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Abstract

It is possible to fool an authentication system based on face recognition with a picture of a
person’s face. This can be made impossible by introducing gesture recognition to the authentication
process. In this thesis an authentication system is investigated that combines face and gesture
recognition by instructing a user to perform a sequence of randomly determined gestures. In this
system, every image in a stream of camera images is inspected to see if it contains a face. This
is done by using the Viola-Jones object detection algorithm, which also looks for other regions of
interest (the eyes and mouth in a face) if a face is found. After that, face and gesture recognition
takes place based on the results of the Viola-Jones cascades along with the principal component
analysis algorithm. If the recognised gestures correspond with the given instructions and face
recognition is successful, authentication will succeed. Experiments showed that the Viola-Jones
cascades performed their task well. In contrast, the performance of the gesture recognition process
was poor and unreliable, as its performance was dependent on the subject using the system and
different lighting conditions. This makes it difficult to use the proposed system and additional work
is required to make the system suitable for real world usage.
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Chapter 1

Introduction

Digital security has become a prominent aspect of modern society and some form of authentication
is required for activities that are of any importance. Such activities include online banking and
submitting governmental forms online, but also customary actions like checking your e-mail or
accessing a personal device like a smart-phone. Such personal devices are literally finding their way
into the hands of people as they become part of managing everyday life by keeping track of an agenda
or providing access to the internet and email (Google and MediaCT, 2011). The information that
can be accessed with such a device is private and access to it must be regulated and/or protected
lest it be obtained by an unauthorised person who could use it for malevolent purposes. Therefore
some method of authenticating oneself to one’s own devices has become mandatory.

The established way of authentication is “authentication by something you know” which means
that you authenticate yourself by providing a password, a Personal Identification Number (PIN) or
a chosen pattern. There are a number of risks to this way of authentication like forgetting/losing
passwords or people watching over your shoulder as you enter your password. An additional risk is
the use of a single password for multiple applications, because if someone else obtains this password
they will be able to access all of the applications. All these dangers combined pose a great security
threat to your personal data.

Another way of authentication that is much less susceptible to these dangers, if at all, is “au-
thentication by something you are” which typically uses biometric data as a form of authentication.
Examples of this form of authentication include fingerprint matching (Shihai and Xiangjiang, 2010),
retinal scanning (Ortega, Mario, Penedo, Blanco, and Gonzlez, 2006), outer ear image matching
(Moreno, Sanchez, and Velez, 1999) and face recognition (Turk and Pentland, 1991; Le, 2011).

From the above-mentioned methods, face recognition is easy to implement, user friendly and
comes at no additional cost in equipment for smart-phones as those already have a built-in camera.
This makes face recognition a great candidate to become an alternative method of authentication as
opposed to the established password-based methods. Indeed, this type of authentication has already
been extensively researched and various methods have been developed using principal component
analysis (PCA) (Turk and Pentland, 1991; Yang, Zhang, Frangi, and Yang, 2004), independent
component analysis (ICA) (Bartlett, Movellan, and Sejnowski, 2002) or neural networks (Lin,
Kung, and Lin, 1997; Le, 2011). Also, its use in combination with a password for securing money
transactions with a bank has been investigated (Kumar, Kumar, Kumar, and Karthick, 2012).
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1.1 Extending Face Recognition

Unfortunately, face recognition has been proven to be insecure or at least the implementation
in the smart-phone operating system Android, as this implementation also accepts the photo of
a person’s face (Newton, 2011). Obviously this is undesirable as it is not difficult to obtain a
picture of someone’s face. Because it is likely that this is not simply a flaw in the aforementioned
implementation, but a more fundamental problem of this method of authentication, a solution to
this problem has to be found.

Luckily a solution exists that is based on a simple principle. Photos are static images, which
means that by introducing movement into the authentication process you can ensure that it is
impossible for a person to authenticate as someone else with their picture. When thinking of
introducing movement the use of intended facial gestures comes to mind in order to do this in a
well-defined way. This results in a setting where a person is able to perform a number of facial
gestures from a small set, which can be applied in various ways. The intended purpose for its use
is as a security check, for which there are two options to achieve this goal.

The first option is to generate a random sequence of gestures which a person must perform while
in the background a face recognition check is being performed. The second option is based on the
established password-based methods and lets a user determine a sequence of gestures themselves
which they must perform if they want to authenticate themselves. In such a setup, face recognition
could be optional, as knowing the sequence of gestures would be sufficient. However, determining
the sequence of gestures a person is using is probably a lot easier compared to determining a written
password, so if face recognition would be turned off, none of the advantages of biometrics would be
present. Unfortunately, in the case that face recognition would be turned on it would be possible to
record a video of a person while they perform the required sequence of gestures. It would then be
possible to display this video to the system and gain access in this manner. Of course this can also
be done with the first option, but due to the fact that the sequence of gestures would be determined
randomly, there would be too many possibilities to be feasible. It is because of these drawbacks
that the first option is preferred

Also, such a system could be used for creating a hands free interface or as an additional way
for entering input, as each possible gesture could be linked to a command. For example, in a web
browser environment a wink with the left eye could stand for ’go to the previous page’, a wink with
the right eye for ’go to the next page’ and tilting your head left or right could respectively stand
for ’scroll up’ or ’scroll down’. The idea to use facial gestures for interaction is not new, as it has
been previously suggested, both seriously (Algorri and Escobar, 2004) and as a joke when Opera
used the very idea of facial gestures for browser control (Opera, 2009). Clearly the idea has been
around for a while and it is just a matter of time before it finds its way into an application.

1.2 Challenges

In order to create a system which combines face recognition and gesture recognition certain chal-
lenges have to be overcome. When the only task that needs to be performed is face recognition, two
steps are sufficient to reach the goal. The first step is to locate a face in a presented image. After
finding a face in the image, the second step will follow: comparing the found face to a database
of faces and find the closest match. When adding gesture recognition to the process, there are a
number of extra steps that have to be performed besides the two required steps for face recognition.
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The first step is to locate any additional regions of interest (ROI). A ROI is an area in an image
that contains information that must be further processed. For example, the ROIs that must be
located for face recognition are the faces in an image.

An algorithm that performs these steps can be summarised in three phases:

1. Locate regions of interest - In the first phase the algorithm locates all relevant regions of
interest (ROIs). First, the face-region must be located and once it has been found, other
ROIs (like eyes) must be found within the face-region.

2. Perform face recognition - In the second phase a detected face must be matched with a saved
face which must belong to a person that is authorized to access the device.

3. Perform gesture recognition - In the last phase the detected faces and their corresponding
ROIs are compared and differences are measured in order to determine what gestures are
made.

Now that the problem has been defined at a high level and the required steps have been determined,
an implementational solution has to be found to solve it. For each of these steps a lot of research has
already been performed and various algorithms exist for solving them. For face detection, various
algorithms have been developed of which a selection has been surveyed by Degtyarev and Seredin
(2010) and the recent advances in face detection algorithms by Zhanh and Zhang (2010). The most
extensively discussed by far is the Viola-Jones face detection algorithm (Viola and Jones, 2004)
which is based on their object detection algorithm (Viola and Jones, 2001).

Just like face detection, various algorithms have been developed for face recognition which
use different approaches, including PCA features (also known as Eigenfaces) (Turk and Pent-
land, 1991)(Yang, Zhang, Frangi, and Yang, 2004), independent component analysis (ICA) features
(Bartlett, Movellan, and Sejnowski, 2002) as well as neural networks (Lin, Kung, and Lin, 1997)(Le,
2011).

However, in the area of facial gesture recognition it seems that a lot less fundamental work
has been done and a clear direction has yet to be found. Currently two major directions are
being explored. The first utilises principal component analysis, which is borrowed from regular
face recognition. The second direction investigates the use of support vector machines (SVMs) for
classifying gestures.

There are two main methods possible for using PCA: the first one uses a face as a whole as
input and tries to classify its corresponding Eigenface as displaying a certain gesture or emotion
(Banerjee and Sanyal, 2012). The second method that has been explored uses subparts of the
face like the eyes or mouth and calculates the corresponding Eigeneyes and Eigenmouths (Algorri
and Escobar, 2004). The same method of looking at subparts of the face can be applied when
using SVMs to classify images (Fazekas and Snta, 2005) after which the individual classifications
are combined for recognising emotion. More recently SVMs have also been applied in order to
recognise yes/no gestures as opposed to recognising expressions of emotion (Baltes, Seo, Cheng,
Lau, and Anderson, 2011).

1.3 Research Questions

As described in Section 1.2, there are many different possibilities to build the different components
of an authentication algorithm based on face and gesture recognition. However, when selecting the
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components for such an algorithm there are certain constraints that must be met in order for it
to be practical in use. Perhaps it is stating the obvious, but an authentication system has to be
dependable in accepting the right and rejecting the wrong people. This means that any algorithm
must have a high classification performance with a low amount of false positives and false negatives.

