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Summary 

The ability to use language feels like the most natural thing in the world, but how is it 

possible? Human language learners are argued to need innate knowledge of a language, as 

research seems to show that they cannot learn language only from the language input they 

receive (Pearl, 2021). Interestingly, however, recent research has shown that artificial neural 

networks (ANNs), i.e. general learning systems without any knowledge of language built in, 

can acquire human-like grammatical knowledge solely based on the input they receive 

(Linzen & Baroni, 2021). One important problem with this recent research is that it is all 

performed in English (Mueller et al., 2020). Therefore, the current research project 

investigated whether an ANN can learn two syntactic island constraints, namely the wh- and 

coordinate structure island constraint, in Dutch in a way comparable to human native 

speakers. 

First, it was established whether the wh- and coordinate structure island constraints exist in 

Dutch, and if so, to what extent human native speakers are sensitive to these constraints with 

an acceptability judgement task. Second, a Long Short-Term Memory (LSTM) network, 

trained on 12 million sentences extracted from the Dutch Corpora Of the Web (NLCOW14), 

assigned surprisal values to the same test sentences, indicating the extent to which a word was 

unexpected by the network, to assess whether its sensitivity to island violations was similar to 

that of the Dutch native speakers.    

Unlike human native speakers, who demonstrate a clear sensitivity to wh- and coordinate 

structure island violations confirming the existence of these island constraints in Dutch, the 

LSTM network is not able to recognize wh- and coordinate structure islands and to block gap 

expectancies within these islands in Dutch. This suggests that input alone might not be 

enough to learn about syntactic island constraints, and that internal language knowledge or 

abilities might be necessary to learn about these constraints.   
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1. Introduction

For us as humans it is the most natural thing in the world that we are able to use language. A 

much debated question within the field of linguistics, however, is how this is actually 

possible; is this a capacity we are born with or do we learn it from all the language we hear in 

our environment? Sixty years ago, it was observed that language users seem able to go 

beyond what they can learn from the input they receive (Chomsky, 1965); they can create 

novel sentences and produce errors not present in the input (Bates, 2003). This is taken as 

evidence that the input data is insufficient or too impoverished on its own for children to 

make inferences possible about the correct use of language, commonly referred to as ‘Poverty 

of the Stimulus’ (henceforth PoS). It is impressive to see that language learners nonetheless 

learn to use language correctly. Some have argued that this is possible due to some other 

signal that helps speakers infer the correct use of language, besides the input they receive 

(Pearl, 2021). While some linguists argue for the use of prior linguistic knowledge or an 

innate language ability, the exact nature of this ‘other signal’ remains disputed. Therefore, the 

only claim largely agreed on is that language learners do not seem able to learn language just 

based on the input they receive (i.e. PoS). Interestingly, however, recent research has shown 

that artificial neural networks can learn grammar without any innate language knowledge.   

Artificial neural networks (ANNs) are general learning systems, and when used as 

language models, they are exposed to large amounts of raw input text, which they encode to 

sequences of real numbers, i.e. vectors. As general learning systems, they have no built-in 

linguistic knowledge, and the vectors they process are not linguistic in nature either. All the 

more impressive that computational linguistics has recently shown that these ANNs can 

induce human-like grammatical knowledge (Linzen & Baroni, 2021). These findings breathe 

new life into the debate about how we as humans can learn language. That is because, to the 

extent that ANNs can learn syntax, an innate language ability is not required. Many studies 

have thus tried to find out to what extent ANNs are actually able to learn syntax. An 

important problem with this previous research is, however, that they almost never vary the 

input language these architectures receive; English dominates this field (Mueller et al., 2020). 

This is a problem because recent literature suggests that ANNs may have a performance 

advantage for English-like structural input caused by an overlap between English-like 

structures and a non-linguistic bias within the network (Davis & van Schijndel, 2020). The 

human language learning system must be universal, meaning that it needs to work equally 

well for all languages. If neural networks indeed work better for English, these learning 

systems would not be universal enough, falsifying the claim that ANNs can learn syntax 

without an innate language ability. 

Therefore, the current research project investigated whether ANNs can learn syntactic 

constraints in Dutch in a way comparable to human Dutch speakers. Specifically, I examined 

the learnability of syntactic island constraints by neural networks in Dutch, and compared the 

network’s performance to that of experimentally tested native Dutch speakers. In Section 2 

and 3, I will provide a theoretical background on the current research topic. Specifically, in 

Section 2, I will elaborate more on the theory and experimental research published about 

syntactic island constraints, and in Section 3, I will explain ANNs in more detail and discuss 

previous research performed with these ANNs on syntactic island constraints. In Section 4, I 

will introduce the current research project, which will be discussed in detail in the sections 
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following that. The acceptability judgement task performed by native speakers will be 

reported on and its results will be discussed in Section 5, and the experiment with the ANN 

will be described and discussed in Section 6. The native speakers and neural network will be 

compared in Section 7, in which the strengths, limitations and implications of this research 

project will also be discussed.  

2. Syntactic island constraints

Many of the languages in the world exhibit dependency relations between two elements in a 

sentence. To form such a dependency in English and Dutch, one element (i.e. the filler) 

dislocates from one position to another in the sentence leaving behind a gap. This is illustrated 

in (1).
1

(1) a. Mary saw Bill.

b. Whoi did Mary see ___i?

(Abeillé et al., 2020, p. 1) 

Generally, it is assumed that these filler-gap dependencies are not constrained by the distance 

between the filler and its gap in wh-constructions; the filler and the gap can be separated by 

any number of words and clause boundaries (Sprouse & Hornstein, 2013; Abeillé et al., 

2020). They do, however, seem constrained by the type of structure the filler is moved out of. 

Previous research has shown that the examples of filler-gap dependencies in (2) are perceived 

as unacceptable by most native English speakers (Hofmeister & Sag, 2010).
2
 These structures,

therefore seem gap-resistant (Sprouse et al., 2012; Sprouse & Hornstein, 2013).   

(2) Wh-island

a. *
Whati do you wonder [wh whether John bought ___i]? 

Complex Noun Phrase island (henceforth: CNP island) 

b. *
Whati did you make [NP the claim that John bought ___i]? 

Subject island 

c. *
Whati do you think [subject NP the speech about ___i] interrupted the TV show? 

Sentential subject island 

d. *
Whati did [subject CP that John wrote ___i] offend the author? 

Adjunct island 

e. *
Whati do you worry [adjunct if John buys ___i]? 

Relative clause island 

f. *
Whati did you meet the scientist [relative clause who invented ___i]? 

Coordinate structure island 

g. *
Whati did John buy [coordination a shirt and ___i]? 

Left-branch island 

h. *
Whichi did John borrow [NP ___i book]? 

(Sprouse et al., 2012, p. 83) 

1
 The gap is represented by underscores and the wh-filler and the gap are co-indexed with an ‘i’. 

2
 Ungrammaticality or unacceptability is marked by an asterisk. 
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Ross (1967) was the first one to give these gap-resistant structures a name: syntactic islands. 

Newmeyer (2016) defined these as “a syntactic domain containing an element that cannot be 

coindexed with an element outside of that domain” (p. 188), which simply means that it is 

ungrammatical to create a dependency between an element in the sentence and an element in 

the syntactic island configuration. In the existing literature, this ungrammaticality is also 

called the ‘island effect’. While the island effect can occur in different types of structures, all 

illustrated in (2), the discussion in the current thesis will focus only on wh- and coordinate 

structure islands. This choice will be motivated in Section 3.3. 

2.1 The source of syntactic island effects 

A much-debated question within the literature on syntactic island effects regards their source; 

why do island effects arise? Analyses generally fall into three categories, namely syntactic, 

extra-syntactic competence-based, and extra-syntactic performance-based approaches 

(Newmeyer, 2016).  

In general, linguists agree that syntactic island constraints are unlikely to be observed in 

the input that children receive. Therefore, after their first discovery, syntacticians tried to 

account for their existence by constructing different innate grammatical constraints (i.e. island 

constraints) (Hofmeister & Sag, 2010; Newmeyer, 2016). Chomsky (1964) was one of the 

firsts to create a general constraint on long-distance dependencies, namely the A-over-A 

condition. According to this condition, an element of a certain category cannot be extracted 

out of a phrase of the same category. Chomsky used this condition to explain why for 

example (3b) must be ungrammatical; an NP cannot be extracted out of another NP 

(Hofmeister & Sag, 2010).  

(3) a. John kept the car in the garage.

b.
*
[NP Whati] did John keep [NP the car in ___i]?

(Newmeyer, 2016, p.190) 

However, Ross (1967) noted that the A-over-A condition predicted grammaticality in 

sentences that are perceived as unacceptable, such as the coordinate structure island in (4). 

(4) a. You think Sandy photographed the castle and Chris visited the dignitaries.

b.
*
[NP Which dignitariesi] do you think [Coordinate structure [IP Sandy photographed the

castle] and [IP Chris visited ___i]]?

(Hofmeister & Sag, 2010, p. 5) 

The NP ‘which dignitaries’ is moved out of the IP ‘Chris visited’, which should be possible 

under the A-over-A condition as these elements are from a different category. Yet, it does not 

seem possible to move (part of) a full conjunct out of coordination in any language (Liu et al., 

2022). As a reaction, therefore, Ross (1967) created universal, and thus language-

independent, constraints for complex noun phrases, left branches, sentential subjects and 

coordinate structures, which restrict movement out of these specific types of structures. The 

‘Coordinate Structure Constraint’, for example, entails that “no conjunct in a coordinate 
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structure may be moved” nor “any element in a conjunct” (Newmeyer, 2016:191). With this 

constraint, it is clear why the coordinate structure island configurations in Figure 1A for 

English and in Figure 1B for Dutch are perceived as highly ungrammatical. In these two 

examples, in both languages, an NP is moved out of a coordinate structure, represented by the 

Conjunction Phrase (ConjP).  

 

Figure 1 

Syntactic tree structure of the English sentence ‘what was John eating beans and?’ in A and of the 

Dutch equivalent ‘wat at John bonen en?’ in B. The conjunct out of which an element is moved is 

circled in red. 

 

 

For wh-islands, Ross (1967) decided not to create a distinct constraint. He believed that any 

constraint was and would be too strong for this island type as it has many grammatical 

exceptions. For example, Chomsky’s (1964) A-over-A condition would rule out the sentences 

in (5), while Ross found these sentences totally acceptable. Therefore, he argued that much 

more work needed to be done to create a weaker constraint to explain wh-island effects. 

 

(5) He told me about a booki which I can’t figure out [wh-phrase whether to buy ___i or 

not/how to read ___i/where to obtain ___i/what to do about ___i]. 

(Ross, 1967, p. 19) 

 

However, exceptions were not only found for wh-islands, but almost for every island type. 

The only constraint still widely agreed upon is the Coordinate Structure Constraint (Liu et al., 

2022). Chomsky (1973) tried to account for the exceptions by combining all existing 

constraints at that time into a general principle of Subjacency. This principle can not only 

account for wh-islands, but also for CNP, subject and left-branch islands.  

Subjacency prohibits movement that crosses more than one so-called bounding node or 

barrier, represented by the IP and the DP/NP in English (Hofmeister & Sag, 2010; Newmeyer, 

2016). Figure 2A shows how Subjacency can account for the wh-island effect in English. 
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Figure 2 

Syntactic tree structure of the English sentence ‘what do you wonder whether John bought?’ in A and 

of the Dutch equivalent ‘wat vraag jij je af of Jan kocht?’ in B. The two bounding nodes crossed are 

circled in red.  

In Figure 2A, the object of ‘bought’ (i.e. the DP ‘what’) moves from the complement of the 

embedded VP to the specifier of the main CP, crossing two bounding nodes, namely the 

embedded and the main IP. Hence, this sentence is perceived as ungrammatical.  

To explain any cross-linguistic differences, the bounding nodes or barriers were later 

parametrized, so that each language could set the bounding nodes differently (Rizzi, 1982). 

For Dutch, for instance, the DP/NP and the CP would be better as bounding nodes. That is 

because the CP serves as the clause boundary in Dutch, while the IP fulfills this role in 

English. In Figure 2B, it can be seen that the object of kocht ‘bought’ (i.e. the DP wat ‘what’) 

moved from the complement of the extraposed embedded VP to the specifier of the main CP, 

crossing two bounding nodes, namely the extraposed CP and the main C’. Therefore, 

according to Subjacency, this Dutch sentence should be perceived as ungrammatical.   

While the principle of Subjacency thus seems able to account for the observed wh-island 

effect in different languages, again other linguists found exceptions to the rule. The example 

in (6), for example, illustrates that it can be acceptable to cross more than one bounding node. 

(6) Which reportsi does [IP the government prescribe [NP the height of [NP the lettering on

___i]]].

(Hofmeister & Sag, 2010, p. 7) 

Therefore, linguists started to supplement the existing syntactic constraints with extra-

syntactic factors, such as semantic, discourse or processing components. According to 

Newmeyer (2016), the reason for this was threefold: (1) the data of syntactic islands was 

much more complex than thought at first; (2) the exceptions that needed to be made for the 

constraints to work made the theories not as minimal as they should be according to the 

Minimalist Program (Chomsky, 1993); and (3) many linguists came to believe that pure 

syntactic constraints could not solely explain all the existing data. Consequently, the extra-

syntactic approach to syntactic island effects came into existence. 
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According to this extra-syntactic approach, island-violating sentences are in fact 

grammatical structures. They are only perceived as unacceptable because of non-syntactic 

factors, such as discourse and processing components, creating the so-called competence-

based and performance-based approaches.  

First, the competence-based approach claims that island effects arise due to the 

information-structure properties of syntactic island configurations and/or of the filler. 

Specifically, it argues that island effects arise when the information-structure properties of the 

island and the filler clash (Newmeyer, 2016). Numerous discourse principles have tried to 

capture the syntactic island data, focusing on different discourse elements (e.g. dominance, 

topichood, salience, and relevance) (for a detailed discussion of these approaches see Liu et 

al., 2022). Explaining every one of these approaches is beyond the scope of the current thesis, 

so only one example will be discussed here. One of the most recent and compelling principles 

was created by Goldberg (2014): “Backgrounded Constructions are Islands”. Movement 

makes an element prominent in the discourse. Consequently, to avoid a clash of information-

structure properties of two elements, movement can only take place out of another prominent 

element. It is thus never possible to move out of a backgrounded constituent, such as subjects, 

relative clauses and definite nouns. Therefore, backgrounded constituents are gap-resistant 

and, according to Goldberg’s principle, can be labelled as islands (Abeillé et al., 2020; 

Newmeyer, 2016). 

Second, the performance-based approach claims that some parts of the parsing system, also 

involved in regular sentence production and comprehension, can affect the acceptability of 

syntactic island configurations (e.g. encoding aspects of a syntactic structure in and retrieving 

it from our working-memory) (Liu et al., 2022; Sprouse & Hornstein, 2013). This approach 

was mainly developed to explain the graded acceptability that was found for certain island 

constructions; not all constructions in (2) are rated as completely unacceptable, but some 

more than others (Abeillé et al., 2020; Hofmeister & Sag, 2010). The purely syntactic 

constraints have trouble explaining this graded acceptability as most assume that the grammar 

is binary; something is either grammatical or ungrammatical, but cannot be in-between. The 

performance-based approach tries to explain this graded acceptability by involving certain 

processing factors. Some structural features, such as a bare wh-filler or the syntactic distance 

between filler and gap, can make an island configuration into a complex structure. Keeping a 

bare filler in our working-memory, or keeping any filler in our working-memory when 

simultaneously processing many other words, can cause a processing overload, which can in 

turn result in perceived unacceptability (Abeillé et al., 2020; Hofmeister & Sag, 2010; Liu et 

al., 2022; Newmeyer, 2016). Therefore, according to the performance-based approach, 

syntactic island configurations are not ungrammatical, they are simply too hard to process. 

While these three approaches thus all try to explain syntactic island effects in a different 

way, it is still an on-going discussion which of these approaches can explain the source of 

island effects the best. This discussion ties in nicely with the previously mentioned on-going 

debate about the assumed innate language ability. Do we possess innate syntactic knowledge 

and thus (possibly) also innate syntactic island constraints, or do we learn syntax from the 

input and could island constraints therefore either be explained syntactically or extra-

syntactically? Consequently, the current research about the learnability of syntactic island 

constraints by ANNs in Dutch can make a relevant contribution to both of these debates. 
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2.2 Experimental investigations of syntactic island constraints 

Numerous experimental investigations have been performed into syntactic island effects in 

different languages (e.g. Hofmeister & Sag, 2010; Pham et al., 2020; Sprouse et al., 2012 (for 

English); Pañeda et al., 2020 (for Spanish); Keshev & Meltzer-Assher, 2018 (for Hebrew); 

Kush et al., 2019 (for Norwegian)). These studies show that most languages exhibit island 

effects, but that these effects differ between and within languages and island types. For 

example, because the unacceptability of an island violation can differ between island types, 

island types are generally divided into 2 classes: strong and weak islands (Newmeyer, 2016). 

In general, violations of strong island constraints are always perceived as highly unacceptable, 

while the degree of unacceptability of weak islands can vary based on several semantic and 

processing factors (e.g. discourse status or the syntactic complexity of the wh-filler).  

An example of a strong island is the coordinate structure island. Ross (1967) already stated 

that his Coordinate Structure Constraint is universal and thus applies to all languages. Fifty-

five years later, not a single linguist seems to disagree with him: “it does not seem possible to 

extract one or more full conjuncts, in any language” (Liu et al., 2022, p. 503). This also means 

that coordinate structure islands are (almost) never included in experimental investigations of 

island effects. Consequently, the current research will be the first to experimentally 

investigate the Coordinate Structure Constraint with human native speakers.  

Wh-islands, on the other hand, are a clear example of weak islands in English. Generally, 

wh-islands are perceived as unacceptable, but can be ameliorated by using a complex wh-filler 

instead of a bare one (i.e. a lexical phrase) as in (7c) (Hofmeister & Sag, 2010; Sprouse et al., 

2016) and/or by adding a discourse context as in (7) (Kush et al., 2019).  

 

(7) Context: Albert learned that the managers dismissed the employee with poor sales 

after the annual performance review.  

a. Whoi did Albert learn [CP that they dismissed ___i after the annual performance 

review]? 

b. 
*
Whoi did Albert learn [wh whether they dismissed ___i after the annual performance 

review]? 

c. 
?
Which employeei did Albert learn [wh whether they dismissed ___i after the annual 

performance review]?  

