback Leibler divergence. Should the predicted probability 

be zero, the following would attempt to execute: ‘log2 (observed probability / 0)’, and log(0) is minus 

infinity. Therefore, the actions that, according to the prediction, won’t be taken will be regarded as 

 Pot of Gold 

Player  

 Exit 



8 
 

noise. Impossible actions will still retain their zero probability, as the player simply isn’t able to 

execute them. 

 

 

 

 

 

 

 

 

 

 

In this case, initially the strategies are uniformly distributed. That is to say, each strategy will have a 

probability of 0.5, i.e. P(Strategy = GoldFirst) = 0.5, and P(Strategy = ExitFirst) = 0.5. This is done in 

order to reflect the AI’s lack of knowledge which specific strategy is actually being pursued.  

In this case, under the assumption that a gold-first strategy is being pursued, the actions ‘move east’ 

and ‘move north’ will have a probability of 0.49, as both bring the player equally closer to his/her 

assumed goal. ‘Move west’ is ruled out due to the constraints imposed by the game. ‘Move south’ will 

have the remaining probability of 0.02, functioning as noise to retain a predicted probability that the 

player performs this action. This is not to say it is impossible for this action to be carried out by the 

player, but to the AI this is an illogical action (as it increases the distance between player and gold), 

therefore these actions will be assigned some small probability to serve as noise. Largely the same will 

go for when the exit-first strategy is assumed, except that ‘move north’ will be assigned a probability 

of 0.02, and ‘move south’ will have a probability of 0.49 now.  

Given that West is an impossible action in this cell, and 

there are two actions for both the GoldFirst and ExitFirst 

strategy that are equally likely (and one action in each 

case that is unlikely), the conditional probability table is 

defined as follows. Here, we implicitly condition also on 

the world state which in our model is fully observed: 

The predicted distribution over the actions, given the 

uncertainty about which strategy is being employed, is 

computed as follows:  

P(Action = x) = P(x| Strat = GoldFirst) * P(Strat = 

GoldFirst) + P(x | Strat = ExitFirst) * P(Strat = ExitFirst). Resulting in the next marginal probability 

distribution, which will function as the predicted probability distribution for now: 

P(North) 0.49 * 0.5 + 0.02 * 0.5 = 0.255 

P(East) 0.49 * 0.5 + 0.49 * 0.5 = 0.49 

P(West) 0 * 0.5 + 0 * 0.5 = 0 

P(South) 0.02 * 0.5 + 0.49 * 0.5 = 0.255 

P(North | Strat = GoldFirst) 0.49 

P(East | Strat = GoldFirst) 0.49 

P(South | Strat = GoldFirst) 0.02 

P(South | Strat = ExitFirst) 0.49 

P(East | Strat = ExitFirst) 0.49 

P(North | Strat = ExitFirst) 0.02 

Illustration 1 A simple depiction of how a 
predicted action is formed; through processing of 
information from the assumed player strategy, 
and the current world state and its contextual 
effects. 



9 
 

 

 

 

 

 

 

 

 

After the player has performed an action there will be an observed probability distribution over the 

action variable, as well as a probability distribution with the predicted probabilities. The AI will 

compute the prediction error between predicted and observed actions by subtracting predicted 

distribution from the observed one, as shown in Illustration 2, and update its current beliefs and/or 

model accordingly to lower the size of the prediction error (defined as the Kullback-Leibler (KL) 

divergence between both probability distributions). Should, for example, the player choose to move 

north, this induces a prediction error. This is caused due to the discrepancy between the predicted and 

observed probability distributions. One way of lowering the size of the prediction error is by revising 

the prior probability distribution over the strategies. More precisely in this case: the probability of the 

gold-first strategy will increase, as this is the strategy that would best predict this action, given the 

context the action was taken in. Thus, the probability distribution over the Strat variable is updated 

such that the KL divergence between the observed probability distribution over Action and the 

resulting predicted distribution over Action is minimal, this happens to be the distribution where 

P(Strat = GoldFirst) = 1, as shown in Illustration 3 below.  

