Astro Drone: Using crowdsourcing to
collect visual data for distance estimation

Master Thesis
Paul Konstantin Gerke
Student number: 0616427

Department of Artificial Intelligence, Radboud University Nijmegen

19th August 2013

Supervisors

Dr. Guido C.H.E. de Croon

Advanced Concepts Team, European Space Agency Noordwijk
Micro Air Vehicle laboratory, Faculty of Aerospace Engineering, Delft University of Technology

Dr. Ida G. Sprinkhuizen-Kuyper
Department of Artificial Intelligence, Radboud University Nijmegen
Donders Institute for Brain, Cognition, and Behaviour

Dr. Willem F.G. Haselager
Department of Artificial Intelligence, Radboud University Nijmegen
Donders Institute for Brain, Cognition, and Behaviour

Abstract

Autonomous navigation of robots requires obstacle localization techniques. Obstacles can be lo-
calized based on visual data. Large datasets are needed to test methods for visual obstacle localization
quantitatively. In this thesis, | describe how such a large dataset can be obtained using crowdsourcing.

Contributors collected two types of data while playing a game with a camera-mounted model
helicopter. First, Speed-Up Robust Features (SURFs) [1] were extracted from images taken while the
helicopter approached an object. Second, the distance to the object (ground truth) was calculated
on the basis of helicopter sensor data that is processed by a Kalman filter. | tested if the ground
truth distance measurements to objects are valid and if the proposed method of collecting data using
crowdsourcing is efficient.

To test the validity of distance measurements, | showed that a custom measure based on SURFs
correlated with the distance to an object on manually recorded data. When the measure was calculated
on Astro Drone data, the same measure correlated with the ground truth distances. This indicates that
the ground truth contains valid information about object distances.

To test if crowdsourcing is an efficient way for collecting data, | compare the number of data sam-
ples that were collected by the game (718 in three months) to its development time (1 year). | conclude
that crowdsourcing is not an efficient method for data collection in short-term research projects, but
that long running projects can benefit from crowdsourcing because continued data collection eventually
leads to large datasets.

CONTENTS
1 Introduction 3
1.1 Crowdsourcing 3
1.2 Testing data. 5
1.3 Research questions 6
2 Computer vision and visual features 6
2.1 Interest point detectors 0oL 7
22 Feature descriptors 8
2.3 Application to Astro Drone, . 9
3 Astro Drone 10
3.1 Program details 11
3.1.1 Device properties 12
3.1.2 Game design L 13
3.1.3 Data collection 16
3.2 Implementation o L. 17
3.2.1 Cross platform design. 17
322 3D Coordinate Reconstruction through Kalman Filtering 19
323 Flight sample compression 20
3.3 Project evaluation 21
4 Properties of the collected data 22
4.1 Collected data 22
4.2 Flightpaths 23
4.3 Feature distribution o . 24
44 Discussion e 25
5 Replication of the appearance variation cue experiment 25
51 SURF-based distance measure 26
52 Feature compression problems 26
5.3 Qualitative analysis 0oL 27
53.1 Results. 28
5.3.2 Interpretationo 0oL 28
5.4 Visual appearance cue in the Astro Drone dataset 30
54.1 Results. 31
54.2 Interpretation Lo oo L 32
55 Discussion 32
6 Conclusion 33
References 34

Appendix A: Values of feature descriptors 36

1 INTRODUCTION

Computer vision plays an important role in the field of robotics. Modern techniques
in computer vision allow robots to map environments [7], perceive 3D structure
through stereo vision [23], [24] or search for objects using object recognition tech-
niques [9]. For moving robots, the recognition of obstacles is very important to
prevent collisions that could damage expensive hardware. To enable a robot to
successfully circumnavigate an obstacle, the robot must be able to calculate the
distance between itself and an obstacle.

Measuring the distance to objects, which could be possible obstacles, is often
achieved by using active sensors like laser range finders [12] or RGB-D cameras [13].
This kind of hardware, however, is relatively expensive and requires a lot of energy
while active. Computer vision-based distance measuring uses sensors (for example,
webcams) that cost less and require less energy than active sensors. Computer vision
techniques that are typically used for distance measurements are algorithms that try
to extract depth information from 2D images. Computing depth information means to
determine distances to observations in an image. A process that extracts this kind of
information allows a robot to perceive depth.

Vision-based depth perception is typically noisier than depth measurements that
are obtained by active sensors. To test different techniques for depth perception
quantitatively, testing data is required which consists of visual data and a ground
truth. The ground truth consists of the true distance to an object and is used to
determine the accuracy of vision-based depth estimates. Collecting such visual data
with ground truth is hard and time consuming. Therefore, typical tests of computer
vision techniques are qualitative or based on simulated ground truth data that is
obtained using renderings of 3D models (e.g. [29], [26]). Nevertheless, there are some
studies that use quantitative tests based on small sets of hand collected visual data
with ground truth (e.g. [6]).

In this thesis, I will present a new way in which test datasets with ground truth can
be collected for computer vision experiments. I focus on collecting data that can be
used in the field of robotics to evaluate the accuracy of visual distance measurements
towards obstacles. For this purpose, I collect data that consists of visual data of an
object that is approached with a camera. For each recorded frame of this approach, a
ground truth is saved which is the measured distance to the approached object. This
collected data can be used to test the accuracy of distance predictions from different
computer vision techniques by using the ground truth values as a benchmark. To
collect a large amount of this type of testing data, I developed a data collection
application that collects data by using crowdsourcing. The application was developed
as a part of a research project for the European Space Agency (ESA).

1.1 Crowdsourcing

Crowdsourcing refers to the use of contributions from a crowd of people to perform
some kind of work. The type of work that is usually done consists of services that are
offered over the internet, for example, using online platforms like Amazon’s Mechan-
ical Turk [4]. To get people involved in a project like the proposed crowdsourcing-
based visual data collection, awareness for the project needs to be raised in the public
and people must be offered an incentive for their participation. To offer people an
incentive to participate in the visual data collection, the data collection application
was designed as a space oriented computer game, called Astro Drone. To raise

Fig. 1: The Parrot AR.Drone version 1

awareness for the project, the ESA published the game on their website and sent
a press release about the game to different newspapers and press agencies.

One goal of the project is to collect visual data of objects from volunteers. Special
measures have to be taken to protect the privacy of contributors. The game cannot,
for example, send visual data that can directly be used to identify people who played
the game. This makes it impossible to collect raw images as visual data.

Another criterion for developing Astro Drone is that it must run on publicly
available hardware. Distances to objects cannot be measured by expensive sensors
like RGB-D cameras or laser range finders. Also, no complex setup of external sensors
should be required to play Astro Drone, so that the game remains easy to play.

Because the data that Astro Drone collects will be used for robotic research in the
future, also data like the speed and orientation at which visual data was recorded
is important. To record this kind of data, the recording device needs to be equipped
with corresponding sensors.

Astro Drone is played on an Apple iPhone, iPad, or iPod Touch which is used
to remote control a toy quadrotor helicopter called AR.Drone (see figure 1). The
AR.Drone has been used in several scientific studies in the field of robotics [2], [25],
[10]. It is equipped with sensors that allow Astro Drone to record the flight state of
the drone, while also collecting images from the front camera the AR.Drone provides.
The helicopter is available in numerous households, given the sales figures from its
manufacturer Parrot who claims to have sold about 500000 drones [27].

To protect the privacy of players and still be able to collect useful visual data
about approached objects, Astro Drone preprocesses recorded images to represent
their content more abstractly as visual features (see section 2). Visual features cannot
be used to retrieve the original image that they were computed on and, therefore,
help to protect the privacy of players.

Ground truth data, which consists of the distance between the AR.Drone and an
object, can be measured by using a visual marker. The Parrot AR.Drone is capable of
detecting a visual marker (shown in figure 2) in front camera images and approxi-
mate its distance to the marker. By designing the game such that players must mark
an object with a visual marker and approach it with the AR.Drone, it is possible to

Fig. 2: Schematics of the visual markers that come with the AR.Drone.

record visual features about the approached object while also measuring its distance.

1.2 Testing data

The data that is collected by Astro Drone consists of visual features of an observed
object and ground truth data which is the distance between the AR.Drone and the
observed object. The purpose of collecting this data is to create a test dataset that
helps to benchmark different techniques for calculating obstacle distances from visual
data. The data that is collected by Astro Drone had to be carefully selected so that
the collected visual data can be used for tests with a wide variety of computer
vision-based distance approximation techniques.

Current, typical techniques to extract the distance of an observed object from
visual data include stereo vision or exploiting parallax information. In stereo vision,
distance information to an obstacle is calculated by comparing two images that
are recorded from slightly different perspectives [18], [23], [24]. To exploit parallax
information, a moving observer evaluates the apparent motion of otherwise static
objects through his field of view and uses this motion to calculate depth information
[34]. Another technique based on appearance uses the number of different textures
that can be detected in an image to retrieve the distance to an obstacle [6].

Distance values that are computed using computer vision can be absolute measures
like meters (used in, for example, [26]) or motion-relative measures like the time-
to-contact (TTC, used in, for example, [19]). Both of these distance measures can be
used for obstacle avoidance by robots.

Testing data collected by the AR.Drone cannot be used to test stereo vision-based
approaches for depth perception because the AR.Drone has only one front camera.
However, distance measures that are computed on the basis of parallax information
or appearance information can be tested. Visual features that Astro Drone collects
consist of the position and appearance of so-called interest points. Interest points are
points in an image that carry a maximum amount of information about the visual
content, usually describing contours or textures of objects. By using visual features,
objects can be tracked in front camera images that are recorded from a moving
AR.Drone. This yields the apparent motion of objects in the AR.Drone’s field of
view. Parallax-based distance measurement techniques use this apparent motion as
input. Astro Drone collects visual features from a series of images to support tests
of such techniques. Since visual features also include descriptions of the appearance
of interest points, appearance-based distance measurements can also be tested with
the collected data.

The ground truth data collected by Astro Drone is the distance between the AR.Drone
and an observed object. As discussed earlier, the distance to an obstacle is measured
by using a visual marker. The game design must therefore ensure that players

mark objects with a visual marker that they then later approach with the AR.Drone
so that Astro Drone can record visual data from the object. Astro Drone tries to
improve the AR.Drone’s coarse distance approximation to a visual marker by also
taking into account assumptions about the initial setup of the game and sensor
measurements like the ground speed (see section 3.2.2). This improved distance
measure has a higher resolution than the distance approximation from the visual
marker. The distance is saved as ground truth for every set of recorded visual
features. To be able to compare the absolute obstacle distance to motion relative
distance measures like TTC, the current speed of the drone is also saved.

Other data that is saved includes the orientation of AR.Drone (Euler angles). A
helicopter like the AR.Drone needs to tilt itself to start moving. The tilt influences
the perspective of the AR.Drone front camera. The Euler angles are saved to allow
the normalization of visual data for such perspective changes.