(Hofmeister & Sag, 2010, p. 44) 

 

Therefore, in contrast to coordinate structure islands, there have been numerous experimental 

investigations into wh-island effects covering different languages. Dutch, however, remains 

underrepresented in this research and in research on syntactic island effects in general. 

Consequently, not much is known about whether syntactic island constraints exist in Dutch, 

and if so, to what extent Dutch speakers are sensitive to them. Beljon et al. (2021) is one of 

the few, if not the only, study that empirically investigated whether the wh-island constraint 

exists in Dutch and, if so, to what extent speakers are sensitive to it. Specifically, they 

investigated the acceptability of wh-islands in Dutch and the effect of (1) the complexity of 

the filler phrase (‘who’ vs. ‘which girl’) and (2) adding a preceding discourse context. Their 

results showed that the wh-island constraint exists in Dutch as speakers showed a sensitivity 

to this constraint; wh-islands were rated less acceptable on a 7-point scale than sentences 
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without islands. Moreover, while neither filler complexity nor discourse context had an effect 

in isolation, their combination did constitute a significant effect; wh-islands with a complex 

filler and a preceding discourse context were rated as more acceptable than islands without, 

but this difference in acceptability was only minimal.    
In addition to the published research by Beljon et al. (2021), I collected unpublished data 

on syntactic islands during the course ‘Syntax in the Lab’ in June 2021 (Suijkerbuijk, 2021). 

Specifically, the acceptability of wh-islands and whether making the filler more complex 

affected this acceptability were investigated in Dutch. Similar to Beljon et al. (2021), these 

results showed that the wh-island constraint exists in Dutch as its speakers show a strong 

sensitivity to wh-island violations.  

With the current research project, the necessary experimental data on wh- and, more 

importantly, coordinate structure islands will be gathered with an acceptability judgement task 

to (1) provide relevant data to the experimental research on syntactic island effects in Dutch, 

and (2) enable a direct comparison between human Dutch speakers and the artificial neural 

network.  

3. Computational linguistics and syntactic island constraints 

In the past decade, artificial neural networks have commonly been used for tasks (e.g. 

machine translation or reading comprehension) within the research area of Natural Language 

Processing (NLP), which investigates how computational models can understand and produce 

natural language (Chopra et al., 2013; Linzen & Baroni, 2021). This is a remarkable fact for 

many linguists, because these networks don’t possess the traits considered necessary for 

language acquisition, such as built-in linguistic knowledge. Still, recent research has shown 

that ANNs are able to accurately learn about, for example, number agreement (i.a. Goldberg, 

2019; Gulordava, 2018), and garden paths (Frank, 2021; Frank & Hoeks, 2019; Futrell, 2019). 

Not all syntactic phenomena can successfully be learned yet, however. Syntactic island 

constraints, for instance, still receive mixed results in English. Wh-, CNP, coordinate 

structure, adjunct and left branch islands are, for example, successfully learned in most 

studies, but negative phrase, relative clause and (sentential) subject islands only partially or 

not at all (Chaves, 2020; Chowdhury & Zamparelli, 2018; Wilcox et al., 2018; Wilcox et al., 

2019b; Wilcox et al., 2021).  

In this section, I will first explain more about the internal structure of artificial neural 

networks, and elaborate on possible concerns about using these networks for research on 

language acquisition. Last, I will go in more detail about previous research using ANNs to 

learn syntactic island constraints. 

3.1 Artificial neural networks 

Our brain possesses about 86 billion neurons, which are connected to each other and share 

information to learn (Kemmerer, 2015). Artificial neural networks are inspired on the 

architecture of our brain and its neural network, and aim to simulate this learning process 

(Walczak & Cerpa, 2003). Simply put, the ANN maps input from (hidden) layer to (hidden) 

layer to eventually compute an output based on the information it gathered in these hidden 

layers. These are also called feedforward networks, of which the architecture is illustrated in 

Figure 3.    
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Figure 3 

Simplified architecture of an artificial neural network, with the red arrows representing the feedback 

loop of a simple recurrent neural network and the blue errors representing the long-term memory 

present in the LSTM network. 

 
Note. Red and blue arrows added myself. From “A Simple Starter Guide to Build a Neural Network,” by J. Hu, 

2018, January 20, Towards Data Science. (https://towardsdatascience.com/a-simple-starter-guide-to-build-a-

neural-network-3c2cf07b8d7c).  

 

Feedforward networks are, however, only able to encode individual words and not sequences 

of words, which is why Recurrent Neural Networks (RNNs) were introduced (Elman, 1990). 

Contrary to these feedforward networks, RNNs possess a memory that contains information 

from its own former internal state. When processing a sentence, it can use this information to 

compute outputs. This memory is captured in the so-called feedback loop, illustrated by the 

red arrows in Figure 3, and can help the RNN to learn the relations between words in a 

sentence (Linzen & Baroni, 2021; Saeed, 2021). The problem with the memory of RNNs is 

that it can only be used to learn short dependencies in sentences as it only contains the former 

hidden state, i.e. the information from the hidden layers processed right before. Although this 

hidden state is dependent on all formerly processed hidden states due to the feedback loop, 

this dependency is only indirect and thus difficult to use when learning dependencies 

stretched out over a longer linear distance (Wilcox et al., 2021). Therefore, Long Short-Term 

Memory (LSTM) models were designed. 

As its name already suggests, LSTM models possess both a long-term and a short-term 

memory component. These memory components are represented by the blue and red arrows 

respectively in Figure 3. Moreover, it uses so-called gates. The architecture of the long-term 

memory with these gates is illustrated in Figure 4. Both the memory components and the 

associated gates are used to process a sentence.  

 

  



11 

 

Figure 4 

The architecture of the long-term memory component of an LSTM network, illustrating the forget, 

input and output gate. ‘i’ stands for the current input, ‘h’ for the previous hidden state, and ‘hnew’ for 

the newly created hidden state. 

 
 

When the input comes in, it is combined with the previous hidden state and fed to the forget 

gate. In this gate, it is determined what information is important to retain and what can be 

forgotten. Next the current input and previous hidden state go through the input gate, in which 

it is decided which information is most important to update. Last, when send to the output 

gate, a new hidden state is created based on the information gathered in the forget and input 

gate (Phi, 2018). The development of this Long-Term Memory component allows the LSTM 

model to have more information at its disposal and the introduction of the three gates ensures 

more control over this information. Consequently, the LSTM is able to represent long-

distance dependencies.   

In general, within the field of computational psycholinguistics, the types of ANNs 

described above are used in one of three possible settings. First, it can be used as a classifier, 

which gives a discrete label as output for an input sequence, such as ‘acceptable’ or 

‘unacceptable’. A classifier is trained on a set of sentences already annotated for their 

acceptability, making this setting supervised. Second, there is the sequence-to-sequence 

setting, in which the network produces an output sequence in response to an input sequence. 

This setting is commonly used in machine translation. Third, neural networks can also be used 

as language models. A language model outputs a probability value for each input word, based 

on its preceding context. In this setting, the network is trained on a set of sentences without 

any information annotated, making it unsupervised (Linzen & Baroni, 2021).  

To investigate whether an artificial neural network is able to learn the wh-island and 

coordinate structure island constraints, it must be able to track long-distance dependencies. 

Therefore, a Long Short-Term Memory model was used in the current research project. To 

see how the network performs in specific regions of the sentence and without any supervision, 

the LSTM network was used in the language model setting.  

3.2 Computational investigations of syntactic island constraints 

3.2.1 Syntactic or extra-syntactic factors at play? 

One of the first computational investigations on the learnability of long distance dependencies 

concerned the agreement between a subject and a verb (Linzen et al., 2016; Gulordava et al., 

2018). These successful investigations showed that, when RNNs are presented by the 

sequence ‘The key to the cabinets…’, they assign a higher probability to the correct singular 

verb form ‘is’ than to the incorrect plural verb form ‘are’. To strengthen the claim that the 
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dependency between a subject and a verb can be maintained by RNNs, other studies also 

showed that the network was also able to choose the correct verb form in languages other than 

English and in semantically implausible sentences. Subject-verb agreement is, however, a 

syntactic phenomenon that frequently occurs in the set of sentences the network is trained on. 

This makes it easy to claim that this phenomenon can be learned from the input only, without 

any innate syntactic constraints necessary. To strengthen the claim that RNNs can acquire 

different long distance dependencies without any innate syntactic knowledge, so based on the 

input only, it is also important to investigate dependencies not often seen in the training data 

set. If these dependencies cannot be learned by the RNN, it shows that some innate syntactic 

knowledge is necessary to learn about these long distance dependencies. On the other hand, if 

the RNN is able to learn these dependencies, it demonstrates that the input is enough, even if 

the phenomenon itself does not often occur in this input. Therefore, investigations followed in 

which syntactic phenomena were researched involving long-distance dependencies not often 

seen in the training data set (Chowdhury & Zamparelli, 2018). One of these phenomena, 

central to the current research project, is the constraints on filler-gap dependencies, namely 

syntactic island constraints. In this section, I will discuss the previously performed 

computational investigations on the learnability of these constraints by LSTM networks, 

specifically trained on a language modelling objective. 

Chowdhury and Zamparelli (2018) were one of the firsts to investigate the learnability of 

syntactic island constraints by LSTM networks. Specifically, they examined whether these 

networks could detect ungrammatical sentences based on their total-sentence probability. In 

their examination, they looked at regular wh-extractions and subject and relative clause island 

violations. First, they started by looking at regular wh-extractions, without any island 

configurations, such as the minimal pair in (8). 

 

(8) a. Which candidatei should the students discuss ___i? 

b. 
*
Which candidatei should the students discuss {him / something else / this 

candidate}i? 

(Chowdhury & Zamparelli, 2018, p. 137) 

 

The results showed that LSTMs can recognize ungrammatical wh-extractions, such as the one 

in (8b), but that this became more difficult when the sentence contained more embedding 

layers (e.g. ‘which candidatei did the teacher think the students should discuss __i?’). Now 

that it was clear that LSTMs could generally recognize regular wh-extractions, Chowdhury 

and Zamparelli (2018) investigated whether LSTMs could also represent the constraints on 

these extractions, namely the subject and relative clause island constraints in (9). 

 

(9) Subject island 

a. ?
Whoi did John see [object a classmate of ___i]? 

b. *
Whoi did [subject a classmate of ___i] ruin John? 

Relative clause island 

c. *
Which girli did John see [relative clause in object the person that dated ___i]? 

d. *
Which girli did [relative clause in subject the person that dated ___i] see John? 

(Chowdhury & Zamparelli, 2018, p. 138) 
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The results showed that LSTMs seemed to have learned to recognize gap-resistant island 

configurations; both subject and relative clause islands were assigned lower total-sentence 

probability than sentences with regular object extraction. Interestingly, however, the networks 

assigned a similar total-sentence probability to yes/no-questions, such as the one in (10), 

which does not have wh-movement and is thus never able to exhibit island effects.       

 

(10) Did John see the person that dated Mary? 

(Chowdhury & Zamparelli, 2018, p. 141) 

 

Therefore, Chowdhury and Zamparelli (2018) suggest that the unacceptability of subject and 

relative clause islands cannot be due to the simple fact that they contain a gap-resistant island, 

but that it is the result of the cumulative effect of a syntactically complex structure and the 

position of that structure. Subject islands, such as the subject ‘a classmate of Tim’, are more 

complex than for instance the subjects ‘Tim, a classmate’ or ‘Tim’s classmate’, and relative 

clauses are argued to be structurally complex as well. Chowdhury and Zamparelli, 

furthermore, suppose that these complex structures lead to ambiguity, which makes the 

networks more uncertain, explaining the low probabilities assigned to these structures. 

Moreover, the position of such a complex structure also affects the probability; it is better to 

have a complex structure at the end of the sentence than at the start of it. At the start of the 

sentence, a complex and potentially ambiguous structure can confuse the network, and this 

confusion will influence how the network processes the rest of the sentence, leading to a 

lower total-sentence probability.  

In conclusion, Chowdhury and Zamparelli (2018) thus suggest that neural networks do not 

use their ‘sense’ of grammaticality when processing sentences with ungrammatical wh-

extraction and syntactic islands, but that processing factors are at play, such as the number of 

embedding layers of the sentence, its syntactic complexity and the position of this complexity.  

After this investigation, Wilcox et al. (2018) followed with a paper in which they come to 

an entirely different conclusion. Before discussing their results, however, it is first important 

to discuss the experimental design they used. This was developed to investigate whether 

RNNs can learn regular filler-gap dependencies and island constraints, specifically by 

zooming in on the learnability of different predictions assumed to be made by the grammar. 

This design was later also used in various other papers, that will be discussed in this section as 

well.  

Wilcox et al.’s (2018) experimental design constitutes a 2×2 interaction design, based on 

two predictions assumed to be made by the grammar: (1) gaps require fillers, and (2) fillers 

require gaps. Consequently, PRESENCE OF GAP and PRESENCE OF FILLER are crossed, and the 

resulting four conditions can be found in Table 1.  
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Table 1   

Regular filler-gap dependency in the four conditions of Wilcox et al.’s (2018) interaction design. 

Item Gap? Filler? Example sentence 

a Yes Yes I know whati he said that the lion devoured ___i at sunrise. 

b Yes No 
*
I know that he said that the lion devoured ___i at sunrise. 

c No Yes 
*
I know whati he said that the lion devoured a gazellei at sunrise. 

d  No No I know that he said that the lion devoured a gazelle at sunrise. 

 

If the network indeed assumes that gaps require fillers, gaps should be more surprising when 

no wh-filler is present. This means that ‘at sunrise’ should be more surprising in item (b) than 

in item (a). This effect is also called the wh-effect in the +Gap condition (Wilcox et al., 2021). 

Furthermore, if the network also assumes that fillers require gaps, filled argument positions 

should be more surprising when a wh-filler is present. This means that ‘a gazelle’ should be 

less surprising in item (d) than in item (c). In humans, this effect is called the filled-gap effect, 

but for neural networks it is referred to as the wh-effect in the –Gap condition (Wilcox et al., 

2021). How well both assumptions are learned can be measured with the difference of 

differences, i.e. the full licensing interaction ((1b)−(1a))−((1d)−(1c)) (Wilcox et al., 2018; 

Wilcox et al., 2019b). 

To investigate whether neural networks are also able to learn about island constraints, 

STRUCTURE (non-island vs. island) is added to this interaction design. The four island 

conditions can be found in Table 2. 

 

Table 2 
Wh-islands in the four conditions of Wilcox et al.’s (2018) interaction design. 

Item Gap? Filler? Example sentence 

e Yes Yes 
*
I know whati he said whether the lion devoured ___i at sunrise. 

f Yes No 
*
I know that he said whether the lion devoured ___i at sunrise. 

g No Yes 
*
I know whati he said whether the lion devoured a gazellei at sunrise. 

h  No No I know that he said whether the lion devoured a gazelle at sunrise. 

 

Unlike in regular filler-gap dependencies, when an island configuration contains a gap, the 

presence of a wh-filler should not affect the network’s expectations; the network should never 

expect a gap inside an island, as this is ungrammatical. The wh-effect in the +Gap condition 

should thus be close to zero. Wilcox et al. (2018) argue in similar vein for island 

configurations with filled argument positions and no gaps; the presence of a filler should not 

affect the network’s expectations as the neural network will always expect a filled argument 

position inside an island. According to Wilcox et al. (2018), the wh-effect in the –Gap 

condition should thus also be close to zero. While I agree that the network should always 

expect a filled argument position and never a gap inside an island, I think the network will 

still be affected by the presence of a wh-filler in sentences without a gap inside an island. 

While the network should never expect a gap inside an island, coming across a wh-filler at the 

start of the sentence should give rise to the expectation of a gap somewhere else. When 

encountering the period whilst not having encountered a licit gap, there should be a spike in 

surprisal, as these sentences are completely ungrammatical. This would mean that the wh-
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effect in the –Gap condition should be negative. Regardless of the interpretation of the wh-

effect in the –Gap condition, however, the learnability of island constraints can still be 

assessed by comparing the full licensing interaction of non-islands to that of island violations. 

If island constraints are learned correctly, a significant decrease in the licensing interaction is 

expected (Wilcox et al., 2018; Wilcox et al., 2019b). 

Contrary to Chowdhury & Zamparelli (2018), Wilcox et al. (2018) showed with this 

interaction design that different LSTM networks could successfully learn wh-, adjunct and 

CNP islands. Subject islands, however, proved to be too difficult to learn correctly. Wilcox et 

al. (2018) argue that the difference between their and Chowdhury and Zamparelli’s 

investigations can be attributed to the experimental design used in both studies. First of all, 

Chowdhury and Zamparelli used sentence schemata to generate numerous sentences with 

exactly the same structure but different content words, while Wilcox et al. (2018) carefully 

made the test items themselves paying attention as to whether each item tested the correct 

phenomenon. Moreover, Wilcox et al.’s (2018) non-island and island sentences were arguably 

equally complex, in contrast to those used by Chowdhury and Zamparelli. All the reasons 

above could have contributed to the different results obtained by both studies. Later, however, 

Wilcox et al. (2019b) found a way to directly test whether there are syntactic or extra-

syntactic factors at play. 

3.2.2 A control study 

While Wilcox et al. (2018) argue that LSTM networks can learn the syntactic wh-, adjunct 

and CNP island constraints, Chowdhury and Zamparelli (2018) suggest that these networks 

are affected by processing factors, namely the syntactic complexity of islands and the position 

of this complex structure. Wilcox et al. (2019b) designed a control study to test both 

explanations. As Chowdhury and Zamparelli (2018) argue that neural networks are simply not 

able to thread information through syntactically complex structures (i.e. islands), Wilcox et al. 

(2019b) included sentences in which expectations for gendered pronouns needed to be 

established and maintained through complex syntactic structures. In these sentences, nouns 

with an unambiguous gender bias (e.g. ‘actress’) created the expectation that a pronoun 

further on in the sentence would match the noun’s gender (i.e. ‘her’). Consequently, GENDER 

MISMATCH (match vs. mismatch) and ISLAND (non-island vs. island) were crossed to create 

test items, of which examples can be found in Table 3. 
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Table 3 

Example sentences of control items used in Wilcox et al. (2019b). The gendered noun and pronoun are 

boldfaced. 