 

 

 

 

 

 

This updated distribution is then used in combination with the new state of the world to make the new 

predictions for the next action of the player. The new probability distribution for predicted actions for 

the gold-first strategy would consist of a probability of 0.99 being assigned to ‘move east’, as it is the 

only possible action that fits this strategy, given the new world state and beliefs. The other legal action 

(going South) is unlikely given this strategy), as the AI currently assumes the gold-first strategy is 

employed. Meanwhile, the probability of the exit-first strategy will decrease, as this action increased 

the distance between player and exit. All of which is shown in the following table: 

P(North) 0 * 1 + 0 * 0 = 0 

P(East) 0.99 * 1 + 0.5 * 0 = 0.99 

P(West) 0 * 1 + 0 * 0 = 0 

P(South) 0.01 * 1 + 0.5 * 0 = 0.01 

Illustration 2 The prediction error is calculated by subtracting the 
predicted probability distribution from the observed probability 
distribution. 

Illustration 3 Creating the revised probability distribution. 



10 
 

 

On the other hand, should the player choose to move east (instead of north), there will be a smaller 

prediction error, as the observed action was one that had a high probability (see Illustration 4). The 

beliefs about the strategies remain identical to the previous state, as the action is equally consistent 

with both strategies. As of such, the probability of the strategies will remain the same, as the action 

was a legitimate move for both. Lastly, if the choice was made to move south, the beliefs revision will 

decrease the probability of gold-first. Increasing exit-first instead, and predicting the next action 

accordingly. 

 

 

  

Illustration 4 Resulting prediction error when the player 
moves east. 



11 
 

4.2 Main world model 
However, the actual computations are a lot more complex, because the actual game is played out 

within a much larger world. This combined with the improbability of the player utilizing a single 

strategy, as players tend to change strategies depending on the situation (Milchtaich, 1996), quickly 

causes things to spiral into intractability. Even when this would be represented as a probability 

distribution over the possible strategies, the large number of world states and actions possible in each 

world state cause intractability to occur. Along with which come huge probability tables that would 

require numerous pages to be illustrated. 

Now that we’ve taken a look at a small example of what has been done, let’s take it to the next level 

and see how things go about within a larger world. This 4x4 world consist of a player, some pots of 

gold, an entrance, exit, landmarks, and the Wumpus. For ease’s sake, we’ll still assume that the player 

will use one of two strategies. Gold-first, or exit-

first. 

Before we talk about the 4x4 world, let’s first 

take a look at the first example. If one were to 

explicitly define the conditional probability 

table, he/she needs to into account the possible world states, actions, and employed strategies. This 

would result in an entry count of #Actions * #Strategies * #WorldStates. The number of actions 

consist of moving in one of 4 directions, so #Actions = 4, whereas #Strategies would be 2, as we have 

the gold-first and exit-first strategies. Next, for the amount of world states, there 2x3 = 6 different 

locations. If one would take into account the player picking up the pot of gold resulting in different 

world states, this would add an extra 6 possible world states on top of that, making 12. So for all the 

combinations of P(action = X |  strategy = Y, worldState = Z) one would require 4 * 2 * 12 = 96 

different entries over which a distribution needs to be defined and computations need to be performed. 

When we add to this more states to visit, more gold to be collected that, when picked up, allow for 

more different world states, and the Wumpus itself, resulting in even more different world states as it 

can be located in any state as well, intractability is bound to follow. 

So instead of this, we’ll be taking a different approach to computing the conditional probabilities in 

the larger world. In order to make this work a more local method will be used, that is supposed to 

compute the probabilities based on the current player location. To do this, if-then rules are employed 

in order to implicitly, rather than explicitly, represent the probability distribution over the actions. 

We’ll ‘zoom in’ on the player and check what the possible actions are, given the player’s location. 

Following up, a number of functions will be executed that determine what strategies each actions 

complements. This is achieved by checking whether the action in question will put more, or less 

distance between the player and the nearest goal for the strategy in question. So if the sole pot of gold 

in a level is two locations east of the player, ‘move east’ will decrease the distance between, and as of 

such be an applicable action for gold-first. But if the exit happens to be east of the player as well, then 

the ‘move east’ action would be applicable to both strategies. 

