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Abstract

Diagnosing a genetic syndrome can be difficult as extracted genetic data is not always
decisive. To reach a diagnosis, doctors can compare the facial characteristics of a patient
with previously diagnosed patients. This process is subjective and therefore doctors would
benefit from an objective model to compare these faces. This research aims to compare
the performance of several models for the task of syndrome vs. control face classification.
Five different models have been used for syndrome vs. control classification, including one
ensemble model. Three models use either a face representation based on a neural network, a
3D landmark representation or a morphometric representation based on these 3D landmarks.
The last model is a Hybrid model which is based on previous research done at the Radboudumc
and this model also has the best performance for most of the 12 syndromes included in this
project. Future research can focus on reducing the computation time of the Hybrid model
and making its predictions more explainable.

1 Introduction

Approximately 2% of the general population is affected by Intellectual Disability (ID), a neurode-
velopmental disorder [1, 2]. Intellectual Disability is defined by the incomplete development of
the mind during the developing stages of childhood, leading to impairment of several skills that
contribute to the general level of intelligence, e.g. cognition, language, motor or social abilities [1].

1.1 Diagnosis

In about 30-40% of the cases, ID is caused by a genetic syndrome [3]. A genetic syndrome is the
result of a mutated gene and as there are numerous different genes, there is a wide variation of
frequent and rare syndromes. A genetic syndrome often comes with specific facial dysmorphisms.
Diagnosing a genetic syndrome as early as possible is important to prevent potential health prob-
lems and inform parents whether the disorder is inheritable [4, 5].

Due to recent developments of next-generation sequencing techniques, it is possible to extract
a lot of information from the DNA of a person [3]. However, for each gene, there are numerous
mutated variants and not all of them are known to be either benign or pathogenic. In other words,
whether a gene mutation is considered to be the cause of a specific syndrome or not. Thus, there
are a lot of cases where the mutated gene is a variant of unknown significance (VUS). In these
cases, the doctors already have a suspicion for a specific syndrome, but as the genetic data cannot
support that suspicion yet, they take the facial characteristics of the patient into account. The
doctors look at the facial characteristics of the to be diagnosed patient and compare them with
patients that were previously diagnosed with that specific syndrome. In this way, doctors can
either confirm or reject the diagnosis of their current presumed syndrome.

1.2 Computer vision model

Although most genetic syndromes come with these facial dysmorphisms, it can be difficult for
clinical experts to diagnose a patient correctly based on these facial characteristics alone. Besides
the fact that there are a lot of rare genetic diseases, these facial characteristics can also differ be-
tween patients with regard to their gender, age and ethnicity. Thus, reaching a correct diagnosis
is subjective to the experience of the doctor with this specific syndrome and the consistency of
the syndrome’s facial characteristics across different patients [6].

To support doctors in deciding on a specific diagnosis based on facial dysmorphisms, it would
be beneficial if there was an objective model. This model would then automate the process of
extracting craniofacial features from an image, comparing them with the existing known cases of
this specific syndrome and coming up with a result in the form of a probability or decision. To be
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able to do this, a computer vision model is needed that can perform this task of face classification.
This project aims to create this model in collaboration with the Radboudumc.

1.3 Face classification

The process of face classification usually consists of three steps. First, the face is detected, then
the features are extracted from the face, and lastly, these features are used for classification. There
are multiple well-performing methods to solve the task of face detection [7, 8], and there are also
multiple different simple and complex classifiers that can be used to classify the face representa-
tions.

The task of classifying a face based on whether a specific syndrome is present or not, could be
solved by using some sort of machine learning model, for example, a convolutional neural network.
However, there is not enough data available to train a model from scratch on this task. Since
there are no public data sets of syndromic patients available and the amount of data present at
the Radboudumc is limited. Thus, some form of transfer learning, i.e. training a feature extraction
model on a different domain and fine-tuning it on the actual domain, is necessary.

Hence, it is important to know what tasks related to face classification have already been
tackled by previous researchers and could be used in this project. To be able to perform face
classification, there are at least two components needed. Firstly, some sort of face representation
that is based on a 2D image, as that is the format of the present data, and secondly, a way to
classify these face representations based on their labels.

1.3.1 Face representation

Recently, there have been many developments in the field of computer vision with regards to the
tasks of face recognition and verification [9, 10]. Face recognition is the task of identifying the
person in an image based on a list of identities, and face verification is the task of classifying
whether the same person is present in two different images. Research has resulted in multiple
well-performing models that succeed in recognising and verifying faces with high scores on the
data set Labelled Faces in The Wild [11], which is the benchmark data set for both of these tasks.
These face recognition and verification models are usually trained with millions of images of thou-
sands of different people using a private data set [9, 10].