This is all data that Astro Drone collects to allow the evaluation of distance
measurement techniques on the basis of computer vision. A more detailed look at
all data is given in section 3.1.3.

1.3 Research questions

In this thesis, I will explore the quality of the collected data. The ground truth data
will be obtained using a Kalman filter which uses helicopter speeds, assumptions
about the initial state of the helicopter, and visual marker detection data to calculate
distance values to obstacles (see section 3.2.2). It is unknown, if this method for cal-
culating ground truth data yields valid results. Therefore, the first research question
that I will answer will be:

“Does the data that Astro Drone collects contain valid information?”

Furthermore, I will explore if it is efficient to use crowdsourcing to collect a test
dataset for visual distance estimations. My second research question is:

“Can the huge time investment in developing a complex data collection appli-
cation like Astro Drone be justified by the amount of data it collects?”

In the next sections, section 2 and 3, I will explain in more detail how Astro Drone
was designed and developed and what kind of techniques are used to create Astro
Drone. In section 4, I will show general properties of the collected data. To show
that the collected data is valid, I show in section 5 that it can be used to show a
object distance related phenomenon that is similar to results from a study about the
so-called appearance variation cue [6]. In the final section, section 6, I will come back
to the research question and try to answer them on the basis of the findings from
the previous sections.

2 COMPUTER VISION AND VISUAL FEATURES

To protect the privacy of players who play Astro Drone, images that are collected
from the AR.Drone need to be abstracted. The used visual data abstraction must
not allow to identify players but must still retain enough information of the orig-
inal image so that it can be used for distance approximation techniques. Essential
information that should be retained includes information about the location and
appearance of objects in an image. As described earlier, Astro Drone describes images

using visual features to abstract from raw images. In this section, I will give a small
overview of visual features and show which types of visual features are used by
Astro Drone.

Visual features are a standard technique in the area of computer vision to discover
and describe salient portions of an image. They are, for example, used in state-of-
the-art object detectors to be able to distinguish between different objects [21], [9].
Visual features are abstractions of pixel data and are designed to carry all required
information for recognizing objects but also to be resistant to data noise like electronic
noise in digital cameras or changing lighting conditions.

The calculation of visual features is usually done in two steps. The first step
involves the detection of interest points. Interest points are salient points in an im-
age which, hopefully, contain lots of information about the observed scenery. In
the second step, feature descriptors are calculated for the detected interest points.
Feature descriptors are a collection of values that describe the local surroundings of
an interest point. Visual features always consist of an interest point and a feature
descriptor.

Using feature descriptors, visual features from one image can then be compared to
other visual features in other images. If two descriptors are similar enough, one can
assume that they originate from the same observed pattern. Trying to find a similar
descriptor for a given descriptor, means finding a match between visual descriptors
(and between the corresponding visual features).

By trying to match multiple visual features of a known object with feature de-
scriptors calculated on interest points of an unknown image, it is possible to detect
an object: If enough descriptors can be matched between the two images, the object
is detected in the unknown image. The location of the detected object is then given
by the locations of matched visual features in the unknown image.

2.1 Interest point detectors

To find interest points for visual features, an interest point detector is used. A popular
type of interest point detector that was used in the past is the Harris corner detector.
The Harris corner detector attempts to detect points in an image that are local
unique areas in an image, like, for example, corners [11]. It does this by comparing
a patch of an image at a given point with patches of the same image that lie in
the proximity of the tested point. It then selects points that are very dissimilar from
their surroundings. Compared to modern interest point detectors, the Harris corner
detector lacks the ability to assign a size or orientation to detected interest points.
However, size and orientation are important properties for the calculation of the
feature descriptor. Knowing the size and orientation of an interest point allows to
correct for rotation or scaling of an input image.

Modern methods for detecting interest points also calculate size and orientation
of interest points. The size of an interest point can be calculated, for example, by
using an image pyramid. An image pyramid can be imagined as a stack of scaled
and smoothed images [20]. Interest points are detected at every level of the image
pyramid and the scale is interpolated by projecting the interest point back to the base
layer (see figure 3). An orientation is usually assigned by evaluating the direction of
the gray scale gradient at the interest point. Often, the strength of detected interest
points, which represents the salience of a point, is also saved as a so-called response
value.

Layer at which interest
point was detected

Back-projection to
calculate interest point scale

Fig. 3: Image pyramid with multiple smoothed and scaled layers of an image. The red beam illustrates
how sizes of interest points can be interpolated through back-projection.

AR

| IEEEaRaE

| 7@%%%

B kD R

(a) Haar-like feature patterns (b) SIFT descriptor

Fig. 4: Examples of different features descriptors

One example of an interest point detector that extracts orientation, scale and
strengths for interest points is described as part of the popular Scale Invariant Fea-
ture Transform-feature (SIFI-feature) detector [21]. The SIFT interest point detector
specifically looks for points in an image that would also be found if the image was
scaled. This selection criterion creates stable interest points which are resistant to
scale changes.

2.2 Feature descriptors

After the detection of interest points, feature descriptors are calculated for them.
An early example of feature descriptors consists of sets of Haar-like wavelet filter
responses [22]. A filter response is calculated by using a pattern of weights in the
range [—1,1] like the ones illustrated in figure 4a. One can use multiple weight
patterns to get a detailed description of an interest point in the form of a vector of
feature values.

To compute a single value of a Haar-like feature descriptor, the lightness values
L(x) of pixels in an image /(x,y) around a detected interest point (X,Y’) are multi-
plied with the weight pattern. The sum of these products represents a filter response
(convolution). Equation 1 shows this computation in a formal way. Here, w and &
represent the width and height of a filter pattern, and F(z,y) the filter weight at
location (z,y). Coordinates (z,y) that fall outside the image /(z,y) can be clamped
to the closest valid color value inside the image.

> > F@) LI(X +2,Y +y)) (1)

_wogrcw _p h
g Se'<y —L<y <t

An example for a newer type of descriptor are SIFT descriptors [21]. A SIFT
descriptor consists of binned gray-scale gradients calculated on a 4x4 grid around
an interest point (see figure 4b). 16 gradients are computed within one grid cell by
sub dividing a cell using another 4x4 grid. The gradient intensities are binned in 8
bins depending on the direction of each gradient inside a cell. The sum of gradient
intensities is computed in every of these bins. These 8 sums of feature gradients are
used as feature values for a cell in the 4x4 grid. The SIFT feature descriptor consists
of a vector containing all 16 of these 8 sums resulting in a vector with 128 elements.

To correct for rotation and scale differences, the 4x4 grid used to calculate a SIFT
descriptor is scaled and rotated according to the properties of the detected interest
point. Invariance to lighting differences is achieved by zeroing the value of small
gradient magnitudes, to prevent fast changing gradient directions.

SIFT features are widely used in automated vision applications today [31], [32].
They offer great stability of detected features, regarding the interest points and
descriptors, if images are rotated, zoomed in, or lighting conditions change. However,
SIFT features are harder to compute than, for example, Haar-like wavelet features.
Because of this, variants similar to SIFT descriptors have been proposed with the
goal to achieve similar feature stability with less computational complexity [1], [33].

Of particular interest are Speeded Up Robust Features (SURFs) [1] which are used
by Astro Drone. SURFs use a rotated and scaled grid of 4x4 cells around an interest
point similar to SIFT, but approximate gradient values using Haar-like wavelet filters.
The feature descriptor also consists of 128 elements, but they do not consist of bins
of gradient magnitudes.

2.3 Application to Astro Drone

Visual features can be used to find visual correspondences between two images.
They can be used to track an object in a video. To do this, visual features from
two consecutive frames in a video are matched with each other. The difference
in coordinates of matched visual features between the two frames represents the
observed motion of appearances in the video. Such appearances usually correspond
to parts of an object. This is important for the data that Astro Drone collects. It
shows that visual features are sufficient to track the apparent motion of appearances
in a series of images, and therefore also the apparent motion of objects. This allows
collected data to be used for parallax-based distance recognition to an obstacle.
Furthermore, feature descriptors hold enough information about the appearance of
features, so that they can be used for appearance-based distance measures.

The feature extraction performed by Astro Drone must be computationally inex-
pensive because the slowest device that game was designed for is the iPhone 3GS,

10

4 [EBs2% {3 = EMERGENCY 4% OREC [O]

ISS
docking
port

\Q
A TAKE OFF I,

HUD
visualization

Controls

Fig. 5: In-game screenshot of Astro Drone. The ISS docking port is shown in its default position when
the game is started. Heads-up display (HUD) elements are visual indicators that show players their
position and orientation relative to the virtual docking port. Control elements are used to remote
control the Parrot AR.Drone.

which only has a 600 MHz CPU [35]. As a computationally inexpensive but still
robust type of visual feature, Astro Drone uses SURFs.

3 ASTRO DRONE

Astro Drone is the game which I developed to collect a test dataset for evaluating
computer vision-based distance approximations to obstacles. The game is a virtual
reality game that is played on an Apple iPhone, iPad or iPod Touch in conjunction
with a Parrot AR.Drone. The game uses visual marker detection to measure the
distance to an approached obstacle. The visual marker is also used to couple virtual
coordinates to the real-world coordinates. The virtual coordinates are used to map
the position of a virtual representation of a docking port of the International Space
Station to the real-world position of the marker. The game consists of trying to
approach the visual marker in the real world with the AR.Drone. Astro Drone thereby
acts as remote control for the AR.Drone and also acts as a window into a virtual
world where an ISS docking port is shown at a position that corresponds to the
visual marker (see figure 5). By approaching the marker in the real world, the player
simulates a docking maneuver with the ISS docking port in the virtual world. The
performance on the virtual docking maneuver is scored. Players can compare their
scores to scores of other players in a global high score table.

The space docking theme of the game was chosen to match the profile of the
European Space Agency, the institute where I developed the game. Furthermore,
designing the game as a docking game allows the game to record visual data from
objects that players stick the visual marker to. While approaching the marker the
AR.Drone records five images from which visual features are extracted. Since a
player approaches the marker while playing Astro Drone, image samples are taken
at decreasing distances from the approached object. Recording image samples at

11

different distances from an object makes the recorded data usable for parallax-based
depth recognition techniques.

The visual data that is collected by the game record consist of SURFs (see section
2). Using SURFs as image description protects the privacy of players while retaining
enough information for future tests of distance approximation techniques.

To further protect the privacy of players, players must explicitly allow Astro Drone
to send collected data to a data collection server. The game asks if players want to
allow sending data, the first time they try to visit the high score table from the main
menu. It uses the prompt shown in figure 7f which can be accepted or declined.
If players decline, they are sent back to the main menu and asked again when
trying to visit the high score table the next time. If they accept, they can access the
high score table and while viewing the high score table, any data that was collected
while playing Astro Drone is sent via the internet to a central data collection server.
If players accepted to send data once, they are not asked again. Asking players
explicitly to share data allows players to control if they want to contribute data.
This further protects the privacy of players.