Next, each of these actions that complement a specific strategy will be assigned a value. This value is 

computed as followed: 1 / (n), where n is the number of actions that complement the strategy in 

question. Which is then computed for every ‘action-strategy’ combination. After that, every such value 

will be multiplied by the believed probability of the strategy. All in line with how the predicted 

probabilities were computed previously. Together, this results in the following bit of Python code 

when executed: 

 

 

 Pot of gold Rock Wumpus 

Entrance & 

Player 

   

  Water  

 Pot of gold  Exit 



12 
 

for strategy in strategies 

  complementingActionCount = 0 

  complementingActions = [] 

 for action in possibleActions 

  if complementsStrategy(action, strategy) 

    complementingActions.append(action) 

    complementingActionCount += 1 

 for action in complementingActions 

   action.actionValue += (1/complementingActionCount) * stratProb 

After execution of the code, all actions will have their predicted probabilities computed for them. This 

ensures that the predicted probability for each action that doesn’t move the player closer towards the 

goal associated with the strategy to be 0, while the actions that do will be evenly distributed among 

each other. Keep in mind this is for that specific strategy only, as the action could also contribute to 

the other strategies, thus having its value increased. 

  



13 
 

5. Methods 
 

5.1 Information trace of the AI 
In order to provide extra clarity on the information the AI has, and how this is used, a number of 

screenshots will be shown. Alongside these screenshots traces of information corresponding with each 

screenshot are provided. These traces should clarify what information the Wumpus has, the paths it 

plans to take, and what it predicts the player will do. Not all the steps of a game are shown, as that 

would clutter multiple pages. The probability distributions are assigned as follows: for the strategies it 

is [p(gold-first), p(exit-first)], whereas for the actions it is [p(north), p(east), p(south), p(west)]. 

 

 

 

At the first turn, there is no LOS yet between the Wumpus and player, as this is obstructed by the rock 

left of the Wumpus. Therefore there won’t be any calculations on what the player is going to do. First 

and foremost because the Wumpus doesn’t yet realize the player has entered its lair. Second because 

the Wumpus does not yet have information of any kind on the player, and therefore will be unable to 

perform the calculations. As of such, probability distribution will be the initial [0.5, 0.5] for the 

strategies, and [0.25, 0.25, 0.25, 0.25] for the actions. For its turn, the Wumpus will make a random 

move. 

 

 

 

 

With player and Wumpus both having moved south, the field looks like depicted above. As there are 

no vision-blocking objects in the path from Wumpus to Player (the path [(3, 1), (2, 1), (1, 1)], 

Wumpus and player have made visual contact with each other. Because the pot of Gold at location (1, 

0) initially was closest to the player, the AI guessed this location to be its main target. Although after 

observing the player to have moved south instead, and thus moving away from the nearest pot of gold, 

the exit-first strategy seemed more likely to it. As for the next action it predicts the player to take, 

‘move east’ is the most likely within the distribution of [0.01, 0.5, 0.49, 0]. Even though this is 

supposed to be on par with ‘move south’, as both actions would bring it closer towards the pot of gold, 

as well as the exit, so this was likely caused due to some miscalculations. Lastly, the path the AI now 

intends to take is [(3, 1), (2, 1), (1, 1), (1, 0)], this seems to still be based on the assumption that the 

player will go for the pot of gold at location (1, 0). 

 

 

 

 

 

A: Turn 1 

B: Turn 2 



14 
 

 

 

 

Doing exactly as the AI expected, the player has indeed moved east, confirming its predictions. As 

there still are no vision-blocking objects between player and Wumpus, they can still see each other 

clear as day. Interestingly, although likely due to some erroneous coding, the Wumpus still assumes 

location (1, 0) to be the player’s goal, even though the nearest pot of gold would now be at location (1, 

3). As of such, the predicted action is now for the player to move north, even though this is not the 

most likely move that the player will make, judged by the new probability distribution over the 

actions, which is [0.24, 0, 0.72, 0.03] (which really should be [0.24, 0.02, 0.72, 0.02]). Although its 

assumptions about the player’s goals are a bit off, it did now correctly identify the possibility of the 

player employing a different strategy, as the probability distribution over the strategies has become 

[0.5, 0.5], thereby acknowledging the player may go for the exit instead. 