Keeping in mind that authentication by face recognition is already in use on smart-phones, it is
desirable that an alternative authentication method should also be fit to run on such devices. There
is one big constraint when running an application on such a device, which is its limited processing
capabilities. Therefore it is important that potential algorithms have a low computational complex-
ity, or at least one that can be scaled to manageable proportions for the available computational
power. If this turns out to be a difficult constraint to satisfy, an acceptable alternative would be to
use other methods to make the process as a whole more efficient. Such methods could be the clever
combining of used algorithms so they complement each other or the construction of a cascade of
classifiers could be used to reduce the computational requirements.

Lastly, an authentication system should be available for use straight away. This means that if
any form of training is required, it should not take much time for users and they should not be
required to keep training the algorithm. If this constraint is met, the result is that there will not
be a lot of training data available for algorithms to train on, so the selected algorithms should be
able to cope with this.

These constraints can be expressed in the following research questions:

1. For the suggested application, what algorithms for the three phases are suitable in terms of:

- accuracy (few false positives and few false negatives)?

- computational complexity?

- sparse training data?

2. How can unrelated algorithms be combined in such a way that they complement each other
and save unnecessary computations?

3. What techniques (for example, cascade classifiers) can be used to to improve the overall
efficiency of the algorithm?

To answer these questions, a prototype program has been made which performs the required task
by making use of the Viola-Jones object detection and principal component analysis algorithms.
These algorithms will be explained in detail in Chapter 2, after which the proposed method will
be discussed in Chapter 3. Then, the performed experiments and their results will be described in
Chapter 4, followed by a discussion and conclusion in Chapter 5.
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Chapter 2

Methods

This chapter serves to introduce the used algorithms and inform the reader about what they can
be used for before they are referred to. First the Viola-Jones object detection algorithm will be
introduced, followed by the principal component analysis algorithm.

2.1 Viola-Jones Object Detector

The Viola-Jones Object Detection algorithm was first described in the paper ’Rapid Object De-
tection using a Boosted Cascade of Simple Features’ by P. Viola and M. Jones (Viola and Jones,
2001) and the goal of the algorithm is to detect the objects it is trained to recognize in a given
input image. The authors demonstrated its use in the field of face detection where they achieved
exceptionally low computation times while improving detection accuracy (Viola and Jones, 2004).

When given a grey-scale image, the algorithm will look at sub-images of the original image one
by one until every sub-image of a certain size is considered. Then, the size of the sub-images that
are considered is scaled up by a chosen factor and the process repeats until the sub-image is as large
as the input image. For every sub-image a cascade of classifiers decides whether or not it contains
the object it is trained for to detect. A cascade is a collection of classifiers placed in a certain
order and one by one they accept or reject a sub-image as containing the object or not. Should
a sub-image get rejected by any of the classifiers, it is immediately discarded and not considered
further. On the other hand, if a sub-image gets accepted by every classifier in the cascade, it is
classified as containing the object. This process is visualised in Figure 2.1.

Within such a cascade the order of classifiers is chosen carefully and the first few are weak
classifiers (which means that they base their decision on very few features) which have a high true
negative rate. By selecting the first few classifiers in this manner, a lot of uninteresting regions
that definitely do not contain the object that is being searched for get rejected. Only images that
pass the first few classifiers and therefore potentially contain the object will get processed further
by more complex, and thus computationally more expensive, classifiers. This way a very high
detection accuracy is achieved while maintaining a low computation time.
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Figure 2.1: An abstract visualisation of a cascade of classifiers. Based on Viola and Jones (2004).

2.1.1 Integral Image and Rectangle-Features

To further understand the algorithm, it is important to be familiar with the kind of features the
classifiers base their decision on and how these are calculated. The used features are called two-,
three- and four-rectangle features. Each of these features consist of a number of rectangles that are
equal in size and lie adjacent to each other at a position relative to the selected sub-image. For
each feature, the sum of the pixel values within one or more rectangles is subtracted from the sum
of the pixel values within the remaining rectangles. In Figure 2.2a these features are visualised and
within this image the sum of the pixel values inside the white rectangles are subtracted from the
sum of the pixel values inside the grey rectangles.

These features are calculated from an intermediate representation of the original image, called
the integral image which is no more than a summed area table. This representation of the image
makes computing the sum of pixel values within a rectangle a lot more efficient, as it is not required
to sum up the pixel values in every rectangle, which would be the case if the original image were
used. Instead using the values at the corners of the rectangles is sufficient. The integral image
formula calculates the sum of all the pixel values above and to the left of every position in the
original image. This formula is expressed as:

ii(x, y) =
∑

x′≤x,y′≤y
i(x′, y′)

where ii is the integral image, ii(x, y) is a position in the integral image, i the original image and
i(x’, y’) refers to a position in the original image. The integral image can also be computed more
efficiently using a recursive formula:

ii(x, y) = ii(x− 1, y) + ii(x, y − 1) − ii(x− 1, y − 1) + i(x, y)

This integral image has to be computed only once per image, after which every feature for
every sub-image can be efficiently calculated (as mentioned, one only has to use the integral image
values at the corners of a rectangle). How this is done is best explained when considering Figure
2.2b. In this figure, four different locations and regions are marked. The question is how one can
obtain the sum of the pixels within D as this region represents any random rectangle within the
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(a) Example rectangle features. A and B show
two-rectangle features, C shows a three rect-
angle feature and D shows a four rectangle
feature.

(b) The integral image-value at position 1 is the
sum of the pixels within A, the value at position 2
is A + B, the value at position 3 is A + C and the
value at position 4 is A + B + C + D.

Figure 2.2: Taken from Viola and Jones (2004).

image (that is not against the border of the image). Expressed in the marked locations within the
integral image, the answer is 4 + 1 - (2 + 3). It is this simplicity that makes calculating the features
so efficient. One rectangle can be computed with just 4 references to the integral image by using
simple additions and subtractions. A two-rectangle feature can be computed with 6 references,
a three-rectangle feature with 8 references and a four-rectangle feature with 9 references. Thus,
by computing the integral image a priori, a lot of computations on the original image that would
otherwise be required are prevented.

2.1.2 Computational Costs

The computational cost of using the Viola-Jones algorithm is determined by three major factors.
The first factor is the cascade itself. The higher the amount of classifiers in the cascade and the
more features they use, the more calculations that need to be performed. Luckily this should not
matter too much if the cascade has been constructed correctly, but it matters enough that it is
worth mentioning. The second contributing factor is the image resolution. The larger the image,
the more possible sub-images there are that need to be considered and thus more time is consumed
by judging them. The last factor is the scaling factor of the size of the sub-images, as the smaller
this factor is, the longer it will take before the size of the sub-images is as large as the image
itself. This means that more sub-images will be considered by the algorithm before it stops, which
consumes more time.

The last two factors can be directly influenced, the first one however can not as pre-trained
classifiers are used (see Section 3.6 for more information on this) and unfortunately influencing the
other two has a direct influence on the results of the algorithm. However, preliminary tests have
shown that there is room to finetune the settings so that acceptable results can be achieved while
maintaining reasonable computation times.
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(a) (b)

Figure 2.3: Figure (a) shows sample data with a dimenstionality of two, along with the first and second
principal components. The first principal component is the bottom line in the figure, the second principal
component is the top line. In Figure (b) the data has been restructured according to the first principal
component,which accounts for the most variability in the data. This data can now be displayed on a single
axis. Taken from (Albanese, Visintainer, Merler, Riccadonna, Jurman, and Furlanello, 2012).

2.2 Principal Component Analysis

The foundation of principal component analysis (PCA), formerly known as the Karhunen-Loève
procedure, was laid in 1901 by K. Pearson (Pearson, 1901). It was first applied in a facial context
by M. Kirby and L. Sirovich in their paper ’Application of the Karhunen-Loève Procedure for the
Characterization of Human Faces’ (Kirby and Sirovich, 1990) in which they explained how PCA
could be used to represent images of faces in a way that they could be further processed by a
computer. Their approach is best summarised by quoting the authors directly: ”The goal of the
approach is to represent a picture of a face in terms of an optimal coordinate system. (. . . ) The set
of basis vectors which make up this coordinate system will be referred to as eigenpictures. They
are simply the eigenfunctions of the covariance matrix of the ensemble of faces.”. Their idea was
then expanded upon by A. Turk and A. Pentland who expressed new images in terms of this new
coordinate system and used this vector to compare it to the eigenvectors of sample pictures. The
result of such a comparison is the Euclidian distance between two vectors, which can be seen as a
measure of error. By determining which of the existing vectors has the lowest distance to a new
vector, the image corresponding to this vector can be labeled as containing or displaying the person
that is depicted in the picture of the closest existing vector.

