A Car that Kills: Predicting the Fairness of Moral Dilemmas in Autonomous Vehicles
Keywords
Loading...
Authors
Issue Date
2017-11-20
Language
en
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Many traffic accidents could most likely be avoided when autonomous
vehicles (AVs) are widely used. However, even with perfect sensing, AVs
cannot ensure full safety and some AVs will certainly crash. When a
crash is unavoidable, the AV could end up in a situation where it will
need to choose between the lesser of two evils. Asking people to give their
opinions about these situations could give us an understanding about what
moral decisions are preferred. However, it is impossible to ask people's
opinion on every possible traffic situation. In order to solve this problem, I
trained an arti cial neural network (ANN) that tried to predict the human
evaluation of traffic situations where a moral choice must be made. The
network has been trained on lled-in questionnaires about these moral
dilemmas. The goal of this research is to see to what extent a ANN can
predict these human evaluations. The results show that the ANN is not
able to predict the human evaluation on these tra c situations. This is
most likely the case because the ANN has only been trained on forty-two
instances. However, the humans ability to morally judge a situation is
really complex and this might be another reason why the ANN is not able
to generalise to new situations.
Description
Citation
Supervisor
Faculty
Faculteit der Sociale Wetenschappen