The tasks of face recognition and verification are useful because it requires a model to come
up with an internal face representation. If this model is, for example, a neural network, then
this face representation can be easily extracted by removing the final classification layer. When
these models are applied to a different domain with transfer learning, the last classification layer
is removed and the rich face representation is used in combination with a classification model.

1.3.2 Classification models

As said above, most models that perform well on the Labelled Faces in the Wild data set [11]
are neural networks and thus have an integrated classification layer [9, 10]. Besides this way of
classification, it is also possible to use the extracted face representations in combination with other
classification models, like a k-Nearest Neighbor (k-NN) model, a Support Vector Machine (SVM)
or Random Forest.

1.4 Syndrome Classification

For the task of syndrome classification, there are in general three approaches found in the existing
literature [4]. First of all, a face can be classified based on whether a syndrome is present or
not, in which case the patient is a healthy individual. Secondly, a face can be classified based on
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which syndrome is present, chosen from a set of predefined syndromes. And lastly, a face can be
classified on whether a specific syndrome is present or not. As stated before, this last approach,
a binary classification for a specific syndrome, i.e. a syndrome vs. control classification, is the
most applicable for this project, as doctors usually already have a suspicion of a specific syndrome.
However, relevant research concerning one of the two other classification tasks will be discussed
as well to get a complete overview and to see which techniques could be useful.

One way of obtaining a face representation based on an image is to annotate the image with
certain landmarks. These landmarks can be annotated manually or generated automatically and
can be used in several ways to create a face representation.

1.4.1 Gabor wavelets

One form of processing found landmarks, is to apply Gabor wavelets to the patches around these
landmarks [12, 13, 14, 15]. Gabor wavelets are filters that are modelled after the receptive field of
simple cells in the primary visual cortex in mammals [16]. They can have different spatial sizes
and orientations, and they are capable of detecting edges in an image. Gabor wavelets could be
seen as a predecessor of convolutional layers in a neural network and are also lightning invariant.
Concatenating the analysed textures around the annotated landmarks leads to a face representa-
tion.

There has also been some research that combines Gabor wavelets and morphometric methods
[17]. In morphometric methods, not the textures surrounding landmarks are taken into account,
but the distances and angles between the landmarks are calculated, normalised and used as face
representation [18, 19].

1.4.2 Local Binary Patterns

Another way to analyse the textures surrounding landmarks is to apply Local Binary Patterns
(LBPs) [20, 21]. In an LBP, a pixel is labelled in a binary way according to the value of its
surrounding pixels [22]. For each surrounding pixel, the value of the original pixel that is being
evaluated is subtracted. Depending on whether this difference is positive or negative, a 1 or
0 is added to the binary description of the original pixel. Again, concatenating these binary
representations leads to a face representation.

1.5 Explainability

Aside from creating a model that could guide doctors in diagnosing patients, it would also be
interesting to know why that model came to a certain conclusion. Therefore, it would be insightful
to know which extracted features from an image weighed most in the decision. In that way, doctors
could learn from the model and understand its predictions. Hence, an attempt will be made to
explain the predictions of some of the models used in this project.

1.6 Aim

This project will focus on experimenting with different models for the task of syndrome. vs control
face classification for a specific syndrome. The used models will be compared with each other, to
see whether one model can be found that performs best for all of the 12 included syndromes in
this project.
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2 Methods

As this project focuses on the syndrome vs. control classification of images of faces, different
methods of face representations and classification models will be described in this section.

2.1 Data

The available data for this project is either extracted from published papers or created in the
Radboudumc. For each syndrome, a data set is created with patient images and control images,
to be able to classify in a binary way. All the images were cropped around the face of the patient
and any existing digits or other indicators on the images were removed. If possible, images were
rotated so that the eyes were on a horizontal level. Lastly, all the images were padded to be a
square by extending the background. There was some variety in the data for both the patient
and control data set. For example, not all patients looked straight into the camera with their eyes
open, sometimes parts of the face were either covered by hands or hair, and the facial expression
varied from crying to smiling.

2.1.1 Syndromes

In total, the data of 12 syndromes was taken into account for this project. In Table 1 an overview
is presented of the amount of syndromic data available, including the age range and the number
of males and females present.

Syndrome Nr of images Age range Male Female
ADNP N = 33 0 - 35 N = 17 N = 16
ANKRD11 N = 25 2 - 38 N = 16 N = 9
CDK13 N = 30 2 - 54 N = 9 N = 21
DEAF1 N = 19 2 - 25 N = 12 N = 7
DYRK1A N = 16 1 - 29 N = 10 N = 6
EHMT1 N = 39 0 - 41 N = 18 N = 21
FBXO11 N = 17 0 - 17 N = 13 N = 4
KDVS N = 75 0 - 46 N = 35 N = 40
SON N = 18 1 - 34 N = 9 N = 9
WAC N = 12 3 - 23 N = 4 N = 8
YY1 N = 10 1 - 39 N = 4 N = 6
22q11 N = 48 0 - 54 N = 28 N = 20

Table 1: Overview of syndrome data.