Explained in just a few sentences, PCA is a technique for transforming data from one coordinate
system into another that describes the variance in the data more optimally. During this process
dimensionality reduction can take place for data compression or to make further processing easier.
How this is done will be explained in the next section, Section 2.2.1 and a visualisation of example
input for the algorithm and the corresponding result is shown in Figure 2.3a and 2.3b.
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2.2.1 Mathematical Procedure for PCA

This section explains the mathematical procedure which performs PCA step by step in order to try
and increase the understanding of the technique. The structure of this section and the explanation
were based on the writings of Lindsay I. Smith (Smith, 2002).

The kind of data that is used in face recognition by PCA are grey-scale images of N by M
pixels and one image can be seen as a point in an N*M dimensional space in which every pixel is
a feature.

Step one: subtract the mean In order for PCA to function properly, for every variable
(dimension) in the gathered data the mean of that variable must be subtracted. The mean of a set
of numbers is calculated as:

X̄ =

∑n
i=1Xi

n

Step two: calculate covariance matrix Step two is to calculate the covariance matrices
between the features of the data. Covariance is a measure of how much features vary from their
mean with respect to each other. The formula to calculate the covariance is

cov(X,Y ) =

∑n
i=1(Xi − X̄)(Yi − Ȳ )

(n− 1)

where X and Y are features (pixels in the images), Xi an element of X from training image i, X̄
the mean of feature X (the mean of the pixel value over all the training images) and n is the total
number of data samples.

Because a lot of features are involved with images (every pixel is a feature), there are also a lot
of covariance matrices involved. The amount of covariance matrices can be calculated with n!

2∗(n−2)!
where n is the number of features, which becomes an awful lot when dealing with a large number
of features. However, these matrices can be put together in one big n * n matrix.

Step three: calculate the eigenvectors and eigenvalues of the covariance matrix
For any square matrix of n ∗n there are n eigenvectors and n eigenvalues. Every eigenvector has a
corresponding eigenvalue, which can be seen as some sort of ’weight’ for the eigenvector (see step
four). All these eigenvectors are orthogonal to each other within the dimensions in which they are
defined and they can be seen as a line within n-dimensional space. Making the jump back to the
original data, an eigenvector can be seen as a new axis within the original space which can be used
to express the data.

Step four: choosing features and forming a feature vector As previously mentioned,
an eigenvalue can be seen as some sort of weight for its corresponding eigenvector and the eigenvector
with the highest eigenvalue is called the principle component of a data set. This means that it best
captures the variance between the data points in the data set on just one axis. Of course, if just
one single eigenvector would be used to describe the data, a lot of information would be lost as
only all eigenvectors together describe the data completely. Leaving out any eigenvector results in
a loss of information.

This is where dimension reduction becomes possible. If you order all the eigenvectors based on
their eigenvalues you could choose to discard the eigenvectors with lower eigenvalues, as they are of
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Figure 2.4: Visual representation of examples of eigenfaces (eigenvectors of faces). Notice that just as
eigenvectors go from very descriptive to less descriptive the images become less expressive.

the least importance in describing the data. By doing this information is lost, but your new data
set expressed in terms of the remaining eigenvectors has a lower dimensionality. The remaining
eigenvectors become the new features of your data and they together form your new feature vector.

Step five: transforming the original data set into one based on the new feature
vector The next step is to actually transform the original data into a new data set based on the
selected features in the feature vector. This actually is the most simple step, as can be seen in the
formula below:

NewData = FeatureVector x OriginalData

This formula can also be applied on new data to transform it to the newly determined dimensions.

2.2.2 Computational Costs

The computational costs of the recognition part of the PCA algorithm is only dependent on two
factors. The first factor is the length of the chosen feature vector, since the longer this vector is,
the more computations have to be done when expressing an input image in these features and the
longer it takes to calculate the distance between pictures (although this last point is negligible). The
second factor is the image resolution since a higher resolution directly leads to more computations.
The advantage here though, is that both these factors can be influenced if there is a need for it,
which allows experimenting with different settings.
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Chapter 3

Approach

Now that the selected algorithms have been explained, their role in the algorithm that solves the
face and facial gesture recognition problem can be examined more closely. Previously in Section
1.2 the three phases or subproblems for such an algorithm were defined as:

1. Locate regions of interest (ROIs)

2. Perform face recognition

3. Perform gesture recognition

In the next sections these phases will be investigated in detail and for each phase, possible solutions
will be explored.

3.1 Defining and Locating Regions of Interest

Defining the gestures and regions of interest for this application Before any ROI’s
are located it must first be defined what a ROI actually is and what regions qualify for being
classified as interesting. A region of interest is a sub-image which contains something of importance.
For this application it is clear that an area in an image containing a face is an interesting region,
as within such a region the facial gestures will be performed. Also, in order to perform a face
recognition algorithm the image of a face is required as input. However, it is still not clear what
regions within the facial area must be monitored in order to recognize any performed gestures, as
the gestures themselves have not yet been selected and defined yet. A list of gestures which are
used in this application is listed below along with a short description (see Figure 3.1 for examples
of some of the gestures).

• Eye winking - A wink-gesture is considered as being performed when an eye is closed. This
gesture can be performed by both eyes individually. This means that two possibilities exist
for performing this gesture, effectively making it two different gestures for the program.

• Smiling - A smile-gesture is a gesture when one simply uses his or her mouth to smile.

• Sticking tongue out - This gesture is considered as being performed when a person sticks
their tongue out of their mouth so that it can be clearly observed.
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Figure 3.1: Examples of possible gestures that can be performed.

• Head tilting - The head tilting gesture can be performed by either tilting the head to the
left or to the right. Just as with the wink-gesture, this means that effectively there are two
gestures that can be performed.

It is also useful to define the neutral state of a face when no gestures are performed. This neutral
state is when both eyes are open, the mouth is closed in a relaxed state while the head is held
straight.

Now that the gestures have been defined, it is easy to deduct from the first three gestures that
the eyes and mouth are regions of interest. However, the head tilting gesture has no specific regions
of interest, apart from the whole face perhaps. Because it might be difficult for an algorithm to
determine from an image of a face whether a head is tilted or not, another option might be more
suitable. One such option is to use the information that can be deducted from regions of interest
that have already been defined, the eye regions. How this and each of the other gestures are
recognised will be explained in detail in Section 3.3. In summary, the regions of interest that must
be located are:

• The face region

• The eye regions

• The mouth region

Of these regions the last two can be found within the first region. Therefore, finding a face region
is considered to be stage one and finding any other regions is considered stage two in the process
of finding ROI’s.

Finding the regions of interest After defining the relevant regions of interest, the problem
of actually finding them has to be solved. This is not a trivial task as finding an object in an image
is difficult for a computer. This is where the Viola-Jones object detector is utilised. The first step
for finding all regions of interest is scanning every image in the camera stream for faces with a
Viola-Jones classifier. Once a facial region has been found, other Viola-Jones object detectors will
further process the selected sub-image in order to locate the eye and mouth regions. This process
of finding the relevant ROIs is visualised in Figure 3.2.

3.2 Face Recognition

For the face recognition task the PCA algorithm is used. The input images the algorithm operates
upon are the facial regions of interest that are found in the first stage in the process of finding the
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Figure 3.2: Process of locating the regions of interest.

ROIs (see Figure 3.2). Normally PCA classification gives the distance between an input image and
the closest image and the corresponding label as output, thereby determining who is shown in the
input image. However, in this setup the algorithm has been trained with images of just one person,
so the decision whether the correct person is shown must be made differently. Instead the distance
is transformed to a confidence score between [-1, 1] where a score of -1 means the distance is bigger
than the default threshold of the implementation of the algorithm and a score of 1 means the input
image is exactly the same as one of the input images. Using such a score, a threshold value can be
picked and if the score for an input image is above this threshold, it is considered as being similar
enough to the images of the faces it has been trained with in order to be accepted.

However, the determination of such a threshold requires careful consideration, as a program
that is too lenient might result in someone getting unauthorised access to the program. On the
other hand, a threshold that is too strict might lead to the denial of access to a person that actually
is entitled to access, resulting in frustration, annoyance and a generally undesirable situation. In
reality the chance of someone being wrongfully rejected is higher than the chance of someone being
wrongfully accepted, due to the variance in conditions and the effect it has on the PCA algorithm.
Therefore it is possible to choose a relatively lower threshold of 0.4. This is sufficiently low for a
person to authenticate himself in different conditions, but high enough to prevent an unauthorised
person from gaining access. See Section 4.2.3 for supporting numbers on why this threshold has
been chosen.

3.3 Gesture Recognition

The used methods for determining if any gestures are performed differ per type of gesture. In the
following paragraphs the methods that were used for each type will be explained shortly. The one
factor that is constant between the used methods is that they all use the ROI’s that were found in
the second stage of the process of locating the ROI’s (see Figure 3.2)

Mouth gestures Any of the possible mouth gestures (smiling and sticking the tongue out) are
recognised by using the PCA algorithm. As this algorithm requires sample pictures for training,
there is a training process during which those are gathered. For more information on the training
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Figure 3.3: Calculating the angle α so it can be determined if a head is tilted to the left, to the right or
not at all.

process, see Section 3.4. As opposed to how PCA is used in this application for face recognition (as
described in Section 3.2), it is sufficient for the algorithm to find the closest training image and its
corresponding label and classify the input image with this label. As the label corresponds directly
to the performed gesture, no further processing is required.