In the following sections, I will describe Astro Drone in more detail. In section
3.1, I will present more details about the design of Astro Drone. In section 3.2, I will
discuss solutions to specific problems of the game design. In the final section, section
3.3, I will present an evaluation of the development process for Astro Drone.

3.1 Program details

Astro Drone runs on iPhones, iPads, and iPods (Touch) that run iOS version 6.1
as operating system (iOS-devices) and is programmed to act as a remote control
for Parrot AR.Drones. The choice to develop for iOS-devices was made because at
the time the game development started (beginning 2012), iOS-devices still were the
prominent platform that was marketed by Parrot to be used as remote control for
the helicopter. To control an AR.Drone, an iOS-device needs to be connected to the
AR.Drone via WiFi . Control commands can then be sent to the drone and sensor
measurements can be read back from the drone. Astro Drone processes the received
sensor data which mainly consists of image data from the helicopter’s front camera,
flight telemetry and status information of the on-board software. A subset of this
data is included in the research data that is collected by Astro Drone.

To allow the game to send data to a server, iOS devices need to be connected to
the internet. iPods and some versions of the iPad do not have a mobile network
connection to the internet. On these devices, the WiFi connection must first be
disconnected from the drone and connected to some other WiFi network which
connects the device to the internet. We offer people an incentive to try to connect
their iOS-devices to the internet by giving them the option to upload their docking
scores (see above) to a global high score table. The global high score table is saved
on the same server on which the research data is collected.

In total, there are three types of devices involved in collecting the research data: the
Parrot AR.Drone, iOS-devices, and a data collection server. A schematic illustrating
the communication paths between these devices is shown in figure 6). In the next
section, I will describe the three involved device types in more detail. In section 3.1.2,
I show the basic architecture of Astro Drone and in section 3.1.3, I explain what data
Astro Drone collects and how it is sent to the data collection server.

12

Sensor data

Marker detection~ ' z Front camera images

AR.Drone

Server

WiFi connection 0)))

Data processing
Data storage

Fig. 6: Communication between the different devices involved in collecting research data.

iOS-device

3.1.1 Device properties

Three devices are involved in the data collection process: The Parrot AR.Drone
records image data, measures its flight parameters, and measures its distances to
a visual marker. The recorded data is then sent to an iOS-device where the data is
processed. In a final step, the processed data from the AR.Drone is sent to a server
were it is stored (see figure 6). In this section, I give an overview of the properties
and capabilities of these three devices and the implication for the game Astro Drone.

3.1.1.1 Parrot AR.Drone: The Parrot AR.Drone is a toy helicopter that is manu-
factured by the company Parrot. Currently, there exist two versions of the AR.Drone,
the AR.Drone 1 and the AR.Drone 2 (the AR.Drone version 1 is shown in figure 1).
Both versions of the AR.Drone are quadrotor helicopters with a square shape with a
side length of approximately 70 cm. AR.Drones use a Linux based on-board computer
for flight stabilization. The on-board flight stabilization uses measurements from a
series of sensors that are installed on an AR.Drone. The sensor data can also be
received by an application that controls the AR.Drone via WiFi. Data that can be
received from the drone includes:

« Images from the front camera of the AR.Drone
o 3-axis gyro sensor data measuring angular momenta
o Accelerometer data measuring the orientation of the drone (Euler angles)
o Ultra sonar height measurements
« Ground speed estimates calculated from a bottom-facing camera by using optic
flow
o Visual marker detection data
o (Only for the AR.Drone 2) Data from an air pressure sensor which supports
height measurements, if the drone flies at high altitudes
¢ (Only for the AR.Drone 2) Digital compass measurements
The front camera images that are sent by the AR.Drone differ between the two
versions of the drone. The AR.Drone 1 sends front camera images with a resolution
of 320x240 pixels (aspect ratio of 4:3) and the AR.Drone 2 sends images with a
resolution of 640x360 pixels (aspect ratio 16:9). Furthermore, the AR.Drone 2 has a
better front camera than the AR.Drone 1 which produces less blurry images. The
difference in camera quality could make a difference for the evaluation of data that
is collected by Astro Drone. Therefore, collected visual data is marked with a version

13

data field that indicates which AR.Drone version was used to collect the data.

The visual marker detection on AR.Drones can detect the markers shown in figure
2. The visual marker detection data the AR.Drone computes consists of the 2D
position of a detected marker in front camera images and an approximation of the
distance to the detected visual marker. The resolution of the distance measurement
is less than 50 cm at distances larger than 2m from a marker. Because this distance
measure is used as ground truth measure for obstacle distances in the collected
research data, this measurement is not accurate enough. Astro Drone, therefore, tries
to improve this distance measure by using a probabilistic model that takes other
measures like ground speeds into account (see section 3.2.2).

3.1.1.2 iOS-devices: The iOS-devices that Astro Drone was developed for were
iPhone, iPad and iPod Touch. These devices were were marketed as remote con-
trols by Parrot at the time the game development was started. All targeted devices
use multitouch screens as input device. The oldest device regarding its hardware
specifications that had to be supported was the iPhone 3GS.

The iPhone 3GS has a 600 MHz main processor and a PowerVR graphics chip
that is capable of renderning modern 3D graphics of virtual 3D scenes [35]. This
allowed us to render a virtual 3D representation of an ISS docking port while flying
the drone.

It was discussed earlier that different iOS-devices can connect to the internet in dif-
ferent ways. All targeted iOS-devices can connect to the internet using WiFi networks.
In addition, iPhones and some versions of the iPad are capable to connect to the
internet using mobile broadband connections. This can be an advantage because on
such devices a player can directly visit the high score table while staying connected to
the AR.Drone via the WiFi connection. However, many people pay their broadband
data connections on the basis of data volume. Astro Drone, therefore, needs to be
programmed in a way that minimizes the number of bytes that are sent to the data
collection server. To achieve this, data collected by Astro Drone is compressed before
it is sent to the data collection server (see section 3.2.3).

3.1.1.3 Server: The data collection server is a standard PHP-based webserver.
Astro Drone only asks for sporadic communication with the server, which occurs
only when someone visits the high score table. High score table data requested from
the server is not large in volume (less than 2 kilobytes). Astro Drone data sent to the
server is also small in volume because it is compressed before it is sent. On the server,
received research data only needs to be stored. Handling high score table requests
and saving research data does not require lots of processing power. Therefore, as a
relatively inexpensive solution, an Apache server that runs on a virtual server was
chosen as data collection server.

3.1.2 Game design

Screenshots of Astro Drone are shown in figure 7. After Astro Drone is launched, the
first screen that is shown is the menu screen. While in the menu, Astro Drone tries
to detect a connected AR.Drone. If an AR.Drone can be detected and Astro Drone
succeed in communicating with the AR.Drone, the ”“Start Game”-button becomes
active and a text at the lower edge of the screen indicates that the AR.Drone has
been found (figure 7a). Otherwise, the ”Start Button” stays grayed out and the text at
the lower edge of the screen says that Astro Drone tries to connect to the AR.Drone
(tigure 7b).

Above the four buttons of the menu, a collection of billboards can be seen. This is
a level selection widget. Currently only one level, the ISS-docking level is available.

ASTa Oranc

j | q"." *

iS55 DECHILG

ASTMEAE Drrans

g | q".li *

55 DECHING

Instructions

14

(a) Menu (connected to AR.Drone)

Place your AR.Drone approxi
3.5 meters away from the
so that it faces the mari

C W< odrone.org
BRsTr mMamna Tamm
Paul K. Ge

Ida Sprinkhuizen-Kuyper

Guido de Croon

s (i)

(d) About screen

By accessing the highscore table, you will participate
in our crowd sourcing experiment and agree that abstract
visual features are extracted from the images taken

by your AR.Drone, The research data are then uploaded
via your internet connection. No images are sent.
Do you want to upload your score?

| Yes

(f) Confirm participation prompt

(e) High score table

Fig. 7: Screenshots of Astro Drone

Selecting one of the gray billboards in the background causes the ”“Start Game”
button to become grayed out even if Astro Drone is successfully connected to an
AR.Drone.

Using the four buttons in the lower area of the menu, a player can either start the
game, watch an instruction video about how the game is played, visit the high score
table, or visit the about screen.

Before starting the game, players should watch the instruction video that can be
reached from the menu by pressing the “Instructions” button. The instruction video
is presented in a video player where people can jump between keypoints in the
video using two arrow keys (see figure 7c). The video instructs players to setup the

15

game by placing their AR.Drone 3.5 meters in front of a place where they put a
visual marker for the AR.Drone. It also showcases how the game is played and how
personal scores can be uploaded to the high score table.

When starting the game using the ”Start Game” button from the menu, players
see the screen shown in figure 5. Using the displayed controls, players can start and
pilot the AR.Drone. Players are supposed to try to pilot their AR.Drone in a way that
they dock with the ISS docking port that is displayed on the screen. Astro Drone
will thereby try to match the location of the ISS docking port with the location of the
visual marker that is detected by the AR.Drone. This way, when players pilot their
AR.Drone so that they approach the ISS docking port on the iOS-device, they will
also approach the used visual marker with their AR.Drone in the real world and
vice versa. The green lines of the heads-up display (HUD) are helpers that show
docking parameters and allow players to adjust the AR.Drone position to achieve a
maximum score for their docking maneuver. They also improve the graphical look
of the game.

It is important to note, that matching the ISS docking port to the location of the
visual marker in the real world is not trivial. To be able to render the ISS docking
port in a perspectively correct way, the relative orientation and 3D coordinates of the
AR.Drone in relation to the marker must be calculated. This set of data cannot be
calculated by only using data from the AR.Drone marker detection. To calculate the
required data, Astro Drone uses a probabilistic model that integrates visual marker
detection data from the AR.Drone with assumptions about the initial setup of the
game and further sensor measurements from the AR.Drone (see section 3.2.2). This
method of calculating marker-relative 3D coordinates requires players to setup the
game in a specific way. The information how players have to setup the game is given
in the instruction video (see above and figure 7c).

When players piloted close enough to the docking port, a message tells them
that they have “docked” and asks them to land the AR.Drone. After landing, a score
screen is presented, which scores the docking maneuver using criteria like the time it
took a player to dock or the precision of the docking maneuver. When the AR.Drone
crashes while flying or the docking maneuver fails because it was carried out too
imprecisely, a fail screen is presented. If the AR.Drone still flies after the attempt
is rated as failure, players are asked to land it. Afterward, players must reset the
AR.Drone to its initial position and can then start another docking attempt.

Another part of the game that is important for the collection of research data, is
the high score screen. The high score screen can be accessed via the start menu by
pressing the “Highscore” button. If the iOS-device which runs Astro Drone has a
connection to the internet and a player has agreed to contribute research data, this
will load the high score table shown in figure 7e. While visiting the high score table,
data collected by Astro Drone is uploaded to the data collection server. As described
earlier, the first time players try to access the high score table, they are prompted the
question shown in figure 7f, which is where they can allow or forbid the application
to send research data.