Gender 

mismatch? 

Island? Example sentence 

No No The actress said that they insulted her friends. 

Yes No The actress said that they insulted his friends. 

No Yes The actress said whether they insulted her friends. 

Yes Yes The actress said whether they insulted his friends. 

 

A gendered expectation effect was calculated by taking the surprisal difference between the 

levels of GENDER MISMATCH, e.g. the difference between item (a) and (b). Wilcox et al. 

(2019b) showed that this gendered expectation effect did not reduce within an island 

configuration as compared to non-islands. This means that the expectation for gender can be 

threaded through the syntactically complex island configuration, and that it can be assumed 

that other information can be threaded through island as well. 

After establishing that any results found were not caused by processing factors, Wilcox et 

al. (2019b) showed that wh-, adjunct, CNP and left branch islands could be learned 

successfully by two LSTM networks. While the networks also successfully learned not to 

expect a gap within coordinate structure islands, they still kept some expectation for a gap, 

completely unlike human behaviour (Liu et al., 2021). Moreover, similar to the LSTM models 

in Wilcox et al. (2018), the networks still did not show any sensitivity to (sentential) subject 

islands. While these results generally show that LSTM networks are able to learn syntactic 

constraints on filler-gap dependencies instead of simply being sensitive to their complexity, 

they also suggest that the networks are not completely human-like and that they are not able 

to learn all constraints successfully yet.  

Similar to Wilcox et al. (2019b), Wilcox et al. (2019a) also designed a control condition 

for the complexity explanation. They examined whether neural networks are also able to 

license a gap over a syntactic island construction. An example of an item set with such a 

control item can be found in Table 4 and Table 5. 

 

Table 4 

Example sentences of CNP islands used in Wilcox et al. (2019a). Only item (a) is taken directly from 

Wilcox et al. (2019a). The other items are self-made adaptions. 

Item Gap? Filler? Example sentence 

a Yes Yes 
*
I know whoi the count that insulted ___i on the balcony talked with the 

hostess. 

b Yes No 
*
I know that the count that insulted ___i on the balcony talked with the 

hostess. 

c No Yes 
*
I know whoi the count that insulted the womani on the balcony talked with 

the hostess. 

d No No I know that the count that insulted the woman on the balcony talked with the 

hostess. 
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Table 5 

Example sentences of the control condition used in Wilcox et al. (2019a). Only item (a) is taken 

directly from Wilcox et al. (2019a). The other items are self-made adaptions. 

Item Gap? Filler? Example sentence 

a Yes Yes I know whoi the count that insulted the hostess talked loudly with ___i on the 

balcony. 

b Yes No 
*
I know that the count that insulted the hostess talked loudly with ___i on the 

balcony. 

c No Yes 
*
I know whoi the count that insulted the hostess talked loudly with the 

womani on the balcony. 

d No No I know that the count that insulted the hostess talked loudly with the woman 

on the balcony. 

 

Wilcox et al. (2019a) tested the learnability of adjunct and CNP islands using the interaction 

design introduced in Wilcox et al. (2018), and reported separately on the wh-effect in the 

+Gap (i.e. difference between item (a) and (b)) and −Gap condition (i.e. difference between 

item (c) and (d)). Within the +Gap condition, in items (a) and (b), networks needed to thread 

the expectation for a gap over the syntactically complex island configurations, while coming 

across an illicit gap inside the island. Networks seemed to be successful at that; the wh-effect 

for both island types was decreased in the island condition as compared to the non-island and 

control conditions. The LSTM networks seemed to struggle within the –Gap conditions, 

however, in items (c) and (d), in which they needed to thread the expectation for a filled gap 

over islands, while coming across a licit filled gap inside the island. Here, the wh-effect is 

decreased in both islands compared to non-islands, but not compared to the control condition; 

none of the LSTM networks are able to recover the filled-gap expectation when moving 

through a syntactic island configuration with a licit filled gap. LSTM networks can thus 

successfully suppress and recover the expectation for a gap, but not for a filled gap, which 

means that they can learn the principle of suppressing and recovering expectations only 

imperfectly. 

3.2.3 Successful but not exceptionless 

After the discussed investigations, Wilcox et al. (2021) decided to combine all the knowledge 

gathered in these studies into the largest investigation to date on the neural network’s learning 

ability of filler-gap dependencies and their island constraints. This investigation uses both the 

interaction design introduced by Wilcox et al. (2018) and the gendered expectation effect 

introduced by Wilcox et al. (2019b) to control for any complexity effects.   

Wilcox et al. (2021) start by investigating whether all standard characteristics of regular 

filler-gap dependencies can be learned by ANNs. First, they show that different types of 

neural networks can learn that filler-gap dependencies are flexible; gaps can be at different 

sites (e.g. subject and object position). However, they also admit that some could argue that 

the network might simply learn the linear relationship between fillers and gaps; if it comes 

across a wh-filler, it learns to expect a gap somewhere. Therefore, they also tested an 

hierarchical constraint dependencies are subjected to, namely the fact that a gap always needs 
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to be in the c-command domain of the filler. For example, in (11a), the gap is in the c-

command domain of the filler ‘who’, but in (11b) it is not. 

 

(11) a. [DP The fact that John knows whoi Mary saw ___i] surprised them today. 

b. 
*
[DP The fact that John knows whoi Mary saw Peter] surprised ___i today. 

 

Their results showed that neural networks can learn to adhere to these hierarchical constraints; 

the wh-licensing interaction is reduced for sentences as (11b) as compared to sentences such 

as the one in (11a). However, once again, some could argue that these effects solely arise due 

to the fact that the c-command domain is linearly closer to the filler. Therefore, Wilcox et al. 

(2021) also examined whether the neural networks could link a filler to a gap regardless of the 

number of intervening elements. Different types of neural networks were able to represent 

filler-gap dependencies, even when the sentence contained five layers of embedding. 

To truly show that neural networks can learn filler-gap dependencies, however, the 

constraints that apply to these dependencies need to be learned as well (Da Costa & Chaves, 

2020). Therefore, Wilcox et al. (2021) tested all islands previously tested by Wilcox et al. 

(2019b), and showed that wh-, adjunct, CNP, left branch, and coordinate structure islands 

could all successfully be learned by different types of neural networks. Moreover, unlike other 

studies, they also showed successful results for subject islands, but only when the subject was 

non-sentential. Also important to note is that these results could not be due to processing 

factors, as the control condition used ruled out this option. 

Despite all of these successful results, Chaves (2020) remains sceptical about whether 

neural networks are capable of learning the syntactic constraints on filler-gap dependencies, 

for two reasons. First, as found in many of the studies discussed before, (sentential) subject 

islands seem impossible to learn for the network. According to Chaves, this is striking, 

because it is one of the strongest island effects. For example, it is regarded as a stronger 

constraint than the wh-island effect, while the latter is successfully learned in all studies. Why 

are the neural networks not able to learn such a strong, almost exceptionless, constraint? 

Second, he rightly states that island constraints are very complex. As discussed in Section 2.1, 

this is also put forward by many linguists in the theoretical debate about islands; many 

exceptions are found, making it difficult to create a constraint that works for all possible 

examples. Chaves argues that, before we can state that neural networks can learn island 

constraints, it first has to be shown that all of the exceptions can be learned as well.  

Using the interaction design introduced by Wilcox et al. (2018), Chaves (2020) thus 

investigated whether neural networks can also learn the exceptions to the island constraints. 

The first exception concerns CNP islands, which arguably disappear in existential relative 

clauses, illustrated in (12). 

 

(12) Which diamond ringi did you say there was [CNP nobody in the world who  

could buy ___i]? 

(Chaves, 2020, p. 24) 

 

While Wilcox et al. (2018) originally hypothesized that the full wh-licensing interaction 

should decrease for islands in comparison to non-islands, it should thus not decrease for the 
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island in (12) as this is argued to be an acceptable sentence. Only one of two LSTM networks 

did not show this decrease. 

Second, Chaves (2020) tested the network on conditional adjunct islands, judged as highly 

acceptable in Chaves and Putnam (2020), an example of which is shown in (13).  

 

(13) Whati does Evan get grumpy [conditional adjunct if he is told to do ___i]? 

(Chaves, 2020, p. 25) 

 

While the full wh-licensing interaction should thus not decrease for this conditional adjunct 

island as these are not considered gap-resistant by humans, it did for both LSTM networks.  

Last, Chaves (2020) examined the learnability of negative phrase islands as these can be 

affected by several semantic and pragmatic factors. For example, the sentence in (14a) is 

unacceptable because of semantic reasons; using an existential modal makes the island effect 

disappear, as is shown in (14b). The two LSTM networks did not show any sensitivity to 

these factors, however.    

 

(14)   a.   
*
How fasti didn’t John drive ___i?    

b. How fasti is John required not to drive ___i? 

(Chaves, 2020, p. 27) 

 

Therefore, Chaves (2020) concludes that island constraints are too complex for neural 

networks to learn completely. He argues that this is because “filler-gap dependencies (…) 

involve rich morphological, syntactic and semantic dependencies which crucially interact with 

pragmatics and world knowledge” (p. 28), making them impossible to learn from training data 

alone. 

 

In sum, a uniform conclusion about whether neural networks are able to learn syntactic island 

constraints does not exist (yet) as previous investigations show different results. Warstadt et 

al. (2019) thus rightly state that syntactic island constraints are the hardest phenomenon to 

learn for RNNs. While these networks can learn to represent regular filler-gap dependencies, 

they still struggle to learn the different structure types in which these dependencies cannot be 

made. Therefore, more research is necessary in English on the island constraints not 

successfully learned yet. For the successfully learned island constraints, however, it can 

already be investigated whether they can also be successfully learned in languages other than 

English. The wh- and coordinate structure island constraints are, for example, successfully 

learned in various studies in English (e.g. Wilcox et al., 2018; Wilcox et al., 2019b; Wilcox et 

al., 2021), making it interesting to see whether this success is limited to the English language 

only or whether it can also be achieved in other languages. Therefore, the current research 

project specifically focused on the successfully learned wh- and coordinate structure island 

constraints.  

Important to note is that all results and conclusions discussed in the current section are 

limited to the English language. The learnability of syntactic island constraints has not been 

investigated in another language yet, while island effects do exist in languages all over the 

world (Wilcox et al., 2021). To be able to state that the LSTM network can learn syntactic 
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island constraints, and to be able to make any statements about the need for an innate 

language ability based on these results, more languages need to be investigated. Therefore, the 

current research project will investigate the learnability of the wh- and coordinate structure 

constraints in Dutch.      

3.3 Concerns for research with artificial neural networks 

While various investigations have taken place on the learnability of syntactic island 

constraints by artificial neural networks, most, if not all, have been performed in English. This 

is concerning as recent literature suggests that these networks bear a bias specifically for 

right-branching structures, and consequently for right-branching languages, such as English 

(Dyer et al., 2019). A language’s branching direction is determined by the order of the head 

and the complement of a syntactic phrase. For example, in a verb phrase (i.e. VP), the verb 

appears in the head V and the object occurs in its complement. This complement can either 

precede or follow the head, and this order determines a language’s branching direction. If the 

complement always follows the head, as in Figure 5A, the language is referred to as right-

branching (e.g. English). Conversely, if the complement always precedes the head, as in 

Figure 5B, the language is called left-branching (e.g. Japanese). It is also possible to have 

both right- and left-branching structures, which makes a language mixed (e.g. Dutch) (Frazier 

& Rayner, 1988).     

 

Figure 5 

The structure of the Verb Phrase for right-branching (A) and left-branching (B) languages. 

  
 

 

The right-branching structures seem to overlap with a non-linguistic bias in the artificial 

neural network (Davis & van Schijndel, 2020). While this right-branching bias will therefore 

inflate the architecture’s performance in right-branching languages, it will undermine its 

performance in left-branching and possibly mixed-branching languages (Li et al., 2020). 

Therefore, to address this concern, the current study will investigate the learnability of 

syntactic island constraints not in a right-branching language, but in a mixed-branching 

language, namely Dutch.  

Another possible concern when investigating the syntactic learning abilities of neural 

networks is that the outputted probability distribution is not comparable with the measurement 

used to test humans; in this case, acceptability judgements. In the current research project, the 

performance of the neural networks was assessed by examining the surprisal values that the 

network assigned to the words in the test sentences. This value represents the extent to which 

a word is unexpected by the network (Levy, 2008). The network’s performance was compared 

to that of human native speakers, who judged the same test sentences on their acceptability in 
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Dutch. While previous research has shown that surprisal is indicative of real-time human 

language processing (Smith & Levy, 2013), and can thus be compared with human reading 

times, not much research has compared surprisal values with acceptability judgements yet, 

giving rise to the concern as to whether this is even possible. As stated in Section 2.1, 

acceptability judgements have been shown to be gradient (Abeillé et al., 2020; Hofmeister & 

Sag, 2010), which suggests that the knowledge underlying these judgements is probabilistic in 

nature instead of categorical (Lau et al., 2017; Sprouse et al., 2018). Moreover, multiple 

previous investigations have argued that acceptability is a concept comparable to probability 

(Pearl & Sprouse, 2015; Wilcox et al., 2021). Pearl and Sprouse (2015) even suggests a way 

in which the probabilities assigned to words and sentences can be translated to acceptability 

judgements; higher surprisal values, and thus less probable words and sentences, link to lower 

judgements, and lower surprisal values, and thus more probable words and sentences, to 

higher judgements. 

While there have thus been arguments, there has not been a direct comparison between 

surprisal values and acceptability judgements on a syntactic phenomenon that has been shown 

to be learnable by ANNs in different languages. This direct comparison could show whether a 

network’s probability distribution and humans’ acceptability judgements are indeed 

comparable. Based on previous research, however, I have compared the two in the current 

research project, using Pearl and Sprouse’s (2015) translation described above.    

4. The current research 

The current research project investigated whether artificial neural networks can learn to be 

sensitive to the wh- and coordinate structure island constraints in Dutch, comparable to human 

native speakers of Dutch. To answer this research question, it first needs to be established 

whether the wh- and coordinate structure island constraints exist in Dutch, and if so, to what 

extent human native speakers are sensitive to these constraints. Therefore, an acceptability 

judgement task was performed using the interaction design introduced by Wilcox et al. 

(2018). For each island type, the experimental items were manipulated for PRESENCE OF GAP 

(no gap vs. gap), PRESENCE OF FILLER (no filler vs. filler) and ISLAND (non-island vs. island). 

Example sentences of all these conditions can be found in Table 6 and Table 7. The native 

Dutch speakers had to judge on a 7-point scale whether the regular filler-gap dependencies, 

wh-islands and coordinate structure islands with and without gaps and/or fillers were 

acceptable in Dutch. 

Moreover, following Wilcox et al. (2019b), control items were added with gender 

expectations to control for the complexity effect discussed in Section 3.3.1. Similar to Wilcox 

et al. (2019b), these control items were manipulated for GENDER MATCH (match vs. no match) 

and STRUCTURE (non-island vs. wh-island vs. coordinate structure island). 

After the human native speakers of Dutch judged these items, a LSTM network, trained on 

12 million sentences extracted from the Dutch Corpora Of the Web (NLCOW14), was 

presented with the same test sentences. I examined the surprisal values it assigned to each 

word of the test sentences, which indicate the extent to which a word was unexpected by the 

network, to assess its sensitivity to the island constraints. These surprisal values were then 

compared to the acceptability judgements using the translation proposed by Pearl and Sprouse 
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(2015); the higher the surprisal value, and thus the more unexpected a sentence (part) was, the 

lower the acceptability rating. I will now discuss the hypotheses set beforehand. 

4.1 Hypotheses 

I will now discuss the hypotheses for the acceptability judgement and the modelling task. 

After discussing the predictions made for these tasks individually, I will also hypothesize 

about the comparison between the Dutch native speakers and the LSTM network.  

For both the human native speakers and the LSTM network, based on Beljon et al. (2021) 

and unpublished results (Suijkerbuijk, 2021), it is expected that they are sensitive to wh-island 

violations, showing that the wh-island constraint exists in Dutch. Moreover, as extraction of 

(part of) a full conjunct does not seem possible in any language (Liu et al., 2022), the 

coordinate structure island constraint is also expected to exist in Dutch. Consequently, the 

following is predicted for the interaction design by Wilcox et al. (2018). 

First, as previous research has shown that humans and neural networks may simply not be 

able to thread information through syntactically complex constructions (i.e. islands) (Keshev 

& Meltzer-Asscher, 2019; Chowdhury & Zamparelli, 2018), control items were added, 

examples of which can be found in Table 8. It is predicted that the sentences in which the 

gender of the noun phrase matches the gender of the possessive pronoun will be judged as 

more acceptable and will be less unexpected than sentences in which there is no match. 

Moreover, if the native speakers and the LSTM network have trouble threading information 

through island configurations, an interaction is expected between GENDER MATCH and 

STRUCTURE; the gendered expectation effect, i.e. the difference between the sentences with 

matching and non-matching genders, will reduce within island configurations. However, if the 

native speakers and the LSTM network can work within complex structures, no interaction 

effect is expected to arise, meaning that the gendered expectation effect will not be different 

between non-islands and the two island types. 

Second, the filler-gap dependencies and island constraints will be examined. As discussed 

before, the interaction design by Wilcox et al. (2018) was based on two assumptions: (1) gaps 

require fillers, and (2) fillers require gaps. If Dutch speakers and the LSTM network indeed 

assume the first, gaps should be more surprising and less acceptable when no wh-filler is 

present. For the sentences in Table 6 and Table 7, this means that the second sentence should 

be more surprising and less acceptable than the first. Furthermore, if the native speakers and 

the network also follow the second assumption, filled argument positions should be more 

surprising and less acceptable when a wh-filler is present. This means that the fourth sentence 

should be less surprising and more acceptable than the third.  