 

 

 

 

 

 

 

 

 

Defying the AI’s expectations, the player chose to move south instead and pick up the pot of gold 

located there. The AI now realizes the player probably isn’t going for the gold, but is heading straight 

for the exit, as the predicted goal of the player has become (3, 3); which is the location of the exit. 

Furthermore, the AI now also predicts the employed strategy to be exit-first, seen from the distribution 

of [0, 1]. In accordance with this are the predictions of the actions, which are [0.1, 0.98, 0, 0.1], 

assuming the player will make a rush for the exit. Based on these assumptions, the Wumpus makes an 

attempt to intercept the player by moving east, which is the faster way to the exit. Unfortunately for 

the Wumpus, the player will have reached the exit in two more turns, thereby escaping the dungeon 

with the collected gold, and leaving the Wumpus hungry for the oncoming winter. 

 

 

 

C: Turn 3 

 

D: Turn 4 



15 
 

 

 

 

5.2 Program mechanisms 
In this part more explanation is provided on the game so that the reader has at least general of what has 

been done. Starting off with a table in which all the used classes and their general function are listed, 

further explanation will be provided on the most important functions and components of the game. 

Class Description and task Important functions 

ActionHandler Handles the move and attack 

actions, and whether movement 

in a given direction is possible. 

/ 

ActionProbDistr Calculates the probability 

distribution over the actions 

based upon if-then rules. 

makeAPD(self), 

predictMove(self) 

AIBehavior Performs a variety of functions 

that collect information on the 

player and uses these to create 

the AI behavior 

takePredictiveTurn(self) 

Bresenham Used as the basis for the line of 

sight mechanism 

/ 

Character Superclass that the 

PlayerCharacter and Wumpus 

classes extend. Holds 

information about the player 

and Wumpus. 

/ 

GameField Holds information about the 

playing area of the game. 

/ 

GameRunner Starts up everything necessary 

to play the game and receives 

user input. 

/ 

GameTurn Ensures constant flow of the 

game until it is finished. 

/ 

Main The main file that calls sets 

everything in motion 

/ 

Model Head-class that holds all the 

important information within 

the program. 

hasLOSTo(self) 

Pathfinder Responsible for creating paths 

for the AI to traverse 

createLocationList(self, 

targetLoc) 

PredictionPlanner Performs all sorts of checks to 

aid in prediction and planning 

of movement. 

/ 

StratProbDistr Holds the values of the 

probability distribution over the 

strategies. 

/ 

  



16 
 

ActionProbDistr: 

  - makeAPD(self): This function is used to create an updated probability distribution over the actions. 

It does so by taking the two strategies, gold-first and exit-first, and counting how many of the possible 

actions a character can take bring that character closer to the goal associated with that strategy. Next is 

determined which exact actions actually complement each strategy.  

The information from these two separate functions are then used in combination with the probability 

values of the strategies to calculate the new probability values of the actions. See appendix (A) for 

more detail. 

 

  - predictMove(self): Used to let the AI decide what action he predicts the player to take. It takes the 

probabilities of the actions and makes it so that when a random number from 1 to 100 is taken, the 

probability that a specific action is chosen as final predicted action corresponds to those in the 

probability distribution. See appendix (B) for the code. 

AIBehavior:  

  - takePredictiveTurn(self): Lets the AI take a term using predictive processing. Depending on a 

number of conditions, the AI will make a different action.  

  * When the player hasn’t been spotted at least once, it will make a random move to simulate     

natural behaviour. 

  * If it is adjacent to the player, it will attack the player. 

  * If it has line of sight to the player and hasn’t visited the predicted player goal at least once, it 

will predict the player’s goal location, like the exit, and move towards it to intercept the player. This 

predicted goal can change as the player makes an action. 

  * When the AI has visited the predicted player goal at least once and has line of sight to the 

player, it will predict the location the player will go to and move towards that place. 