Finally, Astro Drone has an about screen (see figure 7d). It can be visited by
pressing the ”About”-button in the start menu of Astro Drone. It shows who was
involved in the project, and what public resources (like libraries and media) are used
by Astro Drone.

16

TABLE 1: SURF extraction parameters for OpenCV

Parameter Value
Hessian threshold 2500
#Octaves 4
#Octave layers 2
Extended descriptors | TRUE

3.1.3 Data collection

The data that is collected by Astro Drone contains all data that has been introduced
in section 1.2. While a player flies the AR.Drone to try to dock with the virtual
ISS docking port, images are recorded from the front camera of the AR.Drone, from
which later SURFs are extracted. Since the player is instructed to stick a visual marker
to some object and fly towards it, images that are collected while the AR.Drone
detects a visual marker should always contain information about an obstacle. The
information about the visibility of the marker is also recorded for every image that
SURFs are extracted from.

SURFs are extracted using the computer vision library OpenCV [3]. For extracting
SURFs certain parameters are required that control what sizes of keypoints should be
detected (parameters “"#Octaves” and “#Octave layers”) and how strong keypoints
must be regarding their response value to be detected (parameter “Hessian thresh-
old”). The parameters values Astro Drone uses are shown in table 1. The parameter
“extended descriptors” refers to which version of SURF descriptors should be calcu-
lated. Extended SURF descriptors consist of vectors with 128 components, the shorter
version has only 64 components [1]. Since the short version of a SURF descriptor
can be computed from the extended descriptor, Astro Drone collects extended SURF
descriptors to capture more information about keypoint appearances.

The other information that is required according to section 1.2 is a ground truth
measure for the distance to the approached object. This distance is obtained from
the AR.Drone marker detection data. However, as discussed in section 3.1.1, the
distance approximations to markers that are computed on the AR.Drone have a very
low resolution for distances larger than 2m. Therefore, the values that are saved as
ground truth measure are a smoothed set of (z,y, z) coordinate offsets that represent
the position of the AR.Drone relative to the visual marker. These (z,y, z) coordinate
offsets are the same coordinates that are computed for visualizing the ISS docking
port in Astro Drone. How the (z, y, z) coordinate offsets are computed is explained in
more detail in section 3.2.2. The (z, y, z) coordinate offsets to the marker are measured
in meters and are saved for every front image that is captured from the AR.Drone.

The full set of data that is recorded for every image that is captured from the
AR.Drone consists of:

o Visual SURFs computed on an image recorded by the front camera of the AR.Drone
« The current 3D coordinate offsets (z, vy, z) to the visual marker

o The current ground speed as measured by the AR.Drone

o The current Euler angles as measured by the AR.Drone

o If a visual marker was detected in an image or not

« Time since AR.Drone takeoff

During one flight of the AR.Drone in which a player tries to dock with the virtual
ISS docking port, five of these image data samples are recorded. The samples are
recorded in 250 ms intervals when the drone is detected to fly forwards at a speed
of at least 0.15-7. The recorded image data sequence is called a flight sample. Only

17

/- N o e .
i0S Build time selection

back end /
- J

Y
Linux Game
back end ‘ ’

Android
back end

Fig. 8: Cross platform design with exchangeable system back ends that are chosen at build time

one flight sample is recorded during per simulated docking maneuver.

Flight samples are saved as plain-text JSON structure [5] on iOS-devices so that
they can be sent to the data collection server when a player visits the high score
table. I chose JSON structures to save flight samples because the format does not
obfuscate data and is openly accessible to people who are worried about what kind
of data we collect. However, before flight samples are sent to the collection server,
JSON structures are compressed because the uncompressed JSON structures are too
big for mobile internet connections (see section 3.2.3).

The server simply saves the compressed data that is sent by Astro Drone. To
get uncompressed data for experiments, one must download a set of compressed
flight samples from the server using a web interface. The flight samples can then be
decompressed by using a specialized program that is also developed as part of the
Astro Drone project.

3.2 Implementation

In this section I will focus on implementation specific issues regarding Astro Drone.
I will describe how the architecture of Astro Drone is designed to facilitate future
ports of the game to other devices and operating systems, describe in detail how
the 3D reconstruction of AR.Drone coordinates works, and describe how recorded
SURFs are compressed before they are sent to the data collection server.

3.2.1 Cross platform design

Astro Drone was carefully engineered so that it can easily be ported to other devices
and operating systems in the future. Astro Drone was targeted at iOS-devices, but
to support its development process and remove the dependence on iOS-devices for
debugging, it was also programmed to run under Linux on a personal computer.
Future plans of the ESA involve extending the game to also run on Android-based
smart phones and tablets. To write code that can be run on such different hardware
with different operating systems, Astro Drone needs to be developed using a cross
platform design.

18

TABLE 2: Library choices for the cross platform design

Function Realization

3D Rendering OpenGL 3.3 for PCs and OpenGL ES 2.0 for iOS and Android devices.
OpenGL 3.3 is for the most part a superset of the functions of OpenGL
ES 2.0, therefore, designing the game for OpenGL ES 2.0 makes it
(largely) compatible to OpenGL 3.3, too .

File read /write access | C++ standard libraries (iostream). Opening files is done via the plat-
form specific system back end, since configuration files and resource
files are stored in different directories for different target platforms.
Thread management | C++ Boost library.

HTTP Protocol Standardized interface through CURL library.

Video playback Cross compiled library libogg and libtheora. This implies that no
hardware video acceleration on ARM-devices can be used for video
decoding.

Compression library lzma from libxz, cross compiled for target platform.

For an effective cross platform design, common capabilities of the targeted hard-
ware and operating systems had to be found. The platforms that had to be considered
for this are iOS-devices (iPhone, iPad, and iPod Touch), personal computer (with
Linux as operating system), and Android-based mobile devices. The capabilities
that had to be analyzed consist of the common hardware of these devices and
the programming language that can be used on the devices. Finally, it needs to
be addressed how function calls to the operating system can be unified so that Astro
Drone can use a standardized interface to these functions on all targeted platforms.

The hardware of iOS-devices and Android-based mobile devices are very similar.
Most Android devices have a multi-touch touchscreen and a WiFi network adapter
which are the integral elements that Astro Drone requires. Personal computers do
not usually have a touchscreen, but they can simulate single-touch input by using
mouse inputs. A WiFi network adapter for controlling the AR.Drone can easily be
added to the hardware of a computer.

Programs for iOS-devices are written in a special C-dialect that is called Objective
C. Programs that are written for Android are written in a variant of Java. However,
programs on both systems are able to link to or make calls to native machine code
that has been programmed in C++. On personal computers with Linux as operating
system, C++ is a standard programming language. Therefore, Astro Drone is written
in C++, a programming language that can be used for all targeted systems.

Finally, a way must be found to offer a unified interface for calling operating
system functions on the different devices. To give access to those functions, iOS
uses Objective C-based libraries and Android uses Java-based libraries. Both cannot
directly be used by program code written in C++. To unify calls to operating system
functions and allow functions to be called from C++, Astro Drone uses an adapter
software design pattern [30] that I called system back end. The appropriate system
back end for a given operating system is selected at build time (see figure 8).

Even though, most calls to operating system functions can be unified using the
described system back end, some operating system functions did not need to be
unified because they were based on common standards or could be unified through
the use of third party libraries. A compilation of general functions that were unified

1. In theory, OpenGL 4.0 is the superset of OpenGL ES 2.0, because OpenGL adds tessellation to the function
set of OpenGL 3.3, which is also supported by OpenGL ES 2.0. However, since the game does not make use
of tessellation, OpenGL 3.3 still suffices to be a superset of OpenGL ES 2.0 functionality. A small intermediary
shader library is used to insure shader function names that exist on iPhone and PC platforms are equal between
systems.

19

Fig. 9: Coordinate system that is used for coordinate and angle reconstruction of the drone in relation
to the visual marker. All reconstructed values (z, y, z, ¢) are shown.

by standards or third-party libraries is shown in table 2.

3.2.2 3D Coordinate Reconstruction through Kalman Filtering

In order to render the docking port of the AR.Drone in a perspectively correct way,
the 3D position (z,y, z) and orientation ¢ of the AR.Drone in relation to the visual
marker must be known (see figure 9). The measurements of the 3D position and
orientation must be of high spatial and temporal resolution to avoid that the rendered
ISS docking port makes large visual jumps while playing the game.

To calculate the 3D position and orientation of the AR.Drone, Astro Drone uses
a probabilistic model called extended Kalman filter [17], [15]. A Kalman filter uses
an iterative model to describe how the state s, of a system changes based on a
previous state of s,_; and an input vector i,. The state s, of the system cannot be
observed directly. However, s, can be observed indirectly using measurements m.;.
The Kalman filter uses a measurement model that describes what measurements my,
can be observed given the system state s;. By reversing the inference from m; to s,,
the Kalman filter can infer the state of the system.

In a Kalman filter, system states s, and sensor measurements m; are not modeled
as simple value vectors but as multivariate Gaussian probability distributions. This
allows the filter to account for noisy sensor measurements. The modeled noise of
measurements is used to infer the uncertainty of the system state s;. The uncertainties
of the system state and sensor measurements are represented by the corresponding
covariance matrices s;” and my.

For Astro Drone, the Kalman filter is used to compute the position and orientation
of the AR.Drone in relation to the visual marker, as well as the ground speed (v, v],):

and height h} of the AR.Drone: s, = ((z,y, 2, ¢, v}, v}, k'), s}). The measurements gnt
that are used to infer s, consist of marker detection data, ground speed (v,,v,):,
height h;, and angular speed around the z-axis af that are measured by sensors on the
AR.Drone. The marker data consists of the position of the marker in the front camera

image (m,, m,); and the distance approximation towards the marker (mg);. This leads

20

to measurements being modeled as follows: m; = ((vas vy, hya®, mg, my, mg)y, m).
The input vector i, consists of a set of user inputs that control the AR.Drone’s
velocity as well as the rotation around the z-axis.

Astro Drone uses a Newtonian physics-based, nonlinear model to describe how
state s, can be derived from a previous state s,_; and an input vector zt The
measurement model that predicts marker detection data (m,, m,, m,),; from a state s,
uses the perspective projection of point (0,0, 0) onto a virtual camera that is placed at
position and orientation (z,y, z, ¢);. The predictions for the measured ground speeds
(vz,vy)e+1 and drone height h,; are made by simply copying the corresponding
values from the state s;.

Finally, the Kalman filter requires an estimate of the initial state sy and the covari-
ance matrix representing the noise of the measurements mg'. To set 5, the Kalman
filter assumes that the Astro Drone is started in the position that is presented in the
Astro Drone instruction video (see section 3.1.2). The initial state s, is modeled after
this setup. m} was manually set to a diagonal matrix that lead to good results when
testing the Kalman filter.