2.1.2 Controls

The control data set was mainly made in the Radboudumc itself and consisted of patients with
an unknown form of ID. It was decided to use these images as a control set, as this mimics the
real-world application of this classification problem the best. The assumption was made that
there is no overlap between the syndromes present in the control set and the chosen syndromes.
In Table 2 an overview is presented of the amount of data available, including the age range and
the number of males and females present.

Nr of images Age range Male Female
Controls N = 370 0 - 52 N = 223 N = 147

Table 2: Overview of control data.
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2.1.3 Control selection

A control set was created for each of the 12 syndromes. Per syndrome, one control patient was
selected for each syndromic patient, such that there was an even distribution of both labels. These
control patients were selected based on gender, age and ethnicity, as was done in the development
of the Hybrid model [23]. For the images that were extracted from papers, it was not always
known how old the patients were on the image, thus in these cases, the age was estimated. If
a control patient with the same age could not be found, a control patient was searched for in a
larger age range. This age range runs from a third younger than the syndromic patient to a third
older. This range was chosen as ageing has a smaller effect on facial characteristics for relatively
older patients than younger ones. For example, there is a more observable difference in facial
characteristics between a one and two years old, than between an 18 and 19 years old. If no
control patient could be found in this age range, the syndromic patient was excluded from the
data set.

2.2 Models

In this project, five different models are used to experiment with. The face representation and
classifier used for each model is described below, as well as the experiments that are done with
these models.

2.2.1 Deepface model

The Deepface model is developed by Facebook and is a convolutional neural network that uses
deep learning to perform the task of face verification [9]. Their approach is two-fold. First, they
have a way to extract and align all the faces from the data set, and second, they have a way to
perform the actual face verification.

In short, the face alignment happens by detecting 6 fiducial points on the 2D image of the face.
These fiducial points are then used to warp the images to appear frontal, using a 3D model of a
generic face.

Figure 1: Structure of the Deepface model for face recognition, with 8631 different identities.
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The face verification and recognition happens by using a 9 layer convolutional neural network,
of which the architecture is visible in Figure 1. The last layer of the network determines whether
the model is used for face recognition, i.e. the last layer has the same number of units as different
identities present in the data, or face verification, i.e. the last layer is binary.

In this structure, both fully connected convolutional layers are included, as well as locally
connected convolutional layers. A locally connected layer differs from the default fully connected
convolutional layer as it learns a different set of filters at each location.

Knowing that all of the input is already aligned, due to the previous face alignment step,
researchers reasoned that the spatial stationarity assumption necessary for convolutional layers
cannot hold. This assumption does not hold because each spatial region in the data has different
local properties, for example, there are more edges present in the area of the eyes than the cheeks.
Thus, the researchers customised the architecture of their model, based on the properties of the
data.

The first three layers serve as a form of preprocessing to extract low-level features, whilst the
locally connected layers are used to extract more high-level features which are then combined in
the raw 4096-dimensional face representation that is the result of layer F8.

The Deepface model is trained on the Social Face Classification data set, which is a private
data set of Facebook. This data set consists of 4.4 million faces from ± 4,000 different persons.
Neither the data set nor the code of this research is made publicly available. However, there are
some open-source implementations available on GitHub and there are other, smaller, data sets
which can be used to train this model.

The Deepface model [9] is used to create a face representation. As the data already consists of
cropped and squared faces, the decision was made to only use the network to obtain the face rep-
resentation and skip the face alignment step. A publicly available implementation of the Deepface
convolutional neural network, as well as pre-trained weights, have been taken from GitHub1. This
model is trained on the VGGFace2 data set [24] which consists of more than 3.3 million images of
± 9,000 identities.

The original model was written using Tensorflow 1.0, so the code has been rewritten so it is
compatible with Tensorflow 2.0. As the model was trained on the VGGFace2 data set for face
recognition, the output had ± 9,000 dimensions. Thus, the last two layers (a dropout and a dense
layer) were removed to obtain the 4096-dimensional raw face representation.

The Deepface face representation is used in combination with a k-Nearest Neighbours classifier
to result in a probability or a prediction. The k value is set to three, as a low, uneven, number
makes sense as there is not a lot of data available. The decision was made to not train the Deepface
model itself for classification, as there was not enough data to do this.

2.2.2 PointNet model

For this project, the university was able to use and test the capabilities of the model called Fac-
eReader, developed by the company VicarVision2. Besides being able to classify emotions, this
model is capable of locating 510 3D points on a face, based on a 2D image. It does this by us-
ing Active Appearance Models [25], which is a model to map 3D shapes to an image using key
points and that is trained by VicarVision with a private data set of annotated images. It should be
noted that FaceReader cannot always detect these points. If there was no landmark representation
found, the image was excluded from the data set. An example of this 3D landmark representation
can be seen in Figure 2.

