PARAMETRIC PROPERTIES IN CHAOTIC
NEURAL NETWORKS

Lino Vliex, s4347471
Artificial Intelligence

Radboud University Nijmegen

Supervised by

Silvan Quax & dr. Marcel van Gerven,
Donders centre for cognitive science, Donders Institute, Radboud
University

Bachelor’s Thesis in Artificial Intelligence

July 25, 2016

Abstract

In the framework of reservoir computing a randomly constructed recurrent neu-
ral network (RNN) is used to function as a reservoir containing input history and
its many random transformations. Output units transform whatever is inside
this reservoir into a meaningful output. However, it is difficult to appropriately
construct a random reservoir such that the complete model is able to learn and
perform a certain task. A model’s performance depends on two things: the
parameters of the RNN and the task’s complexity. The used network param-
eters need to be fine-tuned to the task at hand for achieving the best results.
First we propose and investigate several measures of quantifying the difficulty
of the chosen to-be-trained pattern. The used patters are visual. Hereafter we
investigate RNN performance after FORCE learning on tasks of different com-
plexities, selected with the apparently most appropriate of these measures, and
we investigate how an RNN’s parameters determine its eventual capability to
learn. Under investigation are reservoir size, connectivity and weight scaling.
All findings were done through simulation studies, with additional theoretical
explanations and references to relevant literature.

Acknowledgements

I would like to express my gratitude to my supervisors Silvan Quax and dr.
Marcel van Gerven for their invaluable advice, suggestions, patience and enthu-
siasm during this project. I would also like to thank Jaap Buurman for the very
informative discussions, which provided me with very helpful insights.

Contents

|I.1 Issues in reservoir computing|

2 Methods
2.1 Network architecture & state updates|

|2 I I Ira1n1n§|

P12 Testing & performance evaluation]

2.2.1 Video clip complexity]
2.3 Experimental design|

B_Results|

[3.3 Connectivity]
[B-4 Weight scaling]
3.4.1 Reservoir & feedback weight scalingl

13.4.2 Reservoir weight scaling & amount of training passes|. . .

A Conclusi Cd ol
4.1 Shortcomings| oL
4.2 Topics for future research|

|§ E Eenalx|

[Calibrating variance in neural input from recurrencel . . .
|Calibrating variance in neural input from output feedback|

18
18
19
21
26
28

32
33
33

36

Chapter 1

Introduction

A recurrent neural network (RNN) is a network of artificial neurons containing
feedback projections, such that connections between units form loops. Such
RNNs can be structured, for example, in layers, but they can also be semi-
randomly constructed, as in the reservoir computing approach. In this approach
arandomly constructed RNN called the “reservoir” is used to perform arbitrarily
complex computations. It projects to one or several readout units, which, in a
way, translate the reservoir’s activity into a meaningful output. The reservoir
may receive input from an input pathway, which may also directly project to
the readouts. The reservoir may additionally or exclusively receive input from
feedback projections from the output units. From now on such a model in its
entirety will be referred to as the RNN. Learning typically only happens for
the output weights, as was done in this project, but it is possible to train all
connections of a model.

These neural networks are considered general purpose systems that are taught to
perform a specific task through synaptic modification. they are inspired by the
architecture of cerebral microcircuits of neurons, as it is believed that seemingly
random groups of neurons work together to perform a certain complex task.
High recurrence in artificial neural networks allow them to perform complex
computational tasks and exhibit dynamic temporal behaviour [22] [16]. Besides
biologically plausible modelling, these models are also used for more technical
applications of signal processing, such as filtering, detecting certain events and
classifying time series, where they excel over other neural models because of
their capability of learning long term dependencies [1T].

1.1 Issues in reservoir computing

Reservoir computing approaches are often applied in such a way that the reser-
voir is treated as if it were a black box, as it is not obvious what goes on inside
(although methods exist by which can be understood what happens inside the
reservoir. See for example [23]). However, these RNNs are easy to train and
apply, as only the output weights need to be trained and the reservoir needs
not be understood as long as it is constructed in an appropriate fashion. How
to construct an RNN appropriately, i.e. in a way to make it able to learn, is
described in much of the relevant literature.

A known issue in neural networks research is catastrophic interference, also
known as catastrophic forgetting [3]: a neural network is not able to learn
infinitely many patterns, and at some point in learning newer patterns it will
forget previously learnt ones. It may even happen that teaching one pattern
too many will cause the network to forget all previously learnt patterns. In
reservoir computing this problem is easily overcome by adding new readout
units and training these on the new items instead of the previously established
output units trained on the previous items, while using the same reservoir. So
instead of instantiating an entire new RNN only the required amount of inputs
and outputs have to be added, together with some appropriate global parameter
settings. This is not biologically implausible, as it is believed that the same brain
areas participate in multiple tasks, while possibly being modulated by a global
signal for the task specifically at hand, in a similar fashion [[15].

Despite these advantages in initial usage of these RNNs, the question arises
what aspects and to what degree certain aspects of a neural network determine
its potential. Reverse engineering an RNN to be most appropriate for a certain
task is difficult. Although these models are considered general purpose systems,
the network parameters chosen determine their eventual capability to learn a
specific task.

These RNNs outperform many other approaches, especially in tasks containing
strong temporal dependencies as these RNNs already have implicit short-term
fading memory, and other forms of memory may emerge through training if it
is required by the learnt task. The RNN’s fading memory capacity determines
its ability to “remember” its state and input history, and it is bound by the
amount of neurons in the reservoir, such that the number of “memorized” pre-
vious states available to the readouts can not exceed the amount of reservoir
units [9]. The reservoir also implements computation of many non-linear combi-
nations of input components and their projection onto a very high-dimensional
space through its many neurons and their random connectivity [I7]. This high
dimensionality of the reservoir’s state usually facilitates the readouts, but, al-
though these beneficial properties are bound by the amount of neurons put in
the reservoir, Koryakin et al. [12] found that the RNN’s eventual performance
degenerates with the use of too many neurons, after training with the echo
state approach. They concluded that there is an optimal reservoir size for a

certain task. In this project we investigated if this also holds in chaotic RNNs
trained with the FORCE learning procedure [22]. The FORCE training pro-
cedure was used for all RNN training in this project, and it is described in

section [2.1.11

Furthermore, we investigated the effect of the amount of connections used in
the RNN, as this determines the overlap of features in the high-dimensional
projection of previous inputs and states in the reservoir. Sparse connectivity in
the reservoir lets it decompose into many loosely coupled sub-networks. This
way a reservoir is created with rich dynamics, that allows multiple independent
internal representations, which should benefits performance [16] 8, [11]. However,
the presence of many non-linear combinations of input components and their
projections onto a very high-dimensional space do not disappear with greater
inter-connectivity of neurons [I7]. Therefore it remains questionable whether
sparser connectivity benefits RNN performance, especially since Koryakin et al.
[12] did not find any such effect. Moreover, they found connectivity sparseness
not to have any effect at all.

Finally, we investigated the benefits of using larger weights for the connections
in the reservoir, resulting in reservoirs transitioning from being ordered to being
chaotic. More accurately the presence of chaos in the reservoir also depends on
the magnitude of input and external feedback signals. Put simply, activity in
chaotic reservoirs never dies out, as it would in ordered reservoirs. This means
that the state of the reservoir will always depend on its initialisation, while in
ordered reservoirs it will only depend on a certain amount of previous states.
In many approaches ordered dynamics are favourable, e.g. in the echo state
approach, because chaotic activity tends to enlarge small errors made by the
network over time, making the RNN’s output increasingly erroneous over time
[8]. In the FORCE learning procedure, however, chaotic spontaneous activity
in the RNN before learning is beneficial: learning converges faster, the trained
RNNs are more accurate and they are more stable [22]. Furthermore, chaotic
RNNSs have a greater computational capacity in general than non-chaotic RNNs
[2]. On the other hand, if the chaos becomes too large also FORCE learning
will fail. This depends on the ability to suppress the reservoir’s internal chaos
through the external feedback pathway. Therefore we investigated the effect of
both reservoir and external feedback weight strength on the speed of learning
and the resulting RNN’s accuracy.