  * Should these things all fail, meaning the Wumpus has lost sight of the player but has seen it 

disappear, it will move to the last location it saw the player. Should the player still not be visible after 

that, it will continue random movement until the player has been found. 

Model:  

  - hasLOSTo(self): Used to determine whether the Wumpus can see the player and whether the player 

has been spotted at least once during a game. To do this, it uses the Bresenham’s line algorithm to 

draw a line between the previous player location and the Wumpus’ location, and between the new 

player location and the Wumpus’ location. 

Pathfinder: 

  - createLocationList(self, targetLoc): A* search is employed to find the optimal path towards the 

given target location. Successors are generated from the legitimate moves the Wumpus can take, to 

prevent the Wumpus from running through rocks. When a successor is found that leads to targetLoc, 

that successor is returned. This successor next gets taken apart by taking its parents one by one and 

placing their locations in a list to create the actual path coordinates.  



17 
 

5.3 Anecdotal pilot setup 
 

As this project was more explorative rather than empiric, I have performed an anecdotal pilot instead 

of an actual experiment. The main reason for this was to see whether it would make sense to set up an 

actual formal experiment. Because of this, the following section should not be seen as a formal 

experiment, but as an explorative pilot that may provide clues as to whether it would be interesting for 

actual research to be performed on this topic. In this part, participants were asked to play the game, 

observations were made during play, and afterward feedback was received. Based on which some 

assumptions could be made. 

Five persons were asked to play the game and provide some remarks. All of the participants were 

around 21 years old, and had at least some experience with playing games. Participants have gotten 

general information about the game, including the presence of two types of AI. Afterward, they had 

gotten more explanation about the AI’s, and what the predictive AI was supposed to do.  

Players first went through an introductory round against one of two AI’s; the simple AI that chases the 

player down, or the predictive processing AI (randomly determined), to warm up and get used to the 

game. This was followed up by two sets of two games. In each set a different AI was used, the order of 

which was also randomly determined. What exact type of AI was being played against was hidden 

from view, in order to get non-biased answers to some of the questions. 

Once the game has been played, and the extra information provided, the participant was asked to 

provide some basic commentary. Furthermore, they were questioned about topics like whether the 

predictive AI seemed to try and predict player action, and whether that was judged to be intelligent 

behaviour.   

  



18 
 

6. Observations 
 

This section contains a general rundown of how the participants played and perceived the game, as 

well as the provided commentary and feedback, and some anecdotal results that stood out from the 

rest. These are not to be taken as results from an experiment, but as informal observations. 

 

6.1 Impressions of the gameplay 
In general the gameplay was understood fairly fast by all participants, with the exception of the 

occasional confusion caused by the interface and lack of a more visual representation of the game 

world. This was mainly because of the spacing between every location; two objects were at the same 

location at the same time caused the other locations in the same row of the playing field to be shoved 

to the right. Resulting in confusion for the players as to where the Wumpus was located. Furthermore, 

apart from the occasional crash when the predictive AI was calculating, the game played rather fluidly 

and the participants seemed to have at least some fun.  

Even though players were told that collection of all pots of gold was not a necessity to complete a 

game, all players made attempts to gather all the gold anyway, with three players repeatedly taking 

risks to get all of the gold. Five out of five players made a distinction between two different types of 

AI, whereas four out of five correctly identified type A to be the simple or aggressive AI, and type B 

to be the predictive AI. All of the players experienced minor issues playing against the simple AI in 

comparison with the predictive AI.  

6.2 Feedback and commentary 
All players found the game to be fun and interesting to play, with the exception of the player who used 

the optimal path and seemed to have experienced less fun but found it interesting nonetheless. Four 

out of five player found the interface to be confusing and unclear, of which 2 commented that they 

would have preferred a more accurate visual representation with images. Players found the simple AI 

easy to play against, whereas they experienced moments of struggle against the predictive AI.  