Eye gestures For recognising eye gestures (winking with the left or right eye) two Viola-Jones
object detectors are used. The first one is a detector that detects both open and closed eyes. The
second detector only detects open eyes. Every frame serves as input for both detectors and from the
difference between the output of these detectors it can be deducted whether or not a wink-gesture
is performed. This is because if the first detector does detect an eye where the second detector does
not detect an eye, it is likely that the eye is closed. The results of two Viola-Jones cascades are used
here as opposed to the PCA algorithm is because preliminary tests showed a poor performance of
the PCA algorithm when it was used to detect the different eye gestures. Experiment 5 as described
in Section 4.1 aims to provide numbers to back up this claim.

Head gestures Instead of using an advanced recognition algorithm for detecting the head tilt-
ing gestures, a simple calculation which uses some of the information that is already available is
sufficient. This calculation is based on the detected eye regions by the Viola-Jones detector that
detects both open and closed eyes. First, the centers of the detected eye regions are calculated.
Between these two centers you could hypothetically draw a line and then measure the angle between
that line and the horizontal axis. See Figure 3.3 for an illustration of this concept. Below are the
mathematical steps that must be performed in order to calculate the angle.

x′ = C2.x− C1.x

y′ = C1.y − C2.y

α = tan−1
x′

y′

where C1 is the center of the left eye region and C2 the center of the right eye region.

Once α has been calculated it can be determined how much it differentiates from the 0-degree
mark, which is what you get if the center of the eye regions are at exactly the same height. Based on
pilot studies it was concluded that a head can be classified as being tilted if the absolute difference
is larger than 10 degrees. Whether it is tilted to the left or the right depends on whether or not
the angle is positive or negative (of course an angle cannot be negative, but the result from the
equation can be negative). If it is positive the head is tilted to the left (in the image) and if it is
negative it is tilted to the right (in the image).
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Figure 3.4: Visualisation of the training process during which data is gathered of the user performing
gestures.

3.4 Training the Program and Gathering Data

In order for the system to work properly, personalised data must be gathered of all the possible
gestures that are recognised with the PCA algorithm (the Viola-Jones object detectors also need
to be trained, see Section 3.6 for information on how that is handled). As face recognition was
also performed with PCA, sample faces also must be obtained. So in order for a user to be able
to use this authentication method, they must first go through a training process during which the
required samples are gathered. During this process, the user is asked to perform every relevant
gesture (a gesture that is classified by PCA) twice. Every time a gesture is performed, two samples
are taken which means that there are in total four samples per gesture. The reason that two samples
are taken per time the user performs a gesture, is because the detected regions within which the
gestures are performed are different for each input frame. This means that the exact same gesture
is captured, but that the sample image is different which gives PCA extra data to train with. The
whole training process can be described in the following steps, which are also visualised in Figure
3.4:

1: Give standby command - allow user to relax
2: Wait 2000 ms.
3: Give gesture command - instruct user to perform a gesture
4: Take sample pictures at 1800ms. and 2200 ms
5: After 3000 ms. repeat steps 1 through 4
6: Display end-of-training-message
7: Train classifiers on gathered data

It has not been explained yet why the sample pictures are taken at 1800 and 2200 ms. The
reason for these times is that first and foremost the user must be able to react to the given command
of what gesture to perform. Various research has shown for human reaction times to range from
anywhere between 200 ms. to 600 ms. depending on the type of stimulus, the type of response that
is required and if a person is primed for the stimulus or not (Kosinski, 2010). Instead of taking all
these factors into account, simply rounding it up to 1000 ms. should be enough time for a person to
react to a given command. Also, the correct estimation of a user’s reaction time is of no importance
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Figure 3.5: Sample training data that is obtained during the training process. The top two rows show
faces performing the various gestures and are used to train the face recognition algorithm. The two middle
rows show the left and right eye for the two possible gestures (note how in the second eye row a nose got
classified as an eye by the Viola-Jones cascade). The last row shows the collected data for mouth gestures.
The resolution of the obtained images have a resolution of respectively 130 x 180, 36 x 24 and 50 x 30 pixels.

whatsoever for this application, so it is not further investigated. This leaves 2000 ms. to pick two
moments for gathering data and around halfway the remaining time is the logical choice. This is
because if the picked moment is too early the user’s face might not yet be perfectly still. On the
other hand, if a picked moment is too late, the user might either get tired from performing the
gesture or anticipate the end of the period during which they have to perform the gesture and relax
their face. Also, these moments must not be too close together as the time it takes for the camera
stream to supply a new image cannot be guaranteed. Because of these reasons the two chosen
moments are at 1800 ms. and 2200 ms.: they are 400 ms. apart which should be enough for the
camera to supply a new image and the moments are nicely around the 1000 (+1000) ms. mark,
which is half of the remaining 2000 ms. After the user has completed the training process, the PCA
algorithm will be trained on the gathered data so that it can be used for detection straight after.
Sample data which is the result of the training process is displayed in Figure 3.5.

3.5 Authentication Process

Every time a user wants to authenticate himself, they must successfully complete the authentication
process. This process is visualised in Figure 3.6. In order to complete the process, a sequence of
randomly determined gestures must be correctly performed by the user. The number of gestures
that needs to be performed is predetermined and is consistent between authentication attempts.
A gesture is considered performed after it has been recognised for a period of 1000 ms. without
interruption. Straight after a gesture has been performed the command is given for the next gesture
(but only if the user has not yet performed the complete sequence of gestures). The program does
not start monitoring for the new gesture start straight away, but instead it waits for 1000 ms. to
allow the user to actually react to the command (see Section 3.4 for a short explanation about
this). After this time the monitoring for the new gesture starts. Should the program detect the
performance of any other gesture than the required one for a 1000 ms. or more, the authentication
process fails immediately.

However, the correct performance of the required gestures is not the only criterion. In the
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Figure 3.6: Visualisation of the authentication process.

background the face recognition algorithm is checking whether or not the face of the person that
is trying to authenticate matches with the face of the person that trained the algorithm. Only if
all gestures are performed correctly and the faces match will a person succeed in authenticating
himself. This process can be summarised in the following steps, which have also been visualised in
Figure 3.6:

1: Start face recognition process in background
2: Give first gesture command to user
3: Wait 1000 ms. to allow for reaction time
4: Monitor if any gesture is performed for at least 1000 ms.
5:

6: if gesture is detected and it is correct then
7: if more gestures then
8: repeat steps 2 through 6
9: else

10: continue with step 16
11: end if
12: else
13: abort authentication and inform user
14: end if
15:

16: if detected face similar enough to trained face then
17: continue with step 22
18: else
19: abort authentication and inform user
20: end if
21:
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22: authentication successful and grant access

It is likely that not every input image of a face passes the threshold required in order for it to
be classified as being the correct face. Because of this, it is not required that every image passes
the threshold, but rather a percentage of the total amount of frames.

3.6 Implementation and Technical Details

This section describes the program that has been created according to the processes as described in
Section 3.4 and 3.5. A screenshot along with an explanation of the different interface components
can be found in Figure 3.7. It has been programmed in the programming language Java, which is
the native language of the Android Operating System. The usage of the Java language facilitated
the use of the JavaCV library, which is the wrapper of OpenCV library, an open source computer
vision library. This library contains implementations of the Viola-Jones Object Detection algorithm
as well as the Principal Component Analysis algorithm. Both these implementations where used in
the program that was written. JavaCV version 0.2 and OpenCV version 2.4.2 were used which can
be obtained respectively from http://code.google.com/p/javacv/ and http://opencv.org/.

Instead of training my own Viola-Jones detectors, pretrained cascades were used. Two of the
detectors, the face detector and the open eye detector, were included with the OpenCV library.
Three other detectors that were used, a mouth detector and a left and a right eye detector for both
open and closed eyes, were created by M. Castrillon et al. for their research (Castrillon-Santana,
Deniz-Suarez, Anton-Canalis, and Lorenzo-Navarro, 2008) and are freely available.

This proof-of-concept program has been used mainly for experiments which could be better
performed on a regular computer than a smart-phone. Therefore parts of the program, like the
obtaining of images from the camera stream, are specifically designed for the Windows operating
system. However, the algorithms themselves are platform independent. Any platform specific code
has been coded for both the Windows and Android operating systems and a transition between
these systems should not be a problem. The only expected difference between these platforms
could be increased computation times due to the fact that the Android operating system typically
is installed on devices with limited computing capabilities. This fact should have no impact on the
accuarcy of the suggested application. The used laptop is equipped with a Amd Athlon II Dual-
Core M300 2.0 Ghz CPU, 4096MB RAM and had the Windows 7 Professional 64 bit operating
system installed.