Chapter 2

Methods

2.1 Network architecture & state updates

The recurrent neural network model
used in this project is designed as
a generic recurrent circuit not built
for any specific purpose, following
the mentality of liquid-state machines
[16] and echo state networks [§]. Such
circuits are molded to fit a certain
task through synaptic modification.
Such RNNs consist of what is con-
ventionally called a “Reservoir” of
sparsely interconnected neurons with
synapses being either inhibitory or
excitatory and of varying strengths.
The outputs of neurons model their
firing rates, which, for the reservoir,
are collected into a column vector r.
To this reservoir readout units are
connected (all-to-all). The network
output at time t is defined as

2(t) =

Figure 2.1: A schematic view of the RNN
architecture used. In this model only the
output weights ware trained. Figure taken
from [22].

w ' r(t) (2.1)

where w is a N x B matrix of readout weights from NN reservoir units to B
readouts. Equation [2.1] corresponds with the identity function as activation
function for the readout units. In our models the activation function used for
the reservoir neurons is the sigmoid tanh(-), but other appropriate functions
exist such as other sigmoid functions or even just the identity function [19] Q).

Linear units are shown to work best for improving an echo state network’s (ESN)
short term memory capacity or even general computational capacity in the echo
state approach of RNN training. However, this is biologically less realistic and
not shown to improve performance for models trained using FORCE learning, so
we have followed [22] in activation function choice. Finally, through an external
feedback loop the read out values are fed back into the reservoir, typically all-to-
all. See figure[2.1]for a schematic depiction of our used RNN architecture.

Changes in reservoir activations x(t) at a time ¢ result from feedback projections
from the outputs and from previous reservoir firing rates r(t — dt) = tanh(z(t —
dt)) through recurrence. So the reservoir state update equation is defined by

z(t+dt) = (1- %)x(t) + %(ng(t) + wpz(t)) (2.2)

where 2(0) is randomly drawn from a standard normal distribution and multi-
plied by 0.1, 7 is the time constant of all neurons, J the N x N internal weights
matrix, g the spectral scaling of J as its spectral radius is approximately one,
and wy, the N x B feedback weights matrix. The network is chaotic for g > 1
[20].

The feedback weights matrix is randomly constructed with each weight drawn
from the uniform distribution on the open interval (0, 1). The internal connectiv-
ity matrix J is first constructed as a random sparse matrix with approximately
p - N2 normally distributed nonzero entries (with zero mean and a variance of
one).For example if p = 0.1, then 10% of all weights in J are nonzero. thereafter
J is scaled by dividing it by +/p - N. This ensures that the spectral radius of J
is approximately 1, such that the networks operate on the boundary between
ordered and chaotic dynamics if g = 1 [4] 26] [2]. Simultaneously this scaling by
the inverse of \/p- N calibrates the variance in the input to each neuron from
other reservoir neurons, so that this variance is independent of the amount of
recurrent projections each neuron receives. This ensures that a change in the
chosen connectivity sparseness of the reservoir does not influence the RNN’s be-
haviour due to simply changed input variance of the neurons. See the appendix
for how this input calibration can be derived.

2.1.1 Training

Several training methods exist to train recurrent neural networks, such as back-
propagation through time or other gradient methods [25], evolutionary algo-
rithms (e.g. [24]), and reservoir computing approaches [I5]. Reservoir com-
puting approaches are seldom outperformed, and especially excel in produc-
ing networks with a relatively great short-term memory capacity compared to
gradient-descent methods. A particularly powerful exception to this are dedi-
cated long short-term memory circuits specifically designed for memory [5]. An
additional advantage to reservoir computing is the ease of training, as merely
the weights from the reservoir to the output units need to be trained instead

of all synapses. Several training methods exist, such as through regression as
in the echo state approach [8], reward-modulated Hebbian learning [7] and the
FORCE-learning procedure [22]. In the echo state approach RNNs are trained
by initialising with some random reservoir state, feeding a teacher forced output
back into the network (i.e. clamping the output feedback to the target), ignor-
ing some initial period of network activity until the reservoir state no longer
depends on the initial random state, and performing a linear regression to de-
termine the output weights. This method often results in stability issues in the
resulting RNN, because of the clamping of output feedback. One can imagine
that the RNN will seldom generate perfect output in the test phase, and will
feed erroneous feedback to the reservoir. This will cause a different trajectory
of the reservoir’s internal state from the training phase, making the output drift
away from the target pattern.

In [8 [I0] this is resolved by inserting noise into the reservoir during training.
With reward-modulated Hebbian learning the output feedback is not clamped
to the target, as it is an unsupervised training method, but noise is actually a re-
quirement for learning to happen, as learning happens through a sort of trial and
error [7]. In the FORCE learning procedure instability is resolved differently.
Sussillo and Abbott [22] do not clamp output feedback to the target function,
but instead use rapid updating of the output weights during training to make
the fed back signal close to what it would be if the output perfectly matched
the target. They named this procedure therefore the First-Order Reduced and
Controlled Error, or FORCE, learning procedure. A weight modification algo-
rithm that suits the requirement of rapidly and effectively updating weights to
keep the fed back error small is the recursive least-squares (RLS) algorithm [see
6, chapter 10].

Our RNNs are also trained by only updating the output weights w, but it is
possible to train all weights, using the FORCE learning procedure. We use the
RLS weight update algorithm, following [22]. For a more elaborate description
of RLS, see [6]. In FORCE learning, there are two errors to consider at each
time step t of weight modification, where dt is the time interval between weight
updates, with respect to a target function f and reservoir activations r. The
considered errors are the error e_(t) before weight modification and the error
e (t) after weight modification:

e_(t)=w'(t—dt)r(t) — f(t) (2.3)

ex(t) =w ()r(t) - f(1) (2.4)

This e, (t) is also the error fed back into the reservoir. When FORCE learn-
ing implements RLS, the output weights vector w at a time step ¢ is updated
according to

w(t) =w(t —dt) —e_(t)P(t)r(t), (2.5)

where P is a running estimate of the inverse correlation matrix of network

activations r and is computed with

P(t — dt)r(t)r " ()P (t — dt)
1+r" ()Pt —dt)r(t)

P(t)=P(t—dt) — (2.6)
which requires an initial P(0) = %, where I is the identity matrix and « the
regularisation constant of the RLS algorithm. Equation [2.5] is very similar to
a delta-rule, but instead of using a single learning rate multiple learning rates
provided by P are used. In FORCE learning a has to be much smaller than
the amount of neurons used. If « is too big FORCE learning may not keep the
output close to the target function and learning may fail, but if « is too small
weight changes may be so rapid that FORCE learning becomes unstable. Often
« > 1 is appropriate, as long as a« < N.

2.1.2 Testing & performance evaluation

Some researchers directly follow up the training phase with the test phase with-
out altering the network’s state after training [12] 22], which is mostly done if
the reservoir’s activity is only driven by an output feedback loop and not by any
input signal. Others use a “washout” phase before the actual test phase: the
network is reset and left running shortly between the training and test phase
while feeding it a certain input or feedback signal. For example, Jaeger [] re-
sets the used ESN’s internal state to 0 and clamps the output feedback loop
to the target function for a short while, after which the network is left running
independently (that is without teacher forcing) in what is the actual test phase.
A washout phase is effective in ordered RNNs as its internal state only depends
on a certain number of previous states, so at some point the internal state no
longer depends on its resetting. We follow the former approach, i.e. we do not
reset the reservoir before the testing phase, as a washout phase is not effective
in chaotic RNNs, since the reset state, whether to 0 or anything else, can never
be washed out. Instead the RNN is left running independently after the train-
ing phase and its outputs z are collected. However, chaotic RNNs are able to
recover if their internal state is reset, which is impressive given the chaotic tra-
jectory of its internal state. Nonetheless we chose to leave out a washout phase
to reduce variance in our experimental outcomes, as the mentioned recovery is
not guaranteed.