However, when the gaps and fillers appear in island configurations, the hypotheses are 

different. When the island configuration contains a gap, the presence of a wh-filler should not 

affect the network’s expectations or the speaker’s acceptability. Regardless of the presence of 

a filler, the network should never expect a gap inside an island and a Dutch speaker should 

never find a gap inside an island acceptable. However, unlike the hypothesis put forward by 

Wilcox et al. (2018), when there is no gap but a filler argument position inside the island, I 

expect the presence of a filler to affect the network’s expectations and the speakers’ 

acceptability judgements. While the network should never expect a gap inside an island, 

coming across a wh-filler at the start of the sentence should give rise to the expectation of a 
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gap somewhere else. When encountering the period whilst not having encountered a gap, 

there should be a spike in surprisal, as this sentence is completely ungrammatical. The native 

speakers will thus also find it unacceptable to come across a wh-filler but no gap. This all 

means that a three-way interaction effect should arise between PRESENCE OF GAP, PRESENCE 

OF FILLER, and ISLAND, as the interaction between the former two differs between non-islands 

and islands.  

Moreover, two additional predictions were made. First, the current research also directly 

compared the two island types investigated by adding STRUCTURE (wh-island vs. coordinate 

structure island) to the design. While previous research claims that coordinate structure island 

effects occur in every language (Liu et al., 2021), it varies between and within languages 

whether sensitivity to wh-island effects is shown (Pañeda et al., 2020). Therefore, while I can 

be sure to find a strong coordinate structure island effect, it is uncertain whether I will find a 

wh-effect similar in strength to that found in Beljon et al. (2021) for Dutch. Therefore, it is 

predicted that a main effect of STRUCTURE could occur; coordinate structure islands could be 

judged as less acceptable, and the network could be more surprised to see coordinate structure 

islands than it will be to come across wh-islands. Moreover, the interaction effect discussed 

before between PRESENCE OF GAP, PRESENCE OF FILLER, and ISLAND will be more pronounced 

for coordinate structure islands as compared to wh-islands, resulting in a four-way interaction 

between PRESENCE OF GAP, PRESENCE OF FILLER, ISLAND, and STRUCTURE. Second, previous 

literature has shown a learning effect for the ungrammatical island configurations; the 

acceptability of these islands increased after participants were more often exposed to them 

(Christensen et al., 2013; Kush et al., 2019). Therefore, for the analysis of the acceptability 

judgement task, TRIAL PROGRESS was also added, and predicted to have an effect on the 

interaction between PRESENCE OF GAP, PRESENCE OF FILLER and ISLAND; the acceptability of 

the ungrammatical islands [+GAP, +FILLER, +ISLAND], [+GAP, -FILLER, +ISLAND] and [−GAP, 

+FILLER, +ISLAND] was predicted to increase, the more the participants progressed through the 

experiment.  

After conducting both the acceptability judgement and the modelling task, the performance 

of the native Dutch speakers and the LSTM network will be compared to see whether the 

network shows a sensitivity to the wh- and coordinate structure island violations similar to 

that observed by the native speakers. In general, based on the success of the neural network 

on island constraints in English (e.g. Wilcox et al., 2021), I expect the LSTM network to show 

roughly the same sensitivity to the wh- and the coordinate structure island violations in Dutch 

as the human native speakers. This means that any effects observed for the native speakers 

will also be observed for the LSTM network; for example, if the results of the judgement task 

show a three-way interaction effect between PRESENCE OF GAP, PRESENCE OF FILLER and 

ISLAND, this interaction effect will also arise in the modelling task. Moreover, when looking 

into the statistical effects, the acceptability judgements and the surprisal values will show the 

same pattern; for example, if the presence of a filler decreases the acceptability of sentences 

with a gap, it will increase the surprisal values of these sentences assigned by the network. By 

comparing the human native speakers and the LSTM network on the hypotheses described 

above, it can be determined whether the performance by the LSTM network is actually 

human-like.   
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5. Human acceptability judgement task 

5.1 Methodology 

To test whether the wh-island and the coordinate structure island constraints exist in Dutch 

and, if so, to what extent native speakers are sensitive to them, an acceptability judgement 

task using a 7-point Likert scale was conducted in Qualtrics (Qualtrics, March 2022). This 

research project was approved by the ethics assessment committee for the humanities of 

Radboud University (ETC-GW number 2022-0232). 

5.1.1 Experimental design 

This experiment contained experimental and control items, for which a different experimental 

design was used. For the experimental items, four independent variables were included: 

1. PRESENCE OF GAP: is a gap present in the sentence? This independent variable had two 

levels (NO GAP vs. GAP) and was measured within-subjects and within-items; 

2. PRESENCE OF FILLER: is a wh-filler present in the sentence? This independent variable 

had two levels (NO FILLER vs. FILLER) and was measured within-subjects and within-

items; 

3. ISLAND: does the sentence contain an island or a regular filler-gap dependency? This 

independent variable had two levels (NO ISLAND vs. ISLAND) and was measured within-

subjects and within-items; 

4. STRUCTURE: what type of island does the sentence contain? This independent variable 

had two levels (WH-ISLAND vs. COORDINATE STRUCTURE ISLAND) and was measured 

within-subjects and between-items. 

The inclusion of these independent variables resulted in 16 different conditions in total. This 

means that there were eight conditions per island type. Example sentences of these eight 

conditions for wh-islands can be found in Table 6, and in Table 7 for coordinate structure 

islands.   

For the control items, two independent variables were included: 

1. GENDER MATCH: does the gender of the NP in the matrix and the embedded sentence 

match? This independent variable had two levels (NO MATCH vs. MATCH) and was 

measured within-subjects and within-items; 

2. STRUCTURE: is the sentence a regular filler-gap dependency or does it contain an island 

violation, and if so, which type? This independent variable had three levels (NO ISLAND 

vs. WH-ISLAND vs. COORDINATE STRUCTURE ISLAND) and was measured within-subjects 

and within-items. 

Consequently, there were six control conditions in total. Example sentences of these 

conditions can be found in Table 8. The standardized judgements per participant were used as 

the dependent variable in the analysis of both the experimental and the control items. 
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Table 6 

Example sentences for the experimental items with a wh-island. 

Gap? Filler? Island? Example sentence 

Yes Yes No Ik weet   wat   jij   denkt dat  de  bakker maakt in de  bakkerij. 

I   know what you think that the baker   makes in the bakery 

‘I know what you think that the baker makes in the bakery.’ 

Yes No No Ik weet   dat  jij  denkt dat  de  bakker maakt in de  bakkerij. 

I   know that you think that the baker  makes in the bakery 

‘I know that you think that the baker makes in the bakery.’ 

No Yes No Ik weet  wat    jij   denkt dat de  bakker koekjes maakt  in de bakkerij. 

I   know what you think that the baker  cookies makes in the bakery 

‘I know what you think that the baker makes cookies in the bakery.’ 

No No No Ik weet   dat  jij   denkt dat de   bakker koekjes maakt  in de bakkerij. 

I   know that you think that the baker   cookies makes in the bakery 

‘I know that you think that the baker makes cookies in the bakery.’ 

Yes Yes Yes Ik weet   wat   jij    je    afvraagt of           de  bakker maakt  in de bakkerij. 

I   know what you REF wonder   whether the baker   makes in the bakery 

‘I know what you wonder whether the baker makes in the bakery.’ 

Yes No Yes Ik weet   dat   jij    je    afvraagt  of          de  bakker maakt  in de bakkerij. 

I   know  that you REF wonder   whether the baker   makes in the bakery 

‘I know that you wonder whether the baker makes in the bakery.’ 

No Yes Yes Ik weet   wat   jij    je    afvraagt  of            

I   know what you REF wonder   whether  

de  bakker koekjes  maakt  in de bakkerij. 

the baker   cookies makes  in the bakery 

‘I know what you wonder whether the baker makes cookies in the bakery.’ 

No No Yes Ik weet   dat   jij    je    afvraagt  of            

I   know that you  REF wonder   whether  

de  bakker koekjes  maakt  in de bakkerij. 

the baker   cookies makes  in the bakery 

‘I know that you wonder whether the baker makes cookies in the bakery.’ 
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Table 7 

Example sentences for the experimental items with a coordinate structure island. 

Gap? Filler? Island? Example sentence 

Yes Yes No Ik weet   wat   jij   denkt dat  de  man aanbiedt tijdens de  veiling. 

I   know what you think that the man offers      during the auction 

‘I know what you think that the man offers during the auction.’  

Yes No No Ik weet   dat   jij   denkt dat  de  man aanbiedt tijdens de  veiling. 

I   know that  you think that the man offers      during the auction 

‘I know that you think that the man offers during the auction.’ 

No Yes No Ik weet   wat   jij   denkt dat  de  man  

I   know what you think that the man  

het schilderij aanbiedt tijdens de  veiling. 

the painting   offers      during the auction 

‘I know what you think that the man offers the painting during the auction.’ 

No No No Ik weet   dat   jij   denkt dat  de  man  

I   know that you  think that the man  

het schilderij aanbiedt tijdens de  veiling. 

the painting   offers      during the auction 

‘I know that you think that the man offers the painting during the auction.’ 

Yes Yes Yes Ik weet   wat   jij   denkt dat  de  man  

I   know what you think that the man  

het schilderij en   aanbiedt tijdens de  veiling. 

the painting   and offers      during the auction 

‘I know what you think that the man offers the painting and during the 

auction.’ 

Yes No Yes Ik weet   dat   jij   denkt dat  de  man  

I   know that you  think that the man  

het schilderij en   aanbiedt tijdens de  veiling. 

the painting   and offers      during the auction 

‘I know that you think that the man offers the painting and during the 

auction.’ 

No Yes Yes Ik weet   wat   jij   denkt dat  de  man  

I   know what you think that the man  

het schilderij en   het juweel aanbiedt tijdens de  veiling. 

the painting   and the jewel   offers     during  the auction 

‘I know what you think that the man offers the painting and the jewel 

during the auction.’ 

No No Yes Ik weet   dat   jij   denkt dat  de  man  

I   know that you  think that the man  

het schilderij en   het juweel aanbiedt tijdens de  veiling. 

the painting   and the jewel  offers      during  the auction 

‘I know that you think that the man offers the painting and the jewel during 

the auction.’ 
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Table 8 

Example sentences for the control items. 

Match? Structure? Example sentence 

Yes No island Ik weet dat  de  meester             denkt  dat   

I know  that the teacher.MASC thinks that  

de  leerlingen zijn uitleg          begrijpen. 

the students    his  explanation understand 

‘I know that the teacher thinks that the students understand his 

explanation.’ 

No No island Ik weet dat  de  meester             denkt  dat   

I know  that the teacher.MASC thinks that  

de  leerlingen haar uitleg          begrijpen. 

the students    her   explanation understand 

‘I know that the teacher thinks that the students understand her 

explanation.’ 

Yes Wh-island Ik weet dat  de  meester             zich  afvraagt of   

I know  that the teacher.MASC REF wonders whether  

de  leerlingen zijn uitleg          begrijpen. 

the students    his  explanation understand 

‘I know that the teacher wonders whether the students understand his 

explanation.’ 

No Wh-island Ik weet dat  de  meester             zich  afvraagt of 

I know  that the teacher.MASC REF wonders whether 

de  leerlingen haar uitleg          begrijpen. 

the students    her   explanation understand 

‘I know that the teacher wonders whether the students understand her 

explanation.’ 

Yes Coordinate 

structure 

Island 

Ik weet dat  de  meester             denkt  dat   

I know  that the teacher.MASC thinks that  

de  leerlingen zijn uitleg           en   de  sommen begrijpen. 

the students    his  explanation and the sums      understand 

‘I know that the teacher thinks that the students understand his 

explanation and the calculations.’ 

No Coordinate 

structure 

island  

Ik weet dat  de  meester             denkt  dat   

I know  that the teacher.MASC thinks that  

de  leerlingen haar uitleg           en   de  sommen begrijpen. 

the students    her    explanation and the sums      understand 

‘I know that the teacher thinks that the students understand her 

explanation and the calculations.’ 
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5.1.2 Materials 

In the creation of all sentences used in the experiment, it was closely monitored whether the 

words used for the sentences also occurred in the 20,000 most frequent word list of the corpus 

used to train the neural network on (described in Section 6.2.1).  

First, 32 item sets were made for each island type, each containing the eight experimental 

conditions (see Table 6 for an example item set for wh-islands and Table 7 for an example 

item set for coordinate structure islands). The sentences in these item sets all roughly have the 

same syntactic structure, as illustrated for the [NO GAP, NO FILLER, NO ISLAND, WH-ISLAND] 

condition in Figure 6.  

 

Figure 6 

The general syntactic structure of an experimental item, specifically the [no gap, no filler, no island, 

wh-island] condition. 

 
 

First, every sentence consisted of three layers of embedding and ended with a three-word long 

adverbial phrase, e.g. in de bakkerij ‘at the bakery’. Second, within the third layer, the object 

(e.g. koekjes ‘cookies’) or the object filler (i.e. wat ‘what’) was always inanimate and the 

subject always animate (e.g. de bakker ‘the baker’) to minimize subject-object ambiguity 

(Beljon et al., 2021). Moreover, a verb was used that could only be interpreted in a transitive 

manner (e.g. maken ‘to make’). Last, within the first and the second layer, the subjects were 

either a pronoun, a proper name or a full NP, and two different verbs were alternated (e.g. 

weten ‘to know’ and begrijpen ‘to understand’ in the first layer; denken ‘to think’ and 

verwachten ‘to expect’ for non-islands in the second layer; zich afvragen ‘to wonder’ and 

betwijfelen ‘to doubt’ for islands in the second layer). All the subjects, objects and verbs used 

in the sentences, and the completed item sets can be found on the OSF-page of this research 

project (https://osf.io/kt3he/).   

In addition to these experimental item sets, 32 control item sets were constructed (see 

Table 8 for an example item set). Similarly, the control items all roughly had the same 

syntactic structure, as illustrated in Figure 7 for the [MATCH, NO-ISLAND] condition.  

 

  

https://osf.io/kt3he/
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Figure 7 

Illustrating the general syntactic structure of a control item, specifically the [match, non-island] 

condition. 

 
 

Similar to the experimental items, each sentence had three layers of embedding, an animate 

subject and inanimate object in the third layer, the subject in the first layer being either a 

pronoun, a proper name or a full NP, and two different options for the verb in the first and 

second layer. In addition, within the third layer, the object was always modified by a third 

person singular possessive pronoun, either masculine (i.e. zijn ‘his’) or feminine (haar ‘her’). 

Last, within the second layer, the subject was always a full NP with an unambiguous semantic 

gender, either unambiguously masculine (e.g. meester ‘male teacher’) or unambiguously 

feminine (juffrouw ‘female teacher’). The gender of the full NP in the second layer and that of 

the possessive pronoun in the third layer could either match or not, depending on whether the 

sentence was a mismatch or a match condition of GENDER MATCH. Gender was 

counterbalanced within match and mismatch; 16 matches were female and 16 matches were 

male. This also means that 16 of the mismatches were female and the other 16 male.  

Besides the experimental and control item sets, 64 filler items were constructed as well 

based on those by Beljon et al. (2021) and Kovač and Schoenmakers (2022), covering the full 

range of acceptability: 21 acceptable, 22 moderately acceptable, and 21 unacceptable 

sentences. The 21 acceptable fillers consisted of regular declarative statements and declarative 

statements with gaan ‘to go’ as its main verb. The 22 moderately acceptable sentences can 

also be referred to as marked grammatical sentences, meaning that these contained a 

grammatical error not generally considered a serious one (Kovač & Schoenmakers, 2022). 

These sentences included variation in the order of the verb cluster, anglicisms, or violations of 

the ANIMATE FIRST principle. Last, the 21 unacceptable fillers consisted of subject-verb 

agreement errors and word salads. These filler items were identical across the experimental 

lists, and each list started with at least three filler items (one acceptable and two moderately 

acceptable items). Examples of each of the different filler categories can be found in (15) 

below.  
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(15) Regular declarative statement 

a. Jij   ziet dat  zij  vermoedt dat  Anne  en   Tom de  boekenkast  

you see that she suspects   that Anne and Tom the book.case 

aangeschaft hebben voor hun  woning. 

purchased    have     for    their place 

‘You see that she suspects that Anne and Tom purchased the book case for 

their place.’ 

  Declarative statement with gaan 

b. Ik zie  dat  hij verwacht dat  de  oppas       Samir een verhaaltje  

I   see that he  expects   that the babysitter Samir a     story 

voor gaat lezen. 

for    goes read 

‘I see that he expects the nanny to read Samir a story.’  

  Variation in verb cluster order 

c. Hij beseft    dat ik betwijfel of           Bas het bord afgewassen hebben zal. 

he   realizes that I doubt      whether Bas the plate washed       have    will 

‘He realizes that I doubt Bas will have washed the plate.’ 

  Anglicism 

d. Hij gelooft   dat ik verwacht dat Daphne  overnacht in het ziekenhuis  

he  believes that I  expect     that Daphne overnight  in the hospital      

moet blijven. 

must stay 

‘He believes that I expect Daphne to stay in the hospital overnight.’ 

  Violation of ANIMATE FIRST principle 

e. Zij  gelooft   dat  jij   vermoedt dat  het theaterstuk de  bejaarden  

she believes that you suspects  that the play            the elderly 

tot huilens toe ontroerde. 

to  crying   to  moved 

‘She believes that you suspect that the play moved the elderly to tears.’ 

  Agreement error 

f. *
Hij ziet dat   jij   verwacht dat Willem  boodschappen gedaan hebben. 

 he  sees that you expect     that Willem groceries         done     have 
*
‘He sees that you expect that Willem has done the grocery shopping.’ 

  Word salad 

g. *
Beseffen verwacht jij   dat  wij Jolie het geld     uitgegeven hebben. 

 realize    expect     you that we Jolie the money spent          have 
*
‘Realize expect you that we Jolie the money spent have.’ 

 

Similar to the experimental and control items, the filler items all also had the same syntactic 

structure; each item had three layers of embedding, and within the first and second layer, the 

subject was either a pronoun, a proper name or a full NP and only four different verbs were 

alternated. However, these verbs differed from those used in the experimental and control 

items. The filler items were added for two reasons: (1) to ensure that the full range of 

acceptability is covered by the items, and (2) to check, specifically with the unacceptable 
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items, whether the participant performed the task correctly and attentively (Beljon et al., 

2021; Sprouse, 2018). 