Players found both types of AI to be fun to play against, with the simple AI providing a sense of 

superiority as players led it astray and often successfully escaped the dungeon with the gold, and the 

predictive AI providing a challenge to the players. Players unanimously found the predictive AI to 

display more intelligent behaviour than the simple AI. With the exception of the player who took the 

optimal route (who couldn’t very well differentiate between the two), all players decidedly found the 

predictive AI to be more fun and interesting to play against , making comments like ‘Damn, you’re 

smart’, and ‘That guy knows all of my tricks!’. Apparently, the predictive AI was not liked solely 

because it was harder, but also because of the mind games involved in competing against it, the feeling 

that the predictive AI had actual intelligence, and the need to adapt one’s strategy. One player 

commented that the prediction of the predictive AI was sometimes too good, as even when the player 

broke the employed patterns, the AI still made predictions that struck the player like it knew where the 

player was going.  

On the other end, two out of five players expressed moments of annoyance at the predictive AI when it 

correctly predicted where the player was going and intercepted the player, or when it preventing the 

player from going past it. In one case the annoyances seemed to be a positive kind, as it posed an 

interesting obstacle to overcome, whereas the other player didn’t always approve of being denied 

passage. 



19 
 

6.3 Anecdotal results 
Interestingly, three of the players, once having realized the general mechanisms of the simple AI, 

repeatedly moved north to south, or east to west when the simple AI was blocking off the passage. 

They waited until the AI made the mistake of entering the square the player previously stood instead 

of moving together with the player in the same direction, enabling the player the escape. Although the 

direction the Wumpus would go to when diagonally adjacent to the player was randomized (as long as 

the movement would bring it closer to the player), this caught my eye. The other two players tackled 

the AI in a different way, with one of the attempting to avoid the Wumpus altogether. The other player 

quickly managed to find a highly efficient path that allowed collection of both pots of gold, while 

preventing the Wumpus from coming close. The player found out that the rock behind which the 

Wumpus starts blocked vision, and thus first moving up to snatch the pot of gold, and subsequently 

going down to snatch the other allowed a good amount of moves to be executed without the Wumpus 

spotting the player. This resulted in a rather easy experience, and possibly contributed to the fact that 

this same player incorrectly identified the type A to be the predictive AI. This was likely caused due to 

the decreased amount of behaviour the player saw from the AI, as the player kept abusing this path. 

During one round, one of the players, after having reached the southern border of the field, kept 

attempting to go south until the player in question got eaten by the Wumpus. The player subsequently 

was confused about what happened; apparently the player had assumed that the game field as it was 

presented was not the entire world, and that the field would ‘scroll down’ to reveal more of the world.  

Two players expressed surprise, and/or possibly confusion, when the AI didn’t immediately go for the 

player but instead headed for the exit. They seemed to be more interested into analysing the AI’s 

movements as this kind of behaviour was new to them. 

On some occasions the players got themselves cornered by the AI, with the AI preventing the player 

from moving past it. With the simple AI, as described above, some players repeated movements until 

it made a mistake. In the case of the predictive AI, though, this strategy proved fruitless as it still 

prevented the player from advancing, resulting in some players giving up trying to get past and instead 

attacking the Wumpus.  



20 
 

7. Conclusion 
 

Even though this was no empiric research, some conclusions can be drawn from the information that 

has been gathered. These aren’t factual statements, but statements based on experiences and comments 

from a small group of participants. While unable to serve a proof for theories, they may pique the 

interest of other researchers and open up ways to more research in this area. 

- As the majority (four out of five) participants liked the predictive AI better than the simple AI, it can 

be said that a predictive game AI would be a well-received feature of a game from a player 

perspective. Although this would still depend on the type of game, as not every game would benefit 

from this. 

- All players unanimously found the predictive AI to display more intelligent behaviour, therefore it 

can be concluded that predictive processing can be used to create a more intelligent AI in gaming.  

- All of the players found the predictive AI to behave more realistically and human-like than the 

simple AI. From this it can be stated that predictive processing indeed can be used to produce a more 

realistic AI in games. 

Based on these three observations, it can at least be said that predictive processing in games may very 

well be an interesting thing, as it was very positively received by the players. As of such, this topic 

deserves further research in order to see whether this can indeed become a very beneficial thing to 

science and the gaming industry. 