After the testing phase the RNN’s performance is measured by its Mean Eu-
clidean error (M EE) from the target pattern, which is defined as the average
2-norm of the error vector ey = y¢ — z¢ of each target output f, that is

F
1
MEE = — > yJefer. (2.7)
=1

In many figures we include an indication of the so-called chance level perfor-
mance on a particular target. This chance level performance is defined as the
M EFE obtained with uniform random guessing of each pixel value.

10

All data processing was performed off-line using MATLAB R2016a (The Math-
Works Inc., Natick, MA, 2000).

2.2 Data set

For all experiments video clips were used from the HOLLYWQOOD2 Human
Actions and Scenes Data set [18] as target functions for the RNNs. The data
set contains 3669 video clip samples picked from 69 movies. The data set was
used by Marszalek et al. [I8] to build support vector machine classifiers able
to classify scenes and actions in visual input. The data set is split up in a
scenes and an actions data set, but in this project all videos were used with
equal probability when examining their complexity, but three particular clips
(mentioned below) were selected for all subsequent experiments. Each movie was
re-sized to be 48 x 48 pixels, as this kept objects and people recognisable in the
video clip and allowed for an acceptable computational load of the simulations.
Of all movies the frame rate was about 25 frames per second. Movie lengths of
300 frames were used, which comes down to circa 12 seconds of video material,
unless explicitly mentioned. All pixel values were converted to grey scale values,
which were scaled to lie between 0 and 1, and gave the RNNs an amount of
outputs equal to the amount of pixels in each frame.

Pixels in a video clip can be considered separately, but as each pixel in the
RNN output contributes to the reservoir’s internal state through the feedback
pathway, it is more sensible to consider all pixels in a frame together. This is
possible by looking at each pixel intensity value as if it were a coordinate in
a very highly dimensional space, in which a frame is represented by a single
point. In this way a movie clip is simply a trajectory through this space. While
it is impossible to imagine a space of 48 x 48 = 2304 dimensions, we can get
an impression of what such a trajectory would look like by means of a principal
component analysis (PCA), for which we use the singular value decomposition
(SVD) of all frames in a clip. For this we used the pca function in MATLAB, by
which we obtain the principal components (PC’s) of a clip in descending order
of component variance. We projected the three mainly used clips onto their
first 3 PC’s in figure[2.2] These projections give an indication of the complexity
of these clips, but, although they were selected by their complexity, they were
selected using different criteria.

2.2.1 Video clip complexity

To obtain video clips of appropriate difficulty, i.e. clips for which not only
the difficulty of learning but also visual characteristics varied considerably, we
searched for a data complexity measure that captures visual characteristics and
simultaneously correlates strongly with RNN performance. An RNN is very able
to learn to produce very similar frames, but as subsequent data points begin

11

#\: k-3
84 157 282 164 165 300 15 54 300
85 158 283 165 166 1 16 55 1
94.4% explained 85.5% explained 49.6% explained

PC 3

PC2 PC 1

Figure 2.2: A principal component (PC) analysis of the 3 mainly used clips.

The images in the top row display frames from the used clip. Each lower frame is
the direct successor of the frame above. Between each displayed pair of subsequent
frames there is a large distance in the PC space. The corresponding frame numbers
are written below.

The blue plots in the middle row show the clip trajectories projected onto their first
three PC’s. Some points in these plots are labelled with the corresponding frame
numbers. Above each plot the proportion of variance explained by these 3 PC’s is
displayed.

The plots in the bottom row show RNN performances on the same clips projected
onto the same 3 PC’s. Green is of one of the best performances, red is of one of the
worst performances.

12

to show an increasing difference, e.g. a scene transition or a lot of motion in
a movie clip, the test error increases rapidly. Output errors range from mixing
characteristics of the target patterns to producing something indistinguishable
from random output. So the clip difficulty measures evaluated were designed to
quantify to some degree the increase of difficulty due to the presence of scene
transitions, camera angle transitions, and large motions in the used clip. A
desirable data complexity measure is one such that an RNN’s test error increases
as the used clip’s complexity score increases. We investigated multiple measures
to investigate which one is strongest correlated with, or best predicts, network
error.

As complexity measures we considered total cosine distance, total city block
distance and total Euclidean distance between all subsequent frames, and we
considered information contained in data point transitions. These measures are
meant to capture the intuition that two subsequent frames of a scene transition,
or subsequent frames containing much motion of the pictured objects or people,
are very dissimilar and thus harder to learn. The main difference between the
cosine and entropy measures, and the euclidean and city block measures, is that
the former are more sensitive to changes in separate regions of the clip, while the
latter are more sensitive to changes in the entire frame. For example, the cosine
distance between a white and a black frame, i.e. from an all ones to an all zeros
vector, is zero, as is the entropy in such a transition, but the Euclidean and city
block distance between such frames is maximal. Another such transition is a
change in brightness, as all pixel values move in the same direction. The city
block measure is most sensitive to such transitions, while Euclidean distance is
less sensitive to this due to its realisation of the triangle inequality.

Now we will describe how each measure is computed for a video clip. Let F be
the amount of frames in the video clip and let B be the amount of pixels in each
frame (and so the amount of output units for an RNN). Now let yy;, € [0,1] be
the target value of one pixel b € [1..B] of B pixels in a frame f € [1..F]. A video
clip with F' frames has F' — 1 frame transitions, but as each RNN was trained
to repeat the trained video clip, there is also a frame transition from the last
frame to the first. Therefore we define the next frame f* that comes after a
frame f as
ff=(fmod F)+1

Now we define the city block complexity of a video clip as the sum of city block
distances between all subsequent frames. The city block complexity measure
can be described as the sum of all absolute pixel luminance changes. So

F B
Ccityblock = Z ny+,b —Yrb

f=1b=1
If all frames are considered points in a highly-dimensional Euclidean space, then

the FEuclidean complexity measure can be described as the total distance trav-
elled when moving through all points in the data set. We define the Euclidean

13

complexity as the sum of Euclidean distances between all subsequent frames,
that is

B
CEuclidean = Z Z yf+ b — Yf, b

f=1 \ b=1

Our cosine complexity is defined as the sum of cosine distances between all
subsequent frames,

F

B
Z Db Yrtb YL
f=1 \/Zb lyf+b Zb 1Y

COSZ’ﬂE

Finally, the entropy of data point transitions is a quantification of the complexity
of such a transition in terms of information contained in the transition. The
more information is needed to describe the transition, the higher the entropy.
The entropy is computed by allocating of one transition all pixel transition
values (ys+, — ¥s) to one of 256 bins. Then the probability p; that a pixel
transition value corresponds to a bin value is computed for each bin i. The
transition entropy E of a frame f is computed using Ey = — >, p; - loga(ps).
This is implemented by the entropy function in MATLAB we used. We define
the entropy complexity as the sum of all transition entropies:

entropy Z Ef

In figure these complexity measures are displayed against frame number for
several clips. It can be seen that each measure behaves differently. Note that
in this figure each measure was scaled to lie within the same range; otherwise
their values would lie very far apart.

Figure [2.3] shows that the entropy measure does not behave as expected. It
was expected to be similar to the cosine measure, but it appears to be close
to a straight line. This is likely due to the noise present in the video clips,
making each transition contain more information than would be initially ex-
pected. In figure the entropy of each frame transition in sceneclipautoau-
totrain00001 is plotted. Above the plot some sample frames are depicted to
give an indication of the transitions in the clip. Although these transitions do
not seem to be very sharp, the entropy in each transition fluctuates heavily.
Due to much noise in the video clip material, the used entropy computation was
not discriminative for dissimilarity between subsequent frames.