Only one item of each experimental item set was shown to the participant. As there are 

eight experimental conditions per island type, this means that eight main lists were made 

using a Latin square design.  Subsequently, the control items were added with a Latin square 

design and all of the filler items, resulting in a total of 160 items per list. Based on each of 

these eight main lists, 15 different lists were created, all with a different item order, resulting 

in 120 lists in total. In the randomization of the item order, one criterion was used: 

ungrammatical experimental items (i.e. the [NO GAP, FILLER] and [GAP, NO FILLER] conditions 

for non-islands, and the [NO GAP, FILLER], [GAP, NO FILLER] and [GAP, FILLER] conditions for 

islands) and ungrammatical control items (i.e. gender mismatches) had to be separated by at 

least one item. Participants were randomly assigned to one these 120 lists, such that each list 

was assigned at least once. 

5.1.3 Procedure 

The web-based experiment was built using the Qualtrics survey software (Qualtrics, March 

2022). First, participants read general information about the university’s policy regarding 

processing of the data, their rights, and my contact details. After they provided consent, they 

answered demographic questions, concerning their age, gender and the presence of any 

language/reading disorders. Participants were not able to start the experiment if they were 

younger than 16 years old or had any language/reading disorders. Participants that did start 

the experiment were randomly assigned to one of the 120 lists within the experiment. 

The participants were presented with 160 sentences (one at a time) and were instructed to 

imagine that these were produced by a native speaker of Dutch that they know well, e.g. a 

close friend. They were then told to judge these sentences on how good they sound in Dutch 

(specifically hoe goed vindt u de zin klinken? ‘how good do you think the sentence sounds?’) 

on a scale ranging from 1 (Erg slecht ‘very bad’) to 7 (Erg goed ‘very good’), and to base 

their judgement on their first intuition. Each participant started with three filler items to 

familiarise them with the task. An example of an item as presented to the participants can be 

found in Figure 8. As soon as the participants finished the experiment, they were asked to 

guess its purpose. No participant guessed that correctly, however. The experiment lasted 20 to 

30 minutes. 

 

Figure 8 

An example of an item as presented to the participants. The sentence can be translated to ‘you see that 

she suspects that Anne and Tom purchased the bookcase for their home’.  
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5.1.4 Participants 

First, 151 native speakers of Dutch entered the experiment. These participants were recruited 

through the Radboud Research Participation System Sona, and all volunteered to participate 

and provided consent before entering the experiment. However, 16 of these participants did 

not complete the experiment, five indicated to have a reading or language disorder, and 42 

rated more than two highly ungrammatical filler items a 3 or higher indicating lack of 

attention to the experiment. Consequently, these 63 participants were excluded. The 

remaining 88 participants, of which 75 were female, had a mean age of 19 years (SDage = 

2.04; range: 17-33).  

5.1.5 Data analysis 

Performance on the unacceptable filler items was checked before data analysis to determine 

whether participants had completed the experiment correctly and attentively. Before the start 

of the experiment, specific exclusion criteria were set, one being that the data of the 

participant would be excluded if that participant rated more than two of the ungrammatical 

filler items with word salads or more than two of the ungrammatical filler items with 

agreement errors with a rating of 3 or higher. After checking the data, this meant that 12 

participants had to be excluded based on their performance on the word salads, and that an 

additional 56 had to be excluded based on their performance on both the word salads and the 

agreement errors. As this came down to a remarkably high number of excluded participants 

(68 out of 151 in total), I performed an item analysis for both filler categories (see Appendix 

A). This showed that all word salads were rated quite low on average (1.30), but that ratings 

of the agreement errors were higher than expected beforehand (between 2.00 and 3.00). 

Therefore, the boundary of a rating of 3 of higher set for agreement errors before the start of 

the experiment turned out to be too low; a rating of 3 actually appeared to be plausible for 

agreement errors. Consequently, I decided to raise the boundary to 4, which changed the 

exclusion criterion to the following: “the data of the participant will be excluded if that 

participant rated more than two word salads or more than two agreement errors with a rating 

of 4 of higher”. Based on this criterion, 42 participants had to be excluded from further 

analysis. 

Before the statistical analysis, the raw acceptability judgement scores (of experimental, 

control and filler items) were converted to z-scores per participant using all items, to correct 

for individual differences in scale use. For the statistical analysis, I fitted two linear mixed-

effects (LME) models, one for the experimental items and one for the control items. First, for 

the experimental items, I fitted an LME model to the standardized scores with PRESENCE OF 

GAP, PRESENCE OF FILLER, STRUCTURE, ISLAND and their interaction as fixed factors, using the 

lmer function from the lmerTest package (Kuznetsova et al., 2017) in R (version 3.6.0; R Core 

Team, 2019). Moreover, the interaction between TRIAL PROGRESS (measured between 0 and 

1), PRESENCE OF GAP, PRESENCE OF FILLER and ISLAND was added to control for the effect of 

when an item was seen, as it is predicted that participants’ acceptability of island violations 

increase due to more exposure (Christensen et al., 2013; Kush et al., 2019). Second, for the 

control items, I fitted an LME model to the standardized scores with GENDER MATCH, 

STRUCTURE and their interaction as fixed effects. The random effects for both models were 

based on the minimal Akaike Information Criterion (AIC). In addition, all independent 
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variables were coded using simple contrasts. With simple contrasts, the reference level is 

always coded as -1/3 or -1/2, and the level that is contrasted as 2/3 or ½. For three-leveled 

variables, the non-contrasted levels are coded as -1/3 as well. The coding scheme for the 

simple contrasts used is illustrated in Table 9.   

 

Table 9 

Coding scheme for the simple contrasts of all independent variables. 

  Coding  

 Independent variable -1/2 1/2 

Analysis of  

experimental items 

Presence of gap No gap Gap 

Presence of filler No filler Filler 

Structure Coordinate structure 

island 

Wh-island 

Island Non-island Island 

Analysis of  

control items 

Gender match Match No match 

  Coding  

  -1/3 Contrasted: 2/3  

Non-contrasted: -1/3 

 Structure Non-island Coordinate structure 

island 

Wh-island 

 

Before fitting the models, a box-cox transformation was performed on the standardized scores 

(with λ = -.55 for the experimental model, and λ = 1.80 for the control model) so that the 

transformed data was as close to normally distributed as possible. After fitting this model, 

model assumptions were checked, which showed that the fitted values and the size of the error 

(ε) correlated for both models (see Appendix B). Significance values for the coefficients from 

the two models were calculated using the Satterthwaite approximation in lmerTest 

(Kuznetsova et al., 2017). The interaction effects were further examined using contrasts from 

the emmeans package (Lenth, 2022) in R. 
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5.2 Results 

5.2.1 Analysis of the experimental items 

Table 10 shows the mean unstandardized acceptability judgements per condition, and Table 

11 the mean standardized acceptability judgements, which are also illustrated for both islands 

in Figure 9. 

 

Table 10 

Mean unstandardized acceptability judgement scores. Associated standard deviations are given 

between parentheses. 

  Non-island Island 

Gap? Filler? Wh-island Coordinate 

structure 

island 

Wh-island Coordinate 

structure island 

Yes Yes 2.64 (1.50) 2.67 (1.55) 1.92 (1.04) 1.93 (.99) 

Yes No 2.28 (1.41) 2.44 (1.34) 2.36 (1.37) 2.33 (1.53) 

No Yes 2.60 (1.50) 2.72 (1.64) 2.59 (1.52) 2.65 (1.50) 

No No 4.74 (1.70) 4.79 (1.66) 4.88 (1.62) 4.71 (1.62) 

  

Table 11 

Mean standardized acceptability judgement scores (z-scores). Associated standard deviations are 

given between parentheses. 

  Non-island Island 

Gap? Filler? Wh-island Coordination 

structure  

island 

Wh-island Coordination 

structure island 

Yes Yes -.47 (.68) -.44 (.73) -.82 (.50) -.82 (.46) 

Yes No -.64 (.65) -.54 (.66) -.60 (.64) -.60 (.78) 

No Yes -.48 (.67) -.43 (.72) -.49 (.67) -.46 (.67) 

No No .62 (.74) .65 (.73) .70 (.73) .61 (.73) 
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Figure 9 

Violin/boxplot with the standardized acceptability judgement scores (z-scores) on the y-axis, the levels 

of PRESENCE OF GAP (gap vs. no gap) on the x-axis, the levels of PRESENCE OF FILLER (filler vs. no 

filler) representing the different colors, and the levels of STRUCTURE and ISLAND representing the 

different boxes. The red dot represents the mean.  
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The final model included a random intercept and random slope for FILLER for items, but no 

random effects for participants. The results of the LME regression analysis are summarized in 

Table 12.   

 

Table 12 

Results of LME analysis of the experimental items 

Fixed effects  

Predictors β 

[95% CI] 

SE df t p 

Trial progress .02 .00 5604 5.16 < .001 

 [.01, .03]     

Structure −.00 

[−.01, .00] 

.00 5604 −.98 .330 

Island −.02 

[−.03, −.01] 

.00 5604 −4.45 < .001 

Presence of filler −.07 

[−.08, −.06] 

.01 5604 −12.32 < .001 

Presence of gap −.09 

[−.10, −.09] 

.00 5604 −20.04 < .001 

Trial progress x presence of filler x presence of 

gap x island 

−.01 

[−.07, .05] 

.03 5604 −.25 .801 

Island x structure .01 

[.00, .02] 

.00 5604 2.20 .028 

Island x presence of filler  −.03 

[−.05, −.01] 

.01 5604 −3.02  .003 

Island x presence of gap −.01 

[−.03, .00] 

.01 5604 −1.51 .132 

Presence of filler x presence of gap .14 

[.12, .16] 

.01 5604 14.61 < .001 

 

Island x presence of filler x  

presence of gap 

−.04 

[−.08, −.00] 

.02 5604 −2.18 .030 

Random effects      

Group Name Variance SD    

Item Intercept .00 .01    

 Filler .00 .02    

Residual  .01 .08    

Note. Marginal R
2
 = .37; Conditional R

2
 = .39; the non-significant interaction effects with STRUCTURE were left 

out of this table. 

  



37 

 

First, the analysis revealed a significant main effect of TRIAL NUMBER (β = .02, SEβ = .00, 

95% CI of β [.01, .03], p < .001). In general, the acceptability slightly increased as 

participants were exposed to more items, which is illustrated in Figure 10. However, no 

interaction effect was found between TRIAL PROGRESS, PRESENCE OF GAP, PRESENCE OF FILLER 

and ISLAND (β = −.01, SEβ = .03, 95% CI of β [−.07, .05]), indicating that this increase in 

judgements was not specifically tied to the ungrammatical sentences.  

 

Figure 10 

Scatterplot of the main effect of TRIAL NUMBER with the standardized acceptability judgement scores 

on the y-axis and the trial progress on the x-axis. 

 
 

Furthermore, significant main effects of ISLAND (β = −.02, SEβ = .00, 95% CI of β [−.03, 

−.01], p < .001), PRESENCE OF FILLER (β = −.07, SEβ = .01, 95% CI of β [−.08, −.06], p < .001) 

and PRESENCE OF GAP (β = −.09, SEβ = .00, 95% CI of β [−.10, −.09], p < .001) were found, 

but no main effect of STRUCTURE (β = −.00, SEβ = .00, 95% CI of β [−.01, .00]). This shows 

that sentences without islands (M = −.22, SD = .85), without fillers (M = .02, SD = .94), and 

without gaps (M = .09, SD = .90) were rated significantly higher on the 7-point scale than 

sentences with islands (M = −.31, SD = .87), fillers (M = −.55, SD = .66) and gaps (M = −.62, 

SD = .66) respectively, but that there was no significant difference between the acceptability 

ratings of wh-islands (M = −.27, SD = .86) and coordinate structure islands (M = −.26, SD = 

.86). 

In addition, a three-way interaction effect between ISLAND, PRESENCE OF FILLER and 

PRESENCE OF GAP (β = −.04, SEβ = .02, 95% CI of β [−.08, −.00], p = .030) was found. For 

both non-islands and islands, acceptability decreases when a filler is present and a gap is not 

(Mnon-island = −.45, SDnon-island = .69; Misland = −.47, SDisland = .67) as opposed to sentences 

where neither a filler nor a gap is present (Mnon-island = .63, SDnon-island = .73; Misland = .65, 
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SDisland = .73) (non-island: β = .13, SEβ = .01, p < .001; island: β = .13, SEβ = .01, p < .001). 

However, non-islands and islands diverge in acceptability on sentences with a gap. While the 

presence of a filler significantly increases acceptability for non-islands (M+filler = −.46, SD+filler 

= .70; M-filler = −.59, SD-filler = .66) (β = −.02, SEβ = .01, p = .007), it decreases acceptability in 

island configurations (M+filler = −.82, SD+filler = .48; M-filler = −.60, SD-filler = .71) (β = .03, SEβ 

= .01, p < .001).   

5.2.2 Analysis of the control items 

Table 13 shows the mean unstandardized acceptability judgements per condition. Important to 

note is that, in general, the control items received higher mean acceptability judgements than 

the experimental items. The highest rated grammatical condition of the experimental items 

received a maximum rating of 4.88, while the match-condition of the control items received 

mean ratings above 5.00. Table 14 shows the  standardized scores, which are also displayed in 

Figure 11. 

 

Table 13 

Mean unstandardized acceptability judgement scores by GENDER MATCH and STRUCTURE. Associated 

standard deviations are given between parentheses. 

Match? No island Wh-island Coordinate structure island 

Yes 5.45 (1.43) 5.45 (1.45) 5.35 (1.45) 

No 3.98 (1.90) 4.06 (1.93) 3.95 (1.88) 

  

Table 14 

Mean standardized acceptability judgement scores (z-scores) by GENDER MATCH and STRUCTURE. 

Associated standard deviations are given between parentheses. 

Match? No island Wh-island Coordinate structure island 

Yes 1.02 (.65) 1.00 (.64) .96 (.66) 

No .24 (.87) .29 (.94) .24 (.90) 

  

 

  



39 

 

Figure 11 

Violin/boxplot with the standardized acceptability judgement scores (z-scores) on the y-axis, the levels 

of STRUCTURE (no island vs. wh-island vs. coordinate structure island) on the x-axis, and the levels of 

GENDER MATCH (match vs. no match) representing the different colors. The red dot represents the 

mean. 

 
 

The final model included a random intercept and random slope for MATCH for items, but no 

random effects for participants. The results of the LME regression analysis are summarized in 

Table 15.   
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Table 15 

Results of LME analysis of the control items 

Fixed effects  

Predictors β 

[95% CI] 

SE df t p 

Island 1 

(no island vs. coordinate structure island) 

−.08 

[−.31, .15] 

.12 2806 −.65 .514 

Island 2 

(no island vs. wh-island) 

.03 

[−.19, .26] 

.12 2806 .30 .767 

Match −2.37 

[−2.77, −1.97] 

.20 2806 −11.64 < .001 

Match x island 1 .27 

[−.18, .73] 

.23 2806 1.17 .240 

Match x island 2 .23 

[−.22, .69] 

.23 2806 1.00 .317 

Random effects      

Group Name Variance SD    

Item Intercept .29 .54    

 Match 1.05 1.03    

Residual  6.14 2.48    

Note. Marginal R
2
 = .17; Conditional R

2
 = .24. 

 

The analysis revealed a significant main effect of GENDER MATCH (β = −2.37, SEβ = .20, 95% 

CI of β [−2.77, −1.97], p < .001), indicating that sentences containing a gender mismatch (M 

= .26, SD = .90) were rated as less acceptable than sentences with a gender match (M = .99, 

SD = .65). There was no significant main effect of ISLAND (F(2, 2797.08) =  .47, p = .628) and 

no significant interaction effect between GENDER MATCH and ISLAND (F(2, 2796.40) =  .81, p 

= .446), however. Overall, the three island types did thus not differ in acceptability (Mnon-island 

= .63, SDnon-island = .86; Mwh-island = .65, SDwh-island = .88; Mcoordination island = .60, SDcoordination 

island = .86), and the gendered expectation effect, represented by a significant difference 

between sentences with and without a gender match, did not differ in its magnitude between 

the three island types either (see Table 13 and Table 14 for means and standard deviations). 
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5.3 Discussion 

To investigate whether the wh- and coordinate structure island constraints exist in Dutch, and 

if so, to what extent human native speakers are sensitive to these constraints, an acceptability 

judgement task was conducted. The experimental design of this task was based on the 

interaction design introduced by Wilcox et al. (2018). Moreover, following Wilcox et al. 

(2019b), control items were added with gender expectations to control for the complexity 

effect discussed in Section 3.3.1.  

Previous research has argued that humans may simply not be able to thread information 

through syntactically complex constructions such as islands (Keshev & Meltzer-Asscher, 

2018). The complexity of island configurations causes processing difficulties, causing the 

participants to have difficulties maintaining any information in or retrieving it from their 

working memory. This means that the results of the interaction design could all simply be due 

to this complexity effect, instead of the speakers actually obeying the syntactic constraints. 

Consequently, control items were added, which contained a full NP with an unambiguous 

semantic gender (either masculine or feminine) and a possessive pronoun that could either 

match the full NP in gender or not.  

Overall, it was predicted that sentences with a gender match would be more acceptable 

than sentences with a mismatch, which will represent a gendered expectation effect. 

Moreover, if native speakers are not able to thread information through islands, this gendered 

expectation effect would reduce within island configurations. While the current results 

showed a gendered expectation effect in general, this effect did not differ in magnitude 

between non-island and island configurations. This suggests that native speakers seem able to 

thread a gender expectation through an island configuration, and that they should thus be able 

to maintain a gap expectation as well when moving through an island. In conclusion, the 

results of this control study seem to indicate that any result found in the current experiment 

should not be immediately attributed to processing difficulty caused by complexity. 

After conducting the control study, the main experiment was performed, in which the 

acceptability of wh-island and the coordinate structure island violations was tested with 

Wilcox et al.’s (2018) interaction design. I will first discuss the results on the regular filler-

gap dependencies, i.e. the non-islands, and then the results on the island configurations.  

Wilcox et al.’s (2018) design was based on two assumptions: (1) gaps require fillers, and 

(2) fillers require gaps. If native speakers indeed assume the latter, filled argument positions 

should be less acceptable in non-islands when a wh-filler is present. This hypothesis was 

confirmed by the current results; the presence of a wh-filler decreased the acceptability of 

sentences without gaps and thus with filled argument positions.  