The z,y, 2z coordinates that are computed by Kalman filtering are measured in
meters. Extensive qualitative testing during the game development showed that the
reconstructed AR.Drone coordinates and orientation work relatively well for match-
ing the ISS docking port to the position of a visual marker. The filter successfully
smooths low-resolution data from the visual marker detection on the AR.Drone
and is able to reconstruct continuous coordinates that match the flight trajectories
of the AR.Drone. Because the reconstructed z,y, 2z coordinates show such a better
resolution compared to raw data from the marker detection, the coordinates are
collected as ground truth values by Astro Drone for measuring the distance between
the AR.Drone and an object.

3.2.3 Flight sample compression

Flight samples that are collected by Astro Drone are saved in JSON structures [5].
The raw size of these structures which must be sent to the data collection server can
reach 1.5 MB. This is too large, considering the development goal not to stress mobile
internet connections by sending large volumes of data. Therefore, Astro Drone uses
lossy compression to compress the size of the sent JSON structures to a size of about
200 kB.

The biggest size related issue with JSON structures is that they use a very wasteful
representation for floating point numbers. Floating point values are represented as
plain-text in JSON. This matches the goal to use an open format for sending data,
but the plain-text format usually requires more than 12 bytes to represent one value:

1.1123181581497192
1.2316429372823e-16

Floating point values from SURF descriptors form the largest payload of the
sent data. Navigation data, like speeds, height, or Euler angles are measured also
using floating point values, but do not occur as frequent in a flight sample. SURF
descriptors are responsible for on average of 5images x 100L&tures 5 19g_floats

images features

12225 ~ 750000 bytes in the standard JSON structure. This size can be even larger

floats
if more than 100 features ? are extracted per recorded image.

2. 100 features are an example for a typical large number of SURFs that are detected in images from an
AR.Drone 1.

21

To limit the amount of data that needs to be sent to the data collection server, Astro
Drone limits the maximum number of SURFs that are extracted per image. For every
recorded image, only the 125 strongest SURF features are saved. The strength is given
by the response strength of the SURF interest point detector.

In a next step, all values of all feature descriptors from one flight sample are
collected in one large value vector. The values of the original feature descriptors
are replaced by pointers into the newly created large descriptor vector. Then, the
floating point values (4 bytes) in the large value vector are converted to half-floats
(2 bytes) [14]. During this process information is lost. However, most values of a
SURF descriptor seem to fall in the interval [—1;1]. A half-float represents values
in this interval with a resolution of at least 0.000488. This is still a relatively high
resolution for encoding appearance differences in a SURF descriptor (see appendix
A for details).

In a last processing step, the binary vector of half-floats is further compressed using
the Lempel-Ziv-Markov chain algorithm (LZMA) [28]. The compressed, binary data then
is embedded in the JSON structure as a base64 [16] encoded string, adding a 33%
percent overhead to the compressed data.

Floating point values that are not part of a SURF descriptor, are also compressed by
truncating them to 3 positions after the decimal point. This ensures enough precision
for all affected values: Angles are measured in degrees, distances in meters, times in
seconds. No sensor on the AR.Drone has enough precision to require more than three
positions after the decimal point for an accurate representation of its measurement.
This lossy compression by truncation, reduces the size of affected floating point
values by approximately 8 bytes.

Since the compression algorithm used to compress flight data samples uses LZMA,
the achieved compression ratio is not constant. However, the size of sent data for
feature-rich flight data samples is reduced from about 1.5 MB to 200kB. A lot of the
remaining size of the JSON file is used up by names for fields. These could be further
compressed to achieve an even higher compression ratio by choosing shorter field
names for repeating fields. However, I did not implement this kind of compression
since the goal was to use an open and easy to use data structure. Shortening field
names would obfuscate the sent JSON structure. Furthermore, sending 200 kB of data
volume causes not much more data traffic than, for example, accessing a medium
sized web site.

3.3 Project evaluation

The development of Astro Drone took me about one year. Compared to the initial
estimates which projected the implementation to take three months, this is very long.
The false estimate of three months was mainly caused by inexperience with projects
of this magnitude.

However, the amount of extra time that was required to implement Astro Drone
is also related to unexpected problems that came up during the development of
the game. For example, the development of debugging tools, which were able to
show what images were captured from the AR.Drone on iOS-devices, took about
three weeks. Another massive delay was caused by trying to create Astro Drone
for an old version of OpenGL (OpenGL ES 1.1). Late in the development stages it
showed that the AR.Drone libraries from Parrot required to use a moderner version
of OpenGL (OpenGL ES 2.0) which required me to rewrite large portions of Astro
Drone’s code.

22

Release date
800

700 /
600

500

w
o
g
g 400
=
=2
= 300
o
@
£ 200
=
=

100

Ne)) D] -]
ol o o o S
& & & @ s
N N s

Fig. 10: Development of the number of features recorded in the database over time.

Astro Drone was published by the European Space Agency on 15/03/2013 in the
Apple App Store. In the three months since it was published, a small number of
minor bugs appeared. The bugs were mainly caused by bad user interface design
or wrong assumptions about the use of the software. Most of these bugs were fixed
with patches. Despite the minor bugs, the game received good ratings on the App
Store.

I succeeded in implementing all program features that are required to allow Astro
Drone to collect testing data for evaluating computer vision techniques for approxi-
mating obstacle distances. The game runs stable and is available as a free download
from the App Store for iOS-devices.

4 PROPERTIES OF THE COLLECTED DATA

In this section, I will show general characteristics of the collected visual features and
ground truth data. In section 4.1, I show how many data samples were collected since
the release of Astro Drone. In section 4.2, I show flight paths that are reconstructed
from the collected ground truth data. In section 4.3, the 2D distribution of all visual
teatures from all recorded flight samples is shown. In the final section, section 4.4, I
sum up all interesting findings from the previous sections.

4.1 Collected data

Astro Drone was launched on 15/03/2013. Until 11/06/2013, 718 flight samples
were collected which is the set of samples that I will use for all future analysis in
this thesis. Figure 10 shows how the number of collected data samples developed
over time. Note that the number does not only consist of “third” people contributing,
but also of data that was collected during tests and demonstrations of the game. The
data that was not collected by “thirds” amounts to approximately 200 flight samples.
The true number of samples that were contributed through tests and demonstrations
cannot be reconstructed because of the privacy insuring techniques we employed in
the software design.

23

=10

=20

=30

(b) Flight paths from flight samples with detected visual marker

Fig. 11: Flight paths created by using the (z,y) coordinates from collected ground truths. The gray
arrow indicates the expected start position of the AR.Drone (0,—3.5) and points to the expected
position of the visual marker (0,0). The right figures are a zoomed-in version of the left figures
showing the area the start and end-point of a flight in more detail.

4.2 Flight paths

The flight paths for all flight samples that were collected by Astro Drone are shown
in figure 11a. During 429 of the 718 collected flight samples, a visual marker was
detected. Only flight paths of flights during which a visual marker was detected are
shown in figure 11b. Flight paths are calculated by using the x and y components of
the coordinates reconstructed by the Astro Drone’s Kalman filter (see section 3.2.2).

Given that the game instructs players to start at (z, y)-coordinates (0, —3.5) and fly
to coordinates (0,0), the majority of all detected flights should be located in the area
around these two points. As can be seen from figures 11a and 11b this assumption
holds true. However, flight paths during which no visual marker was detected by
the AR.Drone have a lot more outliers that lie far away from points (0, —3.5) and
(0,0) than flight paths during which a visual marker was detected. This indicates
that the Kalman filter successfully integrates information about the marker: When
players fly close to a visual marker, it is detected by the AR.Drone which is used
by Astro Drone as a fixed point of reference. Therefore, (z,y) of the 3D coordinates
(x,y, z) that are computed by Kalman filtering must lie closer to (0,0) which are the

24

o 50 100 150 200 250 300 0 100 200 300 400 500 600

(a) AR.Drone 1 feature distribution (b) AR.Drone 2 feature distribution

Fig. 12: Distribution of features on the x-y image plane for the AR.Drone 1 and the AR.Drone 2.
Histograms on both axes for each plot illustrate the relative feature density along the two image
dimensions. Both plots show the corresponding resolution for AR.Drone 1 and AR.Drone 2 images.

virtual coordinates of the visual marker. If no marker is detected, players can fly
anywhere with no fixed point of reference which leads to larger variation in flight
trajectories. This corresponds to the observations that can be made based on the data
shown in figures 11a and 11b.

4.3 Feature distribution

Figure 12 shows the image locations of all collected visual features in all collected
flight samples as a scatter plot, split for the two drone types. For both drone types, a
lower density of features can be found further in the upper part of an image than in
the lower part of an image. The highest feature density is found at the lower third of
an image. The density of features over the x-domain declines towards the edges of
an image for the AR.Drone 1, while for the AR.Drone 2 the density seems to be more
uniformly distributed. The bounding boxes in figures 12a and 12b show a boundary
of about 10 pixels to all edges in which no features are found for images from both
drones.

The decline in the number of features at higher y values is an interesting observa-
tion that I cannot explain. This “horizon effect” * seems to be an intrinsic property
of the recorded images. Though, what causes this effect cannot be investigated, since
the original images are lost.

The decline in the density of found visual features towards the left and right edges
for AR.Drone 1 images can be explained by the bad quality of the front camera of
the AR.Drone 1. Images that come from the AR.Drone 1 are generally blurred in
the corners whereas the corners are sharp on the AR.Drone 2. This blurriness of the
corners would probably also be visible in the visual feature distributions along the
y-axis, but is overshadowed by the described "horizon effect”.

The boundary of 10 pixels around images in which no visual features are detected
can be explained by the way SURFs are extracted. SURFs have a minimal size so
that SURF descriptors are always computed over a large enough portion of an image
that contains enough pixels for the SURF descriptor to carry useful information. The

3. In sceneries where the horizon can be observed, one can usually find more visual details in the lower area
of the field of view where one will find features of closer objects. The upper portion of the field of view will be
mainly filled with sky where one cannot find lots of different visual features.

25

minimal size for a SURF seems to be 20 pixels. This creates a boundary of 10 pixels
around an image in which no SURFs can be found because otherwise portions of a
SURF descriptor would need to be calculated on data outside the image.

4.4 Discussion

Astro Drone was successfully used to collect 718 flight data samples within three
months after its release. More than half of these samples stem from AR.Drone flights
during which a visual marker was used. This is good because only flight samples
during which a visual marker was detected can provide a reliable ground truth
estimate towards an approached obstacle.

Flight trajectories lay within a reasonable area around the expected start and
docking points. This indicates that the reconstruction of the drone coordinates using
Kalman filtering seems to work and that people mainly flew in the area that was
relevant for the game.