2.3 Experimental design

In each experiment regarding the effect of a parameter’s setting, performance
of RNNs on learning to generate video clips from the Hollywood2 data set

14

sceneclipautoautotrain00012

sceneclipautoautotrain00003

sceneclipautoautotrain00001

200

500 1000 0 100 200 300 400

sceneclipautoautotrain00025

sceneclipautoautotrain00015

— City block
=
> Euclidean
o 7
g | Cosine
(&)
Entropy

0 50 800
Frames

Figure 2.3: Complexity measure values against amount of frames taken for several

clips, scaled to lie within the same range.

15

q :

"
=
= 35t
[y
pid
s AT
=
o
228}
[
L

2 -

15

1F

00 B0 900

05 1 1
0 100 200 300 400 a00

Frame

Figure 2.4: A plot of the entropy of each frame transition for sceneclipautoauto-
train00001.avi. At the top some sample frames are displayed. The vertical black lines
indicate at which time point each sample frame was picked. Note that the y-axis starts
at 0.5. The peak entropy starting around 650 frames is when the woman in the video
clip sits up straight.

16

[18] is investigated. Each experiment was repeated for three particular clips,
namely the sceneclipautoautotrain00232, actionclipautoautotrain00684
and scenecliptest00292 AVI clips, also referred to as clip 1, clip 2 and clip 3
respectively. These clips contain desired scene transitions, camera angle tran-
sitions, camera panning and movements of entities. The clips were resized to
48 x 48 pixels and only the first 300 frames were taken. We used three particular
clips instead of all random clips to eliminate variance caused by random clip
selection, as this proved an issue in prior experimentations. How these clips
were exactly selected is described in section [3.I] Unless explicitly mentioned,
RNNs were constructed randomly with the corresponding parameters

N =300 g=15 T=1
B =482 = 2304 dt = fromcraie a=1
p=0.1

Learning happened every third frame, and each RNN trained for n = 5 training
passes over a video clip.

Using this design we first investigated how to appropriately select clips of differ-
ing difficulty, i.e. which complexity measure best describes a clip’s difficulty, so
we could use this to select easy and hard clips. After having selected the three
clips mentioned above using the most appropriate complexity measure, we in-
vestigated the effect of changing several parameters individually on the resulting
RNN’s performance. This was done for reservoir size N, reservoir connectivity
sparseness p and the reservoir’s spectral radius g. The effect of some parameters
may have consequences for another parameter’s effect due to their implications
for the RNN’s behaviour. For example, one parameter’s optimal value may
change as another one is chosen differently. Therefor we investigated whether
there are such interaction effects between p and p¢p, g and gy, and between g
and n. More on how or why specifically these pairs were selected, is provided
in the corresponding results sections. In our results we do not elaborate on the
effect of ¢ individually, as its effect is strongly related to gs,. Therefor these
parameters are discussed together.

17

Chapter 3

Results

3.1 Data complexity measures

In our search for the most appropriate data complexity measure, we trained 1000
RNNs on 1000 randomly selected video clips and collected the test M EEs.
Each clip’s length was picked randomly between 200 and 500 frames. The
complexity of each used clip was determined with the four complexity measures,
such that we could investigate which complexity measure correlates strongest
with network error. The strongest correlation r = 0.684 was found for the
Euclidean complexity measure. For the city block complexity measure it was
r = 0.656, for the entropy measure r = 0.647, for the cosine measure r = 0.338,
and notably the correlation between the amount of frames and the M EE was
r = 0.275. See figure B.J] for a scatter plot of the MEE against Euclidean
complexity.

With the Euclidean complexity measure we selected the three clips we used for
our other experiments: sceneclipautoautotrain00232, actionclipautoau-
totrain00684 and scenecliptest00292. These clips were found to have very
different complexities with similar amounts of frames. The euclidean complexity
scores of the 300 frames used of each clip are respectively 238.89, 344.01 and
752.53. These clips do not only vary in difficulty, but they also vary in contained
visual characteristics. The first clip mostly contains rapid transitions of what is
viewed and little actual motion by the camera or by depicted entities. The sec-
ond clip is similar, but contains fading instead of instant scene transitions and
contains more motion of depicted entities, which is mostly due to the entities
being depicted larger. The third clip contains many instant changes in camera
direction and contains a lot of motion.

18

35

Mean Euclidean error

0 500 1000 1500 2000 2500 3000
Euclidean complexity

Figure 3.1: A scatter plot of mean Euclidean error against euclidean complexity for
1000 clips. A black least-squares line is added.

3.2 Reservoir size

In many investigations it was found that a larger reservoir size improves perfor-
mance of an RNN and especially as the modelled problem’s complexity increases
(for example [I4]). While using the echo state training approach Koryakin et al.
[12] found there is an optimal reservoir size beyond which enlarging again re-
duces performance. Therefore we investigated the effect of reservoir size on video
clip generation performance when using the FORCE learning procedure. Note
that we do not provide a comparison between the two training methods.

For each video clip used as target pattern we trained 400 RNNs with N €
[1..3000], taken with logarithmic increments. The resulting performances are
scattered in figure [3.2] paired with plots of the likelihood of achieving at least a
certain performance.

In general we found that increasing reservoir size always benefits performance,
and that here is no reservoir size beyond which enlarging becomes counter-
productive, but instead that the probability that FORCE learning successfully
trains an RNN increases with IV, or to put it differently, that the expected test
MFEE drops with N. So if some reservoir size already allows a performance
close to the best performance possible, then enlarging beyond that N increases
the likelihood of achieving such a good performance. However, obviously it is
more efficient to use smaller RNNs that achieve the same results, in terms of
computational load.

19

35

30

25

20

10° 10’ 102

MEE

10° 10! 102
Reservoir size

Clip 1

Clip 2

Clip 3

Prob MEE < C

0.8

0.6 [

0.4r

021

——C=2
~—c=3

Cc-4
——c=5

10°

|
|
0000

a s W N
~
N

10°

0.8

0.6

0.4

021

10°

10! 102 10°
Reservoir size

Figure 3.2: To the left, scatter plots of RNN performances against reservoir size. To
the right there are plots of the likelihood of achieving at least a certain performance
against reservoir size. The smallest C' was chosen to be an integer below which at least
one RNN performed. The red horizontal line indicates chance level performance.

20

The test MEFE appears to decrease virtually linear with log(N). For clips 1,
2 and 3 respectively we find correlations between log(N) and the test MEE
of r = 0.567, »r = 0.732 and r = 0.496. Least-squares lines are included in
figure [3:2] and their respective slopes are b = —3.597, b = —3.356 and b =
—1.785. Assuming these lines represent the correct relation, these coefficients
indicate an expected decrease of the mean Euclidean error for a proportional
increase of reservoir size: If the reservoir size is changed from some Ni to No,
then the expected change in MEFE is b - log(2). For example, if the new
size is ten times the old size, then the M EFE would be expected to change
by b. This can be explained by the fact that more reservoir neurons enable
a higher dimensional projection of the fed back signal and of recent states,
and compute more non-linear combinations of input components and features,
which boost the performance of linear readouts [I7]. That performance increases
with proportional growth instead of linear growth of the reservoir size can be
explained by the occurring overlap of representations in the reservoir, almost
surely inevitable due to its random construction.

3.3 Connectivity

Some researchers have found connectivity in terms of reservoir structure to
be of great influence on RNN performance [19, 2I]. But even without any
structure others argue that connectivity sparseness in the reservoir is crucial.
Sparse connectivity in the reservoir lets it decompose into many loosely coupled
sub-networks. This way a reservoir is created with rich dynamics, that allows
multiple independent internal representations and therefor benefits performance
[16, 8, [TT]. This decoupling can even be pushed to an extreme of using multiple
small reservoirs in parallel instead of just one, an approach developed by Xue
et al. [27] called decoupled echo state networks (DESN).

In approaches using only one sparsely connected reservoir appropriate connec-
tivity sparseness is said to be between 1% and 20%, i.e. each reservoir neuron
is connected by chance to approximately 1% to 20% of the other reservoir neu-
rons. However, some findings implicate connectivity in randomly generated
reservoirs not to influence performance at all [I2]. We investigated how connec-
tivity sparseness influences RNN performance on visual sensations.