 

8. Discussion 
 

All in all, it seems that using predictive processing can be a great addition in game AI, at least for a 

dungeon crawler game. Although is one point that possibly undermines the legitimately of the results, 

apart from the low number of participants. Namely the fact that all of the participants were either 

friends or relatives of mine. This could have led to them unconsciously rating the predictive AI better 

than the simple AI as they might have thought that rating that AI higher would be more beneficial to 

me.  

Furthermore the player who took the highly efficient route stood out in that this participant mistakenly 

thought the type A AI to be the predictive version, and type B to be the simple version. It is likely that 

this was likely caused due to the reduced action this player had seen from both types. Interestingly, 

this player had also experienced less fun than the others, quite possibly another effect from having 

taken a ‘quick and dirty’ route. 

 

  



21 
 

9. Further Research 
 

- The study could be redone in a more empirical fashion, with a larger group of participants. This 

would allow for more factual conclusions to be made. 

-  On the topic of human behaviour, one could look into the different human responses when facing 

adversity. Players could face the simple AI first, and when faced with the harder predictive AI, be 

monitored on their responses. 

- An interesting question for the gaming industry would be whether players prefer simple opponents, 

hard opponents created by cheating AI, or hard opponents created by intelligent AI. A lot of games 

nowadays are more streamlined and easier than their predecessors in order to make them more 

accessible. But maybe it would be beneficial to have the option of employing intelligent AI. 

- For cognitive neuroscience, brain activity in players playing the game can be measured in order to 

see what brain areas are active during the combination of gaming and strategy planning.  



22 
 

10. References 
 

- AI game bots ‘more human-like’ than half of human competitors September 27, 2012, 

http://www.kurzweilai.net/ai-game-bots-more-human-like-than-half-of-human-competitors 

- Brown, H., Friston, K. J., & Bestmann, S. (2011). Active inference, attention, and motor preparation. 

Frontiers in psychology, 2, 218. 

- Clark, A. (2012). Dreaming the whole cat: Generative models, predictive processing, and the 

enactivist conception of perceptual experience. Mind, fzs106. 

- Friston, K. (2002). Functional integration and inference in the brain. Progress in neurobiology, 68(2), 

113-143. 

- Friston, K. (2003). Learning and inference in the brain. Neural Networks, 16(9), 1325-1352. 

- Friston, K., Adams, R., Perrinet, L., & Breakspear, M. (2012). Perceptions as hypotheses: saccades 

as experiments. Frontiers in psychology, 3, 151. 

- Kwisthout, J., Bekkering, H., & van Rooij, I. (2016). To be precise, the details don’t matter: On 

predictive processing, precision, and level of detail of predictions. Brain and cognition. 

- Milchtaich, I. (1996). Congestion games with player-specific payoff functions.Games and economic 

behavior, 13(1), 111-124. 

- Nareyek, A. (2004). AI in computer games. Queue, 1(10), 58. 

- Wang, D., Subagdja, B., Tan, A. H., & Ng, G. W. (2009, July). Creating human-like autonomous 

players in real-time first person shooter computer games. InProceedings, Twenty-First Annual 

Conference on Innovative Applications of Artificial Intelligence (pp. 173-178). 

- Yannakakis, G. N. (2012, May). Game AI revisited. In Proceedings of the 9th conference on 

Computing Frontiers (pp. 285-292). ACM. 

- Yoshida, M., Dickey, M. W., & Sturt, P. (2013). Predictive processing of syntactic structure: 

Sluicing and ellipsis in real-time sentence processing. Language and Cognitive Processes, 28(3), 272-

302.  

http://www.kurzweilai.net/ai-game-bots-more-human-like-than-half-of-human-competitors


23 
 

11. Appendix 
 

11.1 A 
 

# Computes the new action probability distribution 

def computeActionVals(self): 

    self.actionVals = [0, 0, 0, 0] 

    self.stratProbDistr.updateStrategies() 

    self.sPD = self.stratProbDistr.strategyVals 

    CONST_DIRECTIONS = ['NORTH', 'EAST', 'SOUTH', 'WEST'] 

    for dir in CONST_DIRECTIONS: 

        if dir == 'NORTH': 

            if dir in self.actionsComplementingGF: 

                self.actionVals[0] += 

abs((float(1)/float(len(self.actionsComplementingGF))) * float(self.sPD[0]) 