Visual features were detected over the whole area of AR.Drone 1 and AR.Drone 2
images but the density of detected features varies. In particular, a horizon effect can
be observed in the data such that there were generally less features detected in the
upper portion of a drone’s field of view than in the lower portion for both drone
versions (see figure 12).

5 REPLICATION OF THE APPEARANCE VARIATION CUE EXPERIMENT

In 2010, de Croon et al. [6] presented a computationally inexpensive way to let a robot
visually detect its proximity to an obstacle, using the so-called appearance variation
cue. The process to compute the appearance variation cue from an image consists of
two steps:

1) The number of different texture types that are visible in an image determined
using a texture-type dictionary. This texture type detection uses textons [36] to
describe the appearance of textures.

2) The Shannon entropy H(p) is computed over the histogram of detected tex-
ture types p using equation 2. Thereby, p;, denotes the relative frequency of
occurrence of a given feature type i.

H(p) = — Z p; logy (p:))

De Croon et al. showed that H(p) decreases when a robot approaches an obstacle
with a forward-mounted camera. Their explanation for this effect is that when a robot
approaches an obstacle, objects that are visible in the peripheral area of the robot’s
tield of view become increasingly occluded by the approached obstacle. Surfaces
of objects and obstacles typically consist of only a few textures. Therefore, H (p)
decreases because textures of objects in the peripheral area of the field of view drop
out of sight. In the end, only the texture of the approached object remains.

However, de Croon et al. also showed that there are exceptions to this relation and
that for some texture-rich obstacles H(p) increases when they are approached. For
obstacles that show the inverse relation, increasingly more textures come into sight
if the obstacle is approached.

To illustrate that the dataset that is collected with Astro Drone can be used for
testing obstacle distance measurements that are based on computer vision techniques,

26

I will try to replicate the results of de Croon et al. using the collected data. For this
I develop a custom visual distance measure on the basis of SURFs. This measure
is designed using the same principles that de Croon et al. used for creating their
appearance variation cue.

5.1 SURF-based distance measure

The SURF-based appearance variation cue measure that I use in this experiment will
omit the texture type classification step of the appearance variation cue. Texture clas-
sification requires a dictionary that needs to be derived from training data. Deriving
the dictionary is a complicated process in itself, adding complexity to the appearance
variation cue by including clustering techniques and the selection of proper training
data. Instead, I will test if the number of SURF interest points that are detected in a
given image can already give sufficient information about the proximity to an object.

The underlying idea of this modified appearance measure is similar to the princi-
ples behind the original appearance variation cue: For the appearance variation cue,
de Croon et al. assumed that the texture of an approached object becomes dominant
in a robot’s field of view as the robot approaches the object. Therefore, the entropy
over the distribution of detected different textures declines the closer the robot gets to
an object. The modified measure that I propose is based on the same idea. It assumes
that visual details like contours of objects fall out of sight when the approached object
occludes other objects. Therefore, the number of detected SURFs should decline with
the proximity to an object.

5.2 Feature compression problems

Trying to test if the number of extracted SURFs is a good measure for the object
distance with data collected by Astro Drone poses one problem: The compression
method described in section 3.2.3 limits the number of saved features to a maximum
of 125 per image. This might introduce a ceiling effect in the collected data for images
where SURF counts were very high. To mitigate this ceiling effect an alternative
measure will be tested, too, which consists of the summed SURF keypoint strengths for
an image.

This measure should partially suppress the ceiling effect, because if more than
125 features are found only the 125 strongest features are selected. This introduces
an explicit selection bias. If more than 125 features are detected in an image, their
summed feature strength will on average be higher than the summed feature strength
for images where only 125 or less features are detected. I test this measure as an
alternative indicator for object distances.

In the next sections, I will present experiments to investigate if the modified SURF-
based distance cues (the number of detected SURFs or the sum of feature strengths)
can be used to calculate the distance to an object. In a first experiment, I will try to
show that values for both proposed variants of the SURF-based distance cue decline
when closing in on an object. If it can be shown that at least one of both measures
can be used for distance approximations to an object, I will try to replicate the results
from the first experiment using data collected by Astro Drone. Both experiments are
carried out in separate for the AR.Drone 1 and AR.Drone 2 data because different
resolutions of the recorded images could lead to different results.

27

(b) Cabinet-video

(c) Bookcase-video (fast) (d) Bookcase-video (slow)

Fig. 13: The four videos recorded for the qualitative analysis of the new proposed distance measure
based on SURFs. The small rectangles show the end position for each video.

5.3 Qualitative analysis

In this qualitative experiment I investigate if the number of SURFs and sum of feature
strength decline when approaching an obstacle. I use four hand-recorded videos as
testing data. The videos were recorded using an iPad 2. I started approximately
3.5 meters away from an obstacle and then I walked at a constant speed towards
it while recording a video with the iPad pointing towards the obstacle. In total, I
created videos of three different sceneries that are shown in figure 13:

1) The wall-video shows a feature-rich scene. The images in the surrounding area
fall out of sight while I approach the concrete wall. The wall itself features a
porose texture which comes into sight at closer distances and could lead to an
increase in extracted SURFs.

2) The cabinet-video shows a scene with few features, and I approached an area
that also only has few visual features. A decline in the number of SURFs is
expected in this case.

3) The bookcase-video features another feature-rich scene. In this case visual fea-
tures have a low contrast in the beginning of the video because of poor lighting
conditions. As I approach a light spot on the bookcase, the lighting conditions
improve and visual features become more pronounced regarding their contrast.
This last video should be the most challenging one because it is designed as
a counterexample for which both proposed SURF-based distance cues should
not work.

In addition to the three different scenes, I recorded two versions of the bookcase-
video. I did this because while recording the different videos, I noticed motion blur
effects in the fast version of the bookcase-video. To further investigate the motion
blur effects on contour-rich sceneries, I recorded two similar videos of the bookcase
at different walking speeds. The slower video is recorded at approximately a tenth

28

of the walking speed of the faster video to reduce the observed motion blur.

The videos were recorded with a resolution of 1280x720 at frame rate of 30 frames
per second. I scaled each video to resolutions of 320x240 and 640x360 to meet the
respective resolutions of the AR.Drone 1 and AR.Drone 2. After scaling, I computed
the SURFs for each frame of the videos using OpenCV [3] with the same settings
Astro Drone uses to extract features (see table 1). From the collection of extracted
SUREFs, I calculated the number of extracted SURFs and the summed feature strength
from the response values given by the SURF keypoint detector.

5.3.1 Results

Figure 14 shows the development of the number of detected SURFs and the de-
velopment of the summed feature strengths in relation to the frame number for
each recorded video. Results of videos resampled to resolutions of the AR.Drone 1
and AR.Drone 2 are shown in separate. Video frames with higher frame numbers
represent images closer to the approached obstacle.

The graphs show that there is no clear difference in the behavior of the proposed
cues for the two different video resolutions. The two proposed SURF appearance
cue values seem to be scaled by a factor of 2 for frames with AR.Drone 2 resolution,
if compared to values for frames with AR.Drone 1 resolution.

A clear decline for both proposed SURF appearance cue values can be observed
for the wall- and cabinet-videos. For the bookcase-video that was recorded at a
fast walking speed, a decline can only be observed for the last 10 frames. For the
bookcase-video that was recorded at a slow walking speed, no clear decline of the
cues can be observed. Instead, a steady increase in the number of detected SURFs
and summed feature strengths can be observed over the whole video.

5.3.2 Interpretation

For most of the recorded videos a decline in the number of detected SURFs can
be observed. In the bookcase-video that was recorded at fast walking speed, the
decline occurs very late during the last 10 frames. The shapes of the two curves of
the number of extracted SURFs and the summed feature strengths are similar for all
image resolutions in all videos. Therefore, the number of extracted SURFs and the
summed feature strength seem to be both appropriate measures for proximity to an
obstacle.

The bookcase-video where I walked slowly does not show a decline in the num-
ber of detected SURFs or summed feature strengths, but instead an increase. This
corresponds to the expectations regarding the video because of how the video was
designed.

However, a question that should be discussed about the bookcase-video regards
the difference between the slow and fast walking speed versions of the videos. The
video recorded at slow movement speed shows the effect that was expected from
the beginning, displaying a slight increase in the number of detected features when
closer to the bookcase. In the video that was recorded at a faster movement speed,
the number of detected SURFs seems to stay constant until the last 10 frames where
it starts to decline. This difference can be explained by motion blur effects. In the
video recorded at slow movement speed, more details of the bookcase are visible
when it is approached. In the video recorded at fast movement speed, visual details
of the bookcase are affected by motion blur. The closer the camera comes to the
bookcase, the faster objects move through the camera’s field of view. This increases

29

200
150
w w
14 4
5 5
5 % 100
g]
S S
50
0
Wall 160 140 160
& 80000 » 1400000
2 2
5 700000 © 1200000
£ 600000 £ 1000000
© 500000 o
e £ 800000
2 400000 2
£ 300000 & 600000
s 5
g 200000 g 400000
£ 100000 £ 200000
g 5 « o
2 o H 0
0 20 40 60 80 100 120 140 160 0 20 40 60 80 100 120 140 160
4u ov
35 70
30 60
825 8 50
5 5
g 20 B 40
;; 15 "‘; 30
10 20
5 10
. 0 0
Cab t 0 20 40 60 80 100 120 o 20 20 60 80 100 120
abine
» 350000 « 500000
s =1
© 300000 5
5 S 400000
£ 250000 -]
g 2
o 300000
£ 200000 s
§ 150000 8 200000
E 100000 g 100000
£ 50000 £
5 5
@ 0 @ 0
o 20 40 60 80 100 120 o 20 20 60 80 100 120
ou 1w
55 90
50
§45 P 80
540 £]
335 8 0
*
30 * 50
25
20 40
Bookcase 15 30 :
0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80
(fast) » 300000 « 500000
S S
2 450000
§ 250000 § 400000]
8 8
© 200000 o 350000
2 2 300000
] 3
& 150000 £ 250000
3 2 200000
£ 100000 £
£ £ 150000
3 50000 3 100000
o 10 20 30 40 50 60 70 80 o 10 20 30 40 50 60 70 80
110 e
100
90 200
n 80 w
4 4
ERA 2150
$ e $
50k %
20 100
K 30| P
Bookcase 2 50 100 200 300 200 500 600 700
(slow) & 600000 » 1200000
s E=
2 2
§ 500000 § 1000000
% i
© 400000 © 800000
2 2
3 300000 8 600000
< 5
T g
£ 200000 £ 400000
£ £
s s
@ @ 200000

1000000

Fig. 14: Results of the qualitative analysis of the two proposed distance cues: The numbers of extracted
features and the summed feature strengths. The x-axis in every plot shows the frame number of the
corresponding video.

30

visual motion blurring of such objects and is responsible for the decrease in the
number of detected SURFs in the last 10 frames.