In our initial experiments, for each clip we trained 400 randomly constructed
RNNs while increasing the reservoir connectivity p from very sparse p = (ﬁ){
to full p = 1 in logarithmic steps. This comes down to going from approximately
1 recurrent connection in total in the reservoir to all-to-all reservoir connectivity.
The results are scattered in figure [3.3] together with plots of the probabilities of
achieving a certain performance. Least-squares lines are added to the scatter
plots to indicate the global trend. For clips 1, 2 and 3 the found correlations
between log(p) and the test M EFE are respectively r = —0.015, r = —0.072 and
r = 0.025. The corresponding slopes of the least-squares lines are respectively

21

Clip 1

351 . 10
30 . ’ ’ . ——cC=2
. _— o 08F|——c=3| _~ ~
25 . . . ‘e C=4f " SN IS .
.. . ~
: : : o6fl——C=5 e
20 ' -
. .. PR
15 04l o—— // ~_~-
0.2 -
- ~
= ~
0 e —
10 10 102 107 10° 10 10 102 107 10°
Connectivity Connectivity
Clip 2
30 .
—— C=3
25 L
0.8 — —C=4 o
—— C=5 - S
20 . - EEDEINY N
06 C=6]"~~
15 N
04r / ‘\ 2 \\
, \ N .
02f ‘ ST
-
\\V//\\v//\\\// ~
0) 0)
1074 108 102 107 10° 104 108 102 107 10°
Connectivity Connectivity
Clip 3
207 - 10
——C=4
08fF|——cCc=5
15 ce
06Ll——C=7 . /
/N T~ _- T~
. ~- ————
-——
0.4
N
N _ - -~ ~
02 . - N
PN
N e
0 0 =
104 108 102 107! 10° 104 10° 102 107 10°
Connectivity Connectivity

Figure 3.3: Scatter plots of RNN performances against reservoir connectivity paired
with plots of the likelihood of achieving at least a certain performance against reservoir
connectivity. The smallest C' was chosen to be an integer below which at least one
RNN performed. The red horizontal line indicates chance level performance.

22

b= —-0.07, b = —0.152 and b = 0.049.

So it appears that p has no effect on performance. This could be due to p not
having an effect, which is in accordance with [I2] (but note the difference in used
training procedure; Koryakin et al. [I2] used a simple regression to determine
the output weights, whereas we used the FORCE learning procedure). An
alternative explanation could be that visual data per se does not require multiple
independent representations in the reservoir. Compare for example the MSO
problen] for which it is shown by Wierstra et al. [24] that decoupling of internal
representations is a requirement, although [I2] used this same problem. It may
also be so that independent problem representations emerge in the reservoir
regardless of connectivity sparseness, although this seems counter-intuitive, but
the reservoir keeps containing a high-dimensional projection of its inputs and
prior states. Because the reservoir weights are chosen randomly, the reservoir
computes many non-linear combinations of input components and features. This
so-called kernel property determines the performance of the linear readouts and
is not influenced by connectivity sparseness [I7] (recall that all weights are scaled
to nullify any change in a neuron’s input variance).

With our used target patterns, it may also be the case that the immense amount
of feedback projections, i.e. 2304 x 300, prevents the emergence of independent
representations inside the reservoir. Therefor we investigated the influence of
feedback connectivity sparseness py, combined with differing reservoir connec-
tivity. To this end we trained 100 randomly constructed RNNs for each of thirty
logarithmically spaced values of pgp, from =+ to 1, while varying p logarithmi-

300
cally from (535)2 through 1. so py, was varied from on average one feedback

connection p3gI(') output unit to full feedback connectivity, and the reservoir was
changed from on average one recurrent projection in total to full connectivity.
This was done for each target pattern video clip. The resulting probabilities at
low errors in the testing phase against p and py, are depicted in figure In
this experiment the magnitude of the feedback weights was not scaled according
to their multiplicity. We used the same feedback weight magnitude as e.g. [22]
with only one output, as the RNNs were still able to learn. However, using B
outputs instead of just one entails that the variance of the received feedback
signal of each reservoir neuron is B times greater. Similarly, using py, - B feed-
back connections instead of all B possible feedback connections entails that the
variance of the input to each reservoir neuron from external feedback is multi-
plied by a factor ps, (assuming all outputs z; € z are identically distributed.
See the appendix for a derivation). Therefor we also repeated the experiment
with scaling of the feedback weights, of which the results are shown in figure|3.5
Note that the reservoir weights were always scaled according to their multiplic-
ity (see section , but that we now scaled the feedback weights according to

their deficiency: they were scaled with a factor \/%, which is the inverse of the

IThe Multiple Superimposed Oscillation (MSO) problem consists of multiple sine waves
superimposed on each other while the individual frequencies of these sine waves are not multi-
ples of each other. Thus the resulting signal’s wavelength can become extremely long, making
it harder to predict.

23

Clip 1

Clip 2

Clip 3
C=4 C=5
o
\%
w 1
w
2 05
Z
§ 0
S 10°
o
107" 10°
102 10° 102
Feedback connectivity s 104 Reservoir connectivity 105 10

Figure 3.4: The probability of achieving a very low test M EFE against different
reservoir and feedback connectivity settings with unscaled weights. The used C’s
where chosen to be integers below which at least 1 test M FE was obtained.

24

Clip 1

Clip 2

Clip 3

0.4

0.2

Probability MEE < C

107" 10°

102 -3 102
04 10
Feedback connectivity 1¢-5 0 Reservoir connectivity 105

Figure 3.5: The probability of achieving a very low test M EFE against different
reservoir and feedback connectivity settings with not only reservoir weights but also
feedback weights scaled according to their numbers. The used C’s where chosen to be
integers below which at least 1 test M EE was obtained.

25

square root of the approximate factor with which the variance in the feedback
input to a reservoir neuron is reduced as the amount of feedback connections is
reduced to pyy,- B. So this scaling ensures that the variance of the feedback input
to each reservoir neuron remains approximately the same. See the appendix for
how this is derived.

The effects of feedback and reservoir connectivity sparseness is different for
scaled versus unscaled feedback weights. With unscaled feedback weights a
too low feedback connectivity results in a decreasing probability of a very low
resulting MEE. This can be seen in figure [3:4] as the shown probability of
achieving a test MEE < 2 quickly reaches zero for a feedback connectivity
of psp, < 1071, On the third clip no test M EE below 3 was found, but the
probability of achieving a test M EFE < 4 drops similarly as py;, < 10~!. When
tolerating a slightly bigger test M EFE, the effect of a drop in the probability
of achieving such an M EFE begins to disappear and remains only present for
very low pgp < 10~2. In addition to performance loss with a too low feedback
connectivity, there appears to be no advantage in using full connectivity from the
results obtained with unscaled feedback. Figure |3.4] shows that the probability
of achieving the depicted low test M EE’s peaks before the feedback reaches full
connectivity.

However, these differences in likelihood of achieving a certain performance with
different connectivity sparsities are mostly due to the strength of the feedback
connections, because when the feedback weights are scaled according to connec-
tivity sparseness, these differences almost completely disappear. Now compare
the previous results with the new results depicted in figure[3.5|using scaled sparse
feedback. The previously seeming effect of the feedback sparseness on the like-
lihood of achieving a good performance is no longer visible. On the other hand,
the previously found peaks where this likelihood was maximal, were higher than
all of the newly observed probabilities. This suggests that the effect found with
unscaled feedback weights was actually due to the magnitude of these weights
being more appropriate when using fewer feedback connections. Such results
were also found by Koryakin et al. [12], who investigated the effect of feedback
weight scaling on the capabilities of echo state networks. In short summary,
they found that there is an optimal output feedback weight range for an ESN
of a particular size, and now we found our feedback weight scaling to be more
adequate for a certain range of feedback connectivity. However, the interaction
between the feedback weights and the amount of used feedback connections de-
serves further investigation before conclusions similar or opposite to [12] can be
drawn.