Because of the low computing power of smart-phones everything must be run on a lower res-
olution in order for the algorithms to run at real-time. In order to get results when running the
program on a computer with Windows OS that are comparable to the results you would get when
running the program on a smart-phone with Android OS, the difference in resolution is taken into
account. All obtained camera images are resized to to a resolution of 240 * 160 pixels, which is
one of the possible resolution settings for camera’s in a smart-phone. This image gets downsized
with a factor of 4, resulting in an image of 60 * 40 pixels. It is in this small image that the Viola
Jones algorithm searches for faces. When it has found a face region, the region is translated to the
larger image. Then the region in the larger image is used to find the other ROI’s. The advantage
of scaling the original image down is to save the computing time which would be necessary for the
full-scale image. The larger image is then used again because the Viola-Jones detectors are unable
to find the other ROI’s within the small region that would be left over from the 60 * 40 pixels.
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Figure 3.7: Interface of the program that was used to perform the experiments. A) shows the original
camera input image from the input stream, which has a resolution of 640 x 480 pixels. B) shows the original
image scaled down to the possible size of the images from a smartphone, a resolution of 240 x 160 pixels,
and marks the found ROIs. C) shows the image of B) scaled down by factor 4, resulting in a resolution of
60 x 40 pixels, which is used for face detection. D) Is the gesture-feedback area and shows which gestures
are performed. E1 & 2) are buttons that were useful in setting up the experiments and gathering illustrative
pictures. F), G) and H) are buttons that respectively start the training process, train the classifier on the
gathered data and start the authentication process. I) is the instruction area where the user can see what
has to be done. J) shows the similarity value as result of the face recognition algorithm.

19



20



Chapter 4

Experiments & results

In order to be able to judge the chosen algorithms and the authentication method as a whole, various
experiments have been performed. In the next Section, Section 4.1, every performed experiment
and what it aims to investigate will be explained in detail. The results will be presented in Section
4.2 and shortly discussed in Section 4.3.

4.1 Experimental Setup

The performed experiments can be divided into three categories: experiments that determine the
recognition rate of gestures, experiments that determine if the program can be used successfully
for authentication and experiments that determine the generalisation capabilities of the classifiers.
The order in which these categories are listed is also the order in which the experiments will be
presented in the following sections.

4.1.1 Determining Recognition Rates of Gestures

The first thing that is interesting to determine is the recognition rate of all performable gestures in
order to be able to evaluate the chosen algorithms. By doing this, both the ROI’s that were found
by the Viola-Jones cascades and the gesture recognition methods can be evaluated. When doing
this, it is interesting to see how the different methods perform in different conditions compared to
the standard conditions. The standard conditions of an experiment are defined as:

• The experiment is performed straight after training
• The resolution of the images in which is searched for the non-face ROI’s is 240*160
• Two Viola-Jones cascades are used to determine the performed eye gestures

During such an experiment a subject is asked to perform all gestures in succession during which
all detected ROI’s are recorded and classified. From this data the relevant results can be derived.

Experiment 1: Baseline performance The first experiment aims to establish a baseline
with the standard conditions so that the results from the other experiments can be compared to
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the results from this experiment. Also, the average time it takes to process one frame is measured
in order to be able to determine differences in computation time.

Experiment 2: Different lighting conditions Different conditions than the conditions a
person trained to program in can affect the performance of the PCA algorithm. The goal of this
experiment is to investigate the effect of different lighting conditions by training the program in
conditions where the face is evenly and clearly lit. Testing then takes place in darker conditions
with less uniform lighting. This was achieved by simply switching the lights on and off while a
second source of lighting, sunlight coming in through a window in the roof of the room, remained
unchanged.

Experiment 3: Data from two training sessions The amount of training data might
influence the performance of the PCA algorithm, especially if the data is gathered in different
lighting conditions. In this experiment data from two different lighting conditions is taken (the
data of the first and second experiment) and the performance is measured. The average processing
time per frame is also measured in order to determine the influence of extra data data samples on
the processing time.

Experiment 4: Different resolution In this experiment a higher resolution than normal is
used: a resolution of 360*240 pixels which increases the amount of pixels by a factor of 2.25. This
means that the found ROI’s are of a higher resolution as well and thus contain more information.
This could be of effect for the Viola-Jones cascades and the trained PCA classifier, which is inves-
tigated in this experiment. This experiment also measures the average processing time per frame
to determine the influence of higher resolutions.

Experiment 5: Using PCA for eye gestures In the final experiment it is investigated
how a PCA classifier performs at the task of classifying eye gestures in comparison to the two
Viola-Jones cascades. Undoubtedly this will also influence the average processing time per frame,
which will be measured as well.

4.1.2 Authentication Success Rate

Of course it is important to measure the success rate of authentication and different experiments
are performed to determine this rate. The starting point is the same as the standard conditions
as previously defined in Section 4.1.1. For every experiment 20 attempts at authentication were
performed and in order to succeed the subjects had to perform a random gesture sequence of 4
gestures. The similarity threshold for faces is set at 0.5 as it is expected to provide a high enough
bar which is expected to be unreachable when another face is presented. The required percentage of
faces of which the similairty value must exceed this threshold of the total amount of frames during
an authentication attempt was set at 7.5%, because it is expected that different lighting conditions
will make it difficult for the correct face to reach this threshold. These experiments were performed
by three subjects.

Experiment 6: Straight after training This experiment aims to establish a baseline against
which the other authentication experiments can be compared and it is performed straight after
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training the program. The experiment is performed as described directly above: 20 authentication
attempts are performed during which a sequence of 4 random gestures must be completed.

Experiment 7: Different conditions than training conditions In different lighting
conditions this method of authentication should also be usable and this experiment aims to deter-
mine if this is possible. Again, a subject has to try and authenticate himself 20 times by completing
a sequence of 4 random gestures. However, this time the experiment is performed in different light-
ing conditions than the algorithm was trained in.

Experiment 8: Using a classifier trained with data from two conditions As pre-
viously suggested in experiment 4, extra training data might be of influence on the performance of
the algorithm. This algorithm investigates if there is an increase in the authentication success rate
if training is performed with data gathered in two different lighting conditions.

4.1.3 A Classifier’s Ability to Generalise

An important question to ask is whether or not a trained classifier generalises well and if it is able
to classify the gestures of a person if it is trained to detect the gestures of another person? The
answer to this question is of direct importance for the security of this authentication method. If the
classifiers generalises well, it becomes more important that a face is properly recognised and the
purpose of using gestures will be solely to make sure that no picture of a face is shown. However,
should the classifiers not be able to generalise well and it cannot recognise the gestures of a person
it is not trained for, it adds to the security value of the program and the face recognition itself
becomes of less importance. These experiments were performed by two subjects, the same as those
who performed experiment 1 through 5.

Experiment 9: Recognition of gestures between subjects This experiment aims to
determine whether or not a classifier can recognise the gesture of one person when it is trained for
recognising the gestures of another person. The conditions in which this is tested are the same as
described in Section 4.1.1, however, the images that were used for training are the images of the
other subject.

Experiment 10: Distance between faces in different settings and between persons
Lastly, it is important to determine how much the face recognition classifier considers person to be
the same in order to be able to determine a proper threshold for face recognition as described in
Section 3.2. This experiment aims to determine a threshold by inspecting the obtained similarity
values from the experiments 1, 2, 3 and 9. When these experiments where performed, the required
data for this experiment automatically collected and it should provide insight what the influences
of the different settings are. It should also become clear what happens if a person other than the
person the program got trained to recognise is presented.

4.2 Experimental Results

The results of the performed experiments will be presented in this section. They are ordered in the
same manner as they were listed in Section 4.1.
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4.2.1 Recognition Rates of Gestures

The results of the experiments that determine the performance of the gesture recognition methods
are described here. These experiments were performed by two subjects and the results of these
experiments will be presented per gesture per subject. For every combination, two numbers will
be reported: the precision value for the Viola-Jones cascades and the recall value of every gesture.
Both precision and recall are measurements of performance. Precision is a measure for determining
how many detections are actually correct. Recall measures how many instances of a class actually
got detected. Precision is defined as:

Precision =
TruePositives

nTruePositives + nFalsePositives

and recall is defined as:

Recall =
nTruePositives

nTruePositives + nFalseNegatives

In Appendix A the confusion matrices are listed, which is the data on which the presented
precision and recall values are based. Such a matrix displays how many times a gesture gets
classified correctly or as another gesture. A row stands for the actual performed gesture and the
columns are the gestures it is recognised as. In the cells the percentages are displayed as measure
of how many times an event occurred. Within these matrices, there are also a row and a column
labeled “v-j fault”. The number in the cell where this row and column cross stands for the amount
of times the viola-jones algorithm selected the wrong ROI as a percentage of the total number of
frames. A Viola-Jones error always leads to the wrong classification of the supposedly displayed
gesture as there is no right answer. These misclassifications are not taken into account in other
cells, hence the extra cell to display this error.