Moreover, if humans assume that gaps require fillers, gaps should be less acceptable when 

no wh-filler is present. The results indeed show a significant decrease in acceptability when 

no filler is present in sentences with a gap, and these sentences are all perceived as 

unacceptable. Regardless of whether the sentence contains a wh-filler, sentences with gaps are 

judged in the unacceptable range of the 7-point scale. This is remarkable, because sentences 

with both a gap and a wh-filler are perfectly grammatical in Dutch. This result could be due to 

the complex syntactic structure of the sentences used in the current research project; only bare 

wh-fillers were used and each sentence contained three layers of embedding with the filler in 

the second and the gap in the third layer. This caused the filler and the gap to be separated by 
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five intervening words in each sentence. This bare filler and the syntactic distance between 

the filler and the gap can cause difficulties with processing, as they make it harder for the 

participant to represent, maintain and retrieve the wh-filler from their working memory when 

encountering a gap (Abeillé et al., 2020; Hofmeister & Sag, 2010; Liu et al., 2022; 

Newmeyer, 2016). Consequently, if a sentence is difficult to process, it is assumed it will 

receive a lower rating. However, previous research clearly states that filler-gap dependencies 

are not constrained by the length of the dependencies (Sprouse & Hornstein, 2013), and the 

control study discussed above showed that participants were able to thread gender 

expectations through these embedding layers. While this should rule out the processing 

explanation, Schippers (2012) showed that the acceptability of Dutch long distance wh-

dependencies are affected by the number of embedding layers; these dependencies were rated 

as less acceptable when the sentence contained two layers instead of one. Although the 

number of embedding layers could thus have influenced the acceptability of the grammatical 

filler-gap dependency, it still shouldn’t have decreased it to the same rating that the 

completely ungrammatical sentences received. Therefore, the ungrammatical rating of the 

grammatical filler-gap dependency remains difficult to account for. A replication of the 

current study and more research into the processing of these complex sentences is necessary 

to unravel the mystery.    

Next, the constraints on these regular filler-gap dependencies were tested, namely the 

island constraints. Unlike the hypothesis put forward by Wilcox et al. (2018), when there is no 

gap but a filled argument position inside the island, I expected the presence of a filler to affect 

the acceptability judgement. That is, because it is ungrammatical in Dutch to have a wh-filler 

but no gap. The current results indeed showed that filled argument positions are less 

acceptable when a wh-filler is present.  

On the other hand, when the island configuration contains a gap, the presence of a wh-filler 

should not affect its acceptability. Regardless of the presence of a filler, a Dutch speaker 

should never find a gap inside an island acceptable. While all island configurations with gaps 

were rated in the ungrammatical range of the 7-point scale, the presence of a filler decreased 

these ratings even more. This pattern in acceptability can easily be explained, however. 

Native speakers should not expect a gap within an island, but coming across a wh-filler at the 

start of the sentence should give rise to the expectation of a gap somewhere else, leading to 

storage of the wh-filler in the working memory. When this expectation is not met by 

encountering a gap somewhere outside of the island, the filler cannot be linked back to a gap, 

causing the acceptability rating of that sentence to decrease. However, this decrease in 

acceptability is smaller when there is no wh-filler present in the sentence. Without a wh-filler, 

nothing will be stored and maintained in the working memory. Therefore, the only processing 

cost this sentence has is the presence of a gap inside an island.  

Last, additional hypotheses were posed about (1) the difference between wh- and 

coordinate structure islands, and (2) the effect of trial progress on the acceptability of 

ungrammatical sentences. First, it was predicted that coordinate structure islands would 

receive lower ratings, and that the interaction effect described before would be more 

pronounced for coordinate structure islands. This prediction was not borne out, however, as 

there was no difference in acceptability between the two island types; the current experiment 

showed that both the wh- and the coordinate structure island constraint exist in Dutch, 
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although  the wh-island effect was less strong than previously found in the literature for Dutch 

(i.e. Beljon et al., 2021; Suijkerbuijk, 2021). Second, it was predicted that participants’ 

acceptability of the ungrammatical island configurations would increase due to more exposure 

(Christensen et al., 2013; Kush et al., 2019). In general, the results showed a minimal increase 

in acceptability as people progressed through the experiment, but this effect was not 

specifically tied to the ungrammatical islands. The current experiment thus did not show a 

learning effect specific to syntactic islands. 

Now that it is clear that the wh- and coordinate structure island constraints exist in Dutch 

as human native speakers are clearly sensitive to these, it will be investigated to what extent 

an LSTM network also shows sensitivity to these, and whether this sensitivity is human-like. 
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6. Testing the artificial neural network 

To test whether an artificial neural network, specifically a Long Short-Term Memory (LSTM) 

model, can learn to be sensitive to the wh- and the coordinate structure island constraints in 

Dutch, it was first trained on sentences extracted from the Dutch Corpora Of the Web 

(NLCOW2014) and then tested on the same sentences that the native speakers judged in the 

experimental task.   

6.1 The Long Short-Term Memory model 

The Long Short-Term Memory (LSTM) model (Hochreiter & Schmidhuber, 1997) is a 

powerful type of recurrent neural network (RNN) that, unlike the traditional Simple Recurrent 

Network (Elman, 1990), can maintain dependencies over long distances (van Houdt et al., 

2020; Wilcox et al., 2021). I chose to employ this network for two reasons, namely (1) it has 

shown to be successful in previous research on the learnability of syntactic island constraints 

(e.g. Wilcox et al., 2018, 2019b, 2021), and (2) it possesses traits relevant within the debate 

about linguistic nativism, specifically it is both domain-general and weakly biased. That the 

model is a domain-general learner means that it can learn and process any type of input (Frost 

et al., 2015), and that it can thus generalize about more than just language (Wilcox et al., 

2021). Weakly biased entails that the model was not designed specifically for the task of 

learning language, but that it remains task-general (Lappin & Shieber, 2007). These two traits 

make the neural network relevant in the debate about innate language abilities/knowledge 

(Pearl & Sprouse, 2013), in which the current research resides. That is because, with such a 

model, it is possible to investigate whether a domain-general and weakly biased learner can 

acquire syntactic knowledge comparable to native speakers, who have been argued to be 

domain-specific and strongly biased learners (Chomsky, 1971). More information about the 

specific architecture of the LSTM model will follow in Section 6.2.2.  

6.2.Training process 

6.2.1 Training data set 

The training sentences were extracted from the NLCOW2014 corpus, literally meaning 

Corpora from the Web in Dutch (NL), which comprises individual sentences of Dutch texts 

collected from the World Wide Web (Schäfer, 2015). The corpus is split up into seven slices, 

each containing approximately 37 million sentences, but only the first slice was used in the 

current research project. The corpus considers punctuation marks as individual tokens, 

therefore separating those from the word they precede and follow. This treatment of 

punctuation marks is, however, not always correct in Dutch; apostrophes can be part of a 

word, for instance before a plural suffix (e.g. taxi’s ‘cabs’), which means that these parts of 

the word (i.e. the word taxi, the apostrophe and the plural suffix) needed to be reattached in 

the corpus. Frank and Hoeks (2019) preprocessed the corpus, reattaching the word parts of the 

words with an apostrophe, and the first preprocessed corpus slice was used in the current 

training process.  

The final training data set was constructed in the following way. I started by creating the 

vocabulary. First, the 20,000 most frequent words of the corpus slice were selected for the 

vocabulary, excluding words with a non-letter (other than the hyphen or the apostrophe). 

Second, the word types from the set of test sentences that not yet appeared in the vocabulary 
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were added. As a result, the final vocabulary comprised 20,153 word types in total.  

Subsequently, sentences were selected from the corpus slice that contained only words that 

occurred in the previously formed vocabulary. From that set of sentences, only those were 

kept in the training data set that (1) contained at least two words, (2) were not longer than 50 

words (including punctuation tokens), and (3) contained no other punctuation token than the 

period, the comma, the exclamation point or the question mark. Consequently, the final 

training data set comprised 12,004,362 sentences (159,550,592 tokens). 

6.2.2 Architecture details and training process 

One LSTM network was trained on the training data set for two epochs. This means that the 

network went through the training data set twice. The goal of the training process was for the 

network to learn to predict the next word in a sequence. First during the training process, the 

words in the vocabulary go through a 300-unit word embedding layer, in which the words are 

transformed to a vector representation. The network learns where to position this vector, 

representing a word, in a continuous vector space from the context surrounding the word in 

the input sentences during the training process, and this position is called the word’s 

embedding (Brownlee, 2021). These word vectors are then passed to a 600-unit recurrent 

layer (i.e. the LSTM block) and a 300-unit non-recurrent layer to optimize the network’s 

performance. Last, the vectors are passed to the softmax output layer, which receives the 

output vectors of the recurrent layer as input, and converts these to a so-called next-word 

probability distribution for each word, which is the probability that the word will be the next 

word in a sequence (Crivellari & Beinat, 2020). 

During training, gradients were clipped at 0.25. The network learns during training by 

updating the weights of the vector representations. These updates can be too large, however, 

thereby causing ‘exploding gradients’ (i.e. the weights over- or underflow). Gradient clipping 

is used to overcome this problem by setting a minimum and maximum value for the gradient 

for when it explodes (Goodfellow et al., 2016).      

6.3 Evaluation process 

After completion of the training process, the same experimental and control items that were 

judged by the human native speakers (discussed in Section 5.1.2) were presented as test data 

to the LSTM network. To evaluate the neural network’s performance, the surprisal values 

were collected that the network assigned to the words in the test sentences. The surprisal 

metric comes from the surprisal theory, first proposed by Hale (2001), and is calculated as 

“the negative log probability of a word (wi), given its preceding context(w1…wi-1)” (Lowder et 

al., 2018, p.3): 

𝑆(𝑤𝑖) = −𝑙𝑜𝑔 𝑃(𝑤𝑖|𝑤1 … 𝑤𝑖−1) 

 

A word’s surprisal thus shows to what extent the word is unexpected in its context, with 

higher surprisal values representing higher unexpectedness and lower surprisal values 

representing lower unexpectedness. For the experimental items, for both non-islands and 

islands, surprisal was measured (1) at the verb immediately following the (filled) gap, e.g. 

maakt ‘makes’ for wh-islands and aanbiedt ‘offers’ for coordinate structure islands, and (2) 

summed over all words immediately following the (filled) gap, e.g. (…) maakt in de bakkerij 
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‘(…) makes in the bakery’ for wh-islands and (...) aanbiedt tijdens de veiling ‘(…) offers 

during the auction’ for coordinate structure islands (see Table 6 and Table 7 in Section 5.1). 

These specific regions are studied, because whether a gap is licit in the sentence or not should 

affect the network’s expectation locally and globally (Wilcox et al., 2018). For the control 

items, following Wilcox et al. (2019b), surprisal was measured summed over the entire 

sentence, and additionally it was measured at the critical possessive pronoun zijn ‘his’ or haar 

‘her’.    

6.4 Data analysis 

Similar to the data analysis of the experimental part, all independent variables were coded 

using simple contrasts. The same coding scheme for the simple contrasts was used, which can 

be found in Table 9.  

Four LME models were fitted, two for the experimental items and two for the control 

items. First, for the experimental items, I fitted one LME model with the single-word surprisal 

and one with the summed surprisal as the outcome variable, and both with PRESENCE OF GAP, 

PRESENCE OF FILLER, STRUCTURE, ISLAND and their interaction as fixed factors, using the lmer 

function from the lmerTest package (Kuznetsova et al., 2017) in R (version 3.6.0; R Core 

Team, 2019). Before fitting the model with single-word surprisal as the outcome variable, a 

box-cox transformation was performed on the surprisal values (with λ = 1.52) so that the 

transformed data was as close to normally distributed as possible. This was not necessary for 

the the model with summed surprisal as outcome variable. Second, for the control items, one 

LME model was fitted to the summed surprisal and one to the single-word surprisal with 

GENDER MATCH, STRUCTURE and their interaction as fixed effects. Before fitting the models, a 

logarithmic transformation was performed on the surprisal values as the box-cox indicated 

that this was necessary (λsummed = 0.10; λsingle-word = −0.14). The random effects for all three 

models were based on the minimal AIC. After fitting the models, model assumptions were 

checked, which showed that the fitted values and the size of the error (ε) correlated for the 

two summed surprisal models (see Appendix C). Significance values for the coefficients from 

the two models were calculated using the Satterthwaite approximation in lmerTest 

(Kuznetsova et al., 2017). The interaction effects and three-level main effect were further 

examined using contrasts from the emmeans package (Lenth, 2022) in R. 
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6.5 Results 

6.5.1 Analysis of the experimental items 

Table 16 shows the mean single-word surprisal values per condition, and Table 17 the mean 

summed surprisal values per condition. Both are also illustrated in Figure 12. 

 

Table 16 
Mean single-word surprisal values. Associated standard deviations are given between parentheses. 

  Non-island Island 

Gap? Filler? Wh-island Coordinate 

structure  

island 

Wh-island Coordinate 

structure island 

Yes Yes 12.20 (2.89) 11.50 (3.72) 12.60 (2.37) 11.90 (3.34) 

Yes No 13.00 (2.14) 12.50 (3.34) 13.10 (1.91) 12.10 (3.27) 

No Yes 11.60 (3.81) 10.60 (4.76) 11.60 (3.36) 10.30 (4.48) 

No No 11.80 (3.68) 10.80 (4.61) 11.80 (3.29) 10.40 (4.47) 

  

Table 17 

Mean summed surprisal values. Associated standard deviations are given between parentheses. 

  Non-island Island 

Gap? Filler? Wh-island Coordinate 

structure  

island 

Wh-island Coordinate 

structure island 

Yes Yes 29.80 (5.94) 30.60 (6.95) 29.90 (5.18) 31.90 (6.60) 

Yes No 31.10 (5.63) 31.90 (6.53) 31.10 (5.15) 33.00 (6.56) 

No Yes 28.50 (6.24) 29.10 (7.34) 28.60 (5.84) 28.50 (7.05) 

No No 28.60 (6.30) 29.30 (7.42) 28.80 (6.02) 28.80 (7.28) 
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Figure 12 

Violin/boxplot with the single-word (A) and summed (B) surprisal values on the y-axis, the levels of 

PRESENCE OF GAP (gap vs. no gap) on the x-axis, the levels of PRESENCE OF FILLER (filler vs. no filler) 

representing the different colors, and the levels of STRUCTURE and ISLAND representing the different 

boxes. The red dot represents the mean. 

A. 

 
B. 
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The final model included a random intercept and random slope for ISLAND and PRESENCE OF 

GAP for items. The results of the LME regression analyses are summarized in Table 18.  
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Table 18 

Results of the LME regression analyses of the experimental items. 

Fixed effects  

Predictors 

 

Outcome variable β 

[95% CI] 

SE df t p 

Structure Single-word surprisal 2.69 

[−2.95, 8.32] 

2.87 489 .94 .353 

Summed surprisal −.84 

[−3.90, 2.23] 

1.56 489 −.54 .592 

Island Single-word surprisal −.26 

[−.89, .38] 

.32 489 −.80 .429 

Summed surprisal .21 

[−.13, .54] 

.17 489 1.21 .232 

Presence of Filler Single-word surprisal −1.30 

[−1.63, −.98] 

.17 489 −7.89 < .001 

Summed surprisal −.70 

[−.85, −.55] 

.08 489 −9.33 < .001 

Presence of Gap Single-word surprisal 3.71 

[2.41, 5.01] 

.66 489 5.59 < .001 

Summed surprisal 2.39 

[1.83, 2.94] 

.28 489 8.45 < .001 

Structure x Presence 

of Gap 

Single-word surprisal −1.17 

[−3.77, 1.44] 

1.33 489 −.88 .383 

Summed surprisal −1.12 

[−2.23, −.00] 

.57 489 −1.98 .053 

Island x Presence of 

Filler 

Single-word surprisal .90 

[.25, 1.55] 

.33 489 2.72 .007 

Summed surprisal .04 

[−.26, .33] 

.15 489 .26 .793 

Island x Presence of 

Gap 

Single-word surprisal .85 

[.20, 1.50] 

.33 489 2.57 .011 

Summed surprisal .82 

[.53, 1.12] 

.15 489 5.49 < .001 

Presence of Filler x 

Presence of Gap 

Single-word surprisal −1.76 

[−2.41, −1.11] 

.33 489 −5.33 < .001 

Summed surprisal −1.04 

[−1.33, −.74] 

.15 489 −6.91 < .001 

Structure x Island x 

Presence of Gap 

Single-word surprisal −.35 

[−1.65, .94] 

.66 489 −.54 .592 

Summed surprisal −1.91 

[−2.50, −1.32] 

.30 489 −6.34 < .001 

Island x Presence of 

Filler x Presence of 

Gap 

Single-word surprisal 1.79 

[.50, 3.10] 

.66 489 2.72 .007 

Summed surprisal .25 

[−.34, .84] 

.30 489 .83 .408 
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Random effects 

Group Name Variance SD    

Item Intercept 

   Single-word 

   Summed  

 

131.24 

38.86 

 

11.46 

6.23 

   

 Island 

   Single-word 

   Summed  

 

4.97 

1.53 

 

2.23 

1.24 

   

 Presence of Gap 

   Single-word 

   Summed  

 

26.44 

4.75 

 

5.14 

2.18 

   

Residual Single-word 

Summed 

3.49 

.72 

1.87 

.85 

   

Note. Single-word model: marginal R
2
 = .05, conditional R

2
 = .98; Summed model: marginal R

2
 = .04, 

conditional R
2
 = .98; only significant interaction effects with STRUCTURE included in this table. 