3.4 Weight scaling

Using a different spectral scaling factor for the reservoir weights has several
consequences for the RNN’s behaviour and learning. As the largest absolute

26

100

a0

periods trained
&
BMS error

Figure 3.6: Networks with 0.75 < g < 1.56 were trained to produce the sum of four
sinusoids. Outside this range of g learning did not converge. A. Number of repetitions
of one period of the target function required for training. B. RNN performance after
training. C. Readout weight vector length |w| after training, which is an indication
of network stability. A larger |w| usually corresponds to a less stable solution. Figure
taken from [22]

eigenvalue, also called the spectral radius, of the reservoir weights matrix J is
initially 1, the spectral scaling factor g directly scales the spectral radius of
J. First of all, using a spectral scaling g < 1 makes the reservoir behave with
ordered dynamics. Put simply, this means that the network’s internal state at
a certain time point only depends on the previous so many states and inputs.
In the absence of input the activity in ordered networks dies out. On the other
hand, using a spectral scaling g > 1 enables chaotic dynamics in the reservoir.
This means that activity in the reservoir will never die out by itself, and therefor
the RNN’s state always depends on all its previous states [20].

For some learning approaches ordered dynamics are desirable, such as in the
echo state approach [§]. In other approaches chaotic dynamics are found to have
benefits and spectral scaling is preferably chosen above 1. One such approach is
the FORCE learning procedure. However, spectral scale must not be chosen too
high, as the internal chaos will become impossible to control and make the RNN
incapable of learning any task. Therefor g &~ 1.56 is typically chosen. Benefits
of this g compared to lower gs include a greater computational capability of
the RNN [2], faster convergence of FORCE learning, and the resulting RNNs
are more accurate and robust to noise [22]. See figure for experimental
outcomes from [22] regarding the latter benefits. moreover, in their work they
found that training an RNN to produce the sum of four sinusoids failed if not
0.75 < g < 1.56.

First we investigated if our typical RNNs are bound by the same limits 0.75 <
g < 1.56 for learning to succeed. But, in contrast to Sussillo and Abbott [22], we
did not encounter decreasing RNN performance for any 0 < g < 4. We suspected
this was due to the difference in output feedback. Where RNNs in [22] contained
only one output unit with a feedback connection to each reservoir neuron, our
targets require more outputs and thus add more feedback connections to the
RNN (compare our N x B versus their N x 1 feedback weights matrix). If these
many feedback connections are not scaled according to their multiplicity, then

27

the feedback pathway will exert more control on the reservoir’s activity as more
feedback connections are added. Therefor we also investigated the interaction
between different reservoir weight scalings and different feedback weight scalings,

in section [B3.4.1]

Next we investigated if we could reproduce the findings of faster learning and
greater accuracy in chaotic RNNs with video clips as targets, in section|3.4.2

3.4.1 Reservoir & feedback weight scaling

To investigate the interaction between feedback strength and chaotic activity
in the reservoir we varied the scaling gy of the feedback weights of each RNN
logarithmically from ﬁ to 1 in 30 steps. At each step we trained and evalu-
ated 100 RNNs. Of each newly constructed RNN the scaling g of the internal
reservoir weights was linearly incremented with g € [0,4]. We repeated this
for each target pattern video clip. The resulting performances are displayed in
figure [3.7] We split the results for RNNs with ordered and chaotic activity in

the reservoir.

In ordered RNNs no good performances emerge with too small feedback weights.
Learning typically fails below a value of g, =~ 10~3. However, with larger
reservoir weights this lower limit of g, becomes even slightly lower than with
smaller reservoir weights. This indicates that RNNs with a smaller g need to be
driven by the feedback, so they require a larger g¢,. RNNs with a larger g allow
a smaller gy, as the reservoir activity does not die out too quickly for the weaker
feedback to compensate. This interaction is best visible for clips 1 and 2, but
is harder to find with clip 3, indicating that the mutual compensation of g and
gyp 1s harder to find for (too) difficult target patterns. Moreover, performance
increases even further with larger feedback weights, but intuitively there should
be an upper limit to feedback weight strength. This, however, requires further
investigation. Additionally larger reservoir weights improve performance, which
can be explained by the fact that larger reservoir weights allow a longer fading
memory capacity [9 [17].

In chaotic RNNs also no good performances emerge with too small feedback
weights, but in contrast to ordered RNNs the chaotic ones achieve far greater
errors, reflecting the importance of the feedback loop in the chaotic RNNs to
be able to suppress the chaos in the reservoir. The scaling of g¢, determines
the limit of g above which learning starts to fail. This can be seen in figure [3.7]
The limit of g becomes higher with stronger feedback. If the output feedback
can suppress the chaos in the reservoir, the RNN is able to learn a task, and
larger feedback weights benefit this chaos suppression [22]. Additionally, the
test errors appear to go up very close to gg, = 1 compared to values slightly
below, suggesting that a too large value for gy is counterproductive, but this
requires further investigation. However, [I2] did show that gy, must not be too
large and has an optimal range regarding achievable performance in echo state

28

Clip 1

Clip 2

Clip 3

Reservoir scaling

Feedback scaling

Figure 3.7: Test M EFE against the reservoir’s spectral scaling and the feedback
weight scaling. The red bands indicate chance level performance on the particular
clips. The individual dots are coloured according to their relative height. The left
plots show test performances for chaotic RNNs (¢ > 1), and the right plots show
performances for ordered RNNs (g < 1).

29

networks.

So in short summary, for ¢ < 1 our experimental outcomes show how too small
feedback weights disable learning, as the ordered dynamics in the reservoir are
not driven by a sufficiently strong output feedback signal. As the internal reser-
voir weights become stronger, weaker feedback weights are tolerable, because
the reservoir becomes more driven by itself. Also do larger reservoir weights
allow a longer fading memory capacity [9, [I7]. For g > 1 this is reversed: as
g grows, stronger feedback weights are required to keep the RNN capable of
learning. As long as the output feedback is able to suppress the chaos in the
reservoir, the RNN is capable of learning a task [22].

3.4.2 Reservoir weight scaling & amount of training passes

To investigate the effect of reservoir weight scaling g on the performance achieved
after a certain amount of training passes n, we trained 200 RNNs on each clip
while linearly incrementing ¢ in each newly constructed RNN from 0 through 4.
We did this for each value of n from 1 through 15. The resulting probabilities
for a certain good performance in the testing phase are shown against ¢ and n in
figure[3.8 So we did not count the amount of training passes required to achieve
such a performance, but instead determined the chance of achieving below a cer-
tain test M EE to deduce whether we would require less training passes if we
use a greater g. The plots show that the best performances are more likely to
be achieved with the same amount of training passes if the RNNs have a greater
g. With lower gs the same success rate is achieved with many training passes as
with higher gs and just a few training passes. This points in the direction of the
same conclusions as [22], that fewer training passes are required if a greater g is
used, but we can see by the plots that this only holds for the lowest tolerance
for MEE. On the third clip no RNN performed with MEFE < 3, and in the
corresponding plots an effect of g is absent, just like the effect becomes vaguer
on the other clips for the increased tolerance of M EE < 3.

30

Clip 1

Clip 2

Clip 3

0.4

0.2

Probability MEE < C

2
1

#training passes 0 Reservoir scaling

Figure 3.8: Probability that an M EFE below a value C is obtained against the
reservoir’s spectral scaling and the amount of training passes used on a clip. The
surfaces are coloured according to their height.

31

Chapter 4

Conclusions & discussion

In summary we found that the RNNs capability increases with its reservoir size.
There is no disadvantage to using a bigger reservoir size, except the additional
computational load in simulations and the additional required space and energy
in real brains. This contrasts the findings of [12], who found there is an optimal
reservoir size beyond which error will again increase, but this difference is likely
due to the difference in used training procedure. Also, RNN performance is not
affected by the used connectivity sparseness, as long as there is a certain degree
of recurrence to allow internal dynamics to emerge and as long as the weights
are scaled according to the amount of connections used, which is also found by
[12.