5.4 Visual appearance cue in the Astro Drone dataset

In the first experiment that I did, I was able to show that both proposed distance
cues, the number of detected SURFs and the sum of feature strengths, can be used to
determine the proximity to an obstacle. In this second part of the experiment, I try
to show that the same effect can be replicated with data collected by Astro Drone.

Before the experiment can be replicated with Astro Drone data, a subset of Astro
Drone flight samples must be selected that contains visual information about an
approached object. This selection is done using four criteria:

To select a flight sample from the Astro Drone dataset, the drone must

« have detected the visual marker during its flight to make sure that people were
flying close to the object (that the marker has been stuck to),

« have been closer than 5m to the marker for all five data points of a flight sample
so that samples fall in an area in which the decline in appearance variation can
be observed,

« have flown at least 30cm in total according to the Kalman-filter reconstructed
coordinates to make sure that the visual data covers a sufficient large range of
different distance values from the marker, and

 have flown towards an area around 0.5m left or right from the visual marker
to make sure that people were pointing towards the marker while flying.

The filtered flight samples are split in two groups depending on the drone version
(AR.Drone version 1 and 2). For each flight i, which consists of 5 samples of SURFs
taken at 5 different positions, I compute two types of regression lines f(d) = ad + b,
where d denotes the Euclidean distance to the visual marker: One type of regression
line is computed between d and the number of extracted SURFs (#SURF's) and
the other between d and the summed feature strengths (3 strengths). The Euclidean
distance to the marker is computed using d = /22 + y> where = and y are the
(x,y) coordinates from the Kalman filter (see figure 9). Both types of regression lines
computed for each flight sample i yield a slope: a(#SURF's;) and a(} strengths;).

The effect that I want to observe says that there are less detected SURFs to find
in an image the closer to an object it is taken. Rephrasing this relation by using the
distance to an obstacle means that I look for an increase in the number of features
with increasing distance to an obstacle. Therefore, the slopes of regression lines
computed for each flight sample for both proposed distance measures (a(#SURF's;)
and a(} strengths;)) are expected to be positive on average. Given that M(v) denotes
the median of a distribution of values v;, this leads to the following two formal
hypotheses:

M (a (#SURFs)) > 0 3)

M (a (Z strengths)) >0 4)

Since the distributions for the two types of computed slopes a(#SURF's;) and
a(d_ strengths,) are unknown, I will use bootstrapping [8] to calculate confidence inter-
vals over the distributions of slopes for each distance measure. For this, I resample
the calculated slopes 100000 times to derive the bootstrap distributions for both
types of slopes. For calculating the confidence intervals, I will use a 5% probability
threshold to test my hypotheses.

31

-3 -2 -1 0 1 2 3 13 -2 -1 0 1 2 3

(a) AR.Drone 1 flight paths (b) AR.Drone 2 flight paths

Fig. 15: Flight paths of a subset of Astro Drone data. The subset was created by selecting flight samples
for which the AR.Drone flew towards a visual marker.

140 : . . 140
120f /\,/_X 1 120
100 100

80

F 60
a0 Nﬁﬁxw&w “of
20 1 20 [N\
% 1 2 3 4 3.

« 900000 T T T 2 3500000

£
5 800000F 1 & 3000000}

@ 700000
5 | g
@ 600000 £ 2500000

£ 500000} *?J@if 1 2 2000000
© 400000 { &

2 © 1500000}
g 300000f % A 1 3 1000000
[[

£ 200000} 1

E 100000

500000 [
3 ey — Y
00

1 2 3 1 80 05 10 15 20 25 30 35 40

#features
o
o o

#features

Summ

(a) AR.Drone 1 data (b) AR.Drone 2 data

Fig. 16: The number of detected SURFs and summed feature strengths plotted against the distance
to an object in meters (x-axis). Each line represents data from one flight sample collected by Astro
Drone. The data is split for AR.Drone 1 and AR.Drone 2 data samples.

5.4.1 Results

Astro Drone collected 160 flight samples from AR.Drones version 1 and 556 form
AR.Drones version 2. After filtering the flight samples for samples that approached
an obstacle, there were 18 flight samples left from the AR.Drone 1 samples and 92
flight samples were left from the AR.Drone 2 samples.

Figure 16 shows the number of extracted SURFs and the sum of extracted feature
strengths in relation to the measured obstacle distance for both drones. For the
AR.Drone 2 data, the expected ceiling effect can be seen in the number of extracted
features at distances larger than 1 m from an obstacle. The ceiling effect seems weaker

TABLE 3: Statistical measures for slopes a (#SURFs;) and a (3 strengths;)

Slope for Drone version | Lower bound (p = 0.025) | Lower bound (p = 0.05) | Median | N
AR.Drone 1 0.535 1.122 4.824 18

#SURFs AR.Drone 2 7.527 8.371 23.825 92
S strengths AR.Drone 1 13729.816 19264.262 62310.921 | 18
g AR.Drone 2 40739.241 48933.334 91248.406 | 92

32

for the sum of feature strengths measure.

The statistical measures calculated by bootstrapping for testing the hypotheses
shown in equations 3 and 4 are shown in table 3. The median of the bootstrap
distribution and the lower confidence bounds for the median computed with p =
0.025 and p = 0.05 are shown. The lower confidence bound with a given p says that
a median that is smaller than the bound can only be observed with a probability of
less than p when sampling from the population.

This means that only with a probability of less than 2.5% the median of any of the
two slopes, M (a (#SURFs)) and M (a (D strengths;)), is smaller than zero. This holds
true for data from both AR.Drone versions. This result supports the hypotheses 3
and 4.

5.4.2 Interpretation

As can be seen from the presented confidence boundaries, it is unlikely (p < 0.025)
that M (a (#SURFs)) <= 0 and that M (a (>_ strengths;)) <= 0 for features recorded
by both drones.

Both hypotheses 3 and 4 are supported by the statistical analysis, which shows
that both proposed measures #SURFs; and) strengths, work for estimating the
proximity to an obstacle: The values of both measures, the number of detected SURFs
and the summed feature strengths, increase with increasing distance to the marker.
The effect is similar to the effect found by de Croon et al. in [6]. The effect was found
for the number of detected SURFs despite a ceiling effect for AR.Drone 2 images that
can be seen in figure 16.

5.5 Discussion

Using the number of detected SURFs and sum of feature strengths for distance
approximations to an obstacle is based on the same principles as the appearance
variation cue that is described in [6]. In my qualitative experiment, I showed that both
proposed SURF-based distance cues do not work reliably for distance approximations
in special cases. However, I was also able to show qualitatively that both cues can
work in common cases.

In my second, quantitative experiment I tested both SURF-based distance cues with
data collected by Astro Drone. I showed again that values for both cues decline with
the proximity to an obstacle. Testing the summed feature strengths as alternative
distance measure proved to be unnecessary. Despite a found ceiling effect for the
number of detected SURFs in AR.Drone 2 images, the number of detected SURFs
still showed a significant positive correlation with the distance to an object.

In the first experiment, I showed that the number of detected SURFs can be used
as a visual measurement for the distance to an object. In the second experiment, I
showed that in the Astro Drone dataset a positive correlation can be found between
the number of detected SURFs and the distance computed on the basis of coor-
dinates reconstructed by the Kalman filter. This means that the distances that can
be computed from Kalman coordinates also encode information about the distance
to an object or obstacle. However, the quantitative accuracy of distances that can
be calculated from Kalman reconstructed coordinates need to be investigated in a
future experiment.

33

6 CONCLUSION

In this thesis, I describe the development of Astro Drone, a game that uses crowd-
sourcing to collect testing data for visual distance estimation techniques. The game
uses a Parrot AR.Drone to collect two types of data. First, visual features (SURFs) of
objects are detected from front camera images of the AR.Drone. Second, the game
calculates a ground truth which is the actual distance to objects that SURFs are
collected from. The data is collected with the intention to determine the accuracy of
visual distance estimation techniques by comparing distance estimates of a technique
to the ground truth data. As part of the work for this thesis, it was investigated if the
data collected by Astro Drone is valid and can be used for such accuracy testing. It
was also investigated if the time investment in creating Astro Drone can be justified
by the amount of data it has collected.

The first research question is if the data that Astro Drone collects is valid. More
precisely, the question is if the collected ground truth distance measurements are
correct. To show that ground truth data depends on distances to an object, a custom
visual estimate for the proximity to an object was developed that uses SURFs as
input. The estimate was developed on the basis of prior work on the so-called
appearance variation cue [6]. I demonstrated that the measure correlates to the
distance to an object based on a self-collected set of data. I then showed that the
measure when calculated on data collected by Astro Drone also correlates with
collected ground truth distances. This indicates that the ground truth estimate that is
collected by Astro Drone contains valid information about the distance to an object.
Moreover, the data collected with Astro Drone show a phenomenon that is similar
to a phenomenon found in previous research [6]: The number of SURFs that are
detected in images decreases with the proximity to an object. To summarize, the
data that is collected by Astro Drone appears to contain valid information. However,
more experiments must be done to test the accuracy of distance values quantitatively.
Only if the accuracy of the ground truth measure is known, it is viable to use it as
a benchmark for vision-based distance estimates.

The second research question is if data collection via crowdsourcing is an efficient
approach considering the complexity of developing an application like Astro Drone.
To answer it, the development time of Astro Drone needs to be compared to the
number of currently collected flight samples. The development of Astro Drone took
one year and since its release three months ago, Astro Drone collected 718 flight
samples. An equal number of flight samples could have been hand collected in less
time. Therefore, collecting data using crowdsourcing seems to be time inefficient for
short-term research projects. However, for collecting a test dataset, it is an effective
approach: The dataset collected by Astro Drone is already larger that test datasets
used in many studies (e.g. [6], [26]). Since Astro Drone has only been released a
few months ago, more data can be expected in the future. Also, Astro Drone data is
collected from different people in different locations. This makes the dataset unique:
People in different places can easily contribute visual data from different visual
environments. This likely increases the variation of collected data in comparison to
data that is collected in a laboratory. The variation in the collected visual data was
not tested in this thesis but should be tested in a future experiment. Furthermore,
Astro Drone offers an easily extensible platform which can collect visual data with
distance measurements. The game can be extended for future experiments in robotics
to record additional data that might prove to be useful. The planned porting of the
game to Android devices will eventually cause more people to play the game. New

34

interest in playing the game can be raised by adding new content like new levels.
These capabilities can facilitate the data collection process of future experiments.

To conclude, in this thesis, I tested a new method for collecting data using crowd-
sourcing. I showed that valid data for an experiment can be collected using crowd-
sourcing and that using crowdsourcing can be efficient depending on the time frame
of an experiment. Future experiments may reveal extra utility in collecting visual data
from people at different locations. Also, future research projects may benefit from
the developed game by modifying it, which allows them to collect research data
efficiently using crowdsoucing.

REFERENCES

[1] H.Bay, T. Tuytelaars, and L. Van Gool, “SURF: Speeded up robust features,” in Computer Vision-ECCV 2006.
Springer, 2006, pp. 404-417.