 

The analysis first revealed significant main effects of PRESENCE OF FILLER (single-word: β = 

−1.30, SEβ = .17, 95% CI of β [−1.63, −.98], p < .001; summed: β = −.70, SEβ = .08, 95% CI 

of β [−.85, −.55], p < .001) and PRESENCE OF GAP (single-word: β = 3.71, SEβ = .66, 95% CI of 

β [2.41, 5.01], p < .001; summed: β = 2.39, SEβ = .28, 95% CI of β [1.83, 2.94], p < .001), but 

not of STRUCTURE (single-word: β = 2.69, SEβ = 2.87, 95% CI of β [−2.95, 8.32]; summed: β = 

−.84, SEβ = 1.56, 95% CI of β [−3.90, 2.23]) and ISLAND (single-word: β = −.26, SEβ = .32, 

95% CI of β [−.89, .38]; summed: β = −.21, SEβ = .17, 95% CI of β [−.13, .54]). This shows 

that sentences without fillers (Msingle-word = 11.90, SDsingle-word = 3.53; Msummed = 30.30, 

SDsummed = 6.51) and sentences without gaps (Msingle-word = 11.10, SDsingle-word = 4.08; Msummed = 

28.80, SDsummed = 6.63) were less unexpected than sentences with fillers (Msingle-word = 11.50, 

SDsingle-word = 3.68; Msummed = 29.60, SDsummed = 6.44) and gaps (Msingle-word = 12.40, SDsingle-word 

= 2.94; Msummed = 31.20, SDsummed = 6.10) respectively, but that there was no significant 

surprisal difference between non-islands (Msingle-word = 11.80, SDsingle-word = 3.74; Msummed = 

29.90, SDsummed = 6.58) and islands (Msingle-word = 11.70, SDsingle-word = 3.49; Msummed = 30.10, 

SDsummed = 6.38) nor between the different island types wh-islands (Msingle-word = 12.20, 

SDsingle-word = 3.02; Msummed = 29.50, SDsummed = 5.81) and coordinate structure islands (Msingle-

word = 11.30, SDsingle-word = 4.07; Msummed = 30.04, SDsummed = 7.07).   

In addition, the analysis revealed a three-way interaction effect between ISLAND, PRESENCE 

OF FILLER and PRESENCE OF GAP (β = 1.79, SEβ = .66, 95% CI of β [.50, 3.10], p = .007), but 

only for the single-word surprisal model. Both for non-islands and islands, when there is a gap 

present in the sentence, the presence of a filler is more expected than its absence (non-islands: 

β = 3.08, SEβ = .33, p < .001; islands: β = 1.29, SEβ = .33, p = .003). On the other hand, also 

similar for non-islands and islands, the presence of a filler does not affect the surprisal values 

of the sentences without a gap (non-islands: β = .42, SEβ = .33, p = .907; islands: β = .42, SEβ 

= .33, p = .905). The three-way interaction is then caused by the different effect size of this 

surprisal pattern within non-islands and islands; the β-value indicates that the effect of the 

presence of a filler on the surprisal values in sentences with a gap is lower for islands (see 

Table 16 and Table 17 for means and standard deviations).  
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6.5.2 Analysis of the control items 

Table 19 shows the mean single-word surprisal values per condition and Table 20 the mean 

summed surprisal values, which are both also illustrated in Figure 13. 

 

Table 19 

Mean single-word surprisal values. Associated standard deviations are given between parentheses. 

Match? No island Wh-island Coordinate structure island 

Yes 5.33 (.76) 5.49 (1.15) 5.35 (.75) 

No 5.44 (.71) 5.52 (1.06) 5.46 (.71) 

 

Table 20 

Mean summed surprisal values. Associated standard deviations are given between parentheses.  

Match? No island Wh-island Coordinate structure island 

Yes 78.80 (8.49) 82.70 (8.85) 90.70 (8.76) 

No 78.90 (8.50) 82.60 (8.83) 90.70 (9.02) 
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Figure 13 

Violin/boxplot with the single-word (A) and summed (B) surprisal values on the y-axis, the levels of 

ISLAND (non-island vs. wh-island vs. coordinate structure island) on the x-axis, the levels of GENDER 

MATCH (match vs. no match) representing the different colors. The red dot represents the mean. 

A. 

 
B. 
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The final single-word surprisal model included a random intercept and random slope for 

GENDER MATCH for items, and the summed surprisal model for ISLAND and GENDER MATCH for 

items. The results of the LME regression analyses are summarized in Table 21.  

 

Table 21 

Results of the regression analysis of the control items. 

Fixed effects   

Predictors  β 

[95% CI] 

SE df t p 

Island 1 

(no island vs. coordinate 

structure island) 

Single-word .00 

[−.02, .03] 

.01 182 .34 .736 

Summed .14 

[.13, .15] 

.01 175 27.40 < .001 

Island 2 

(no island vs. wh-island) 

Single-word .01 

[−.01, .04] 

.01 182 .89 .373 

Summed .05 

[.03, .06] 

.01 175 7.16 < .001 

Match Single-word .02 

[−.06, .09] 

.04 182 .48 .637 

Summed −.00 

[−.01, .01] 

.00 175 −.17 .867 

Match x island 1 Single-word −.00 

[−.05, .05] 

.03 182 −.01 .993 

Summed −.00 

[−.01, .00] 

.00 175 −.34 .732 

Match x island 2 Single-word −.01 

[−.07, .04] 

.03 182 −.49 .626 

Summed −.00 

[−.01, .00] 

.00 175 −1.04 .300 

Random effects       

Group Name Variance SD    

Item Intercept 

   Single-word 

   Summed 

 

.01 

.01 

 

.09 

.10 

   

 Island 1 

   Single-word 

 

.00 

 

.03 

   

 Island 2 

   Single-word 

 

.00 

 

.04 

   

 Match 

   Single-word 

   Summed 

 

.04 

.00 

 

.21 

.02 

   

Residual Single-word 

Summed  

.01 

.00 

.08 

.01 

   

Note. Single-word model: marginal R
2
 = .00, conditional R

2
 = .77; Summed model: marginal R

2
 = .24, 

conditional R
2
 = .99. 
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Neither analysis revealed a main effect of GENDER MATCH (single-word: β = .02, SEβ = .04, 

95% CI of β [−.06, .09]; summed: β = −.00, SEβ = .01, 95% CI of β [−.01, .01]), nor an 

interaction between ISLAND and GENDER MATCH  (single-word: F(2, 124) =  .16, p = .856; 

summed: F(2, 157.04) =  .01, p = .986). This means that no gendered expectation effect was 

found, represented by a non-significant difference between sentences with and without a 

gender match, not for any of the ISLAND levels. 
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6.6 Discussion 

To investigate to what extent an artificial neural network is sensitive to the wh- and coordinate 

structure island constraints in Dutch, an LSTM network was tested on the same set of test 

sentences judged by the human native speakers in the previous section. To assess its 

sensitivity, the surprisal values it assigned to the words in these test sentences were examined, 

representing how unexpected a word was in a sequence. Equal to the acceptability judgement 

task, the experimental design was based on the interaction design introduced by Wilcox et al. 

(2018), and a set of control items was added as suggested by Wilcox et al. (2019b).  

While it was predicted that sentences with a gender match would be less surprising than 

sentences with a mismatch, the LSTM network did not show this gendered expectation effect; 

the surprisal values do show a numerical trend towards this difference, but the mean surprisal 

values for gender match and mismatch sentences do not significantly differ in the current 

experiment. Moreover, no interaction effect was found, suggesting that neither non-islands 

nor islands showed a gendered expectation effect. While this seems to show that the network 

is not able to thread information through islands, the absence of a gendered expectation effect 

in non-islands suggests that the LSTM network is not able to maintain expectancies at all, at 

least for gender. There are several possible explanations for the absence of the gendered 

expectation effect. 

First, it could be the case that one of the two possessive pronouns is more frequent in the 

training data set than the other. This could have affected the network’s performance as it 

might have only been able to accurately learn the gendered expectation effect for one of the 

genders. While this explanation should have been ruled out by the counterbalancing of the 

genders within each level of GENDER MATCH, I tested for this alternative explanation. When 

performing the analyses described in Section 6.5.2 for the male items only or for the female 

items only, still no gendered expectation effect was found (pmale = .932; pfemale = .524). The 

absence of the effect can thus not be explained by the frequency of the possessive pronouns in 

the training data set. Second, it could also be the case that the full NPs with un unambiguous 

gender used in the items might not be frequent enough in the training data set for the neural 

network to learn to associate it with a clear gender (see Appendix D for frequencies per full 

NP used). Last, previous literature suggests that LSTM networks have more difficulty with 

dependencies when the sentence has more embedding layers (Chowdhury & Zamparelli, 

2018). As the current test items all had three layers of embedding, similar to the English items 

in Wilcox et al. (2021), this could have caused the difficulty in maintaining a gender 

expectancy through these layers in Dutch. In a future experiment, the frequency of the full 

NPs and the number of embedding layers should therefore be controlled for.  

All in all, it is clear that the control experiment implemented to control for a complexity 

effect is inconclusive in the current experiment. This means that the results discussed below 

should be interpreted with caution, as they could possibly be an effect of complexity. 

When looking at the results of the experimental items, it is again important to note that the 

interaction design by Wilcox et al. (2018) assumes that (1) gaps require fillers and (2) fillers 

require gaps. For non-islands, if the network learned the first assumption, gaps should be 

more surprising when no wh-filler is present. The results show that this assumption is learned; 

the absence of a wh-filler increases the surprisal on the post-gap verb in sentences with a gap.  
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Moreover, if the network also learned the second assumption, filled argument positions 

should be more surprising when a wh-filler is present. Contrary to the first assumption, 

however, this second assumption does not seem to be learned by the network; when 

processing a sentence without a gap, the presence of a wh-filler did not affect the surprisal on 

the post-filled-gap verb. This means that even when the network crossed a wh-filler, it did not 

create an expectation for a gap further on in the sentence, and that the ungrammatical sentence 

with no gap but a filler is as (un)expected as the perfectly grammatical sentence with neither a 

filler nor a gap. While not creating an expectation for a gap is similar to what was observed in 

the control items for gender, it is remarkable that a gap expectation was made when there was 

an actual gap present later in the sentence. This all suggest that having an argument too little 

might be worse for the network than having an argument too many in the sentence. That is, 

coming across a filler and not having a gap to link that filler to, i.e. having an argument too 

many, does not seem to matter for the network in comparison to when it has not seen a filler 

but comes across a gap that needs one, i.e. having an argument too little.  

Also important to note is that this result only showed up when the surprisal was measured 

at the immediate post-(filled-)gap verb, and not when it was summed across all post-(filled-) 

gap material. This shows that having no gap to link the filler to did also not increase the 

surprisal later in the sentence. The word or region where surprisal was measured might, 

however, also explain the result found for non-islands. In the current research project, 

regardless of measuring only at the verb or over the whole post-filled-gap region, I always 

started measuring surprisal after the filled gap. The surprisal that is predicted to occur, 

however, might only be observable at the filled gap itself. Instead of looking at the full wh-

licensing interaction, as was done in the current study, Wilcox et al. (2019a) investigated the 

wh-effects in the +Gap and –Gap conditions individually. In this way, they could vary the 

word/region that surprisal was measured at between these conditions; in the +Gap condition, 

the surprisal was measured at the verb immediately following the gap, while in the –Gap 

condition, the surprisal was measured at the filled-gap. For future research, it would be 

interesting to find out whether taking on Wilcox et al.’s (2019a) approach affects the current 

results.     

Next, for islands, it was also hypothesized that filled argument positions should be more 

surprising when a wh-filler is present. Similar to what was observed for non-islands, however, 

the presence of a filler did not affect the surprisal measured at the immediate post-filled-gap 

verb. Again, this suggests that coming across a filler and not having a gap to link that filler to, 

i.e. having an argument too many, does not seem to affect the network. The measurement site 

could not be a possible explanation for this effect, however; as the network should never 

expect a gap inside an island, a filled-gap position within an island should not surprise the 

network.  

When gaps appear inside island configurations, however, hypotheses were different; the 

presence of wh-filler should not affect the network’s expectations in island configurations 

containing a gap, as these sentences are always ungrammatical. This hypothesis is not 

supported by the current results, however. When islands contained a gap, the presence of a 

filler decreased surprisal values. This shows that the LSTM network treats islands no different 

from non-islands; when there is a gap, there must be a filler. The network, trained on 12 

million Dutch sentences, was thus not able to recognize island configurations and block the 
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gap expectancies within these structures. While a three-way interaction was thus found, this 

seems to be solely driven by the difference in effect size as opposed to effect direction.   

Last, although not part of Wilcox et al.’s (2018) interaction design, I also predicted a 

difference between the two island types; the network should be more surprised to see a 

coordinate structure island in comparison to a wh-island, and the three-way interaction 

described above should be more pronounced for coordinate structure islands as well. This 

prediction was not borne out, as there was no difference in surprisal between the two island 

types. The results found in the current experiment suggest that neither a coordinate structure 

island effect nor a wh-island effect was found for the LSTM network in Dutch.  

Now that the results of the acceptability judgement and the modelling task have been 

discussed individually, I will compare these results and discuss their implications for the 

debate about language acquisition in the next section.   
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7. General discussion 

In this section, I will start by summarizing the current research project. Next, as I have already 

separately discussed and interpreted the results of the native speakers and the LSTM network, 

I will compare these to see whether the LSTM network’s sensitivity to the wh- and coordinate 

structure island constraints is comparable to that of humans, and I will discuss what these 

results mean for the debate about language acquisition. Last, I will discuss the strengths and 

limitations of the current research project and tie these to suggestions for future research. 

7.1 Summary of the current research project 

The current research project investigated whether artificial neural networks show the same 

sensitivity to wh- and coordinate structure island violations as human native speakers do in 

Dutch. First, it was established whether these constraints exist in Dutch, and if so, to what 

extent native speakers are sensitive to them. Next, an LSTM network was tested on its 

sensitivity to these constraints using the same materials and experimental design. 

To test the native speakers, an acceptability judgement task was performed using the 

interaction design introduced by Wilcox et al. (2018). For each island type, the experimental 

items were manipulated for PRESENCE OF GAP (no gap vs. gap), PRESENCE OF FILLER (no filler 

vs. filler) and ISLAND (non-island vs. island). Example sentences of all these conditions can be 

found in Table 6 and Table 7. The native Dutch speakers had to judge on a 7-point scale 

whether the regular filler-gap dependencies, wh-islands and coordinate structure islands with 

and without gaps and/or fillers were acceptable in Dutch. 

The results showed that, for regular filler-gap dependencies without any island structures, 

humans correctly judged that gaps require fillers and that fillers require gaps. Additionally, 

when presented by island configurations, native Dutch speakers showed an equally large wh-

island and coordinate structure island effect by showing that island configurations were only 

acceptable without gaps and fillers. Moreover, a control study was used to rule out the 

possibility that the native speakers only showed these island effects because of the island’s 

complex syntactic structure. The current results thus suggest that the wh- and coordinate 

structure island constraints exist in Dutch as the native speakers showed sensitivity to them. 

After the acceptability judgement task, an LSTM network, trained on 12 million sentences 

extracted from the Dutch Corpora Of the Web (NLCOW14), was presented with the same test 

sentences. To assess the network’s sensitivity to the island constraints, the surprisal values it 

assigned to each word in the test sentences were collected, which indicated the extent to 

which a word was unexpected by the network.  

The results showed that, when processing regular filler-gap dependencies, the network 

could correctly recognize that gaps are more expected when there is a wh-filler present in the 

sentence. On the other hand, it did not learn that a wh-filler should be more unexpected when 

there is no gap in the sentence, but a filled argument position. Remarkably, however, within 

island configurations, exactly the same pattern was found. This means that the network does 

not treat islands different from non-islands; when there is a filler, there must be a gap, even 

when that gap occurs inside an island. An LSTM network, trained on 12 million Dutch 

sentences, does thus not seem able to recognize island configurations in Dutch. There are 

several reasons possible to explain why, as the control study in the modelling experiment was 

inconclusive. The network’s results could thus be explained by the complexity of the 
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sentences used, by the architectural details of the network, by the structural properties of 

Dutch, or by the absence of innate language knowledge or abilities in the network. These 

reasons will be discussed in more detail below. 

7.2 Comparing Dutch native speakers and the LSTM network 

To assess whether the sensitivity to wh- and coordinate structure islands of the LSTM 

network are actually similar to what human native speakers of Dutch show, it will first be 

examined whether the same statistical effects were found in both the judgement and the 

modelling task. The results of these tasks showed that both in the acceptability judgement task 

and the modelling task, a three-way interaction effect was found between PRESENCE OF GAP, 

PRESENCE OF FILLER and ISLAND, as hypothesized in Section 4. While this seems to indicate 

that the LSTM network thus performed similar to the native speakers, it is crucial to 

investigate this effect in more detail. In this investigation, the acceptability ratings and the 

surprisal values will be compared using the translation proposed by Pearl and Sprouse (2015); 

the higher the surprisal value, the lower the acceptability rating, and the lower the surprisal 

value, the higher the acceptability rating. The values relevant to explain the three-way 

interaction effect in both tasks are summarized side by side in Table 22. 

 

Table 22 

Summarized standardized acceptability judgements, single-word surprisal values and statistical 

significance of differences per experimental condition. Standard deviations are given between 

parantheses. 

 Non-island Island 

Gap? Filler? Judgements 

(stan.) 

Surprisal  

(single-word) 

Judgements  

(stan.) 

Surprisal 

(single-word) 

Yes Yes −.46 (.70) 
** 

11.90 (3.32) 
*** 

−.82 (.48) 
*** 

12.20 (2.89) 
** 

Yes No −.59 (.66) 12.80 (2.79) −.60 (.71) 12.60 (2.70) 

No Yes −.45 (.69) 
*** 

11.10 (4.31) 
. 

−.48 (.67) 
*** 

11.00 (3.99) 
. 

No No .63 (.73) 11.30 (4.17) .65 (.73) 11.10 (3.96) 

Note. 
**

p < .01; 
***

p < .001. 

 

I will compare the acceptability judgements and the surprisal values per assumption made by 

Wilcox et al.’s (2018) interaction design. Starting with non-islands, both native Dutch 

speakers and the LSTM network assume that gaps require fillers; gaps are less acceptable and 

more surprising when no wh-filler is present in the sentence. In contrast to this first 

assumption, humans and the network do not align on whether they have mastered the second 

assumption, namely that fillers require gaps. While the presence of a wh-filler did decrease 

acceptability of sentences without a gap, it did not affect the surprisal on the post-filled-gap 

verb in these sentences. This means that humans seem to have learned the second assumption, 

but the LSTM network did not; even when the network crossed a wh-filler, it did not create an 

expectation for a gap further on in the sentence, meaning that the ungrammatical sentence 

with no gap but a filler is as (un)expected as the perfectly grammatical sentence with neither a 

gap nor a filler. As discussed in Section 6.6, this could be due to the measurement site used; 
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the surprisal that is predicted to occur might only be observable at the filled gap itself (Wilcox 

et al., 2019a). 