The weight scaling itself, however, was found to be rather important. In or-
dered RNNs the scaling of the reservoir and feedback weights determines which
set of weights drives the RNN’s activity. If the reservoir weights are chosen to
be small, then the feedback weights should be chosen to be relatively larger to
stimulate activity in the reservoir. If the reservoir weight matrix’s spectral ra-
dius approaches 1, the feedback weights may be chosen to be smaller. However,
using a g and a gy close to 1 seems to be optimal for ordered RNNs. In chaotic
RNNs the scaling of the feedback weights determines the allowable chaos in the
reservoir, as larger feedback weights are better able to suppress the chaos in
the reservoir and thus allow a greater spectral radius of the reservoir weights
matrix. A larger spectral radius is also beneficial if it is not too large. If it
is too large, the chaos in the reservoir cannot be suppressed by the feedback
pathway, not even during learning, and learning will not converge. However,
below its limit greater reservoir weight scaling speeds up learning and improves
RNN accuracy and stability. This was also found by [22]. These benefits are
mostly visible when aiming for the best performances. If the tolerated error is
higher, then these benefits of spectral scaling disappear.

32

4.1 Shortcomings

As performance measure we chose to use the Mean Euclidean error of network
output z, equation [2.7] A more popular error measure is the normalised root
mean squared error (NRMSE), which is defined as

T
_1€.€

NRMSE = \| Li=1ref (4.1)
F. o2

where F' is the target pattern length, ef = yy — zy and o the variance of y.
However, there are several advantages to using M EE over NRMSFE, such as
a more natural interpretation and allowing better balancing of large errors by
small errors [13].

To determine how hard it would be to teach a video clip to an RNN we used
the total euclidean length of the clip’s trajectory in its highly dimensional pixel
space. However, different complexity measures are also possible. For example,
the amount of variance explained by a clip’s first n principal components could,
in retrospect, be a promising predictor of RNN performance and deserves inves-
tigation. The reservoir projects past outputs onto a highly dimensional space to
be translated to a pixel intensity by the readouts [9], and the more dimensions
in this new space, which grows with reservoir size, the more variance in the fed
back signal can be captured in this space. This will aid the output units in
learning to compute the appropriate pixel intensity.

A different possible complexity measure might be permutation entropy as de-
scribed by Bandt and Pompe [I]. This measure simplifies subsequent transitions
of n steps in a time series by labelling each point in the transition with their
relative magnitude (e.g. 11-3-7 becomes 3-1-2, with n = 3). Then the entropy
is computed of these labels among labels generated using different values for
n. For a complete description of permutation entropy, see [I]. Additionally,
this measure behaves similar to Lyapunov exponents. A great advantage over
the used measures is its robustness to the presence of noise, which is virtually
always present in the used data set. Like the used measures the permutation
entropy is easy and fast to compute.

4.2 Topics for future research

Video clips were selected based on containing the desired characteristics of scene
transitions, camera angle transitions, camera panning and movements of enti-
ties. Even more characteristics of visual data can be conceived, such as changes
in lighting, zooming in or the camera rotating about its longitudinal axis. Such
characteristics were in this project meant to increase a clip’s complexity to
make it harder to be learnt. An interesting research topic would also be how

33

well RNN’s can represent each of the actual characteristics, e.g. could one rep-
resent the zooming itself? A proposed procedure is to train RNNs on the chosen
visual change and test whether the same change is generated by the RNN on
different visual scenes. For example an RNN can be trained on zooming in
on a picture of a dinosaur, or even a more general simple grid, after which it
would be interesting to see what happens if it is displayed a picture of something
else.

Jaeger [9] and Millea [19] have shown that a linear activation function for all
neurons works best for improving an RNN’s short term memory capacity or
even general computational capacity, at least when trained using the ESN ap-
proach (i.e. determining the output weights through regression). For a sigmoid
activation function such as the tanh(-) an ESN works best if the network units
operate on the almost linear part of the tanh(-). This is, however, biologi-
cally less realistic and not shown to improve performance for models trained
using repetitive synaptic modification methods such as FORCE [22] or reward-
modulated Hebbian learning [7]. These would be interesting research topics,
i.e. to compare computational capacity of RNNs with different activation func-
tions, when trained with repetitive synaptic modification methods. In addition
to this, we have used the tanh(-) as activation function for its greater biological
plausibility for the reservoir units, but not for the readout units due to how they
desirably function. This has as a consequence that the signal fed back into the
reservoir does not come from a biologically plausible source. [22] propose sev-
eral network architectures that do allow more realistic feedback to the reservoir.
These architectures do not feed readout unit activity back into the reservoir
and separate the feedback pathway from the readout pathway. This is done by
either using an added feedback reservoir, or by not using an external feedback
pathway at all but instead relying on the reservoir’s internal recurrence for pro-
viding internal feedback. It would be interesting to compare the computational
capabilities and learning efficacy of such different architectures.

We used output feedback weights uniformly randomly drawn from the open
interval (—1,1). [I2] found that performance increases for an RNN with one
output unit if the output feedback weight is chosen between 1072 and 10~8, that
performance remains approximately the same for an output feedback weight
between 1078 and 10~'* and that performance again decreases below 1074,
More importantly, they showed that for a larger reservoir size a larger output
feedback weight is most suitable. We did not investigate this for the used
network and output sizes, but our findings suggest the possibility that there
is an optimal weight scaling. This was found in our investigations regarding
feedback connectivity sparseness where the feedback weights were not scaled
according to their numbers, as well as in our investigations regarding feedback
weight scaling itself, where test error seemed to increase close to our upper
bound for the feedback weight scaling. However, it remains a topic for future
research to investigate how different choices of feedback weight scale outside
our used range affect performance with the FORCE training procedure. In such
research their effect on the suppression of chaos in the reservoir should be kept

34

in mind, such that any potential effects can not be due to the present chaos.
For example, in [12] reservoirs with ordered dynamics (g < 1) were used. Also
should be kept in mind the amount of used feedback connections, such that a
reservoir neuron’s input variance from feedback does not depend on the amount
of received input connections.

Lastly, we used the same value for @ = 1, the regularisation constant for RLS.
However, [22] point out that a should be adjusted to the particular pattern
being learnt, keeping in mind the constraint o < N. We did not investigate
what might be the proper choice for « for the used target patterns, and it
remains a topic of future research to evaluate the influence of o on learning
success on the used data set of video clips.

35

Bibliography

[1] Bandt, C. and Pompe, B. (2002). Permutation entropy: A natural complex-
ity measure for time series. Phys. Rev. Lett., 88:174102.

[2] Bertschinger, N. and Natschlager, T. (2004). Real-time computation at the
edge of chaos in recurrent neural networks. Neural computation, 16(7):1413—
1436.

[3] French, R. M. (1999). Catastrophic forgetting in connectionist networks.
Trends in Cognitive Sciences, 3(4):128 — 135.

[4] Geman, S. (1986). The Spectral Radius of Large Random Matrices. The
Annals of Probability, 14(4):1318-1328.

[5] Gers, F. A., Schmidhuber, J., and Cummins, F. (2000). Learning to forget:
Continual prediction with Istm. Neural computation, 12(10):2451-2471.

[6] Haykin, S. (2014). Adaptive Filter Theory Fifth Edition.

[7] Hoerzer, G. M., Legenstein, R., and Maass, W. (2014). Emergence of com-
plex computational structures from chaotic neural networks through reward-
modulated hebbian learning. Cerebral Cortex, 24(3):677-690.

[8] Jaeger, H. (2001). The “echo state” approach to analysing and training
recurrent neural networks-with an erratum note. Bonn, Germany: German
National Research Center for Information Technology GMD Technical Report,
148:34.

[9] Jaeger, H. (2002a). Short term memory in echo state networks. GMD Report
152.

[10] Jaeger, H. (2002b). Tutorial on training recurrent neural networks, cov-
ering BPPT, RTRL, EKF and the” echo state network” approach. GMD-
Forschungszentrum Informationstechnik.