[2] C. Bills, J. Chen, and A. Saxena, “Autonomous MAV flight in indoor environments using single image
perspective cues,” in Robotics and automation (ICRA), 2011 IEEE international conference on. 1EEE, 2011, pp.
5776-5783.

[3] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software Tools, 2000.

[4] M. Buhrmester, T. Kwang, and S. D. Gosling, “Amazon’s Mechanical Turk: A new source of inexpensive,
yet high-quality, data?” Perspectives on Psychological Science, vol. 6, no. 1, pp. 3-5, 2011.

[5] D. Crockford, “RFC 4627 - the application/json media type for javascript object notation (JSON),” Internet
Engineering Task Force, Tech. Rep., 2006. [Online]. Available: http://tools.ietf.org/html/rfc4627

[6] G.C. H.E. De Croon, E. De Weerdt, C. De Wagter, and B. D. W. Remes, “The appearance variation cue for
obstacle avoidance,” in Robotics and Biomimetics (ROBIO), 2010 IEEE International Conference on, 2010, pp.
1606-1611.

[7 M. G. Dissanayake, P. Newman, S. Clark, H. F. Durrant-Whyte, and M. Csorba, “A solution to the
simultaneous localization and map building (SLAM) problem,” Robotics and Automation, IEEE Transactions
on, vol. 17, no. 3, pp. 229-241, 2001.

[8] B. Efron, “Bootstrap methods: another look at the jackknife,” The annals of Statistics, pp. 1-26, 1979.

[9] R. Fergus, P. Perona, and A. Zisserman, “Object class recognition by unsupervised scale-invariant learning,”
in Computer Vision and Pattern Recognition, 2003. Proceedings. 2003 IEEE Computer Society Conference on, vol. 2.
IEEE, 2003, pp. 11-264.

[10] P. K. Gerke, J. Langevoort, S. Lagarde, L. Bax, T. Grootswagers, R. J. Drenth, V. Slieker, L. Vuurpijl,
P. Haselager, I. Sprinkhuizen-Kuyper, M. van Otterlo, and G. de Croon, “BioMAV: bio-inspired intelligence
for autonomous flight,” in Proceedings of the International Micro Air Vehicle conference and competitions, 2011,

. 12-15.

[11] EP Harris and M. Stephens, “A combined corner and edge detector,” in Alvey vision conference, vol. 15.
Manchester, UK, 1988, p. 50.

[12] R. He, S. Prentice, and N. Roy, “Planning in information space for a quadrotor helicopter in a GPS-denied
environment,” in Robotics and Automation, 2008. ICRA 2008. IEEE International Conference on. IEEE, 2008,
pp. 1814-1820.

[13] A.S. Huang, A. Bachrach, P. Henry, M. Krainin, D. Maturana, D. Fox, and N. Roy, “Visual odometry and
mapping for autonomous flight using an RGB-D camera,” in Proc. IEEE International Symposium of Robotics
Research (ISRR), 2011.

[14] 754-2008 - IEEE Standard for Floating-Point Arithmetic, IEEE, 2008.

[15] A. H. Jazwinski, Stochastic processes and filtering theory. Academic Press (New York), 1970.

[16] S. Josefsson, “RFC 4648 - the basel6, base32, and base64 data encodings,” Internet Engineering Task Force,
Tech. Rep., 2006. [Online]. Available: http://www.ietf.org/rfc/rfc4648.txt

[17] R.E.Kalman, “A new approach to linear filtering and prediction problems,” Transactions of the ASME—-Journal
of Basic Engineering, vol. 82, no. Series D, pp. 35-45, 1960.

[18] R. Labayrade, D. Aubert, and J.-P. Tarel, “Real time obstacle detection in stereovision on non flat road
geometry through,” in Intelligent Vehicle Symposium, 2002. IEEE, vol. 2. IEEE, 2002, pp. 646-651.

[19] D. N. Lee and H. Kalmus, “The optic flow field: The foundation of vision [and discussion],” Philosophical
Transactions of the Royal Society of London. B, Biological Sciences, vol. 290, no. 1038, pp. 169-179, 1980.

[20] T. Lindeberg, “Scale-space theory: A basic tool for analyzing structures at different scales,” Journal of applied
statistics, vol. 21, no. 1-2, pp. 225-270, 1994.

[21] D. G. Lowe, “Object recognition from local scale-invariant features,” in Computer vision, 1999. The proceedings
of the seventh IEEE international conference on, vol. 2. IEEE, 1999, pp. 1150-1157.

[22] S. G. Mallat, “A theory for multiresolution signal decomposition: the wavelet representation,” Pattern
Analysis and Machine Intelligence, IEEE Transactions on, vol. 11, no. 7, pp. 674—693, 1989.

[23] D. Marr, T. Poggio, E. C. Hildreth, and W. E. L. Grimson, A computational theory of human stereo vision.
Springer, 1991.

http://tools.ietf.org/html/rfc4627
http://www.ietf.org/rfc/rfc4648.txt

35

D. Murray and J. J. Little, “Using real-time stereo vision for mobile robot navigation,” Autonomous Robots,
vol. 8, no. 2, pp. 161-171, 2000.

W. S. Ng and E. Sharlin, “Collocated interaction with flying robots,” in RO-MAN, 2011 IEEE. 1IEEE, 2011,
pp. 143-149.

D. Nister, “An efficient solution to the five-point relative pose problem,” in Computer Vision and Pattern
Recognition, 2003. Proceedings. 2003 IEEE Computer Society Conference on, vol. 2, 2003, pp. 1I-195-202 vol.2.
Parrot, “Parrot establishes itself on the civil drones market,” 2013. [Online]. Available: http:
/ /www.parrot.com/paris-air-show-2013 /usa/bg-press-release.pdf

I. Pavlov. (2010) LZMA SDK (software development kit). [Online]. Available: http://www.7-zip.org/sdk.
html

S. Seitz, B. Curless, J. Diebel, D. Scharstein, and R. Szeliski, “A comparison and evaluation of multi-view
stereo reconstruction algorithms,” in Computer Vision and Pattern Recognition, 2006 IEEE Computer Society
Conference on, vol. 1, 2006, pp. 519-528.

A. Shalloway and]. Trott, Design Patterns Explained: A New Perspective on Object-Oriented Design (2nd Edition)
(Software Patterns Series). Addison-Wesley Professional, 2004.

R. Sim, P. Elinas, M. Griffin, J. J. Little et al., “Vision-based SLAM using the Rao-Blackwellised particle
filter,” in IJCAI Workshop on Reasoning with Uncertainty in Robotics, vol. 14, no. 1, 2005, pp. 9-16.

J. Sivic and A. Zisserman, “Video Google: A text retrieval approach to object matching in videos,” in
Computer Vision, 2003. Proceedings. Ninth IEEE International Conference on. IEEE, 2003, pp. 1470-1477.

G. Takacs, V. Chandrasekhar, S. Tsai, D. Chen, R. Grzeszczuk, and B. Girod, “Unified real-time tracking and
recognition with rotation-invariant fast features,” in Computer Vision and Pattern Recognition (CVPR), 2010
IEEE Conference on. 1EEE, 2010, pp. 934-941.

J. T. Todd and P. Bressan, “The perception of 3-dimensional affine structure from minimal apparent motion
sequences,” Perception & Psychophysics, vol. 48, no. 5, pp. 419-430, 1990.

Unknown. (2013) GSM arena technical specifications for the iPhone 3GS. [Online]. Available:
http:/ /www.gsmarena.com/apple_iphone_3gs-2826.php

M. Varma and A. Zisserman, “Texture classification: Are filter banks necessary?” in Computer vision and
pattern recognition, 2003. Proceedings. 2003 IEEE computer society conference on, vol. 2. IEEE, 2003, pp. II-691.

http://www.parrot.com/paris-air-show-2013/usa/bg-press-release.pdf
http://www.parrot.com/paris-air-show-2013/usa/bg-press-release.pdf
http://www.7-zip.org/sdk.html
http://www.7-zip.org/sdk.html
http://www.gsmarena.com/apple_iphone_3gs-2826.php

36

APPENDIX A
VALUES OF FEATURE DESCRIPTORS

1
130000 —60000 —-40000 —20000 0 20000 40000 60000 80000 —0.5 0.0 0.5

(a) All half-floats (b) Interest interval [—1;1]

Fig. 17: Histograms of values that can be represented by half-floats. Figure 17a shows the histogram
of all values half-floats can represent. Figure 17b shows only values in the interval of [—1;1].

The compression of flight sample data that is presented in section 3.2.3 uses lossy
compression of SURF descriptors. The compression is based on representing 32 bit
floating point values as 16 bit floating point values, also called half-floats. In this
section, I will show that half-floats still offer enough precision to retain most of the
discriminative power of SURF descriptors.

The lossy compression that is used for feature descriptors has impact on its values.
Half-floats use 16 bits to encode a floating point value, which can, theoretically,
encode 65536 different values. SURF descriptors consist of unit vectors, so the length
of the vector consisting of all 128 descriptor values has a length of one. As a result, all
descriptor values lie in the interval [—1; 1]. Half-floats encode 30722 different values
in this interval. The resolution of half-floats increases for values closer to zero. This
effect is illustrated in figure 17 which shows histograms of the number of values
that a half-float can represent in a given interval, excluding Nan (not-a-number) and
Inf (positive or negative infinity) values.

On the interval [—1;1], the average distance from one half-float to the next is
0.000065102 with a standard deviation of 0.00013 *. The maximum difference between
a pair successive of half-floats is 0.000488.

The order of magnitude of the component-wise distances between two arbitrary
SUREF feature descriptors thereby often reaches 10! (tested on a subset of the data
collected by Astro Drone). This means half-floats have enough resolution to encode
differences between SURF descriptors. During the half-float based compression of
SURF descriptors only little information is lost. Differences between SURF descriptors
still are visible because of the relatively high precision of half-floats in the interval
[—1; 1]. Therefore, half-floats suffice to encode data from SURF descriptors without
influencing their discriminative power too much.

4. Please note that the distance values are not distributed according to a normal distribution. The values are
provided to give the reader an idea of the effective distances between successive half-float values.

	Introduction
	Crowdsourcing
	Testing data
	Research questions

	Computer vision and visual features
	Interest point detectors
	Feature descriptors
	Application to Astro Drone

	Astro Drone
	Program details
	Device properties
	Game design
	Data collection

	Implementation
	Cross platform design
	3D Coordinate Reconstruction through Kalman Filtering
	Flight sample compression

	Project evaluation

	Properties of the collected data
	Collected data
	Flight paths
	Feature distribution
	Discussion

	Replication of the appearance variation cue experiment
	SURF-based distance measure
	Feature compression problems
	Qualitative analysis
	Results
	Interpretation

	Visual appearance cue in the Astro Drone dataset
	Results
	Interpretation

	Discussion

	Conclusion
	References
	Appendix A: Values of feature descriptors