When relevant, the mean and standard deviation of the processing time per frame will be
reported (in ms.). Note that the processing time in the Viola-Jones tables also includes the detection
time of the second eye cascade, which detects only open eyes (except for experiment 5). The
processing times listed in the gesture recognition methods tables correspond to the time it takes
for the PCA algorithm to classify mouth gestures (and in experiment 5 also eye gestures) and for
determining the gestures of the other regions.

Experiment 1: Baseline performance In Table 4.1 and Table 4.2 the precision and recall
values are listed for experiment 1 of which the purpose was to establish a baseline for performance.
In these tables it can be observed that the Viola-Jones cascades perform their job adequately and
achieve high precision values.

Where the gestures are concerned, the head gestures get recognised reasonably well, except for
the ‘Head: tilt right’ gesture for subject s02. This is due to mistakes in the located eye regions by
the Viola-Jones cascade, as no special classifier is in charge of classifying head gestures. Also, the
‘Head: straight’ and ‘Head: left’ are correctly classified and these are determined in the exact same
manner as the ’Head: right’ gesture and which have just as much chance of getting misclassified.

For the eye gestures, the ‘Eye: wink’ gesture poses a problem (especially for subject s02), while
the ‘Eye: open’ gesture is classified reasonably fine. This could indicate that the second Viola-Jones
cascade (the one that only recognises open eyes) might actually perform too well in the sense that
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it also detects closed eyes which would lead to the ‘E: wink’ gesture being classified as an ‘E: open’
gesture.

The mouth gestures have mostly been classified correctly, with the exception of the ‘Mouth:
tongue’ gesture for subject s01.

Table 4.1: Baseline precision values and computing times of the Viola-Jones cascades.

Head Eye Mouth

s01 1.00 1.00 1.00
s02 1.00 0.97 0.99

avg. ms./frame 125.5
std. dev. 16.3

Table 4.2: Baseline recall values and computing times for the gesture recognition methods.

Head: Head: Head: Eye: Eye: Mouth: Mouth: Mouth:
straight tilt left tilt right open wink normal smile tongue

s01 0.93 1.00 0.88 0.84 0.68 0.99 0.94 0.50
s02 0.95 1.00 0.27 0.90 0.32 0.89 1.00 1.00

avg. ms./frame 3.0
std. dev. 0.5

Experiment 2: Different lighting conditions For this experiment the corresponding pre-
cision values can be found in Tables 4.3 and 4.4. The Viola-Jones precision values only tell that
different lighting conditions do not seem to influence the cascades.

There are some changes in the recall values of the gestures that can be observed. The change
in conditions was expected to only have an influence on the performance of the PCA algorithm,
but it seems that it is of influence on the second Viola-Jones cascade. The ‘Eye: wink’ gesture
got a worse score for subject s01, while it improved for subject s02, which is in contrast with the
improvement for the ‘Eye: open’ gesture for subject s02.

As expected, the change in conditions was of influence on the classification of mouth gestures
as well, as can be observed by looking at the values of ‘Mouth: tongue’ for subject s01 and ’Mouth:
normal’ for subject s02.

Experiment 3: Data from two training sessions Using data from two training sessions
is expected to only be of influence of the classification of mouth gestures, as the PCA algorithm
is the only classification method that benefits from training data. This is why only mouth-related
information is displayed. The results of this experiment are presented in Table 4.6. When comparing
this table to Table 4.2 from the first experiment, it can be observed that the recall values of the
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Table 4.3: Precision values of the Viola-Jones cascades in different conditions.

Head Eye Mouth

s01 1.00 1.00 1.00
s02 1.00 1.00 1.00

Table 4.4: Recall values and for the gesture recognition methods in different conditions.

Head: Head: Head: Eye: Eye: Mouth: Mouth: Mouth:
straight tilt left tilt right open wink normal smile tongue

s01 1.00 1.00 0.53 0.96 0.53 1.00 0.86 0.00
s02 0.97 0.75 0.00 0.29 0.95 0.64 0.89 1.00

‘Mouth: smile’ and ‘Mouth: tongue’ gestures improved, but that for subject s01 the value for the
‘Mouth: normal’ gesture decreased. Also, just like the amount of training images doubled, the
processing time for classifying the gestures doubled.

Table 4.5 shows the corresponding Viola-Jones precision values and the processing time, which
are not much different from the values presented in Table 4.1 from experiment one. Table 4.5 is only
presented to validate the claim that extra training is not of influence for the Viola-Jones cascades
(and thus not of influence on the classification of the other gestures that are not listed).

Table 4.5: Precision values and computing times of the Viola-Jones cascades with data from two training
sessions.

Mouth

s01 1.00
s02 1.00

avg. ms./frame 126.3
std. dev. 21.1

Experiment 4: Different resolution The use of higher resolution input images could in-
fluence the gesture recognition methods, as more information is available and this experiment
investigates this.

In Table 4.7 the precision values and computing times are reported and when these are compared
to the precision values in Table 4.1 from experiment 1, it can be observed that the eye cascades
performed worse, if only slightly. Aalso apparent is the fact that the average computation time per
frame more than doubled. This does not come as a surprise as the amount of pixels in the input
images increased by a factor of 2.25.

When comparing the recall values from this experiment as displayed in Table 4.8 to the recall
values from experiment 1 in Table 4.2, the lack of recognition of the ‘Eye: wink’ gesture can not
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Table 4.6: Recall values and computing times for the mouth gesture recognition method trained with data
from two training sessions.

Mouth: Mouth: Mouth:
normal smile tongue

s01 0.79 1.00 1.00
s02 0.92 1.00 1.00

avg. ms./frame 6.0
std. dev. 0.8

be missed. The recognition of mouth gestures seems to have improved for subject 1, while no ‘M:
tongue’ gestures are recognised anymore for subject 2. Also the average computation time per
frame doubled here, just like the time for the Viola-Jones cascades.

Table 4.7: Precision values and computing times of the Viola-Jones cascades with a base resolution of 360
x 240 pixels.

Head Eye Mouth

s01 1.00 0.96 1.00
s02 1.00 0.98 1.00

avg. ms./frame 266.3
std. dev. 42.8

Table 4.8: Recall values and computing times for the gesture recognition methods with a base resolution
of 360 x 240 pixels.

Head: Head: Head: Eye: Eye: Mouth: Mouth: Mouth:
straight tilt left tilt right open wink normal smile tongue

s01 0.98 1.00 1.00 1.00 0.00 0.98 1.00 1.00
s02 1.00 1.00 0.29 1.00 0.00 0.89 1.00 0.00

avg. ms./frame 6.5
std. dev. 1.0

Experiment 5: Using PCA for eye gestures As this experiment determines whether
there is a difference between using two Viola-Jones cascades or the PCA algorithm to classify eye
gestures, only eye-related information is of relevance and will be displayed.

When comparing the precision values in Table 4.9 from this experiment to values in Table
4.1 from experiment 1 the difference in the average processing time per frame becomes clear. It
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seems that the second Viola-Jones cascade for eye detection added roughly 25 ms. to the average
computation time per frame to detect open eyes.

The recall values in table 4.10 show that the detection of winks has worsened when compared
to the results displayed in Table 4.2 of experiment 1. Also, the average processing time per frame
did increase by roughly 5 ms. which is no surprise as the PCA algorithm is now performing an
additional task.

Table 4.9: Precision values and computing times of the Viola-Jones cascades when PCA was used to classify
eye gestures.

Eye

s01 0.99
s02 1.00

avg. ms./frame 101.4
std. dev. 14.9

Table 4.10: Recall values and computing times when PCA was used to classify eye gestures.

Eye: Eye:
open wink

s01 0.89 0.43
s02 1.00 0.00

avg. ms./frame 8.2
std. dev. 1.3

4.2.2 Results of Authentication Experiments

In this section the results of the authentication experiments, experiments 6, 7 and 8, are shortly
presented and are shown in Table 4.11. What is directly apparent is the fact that only subject s01
managed to authenticate successfully using the program. Using the training data from two training
sessions did improve results somewhat, but only for subject s01 while subject s03 and s04 were still
unable to authenticate themselves. For subject s03 this was due to the fact that only every eye
gesture got classified as a wink, while for subject s04 only the smile-gesture got recognised in the
mouth region. This means that authentication would fail the moment any other gestures would
have to be performed, as gestures must be performed exclusively and not in combination with other
gestures.

4.2.3 Results of Generalisation Experiments of Trained Classifiers

The results of the experiments that determine the generalisation capabilities of a trained classifier
are described in this section.
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Table 4.11: Results of the authentication experiments

.