Moving on to island configurations, it was predicted that sentences with a gap inside the 

island should never be acceptable and always surprising, regardless of having a wh-filler 

present in the sentence. That is because having a gap inside an island is always ungrammatical 

in Dutch. Native speakers indeed judged all sentences with gaps in the ungrammatical range 

of the 7-point scale. The presence of a wh-filler, however, decreased acceptability of these 

sentences even more. While it was not predicted per se, this result is perfectly explainable; 

humans create an expectation for a gap somewhere in the sentence when they cross the wh-

filler at the start of the sentence, but this expectation is never fulfilled as there is no licit gap 

position available in the sentence. Interestingly, the LSTM network showed exactly the 

opposite behaviour; the presence of a wh-filler decreased surprisal values of sentences with a 

gap inside an island. While humans thus found islands with a gap more unacceptable when 

they encountered a wh-filler, it made them less unexpected for the network. This shows that 

the network treats these gaps as licit; it does not recognize wh- and coordinate structure 

islands and does not block gap expectancies within these structures, unlike the human native 

speakers of Dutch.    

To further substantiate this last claim, the speakers and the network also diverge in their 

behaviour on sentences without gaps. While humans expectedly judge sentences with filled 

argument positions as less acceptable when a wh-filler is present, the presence of a filler did 

not affect the surprisal assigned to the post-filled-gap verb by the network. Again, the network 

treats island configurations no different from non-island configurations, and clearly differs 

with this from the human native speakers of Dutch. 

In sum, after comparing the acceptability judgements by humans and the surprisal values 

by the LSTM network, it can only be concluded that, unlike humans, the LSTM network is 

not able to recognize wh- and coordinate structure islands and to block gap expectancies in 

these islands. This means that, while humans show a strong sensitivity to the wh-island and 

coordinate structure island constraints, the LSTM network does not in Dutch. Possible reasons 

as to why this is the case, and the implications of this result for the debate on language 

acquisition will be discussed in the next section. 

7.3 Implications 

While the human native speakers of Dutch seem to show a sensitivity to wh- and coordinate 

structure island violations, the LSTM network does not seem able to learn to recognize these 

gap-resistant structures. As already discussed, this could be due to the experimental design 

and/or analysis of the current research project, the network’s architecture, the structural 

properties of Dutch, or the absence of innate language abilities in the network. The latter three 

reasons will be discussed below.  

First of all, the results could be explained by the fact that the network simply did not learn 

Dutch well enough, or at least not as well as the LSTM networks seemed to have learned 

English in Wilcox et al. (2021). While not much is said about the specific architectural details 

of the networks used in Wilcox et al. (2021), the architectural difference between their 

networks and the current network could have led to the difference in learning success. Future 

research should investigate this explanation in detail by comparing the architecture of the 
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networks used in both studies. One thing that can already be compared between the two 

studies is the size of the training data set; Wilcox et al. (2021) trained one LSTM network on 

90 million tokens and the other on roughly 1 billion tokens, while the current training data set 

consisted of approximately 160 million tokens. Their results, however, do not show any 

qualitative differences between the learning success of their two networks. If the network 

trained on their smallest training data set performed no different from the network trained on 

their largest data set, there is no reason to believe that the size of the current data set affected 

the network’s performance as compared to Wilcox et al. (2021). While the quantity of the 

training data should thus not be of influence, the quantity of this data set could have an effect. 

This will be discussed more below. 

Second, as discussed in Section 3.2, recent literature suggests that artificial neural 

networks have a performance bias for right-branching structures, and thus also for right-

branching languages like English (Dyer et al., 2019). While this right-branching bias will thus 

inflate the architecture’s performance in right-branching languages, it will undermine its 

performance in left-branching and possibly mixed-branching languages (Li et al., 2020). As 

Dutch has mixed-branching, the network’s inability to learn the island constraints could be 

tied to the fact that Dutch is not fully right-branching. Therefore, it could be interesting for 

future research to investigate whether networks can learn about this mixed branching in 

Dutch, for example by examining sentence embedding. As discussed above, this is relevant to 

see whether it can handle the complexity of having multiple embedding layers, but it can also 

contribute to the branching direction explanation. When a Dutch sentence contains a matrix 

and an embedded sentence, two different branching directions are used; the embedded 

sentence uses the basic word order SOV (Subject-Object-Verb), but the matrix sentence uses 

the word order SVO (Subject-Verb-Object) due to movement of the verb. As the current 

research project only used embedded sentences, and thus a combination of both branching 

directions, it will be interesting to see in future research whether this could have affected the 

network’s performance. Furthermore, to directly test for the influence of branching direction, 

languages with different branching directions can be compared directly.   

Third, while the training data set should have been big enough to be able to learn, the 

information in this data might not have been enough for the neural network to learn about the 

syntactic island constraints, as many syntacticians have suggested before (Chomsky, 1965; 

Pearl & Sprouse, 2013). While children can already recognize syntactic islands at the age of 

four (Bates & Pearl, 2021), the network does not seem able to do the same with current 

training data covering a lot more than four years of a human’s life (Wilcox et al., 2021). This 

could suggest that children use something else than just external input to learn the syntactic 

island constraints. While the nature of this “something else” is still disputed, it is internal, 

such as internal language knowledge or abilities. This shows that the result of the current 

research project could add relevant new insights into the debate about language acquisition. 

 However, it must be noted that the syntactic learning inability of a neural network could 

never be able to provide direct evidence about an innate language ability as there are still too 

many differences between the architecture of the artificial neural network and the human 

brain. The failure of the network in the current research study to learn the syntactic island 

constraints does thus not mean that syntactic island constraints cannot be learned. It does, 

however, suggest that a domain-general learner is, at least in the current study, not able to 
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recognize island configurations. It was also shown that this domain-general behaved 

differently than humans, who have been argued to be domain-specific learners.   

While this research could thus provide relevant new insights for the debate about language 

acquisition, it can also provide relevant new knowledge to the field of experimental syntax 

and shed new light on the debate about the source of island effects, which was discussed in 

Section 2.1. In the acceptability judgement task, it was found that native Dutch speakers judge 

wh- and coordinate structure island violations as unacceptable as compared to non-islands. 

This suggests that the wh- and coordinate structure island constraints exist in Dutch. This 

strengthens the results found by Beljon et al. (2021), namely that native Dutch speakers are 

sensitive to the wh-island constraint, and adds relevant new data to the field of experimental 

syntactic research on syntactic island constraints as Dutch is underrepresented here. 

Moreover, the current study is the first to experimentally confirm the theoretical claim that “it 

does not seem possible to extract one or more full conjuncts, in any language” (Liu et al., 

2022, p. 503), at least for Dutch.  

To tie into the debate about the source of these island effects found, the current research 

project employed a control study that suggested that the results found cannot be accounted for 

by an extra-syntactic complexity effect. Previous research suggested that native speakers 

might not be able to thread information through syntactically complex constructions like 

islands, causing the unacceptability of island violations (Keshev & Meltzer-Asscher, 2019). If 

processing indeed encounters difficulties in these constructions, however, native speakers 

should not have been able to maintain a gender expectancy within islands. The current results 

of the control study showed that they could, suggesting that the complexity explanation 

cannot account for the island effects found in the current research project. The results found 

by Beljon et al. (2021) also seem to suggest this for Dutch; using a complex wh-filler and 

adding a discourse context, which should decrease processing difficulty, only showed to have 

an effect in combination, with the effect being minimal. As an extra-syntactic explanation 

thus does not seem able to account for the results, it can be suggested that human native 

speakers of Dutch block gap expectancies in island configurations because of a syntactic 

constraint. This seems further supported by the fact that the LSTM network, a domain-general 

learner without any innate language abilities, was not able to learn the island constraints 

correctly. If this network would have been able to learn the island constraints comparable to 

the human speakers, it could not have used innate syntactic constraints. However, the learning 

inability of this network suggests that it does need something more than just input, possibly 

innate syntactic island constraints.  

In sum, the results of the current research project provide relevant new insights for the 

debates about language acquisition and the source of island effects. However, it is important 

to note that much more research is necessary on this topic to be able to support the now still 

carefully formulated implications. 

7.4 Strengths, limitations and future research 

The current research project contained a strong theoretical background and methodological 

approach. However, some improvements would make it even more useful for future research 

in the same research area. The strengths and limitations of the current research project and 

suggestions for future research will now be discussed. 
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First, unlike many other studies performed before in this research field, the current 

research project subjected the human native speakers and the artificial neural network to the 

same scrutiny; the same experimental design, test sentences and control study were used to 

test both humans and a network. In this way, their results could be easily compared to assess 

whether the sensitivity to island constraints of the neural network was comparable to that of 

human speakers of Dutch (Futrell et al., 2018).  

Second, in the creation of this experimental design, test sentences and control study, I 

closely followed the successful investigation on the learnability of syntactic islands by neural 

networks in English performed by Wilcox et al. (2021), combining insights from the studies 

by Wilcox et al. (2018) and Wilcox et al. (2019b). This, however, also led to some limitations 

that could help improve the methodological approach in the future. 

The first limitation concerned the test items used. Following Wilcox et al. (2021), I created 

test sentences containing three embedding layers and a bare wh-filler. This made the 

sentences very complex, which might have caused the control study in the modelling 

experiment to be inconclusive and might have influenced the neural network’s results. In 

future research, I would suggest to first investigate to what extent the ANN is affected by 

sentence complexity; e.g. if its performance is influenced by the number of embedding layers.  

In addition, the second limitation concerned the data analysis. Following Wilcox et al. 

(2021), I compared the full wh-licensing interaction between non-islands and islands to see 

whether it reduced within island configurations. It is also possible, however, to statistically 

investigate the wh-effects in the +Gap and –Gap conditions separately, which together make 

up the licensing interaction. In this way, the region where surprisal is measured can also vary 

between these wh-effects (Wilcox et al., 2019a). As I have stated in Section 6.6, measuring 

surprisal on immediate post-gap material can be sufficient to see effects in the +Gap 

condition, but it might be better to check out the surprisal on the filled-gap in the –Gap 

conditions. This might alter the results found for the LSTM network in the current research. 

Another strong point about the current research project is that it is theoretically relevant. 

As all research on the learnability of syntactic island constraints by neural networks has been 

performed in English, and neural networks seem to have a performance bias for English-like 

structural input, this research investigated whether an LSTM network can learn syntactic 

island constraints in Dutch. This was not only relevant for the research within computational 

psycholinguistics, but also provided relevant data and knowledge to the field of 

(experimental) syntax; Dutch is underrepresented in the experimental data about syntactic 

island constraints. This theoretical relevance creates many other opportunities to provide even 

more relevant insights to both these fields, which will be described below. 

   First, this research project showed that the LSTM network treated island configurations 

similar to non-island configurations. Therefore, it would be interesting to look at the latter in 

more detail. Future research should first investigate whether the neural network can learn all 

filler-gap characteristics in Dutch, as described in Wilcox et al. (2021) for English. If that is 

established, it will be interesting to include more island types, and other types than those used 

in the current research project. Not only will this provide relevant new data and knowledge 

for the field of experimental syntax, it can also show whether different island types can be 

learned by the neural network. In future studies, however, the control study should be 
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improved; different control studies should be tried out to see which study is best to use in this 

kind of research in Dutch. 

Second, when more research on this is (being) done in Dutch, it is also relevant to extend it 

to even more languages. As a first option, it would be interesting to extend it to a left-

branching language to see whether branching direction indeed affects the network’s 

performance. 

 

In conclusion, the current research project showed that, while native speakers of Dutch show 

a strong sensitivity to wh- and coordinate structure island violations, an artificial neural 

network does not seem able to similarly recognize these island configurations and block gap 

expectancies within these structures. This suggests that input alone might not be enough to 

learn about syntactic island constraints, and that internal language knowledge or abilities 

might be necessary to learn about these constraints.     

8. Abbreviations 

MASC  masculine 

REF  referential pronoun 

9. Open data 

The raw data and analysis scripts from this study can be found here: https://osf.io/kt3he/  

  

https://osf.io/kt3he/
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Appendix A 

Item analysis 

Table A1 

Mean rating on 7-point scale and corresponding standard deviation for each agreement error item. 

Sentence layer in which agreement error occurred also indicated. 

Item number Sentence layer 

with error 

M SD 

44 3 2.25 1.40 

45 3 2.54 1.54 

46 2 2.16 1.19 

47 1 2.03 1.46 

48 3 2.80 1.86 

49 2 2.26 1.43 

50 3 2.45 1.42 

51 1 2.04 1.31 

52 3 2.25 1.26 

53 2 2.05 1.26 

 

Table A2 

Mean rating on 7-point scale and corresponding standard deviation for each word salad item. 

Item number M SD 

54 1.32 .79 

55 1.32 .88 

56 1.27 .80 

57 1.37 .75 

58 1.28 .76 

59 1.36 .84 

60 1.25 .72 

61 1.26 .67 

62 1.21 .62 

63 1.33 .91 

64 1.18 .71 
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Appendix B 

Model criticism (acceptability judgement task) 

Analysis of experimental items 

Box-cox transformation 

Figure B1 

Box-cox plot of data of experimental items 

 

Assumption 1 

The error (ε) must be normally distributed. 
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Figure B2 

Q-Q plot 

 
The box-cox transformed outcome variable roughly follows the diagonal line, which means 

that Assumption 1 is met. 

Assumption 2 

The mean of the error (ε) must be more or less equal to 0. This is true for the current dataset. 

Assumption 3 

There must be no correlation between the fitted values and the size of the error (ε). 

 

Table B1 

Test of correlation with the size of the error as outcome variable and the fitted values as fixed effect. 

Predictor β  

[95% CI] 

SE t P 

Fitted values −.06 

[−.08, −.04] 

.01 −6.06 < .001 
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Figure B3 

Scatterplot of residual magnitudes and the fitted values. 

 
The test in Table B1 and Figure B3 show that there is correlation between the fitted values 

and the size of the error (ε).  

Analysis of control items 

Box-cox transformation 
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Figure B4 

Box-cox plot of data of control items 

 

Assumption 1 

The error (ε) must be normally distributed. 

 

Figure B5 

Q-Q plot 

 

The box-cox transformed outcome variable roughly follows the diagonal line, which means 

that Assumption 1 is met. 

Assumption 2 

The mean of the error (ε) must be more or less equal to 0. This is true for the current dataset. 
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Assumption 3 

There must be no correlation between the fitted values and the size of the error (ε). 

 

Table B2 

Test of correlation with the size of the error as outcome variable and the fitted values as fixed effect. 

Predictor β  

[95% CI] 

SE t P 

Fitted values −.26 

[−.30, −.22] 

.02 −12.88 < .001 

 

Figure B6 

Scatterplot of residual magnitudes and the fitted values. 

 
The test in Table B2 and Figure B6 show that there is correlation between the fitted values 

and the size of the error (ε).  
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Appendix C 

Model criticism (estimating surprisal values)  

Analysis of experimental items 

Box-cox transformation 

Figure C1 

Box-cox plot of single-word surprisal (A) and summed surprisal (B) model. 

A. 

 
B. 

 

Assumption 1 

The error (ε) must be normally distributed. 
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Figure C2 

Q-Q plot of single-word surprisal (A) and summed surprisal (B) model. 

A. 

 
B. 

 

The outcome variables roughly follow the diagonal line, which means that Assumption 1 is 

met. 

Assumption 2 

The mean of the error (ε) must be more or less equal to 0. This is true for both models. 

Assumption 3 

There must be no correlation between the fitted values and the size of the error (ε). 
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Table C1 

Test of correlation with the size of the error as outcome variable and the fitted values as fixed effect. 

Outcome  

variable 

Predictor β  

[95% CI] 

SE t P 

Single-word 

surprisal 

Fitted values −.01 

[−.01, .00] 

.00 −1.52  .130 

Summed 

surprisal 

Fitted values .01 

[.00, .01] 

.00 2.08  .038 

 

Figure C3 

Scatterplot of residual magnitudes and the fitted values of the single-word surprisal (A) and summed 

surprisal (B) model. 

A. 

 
B. 

 

The tests in Table C1 and Figure C3 show that there is a correlation between the fitted values 

and the size of the error (ε) for the summed surprisal model only. 
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Analysis of control items 

Box-cox transformation 

Figure C4 

Box-cox plot of single-word (A) and summed (B) surprisal model. 

A. 

 
B. 

 

Assumption 1 

The error (ε) must be normally distributed. 
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Figure C5 

Q-Q plot of the single-word (A) and summed (B) surprisal model. 

A. 

 
B. 

 

The log-transformed outcome variables roughly follow the diagonal line, which means that 

Assumption 1 is met. 

Assumption 2 

The mean of the error (ε) must be more or less equal to 0. This is true for the two models. 

Assumption 3 

There must be no correlation between the fitted values and the size of the error (ε). 
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Table C2 

Test of correlation with the size of the error as outcome variable and the fitted values as fixed effect. 

Outcome 

variable 

Predictor β  

[95% CI] 

SE t p 

Single-word 

surprisal 

Fitted values −.02 

[−.07, .02] 

.02 −1.01 .311 

Summed 

surprisal 

Fitted values −.00 

[−.01, −.00] 

.00 −2.53 .012 

 

Figure C6 

Scatterplot of residual magnitudes and the fitted values for the single-word (A) and summed (B) 

surprisal models. 

A. 

 
B. 

 

The tests in Table C2 and Figure C7 show that there is correlation between the fitted values 

and the size of the error (ε) only for the summed surprisal model. 
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Appendix D 

Frequencies of full NPs with unambiguous gender used in control items  

Word Frequency (total number of times) 

meester 4,776 

danser 177 

docente 263 

boerin 243 

barman 340 

actrice 732 

assistente 550 

redactrice 43 

timmerman 568 

groenteman 134 

jongen 18,511 

kokkin 51 

ober 553 

schrijfster 1,092 

zangeres 941 

tuinman 285 

directrice 166 

verkoopster 331 

schoonmaakster 175 

klusjesman 131 

kassamedewerkster 4 

postbezorgster 2 

bewoner 1,803 

opa 5,776 

zoon 21,978 

vader 41,732 

zanger 1,584 

acteur 1,313 

verkoper 2,781 

serveerster 241 

juffrouw 947 

danseres 128 

 
 

 

 

 