- (0.01 * (len(self.movesPossible) - len(self.actionsComplementingGF)))) 

            if dir in self.actionsComplementingEF: 

                self.actionVals[0] += 

abs((float(1)/float(len(self.actionsComplementingEF))) * float(self.sPD[1]) 

- (0.01 * (len(self.movesPossible) - len(self.actionsComplementingEF)))) 

            if (dir not in self.actionsComplementingGF) and (dir not in 

self.actionsComplementingEF) and (dir in self.movesPossible): 

                self.actionVals[0] += abs((0.01 * 

len(self.actionsComplementingEF)) + (0.01 * 

len(self.actionsComplementingGF))) 

        elif dir == 'EAST': 

            if dir in self.actionsComplementingGF: 

                self.actionVals[1] += 

abs((float(1)/float(len(self.actionsComplementingGF))) * float(self.sPD[0]) 

- (0.01 * (len(self.movesPossible) - len(self.actionsComplementingGF)))) 

            if dir in self.actionsComplementingEF: 

                self.actionVals[1] += 

abs((float(1)/float(len(self.actionsComplementingEF))) * float(self.sPD[1]) 

- (0.01 * (len(self.movesPossible) - len(self.actionsComplementingEF)))) 

            if (dir not in self.actionsComplementingGF) and (dir not in 

self.actionsComplementingEF) and (dir in self.movesPossible): 

                self.actionVals[1] += abs((0.01 * 

len(self.actionsComplementingEF)) + (0.01 * 

len(self.actionsComplementingGF))) 

        elif dir == 'SOUTH': 

            if dir in self.actionsComplementingGF: 

                self.actionVals[2] += 

abs((float(1)/float(len(self.actionsComplementingGF))) * float(self.sPD[0]) 

- (0.01 * (len(self.movesPossible) - len(self.actionsComplementingGF)))) 

            if dir in self.actionsComplementingEF: 

                self.actionVals[2] += 

abs((float(1)/float(len(self.actionsComplementingEF))) * float(self.sPD[1]) 

- (0.01 * (len(self.movesPossible) - len(self.actionsComplementingEF)))) 

            if (dir not in self.actionsComplementingGF) and (dir not in 

self.actionsComplementingEF) and (dir in self.movesPossible): 

                self.actionVals[2] += abs((0.01 * 

len(self.actionsComplementingEF)) + (0.01 * 

len(self.actionsComplementingGF))) 

        elif dir == 'WEST': 

            if dir in self.actionsComplementingGF: 

                self.actionVals[3] += 

abs((float(1)/float(len(self.actionsComplementingGF))) * float(self.sPD[0]) 

- (0.01 * (len(self.movesPossible) - len(self.actionsComplementingGF)))) 



24 
 

            if dir in self.actionsComplementingEF: 

                self.actionVals[3] += 

abs((float(1)/float(len(self.actionsComplementingEF))) * float(self.sPD[1]) 

- (0.01 * (len(self.movesPossible) - len(self.actionsComplementingEF)))) 

            if (dir not in self.actionsComplementingGF) and (dir not in 

self.actionsComplementingEF) and (dir in self.movesPossible): 

                self.actionVals[3] += abs((0.01 * 

len(self.actionsComplementingEF)) + (0.01 * 

len(self.actionsComplementingGF))) 

 

 

11.2 B 
 

 

# Predicts what move the player will make for its next action 

def predictMove(self): 

    self.makeAPD() 

    randomNum = random.randint(1, 100) 

    prob1 = self.actionVals[0] * 100 

    prob2 = prob1 + (self.actionVals[1] * 100) 

    prob3 = prob2 + (self.actionVals[2] * 100) 

    prob4 = prob3 + (self.actionVals[3] * 100) 

    if randomNum <= prob1: 

        return 'NORTH' 

    elif randomNum <= prob2: 

        return 'EAST' 

    elif randomNum <= prob3: 

        return 'SOUTH' 

    elif randomNum <= prob4: 

        return 'WEST' 

 

 

 