Straight after training Different conditions Combined data

s01 success rate 0.10 0 0.35
s03 success rate 0 0 0
s04 success rate 0 0 0

Experiment 9: Recognition of gestures between subjects The only relevant results
for this experiment are the recall values of the mouth gestures, as the mouth region is the only
region that is classified by the PCA algorithm, which is the only algorithm that is influenced by
training. These recall values are presented in Table 4.12. When comparing these values to the
recall values in Table 4.2 from experiment 1 the first noticeable fact is that the recognition of the
‘Mouth: normal’ gesture got a little bit worse. The recognition of the ‘Mouth: tongue’ gesture
actually improved for subject s01, while classifying it correctly failed completely for subject s02.

Table 4.12: Recall values and for the mouth gesture recognition method of the between-subject gesture
recognition experiment.

Mouth: Mouth: Mouth:
normal smile tongue

s01 vs s02 0.94 1.00 1.00
s02 vs s01 0.85 1.00 0.00

Experiment 10: Distance between faces in different settings and between persons
The purpose of this experiment was to determine the similarity values of faces in different settings
and of different persons. In Table 4.13 the obtained similarity values are reported in intervals of
0.05 and they are sorted per subject, per experiment. The last two columns display the obtained
similarity values when the program was trained with the data from subject s02 (from experiment
1) and presented with subject s01 and the similarity values of the opposite setup respectively. The
displayed values are percentages of the total amount of frames that were obtained in their respective
experiments.

What can be observed is that in the settings from experiment 2 (different lighting conditions
compared to training) the similarity values for both subjects is considerably lower, although there
are a few outliers for subject s01. Also, the obtained similarity values are higher with the setup
from experiment 3 (2 training sessions in different lighting conditions) compared to experiment 2,
although this effect is pretty small for subject s02.

The last two columns that display the data from experiment 9 (between subject values) show
that it is possible to obtain similarity values not much different from the values which were obtained
with experiment 2. However, they are unmistakingly lower than the similarity values obtained with
the settings from experiment 1 and 3.
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Table 4.13: Similarity values of faces taken from data of different experiments.

experiment 1 2 3 1 2 3 9 9

Bin s01 s01 s01 s02 s02 s02 s01 vs s02 s02 vs s01
<0.1 0 0 0 0 0 0 0 0

0.1 - 0.15 0 0 0 0 0 0 0 0
0.15 - 0.2 0 0 0 0 0 0.04 0.01 0
0.2 - 0.25 0.06 0.02 0 0 0.01 0.04 0.02 0.13
0.25 - 0.3 0.16 0.44 0 0 0.24 0.04 0.26 0.38
0.3 - 0.35 0.16 0.26 0 0 0.61 0.14 0.43 0.16
0.35 - 0.4 0.11 0.13 0.09 0 0.12 0.37 0.25 0.12
0.4 - 0.45 0.13 0.05 0.53 0.02 0.01 0.24 0.02 0.10
0.45 - 0.5 0.09 0.04 0.17 0.11 0 0.13 0 0.01
0.5 - 0.55 0.05 0.03 0.07 0.30 0 0 0 0.05
0.55 - 0.6 0.07 0.01 0.10 0.32 0 0 0 0.04
0.6 - 0.65 0.04 0 0.04 0.17 0 0 0 0
0.65 - 0.7 0.05 0.01 0 0.08 0 0 0 0
0.7 - 0.75 0.06 0 0 0 0 0 0 0
0.75 - 0.8 0 0 0 0 0 0 0 0

>0.8 0 0 0 0 0 0 0 0

mean 0.43 0.33 0.46 0.56 0.31 0.38 0.32 0.32
std dev 0.14 0.08 0.06 0.06 0.04 0.07 0.04 0.09

4.3 Discussion of Results

In this section the experimental results are discussed. However, before this is done it must be noted
that no statistical tests have been performed to check for any significance of the results. This is
because only two subjects performed the experiments (three subjects performed experiments 6, 7
and 8) and it is unlikely that any overwhelmingly convincing statistical significance would be found.
However, as long as this is kept in mind the results are suitable for drawing rough conclusions.

4.3.1 Finding Regions of Interest

The Viola-Jones object detection algorithm was utilised to find all relevant regions of interest for
the suggested application. Pre-trained cascades were used for every relevant ROI and they all
performed well: the cascade for finding faces always achieved a precision value of 1.00 while the eye
and mouth detection cascades never achieved lower precision values than 0.96 an 0.99 respectively.
The only setting that had a (negative) effect on the precision values was the increasing of the
resolution of the input images that were given to the algorithm.

However, these cascades require a significant amount of time to perform their task. Finding
the bare regions of interest where only one cascade is used to find eye regions takes 101.4 ms. on
average on the computer the experiments were performed on. Adding the second eye detection
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cascade increases the required time to 125.5 ms. on average. These numbers are influenced linearly
(by estimation) by the resolution of the input images: increasing the resolution by a factor of 2.25
increased the average computation time to 266.3 ms. Unfortunately these numbers will only worsen
when the algorithm is run on a smart-phone, thereby reducing the amount of frames that can be
processed per second.

4.3.2 Gesture Recognition

Eye gestures Two Viola-Jones cascades were used to recognise eye gestures and the experimen-
tal results were not encouraging. Winks were never reliably detected with recall values in normal
conditions of 0.68 and 0.32 for the two subjects. Open eyes were detected more reliably, but the
highest obtained recall value did not get above 0.90. In different conditions the cascades seemed
to get a preference for either closed or open eyes, depending on the subject. This emphasizes that
the current method for detecting winks is undependable. When higher resolutions were used no
wink-gestures were recognised at all, so nothing can be gained by trying this.

An alternative possibility to detect eye gestures that was investigated was to use the PCA
algorithm for eye gesture classification. However, this was to no avail as for subject s01 the recall
value for winks was 0.43 while for subject s02 no wink gestures were recognised at all.

Mouth gestures For recognising mouth gestures the PCA algorithm was used. In normal
conditions these gestures were recognised pretty well with an average recall value of 0.89 (averaged
over both subjects and all gestures) , although in different conditions the average recall value
dropped to 0.73. With extra training data from two different condition the average recall value
increased to 0.95. When higher resolution images were used, there was a general improvement
and for subject s01 almost perfect recall rates were obtained, although no tongue-gestures were
recognised for subject s02. This led to an average recall value of 0.81.

Head gestures The recognition of head gestures is done by calculating the result of a simple
mathematical formula on which the different -experimental setups had no influence. Therefore the
only possible influence on the outcome of this formula is the input and if the input is wrong, the
output will be wrong too. Any of the low recall values (for example, 0.27 for a ’tilt right’ gesture
for subject s02 in normal conditions) indicate that the found eye regions were not correct and that
the cascades might have a problem finding tilted eyes.

4.3.3 Face Recognition

The PCA algorithm was used for face recognition and similarity values between the set of training
faces and presented faces were used to determine if these faces belonged to the same person. The
similarity values obtained with the experiments indicate that this method can be reliably used as
long as data is used from two training sessions in different conditions. This yields average similarity
values of 0.46 and 0.38 for both subjects. The necessity to use two training sessions becomes
clear when comparing the similarity values obtained in Experiment 2: Different conditions and
Experiment 9: Recognition of gestures between subjects. For Experiment 2 the average similarity
values for both subjects were 0.33 and 0.31, which are very much like the obtained average similarity
values of 0.32 for both subjects in Experiment 9. This shows that the training data from just one
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condition is not sufficient for the algorithm to reliable distinguish between two subjects, but that
the distinction can be made with training data from two different conditions.

4.3.4 Capability to Generalise

The PCA algorithm was able to generalise by recognising gestures from a subject while it was
trained with the gestures of another surprisingly well. The average recall value was 0.80 for mouth
gestures, which is worse than the baseline average of 0.89, but not far below. However, this is
not well enough in order to be able to use another person’s training data to recognise one’s own
gestures. This is a good thing though, as it adds to the security of the application because it must
be trained for a person specifically in order to recognise gestures correctly. Even though this is true,
the difference is not big enough to be able to be counted upon as a full-fledged security measure
by itself.
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Chapter 5

Discussion

5.1 Usability

The implementation of the proposed method of authentication which was used for the experiments
is not usable for its intended purpose. This becomes evident from the results from Experiments 6, 7
and 8 as presented in Section 4.2.2. This is the result from the imperfect recognition of all possible
gestures, as the chance on erroneous classifications of gestures increases with lower recall values
and longer gesture sequences that need to be performed when authenticating. It also appears that
subjects tend to have at least one gesture that the system would (almost) never classify correctly.
This means that if such a gesture were to be included in the sequence of gestures that needs to be
performed, the authentication process will fail. Possible solutions will be discussed in Section 5.2.

5.2 Future Research

As mentioned in Section 5.1 the current implementation is not fit for use, but there are various
aspects that can be improved. The first aspect is the Viola-Jones cascades. Sometimes the eye
and mouth cascades would make a mistake and classify a nose as an eye or a mouth region. Such
mistakes can possibly be filtered out by inspecting where the found region is located relative to
the face region, as eyes or mouths are not positioned in the middle of the face. Doing this could
improve the precision values of the cascades, providing an opportunity for overall improvement.