[11] Jaeger, H. and Haas, H. (2004). Harnessing nonlinearity: Predicting chaotic
systems and saving energy in wireless communication. science, 304(5667):78—
80.

[12] Koryakin, D., Lohmann, J., and Butz, M. V. (2012). Balanced echo state

36

networks. Neural networks : the official journal of the International Neural
Network Society, 36:35—45.

[13] Li, X. R. and Zhao, Z. (2001). Measures of performance for evaluation of
estimators and filters. In International Symposium on Optical Science and
Technology, pages 530-541. International Society for Optics and Photonics.

[14] Lukosevicius, M. (2012). A practical guide to applying echo state networks.
Neural Networks: Tricks of the Trade, Reloaded, pages 659-686.

[15] Lukosevicius, M. and Jaeger, H. (2009). Reservoir Computing Approaches
to Recurrent Neural Network Training. Computer Science Review, 3(3):127—
149.

[16] Maass, W., Natschlager, T., and Markram, H. (2002). Real-Time Com-
puting Without Stable States: A New Framework for Neural Computation
Based on Perturbations. Neural Computation, 14(11):2531-2560.

[17] Maass, W., Natschlager, T., and Markram, H. (2004). Fading memory and
kernel properties of generic cortical microcircuit models. Journal of Physiol-
ogy Paris, 98(4-6 SPEC. ISS.):315-330.

[18] Marszalek, M., Laptev, 1., and Schmid, C. (2009). Actions in context. In
Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Confer-
ence on, pages 2929-2936. IEEE.

[19] Millea, A. (2014). Ezplorations in Echo State Networks. PhD thesis, Uni-
versity of Groningen.

[20] Sompolinsky, H., Crisanti, A., and Sommers, H. (1988). Chaos in random
neural networks. Physical Review Letters, 61(3):259.

[21] Song, Q. and Feng, Z. (2010). Effects of connectivity structure of complex
echo state network on its prediction performance for nonlinear time series.
Neurocomputing, 73(10-12):2177-2185.

[22] Sussillo, D. and Abbott, L. F. (2009). Generating coherent patterns of
activity from chaotic neural networks. Neuron, 63(4):544-557.

[23] Sussillo, D. and Barak, O. (2013). Opening the black box: low-dimensional
dynamics in high-dimensional recurrent neural networks. Neural computation,
25(3):626-49.

[24] Wierstra, D., Gomez, F. J., and Schmidhuber, J. (2005). Modeling systems
with internal state using evolino. In Proceedings of the 7th annual conference
on Genetic and evolutionary computation, pages 1795-1802. ACM.

[25] Williams, R. J. and Zipser, D. (1995). Gradient-based learning algorithms
for recurrent networks and their computational complexity. Back-propagation:
Theory, architectures and applications, pages 433-486.

[26] Wood, P. M. (2012). Universality and the circular law for sparse random
matrices. Annals of Applied Probability, 22(3):1266-1300.

37

[27] Xue, Y., Yang, L., and Haykin, S. (2007). Decoupled echo state networks
with lateral inhibition. Neural Networks, 20(3):365-376.

38

Appendix

Calibrating variance in neural input from recur-
rence

A problem with a changing amount of inputs to a neuron, is that the total input’s
variance increases with the amount of inputs. A greater input variance results
in the neurons activation to be easier saturated, i.e. the neuron’s activation =
is mostly of a value so distant from zero that its activation function tanh(x)
has almost no more slope. However, the RNN functions best if its neurons
operate within the region where their activation function are approximately
linear [9]. Therefore the variance in a neuron’s input is usually normalised to
be independent of the amount of inputs to the neuron by scaling the weights
accordingly. Consider any neuron’s input as w' f(x) where w = (w1, ..., wy)
is the input weights vector, = (x1,...,xy) the activations of the sending
neurons and f the activation function. Now we can derive from the variance of
a neuron’s input Var(w' f(z))

N
Var(w' f(z)) = Var(z w; f(x;))

Var(wf(z;)) (1)

[E(w)*Var(f(z:)) + [E(f(2:)]*Var(w) + Var(w;)Var(f(z:))

Var(w)Var(f(z;))

I
= M= 1= D=

Var(w)Var(f(x))

We assumed that w; f(x;) and w; f(z;) (¢ # j) are uncorrelated in the first step.
In the second step we used the fact that w; and f(z;) are independent. In step
3 we used E(f(x;)) = E(w;) = 0, as we draw all weights from distributions

39

with zero mean, and we assumed for simplicity F(f(z;)) = 0, which is valid
for our activation function f = tanh, but this does not necessarily hold. In
the last step we assumed all w; and f(x;) are identically distributed. Now if
we pick w such that Var(w) = %, then the variance in the input to a neuron
will no longer depend on the amount of inputs, but will only depend on the
variance in the pre-synaptic output, according to the derivation above. Since
Var(cX) = o*Var(X) we can simply draw w from a distribution with unit
variance and scale it with Tlﬁ

Calibrating variance in neural input from output
feedback

In section [3.3] we discuss the scaling of the feedback weights according to feed-

back connectivity sparseness, i.e. the feedback weights w’fb were scaled by a
) J

VPrb

zero. For this derivation we used the derivation in the previous section of

Var(w' f(x)) = N - Var(w)Var(f(x)), but now we do not consider the in-
put to a reservoir neuron from N other neurons, but from B - p, output units,
using the weights vector w}b and pre-synaptic activations z = (z1,...,2p). As
the activation function of the output units is the identity function f(z) = z. For
the variance in the output feedback to correspond to the other experiments, i.e.
to be independent of the feedback sparseness, we require that

factor

where py;, is the proportion of feedback connections that are non-

B -Var(ws,)Var(z) =B -pgp - Var(w}b)Var(z), (2)

where wyy, is the output feedback weights vector with only non-zero entries (so
psp would be 1), as used in the other experiments. From this equation we can
derive

Var(wgy,) = pgy - Var(wh,)

1 3

—Var(wp) = Var(w},) (3)
Drb

So for the variance in the reservoir input from the output feedback loop to be

independent of feedback sparseness, the variance in the sparse w}-b should be

i times the variance of the full wyy. In other words, w}b can be drawn from
. . . 1 . 2 o

the same distribution as wyy, but has to be scaled by T since o Var(X) =

Var(cX).

In the previous section we mentioned that the expected output of a neuron

E(f(x;)) is not necessarily zero. This is especially true for our output units,

assuming the outputs are very close to the target function which was scaled to
lie between zero and one. So 0 < F(z) < 1. Here we assume for simplicity all z;

40

are identically distributed. With this the derivation from the previous section
for the feedback loop becomes (we write w instead of wy;, for readability)

B-psy
Var(w'z) = Var(Z w;z;)

(2

B-pgp
Z Var(w;z;)

B (@
= Z [E(wi)]*Var(z) + [E(z)]*Var(w;) + Var(w;)Var(z)

i

B-psp
= Z [E(2))*Var(w;) + Var(w)Var(z)

=B -pp - Var(w) - ([E(2)]? + Var(z)).

From this derivation it can be seen that scaling the feedback weights vector as
aforementioned will make the variance of w}rbz still only depend on z, since the
corresponding adaptation of equation

B-Var(wp) - ([B(2)]* + Var(z)) = B-pp - Var(wh,) - ([E(2)]* + Var(2)), (5)

can also be derived to derivation [B

41

	Introduction
	Issues in reservoir computing

	Methods
	Network architecture & state updates
	Training
	Testing & performance evaluation

	Data set
	Video clip complexity

	Experimental design

	Results
	Data complexity measures
	Reservoir size
	Connectivity
	Weight scaling
	Reservoir & feedback weight scaling
	Reservoir weight scaling & amount of training passes

	Conclusions & discussion
	Shortcomings
	Topics for future research

	Bibliography
	Appendix
	Calibrating variance in neural input from recurrence
	Calibrating variance in neural input from output feedback