Secondly, gesture recognition itself could possibly be improved by finding optimal parameters
for the PCA algorithm in terms of the amount of training data that is used and the resolution of
input images. Also, the results from experiment 1 and 2 show that the Viola-Jones cascades are
not fit for detecting eye gestures, so the use of PCA for recognising eye gestures could be further
and more thoroughly investigated.

Another method that could possibly improve the results of the PCA algorithm is the use of a
different colourspace. Currently, the input images are defined in the RGB (Red, Green and Blue)
colourspace before they are converted to greyscale images. However, these images could first be
converted to the HSL colourspace, which stands for Hue, Saturation and Lightness. This would
allow for the normalisation of images on the Lightness-axis relative to the training images. This
could possibly reduce the influence of different lighting conditions and improve recognition rates.
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After normalisation, the images could be converted to greyscale and serve as input just as before.
Whether or not this has any effect, would have to be investigated.

Should the proposed efforts to improve the performance of the PCA algorithm fail, alternative
algorithms for recognising gestures can be investigated. Examples of possible algorithms were pre-
viously listed in Section 1.2. An important consideration in choosing an alternative is that currently
no actual movement-information is used as feature: input images are considered individually. It
might be beneficial for performance as well as security to choose an algorithm that is able to use
actual movement-information. The computational costs of algorithms that do this are high though
and this factor should not be overlooked.

Should one of the proposed methods make the suggested authentication system fit for real world
use, the possibilities of using it as a widespread method of authentication should be investigated.
However, if this would be achieved attempts will be made to try and hack the system and find
weaknesses to abuse it. To stay one step ahead, research would have to be performed to try and
identify such weaknesses so the system can be improved and made more secure.

5.3 Conclusion

The precision of the Viola-Jones algorithm and the used cascades are more than sufficient for finding
the regions of interest for this authentication method. The computational costs of the algorithm
are high and the performance is good.

The used gesture recognition methods do not achieve sufficiently high recall values in order to
be usable in this application. However, there is potential for improving these methods, which would
be especially beneficial for the PCA algorithm. The current manner in which the PCA algorithm
is utilised does not achieve sufficiently high recognition rates in order to be useful, but if it can be
made to work reliably it definitely pays off as the required computational time is very low.

Overall, the current implementation of an authentication method based on face recognition
combined with facial gesture recognition is unfit for use. However, there are enough possibilities
for improvement and it has been shown that there definitely is potential.
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Appendix A

Experiment Confusion Matrixes

In a confusion matrix a row stands for the actual performed gesture and the columns are the
gestures it is recognised as. In the cells the percentages are displayed as measure of how many
times an event occurred. This is illustrated in Table A.1.

Table A.1: Example confusion matrix.

observed class

actual
class

Table A.2: Confusion matrix of experiment 1. Subject 1: Head gestures. 111 frames total.

normal tilt left tilt right v-j fault

normal 0.93 0.00 0.07
tilt left 0.00 1.00 0.00

tilt right 0.13 0.00 0.88
v-j fault 0.00

Table A.3: Confusion matrix of experiment 1. Subject 1: Eye gestures. 222 frames total.

open wink v-j fault

open 0.84 0.17
wink 0.32 0.68

v-j fault 0.00
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Table A.4: Confusion matrix of experiment 1. Subject 1: Mouth gestures. 111 frames total.

normal smile tongue v-j fault

normal 0.99 0.01 0.00
smile 0.06 0.94 0.00

tongue 0.38 0.13 0.50
v-j fault 0.00

Table A.5: Confusion matrix of experiment 1. Subject 2: Head gestures. 105 frames total.

normal tilt left tilt right v-j fault

normal 0.95 0.00 0.05
tilt left 0.00 1.00 0.00

tilt right 0.73 0.00 0.27
v-j fault 0.00

Table A.6: Confusion matrix of experiment 1. Subject 2: Eye gestures. 210 frames total.

open wink v-j fault

open 0.90 0.10
wink 0.68 0.32

v-j fault 0.00

Table A.7: Confusion matrix of experiment 1. Subject 2: Mouth gestures. 105 frames total.

normal smile tongue v-j fault

normal 0.89 0.02 0.08
smile 0.00 1.00 0.00

tongue 0.00 0.00 1.00
v-j fault 0.01

Table A.8: Confusion matrix of experiment 2. Subject 1: Head gestures. 106 frames total.

normal tilt left tilt right v-j fault

normal 1.00 0.00 0.00
tilt left 0.00 1.00 0.00

tilt right 0.47 0.00 0.53
v-j fault 0.00
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Table A.9: Confusion matrix of experiment 2. Subject 1: Eye gestures. 212 frames total.

open wink v-j fault

open 0.96 0.04
wink 0.47 0.53

v-j fault 0.00

Table A.10: Confusion matrix of experiment 2. Subject 1: Mouth gestures. 106 frames total.

normal smile tongue v-j fault

normal 1.00 0.00 0.00
smile 0.14 0.86 0.00

tongue 1.00 0.00 0.00
v-j fault 0.00

Table A.11: Confusion matrix of experiment 2. Subject 2: Head gestures. 78 frames total.

normal tilt left tilt right v-j fault

normal 0.97 0.03 0.00
tilt left 0.25 0.75 0.00

tilt right 1.00 0.00 0.00
v-j fault 0.00

Table A.12: Confusion matrix of experiment 2. Subject 2: Eye gestures. 156 frames total.

open wink v-j fault

open 0.29 0.71
wink 0.05 0.95

v-j fault 0.00

Table A.13: Confusion matrix of experiment 2. Subject 2: Mouth gestures. 78 frames total.

normal smile tongue v-j fault

normal 0.64 0.30 0.06
smile 0.00 0.89 0.11

tongue 0.00 0.00 1.00
v-j fault 0.00
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Table A.14: Confusion matrix of experiment 3. Subject 1: Mouth gestures. 81 frames total.

normal smile tongue v-j fault

normal 0.79 0.19 0.01
smile 0.00 1.00 0.00

tongue 0.00 0.00 1.00
v-j fault 0.00

Table A.15: Confusion matrix of experiment 3. Subject 2: Mouth gestures. 105 frames total.

mouth gestures:

normal smile tongue v-j fault
normal 0.92 0.05 0.03

smile 0.00 1.00 0.00
tongue 0.00 0.00 1.00

v-j fault 0.00

Table A.16: Confusion matrix of experiment 4. Subject 1: Head gestures. 64 frames total.

normal tilt left tilt right v-j fault

normal 0.98 0.00 0.02
tilt left 0.00 1.00 0.00

tilt right 0.00 0.00 1.00
v-j fault 0.00

Table A.17: Confusion matrix of experiment 4. Subject 1: Eye gestures. 128 frames total.

open wink v-j fault

open 1.00 0.00
wink 1.00 0.00

v-j fault 0.04

Table A.18: Confusion matrix of experiment 4. Subject 1: Mouth gestures. 64 frames total.

normal smile tongue v-j fault

normal 0.98 0.00 0.02
smile 0.00 1.00 0.00

tongue 0.00 0.00 1.00
v-j fault 0.00
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Table A.19: Confusion matrix of experiment 4. Subject 2: Head gestures. 77 frames total.

normal tilt left tilt right v-j fault

normal 1.00 0.00 0.00
tilt left 0.00 1.00 0.00

tilt right 0.43 0.29 0.29
v-j fault 0.00

Table A.20: Confusion matrix of experiment 4. Subject 2: Eye gestures. 154 frames total.

open wink v-j fault

open 1.00 0.00
wink 1.00 0.00

v-j fault 0.02

Table A.21: Confusion matrix of experiment 4. Subject 2: Mouth gestures. 77 frames total.

normal smile tongue v-j fault

normal 0.89 0.11 0.00
smile 0.00 1.00 0.00

tongue 1.00 0.00 0.00
v-j fault 0.00

Table A.22: Confusion matrix of experiment 5. Subject 1: Eye gestures. 258 frames total.

open wink v-j fault

open 0.89 0.11
wink 0.57 0.43

v-j fault 0.01

Table A.23: Confusion matrix of experiment 5. Subject 2: Eye gestures. 206 frames total.

open wink v-j fault

open 1.00 0.00
wink 1.00 0.00

v-j fault 0.00
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Table A.24: Confusion matrix of experiment 9. Subject 1: Mouth gestures. 81 frames total.

normal smile tongue v-j fault

normal 0.94 0.00 0.06
smile 0.00 1.00 0.00

tongue 0.00 0.00 1.00
v-j fault 0

Table A.25: Confusion matrix of experiment 9. Subject 2: Mouth gestures. 99 frames total.

normal smile tongue v-j fault

normal 0.85 0.04 0.11
smile 0.00 1.00 0.00

tongue 1.00 0.00 0.00
v-j fault 0
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