1https://GitHub.com/swghosh/DeepFace
2https://www.vicarvision.nl/products/facereader/
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(a) Example image from
https://generated.photos/faces. (b) 3D landmarks of example image.

Figure 2: Example image and its generated 3D landmarks.

As this face representation is 3D, a different kind of classifier has to be used. The PointNet
model takes 3D points as input and gives a probability per class as output [26]. The architecture of
this model can be seen in Figure 3. The architecture consists of a classification network, which is
relevant for this project, and a segmentation network, which will not be used, but will be explained
shortly for completeness.

First of all, the model should be invariant to any rotations of the 3D input as that is not
related to the class. To correct for this, the model includes two transformations with t-nets. A
t-net is again a small neural network which includes 1D convolutional layers, max-pooling and a
dense function.

Second, these 3D points that form a shape are unordered as they do not have a specific order
in which they have to be evaluated. All possible permutations of these 3D points should give the
same output. To handle this problem, PointNet transforms the input using a symmetry function.
The symmetry function is a commutative operation which results in the same vector, despite
the order of the input. The symmetry function consists of multi-layer perceptron (mlp) and a
max-pooling function.

Last, the 3D points should not only be considered as isolated points, as the local structure and
distances between points are relevant for the shape. As the classification network only results in
one vector which contains the global features, another technique should be applied to obtain the
local feature vectors. Hence, the segmentation network combines global features with per point

Figure 3: Architecture of the PointNet model [26].
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features, again performs a feature transformation, which leads to class probabilities for each of the
3D points. However, this segmentation network will not be used in this project.

2.2.3 Distance model

Figure 4: Split FaceReader
landmark representation.
The green vertical middle
line is included in both of

the halves of the face.

Besides directly using the 510 3D landmarks from the FaceReader
model as a representation for classification, the distances between
these 3D points can be used as well. Inspired by previously men-
tioned morphometric methods [18, 19], the pairwise distances of
these 3D points were calculated and concatenated. As using all of
the 510 points would lead to ± 130k features, which is quite a lot
computation wise, the decision was made to split the face in half.
This decision was made after consultation with the Radboudumc
and makes sense as you would expect both halves of the face to
be mostly symmetric in their facial dysmorphisms. The face was
split across the vertical middle line, leading to two halves of 270
points, where the exact middle itself was included in both sides.
An example of this split can be seen in Figure 4.

The pairwise distances of these 270 3D points were calculated,
leading to ± 36k features per side and concatenated to ± 72k
features in total per image. These distances were classified by a
Random Forest. The decision was made to use a Random Forest
as this classifier can return the importance per feature. This can
hopefully lead to some insight in which features are most decisive
in this classification task.

2.2.4 Ensemble model

The three previously mentioned models will be combined to see whether this Ensemble model
performs better than the models separately. Following the idea of ensemble learning, where multi-
ple weak learners can combine into one strong learner. In this Ensemble model, the mean will be
taken of all probabilities and the mode of the predictions. Only the images that have a FaceReader
landmark representation are taken into account in this Ensemble model.

2.2.5 Hybrid model

FaceNet
FaceNet is a model developed by Google and also consists of a convolutional neural network that
uses deep learning to solve the tasks of face recognition and verification [10]. However, the re-
searchers did not put the focus on the architecture of this network, but on the loss used. They
wanted to come up with a low-dimensional face representation that could be put in Euclidean
space in such a way that faces with the same identity are located close together and faces with
different identities far apart. Hence, the convolutional neural network was treated as a black box
and they used the triplet loss to obtain the desired properties of the final embedding. As input
for the model, a tight bounding box is drawn around detected faces, but other than scaling and
translating, no face alignment or preprocessing is used.

The embedding is the 128-dimensional output of the convolutional neural network after an L2
normalisation layer. During training, the triplet loss was applied to the embedding. The triplet
loss is calculated for a tuple of 3 different faces, called the anchor, the positive and the negative.
The anchor and the positive have the same identity and the negative has a different one. The
triplet loss then ensures that the distance between the anchor and the positive is minimised in
Euclidean space, and the distance between the anchor and the negative is maximised.
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FaceNet is trained on a private data set from Google of 100-200 million images of ± 8 million
different identities. Again, neither the data set nor the code of this research is made publicly
available.

Openface
An example of a publicly available implementation of the FaceNet model is the Python library
Openface [27]. This library contains a pre-trained model which also uses the triplet loss and has
roughly the same architecture as the original model from FaceNet. Since a smaller publicly avail-
able data set is used for training, and this specific library focuses on mobile applications, which of
course limits the computation power, a smaller version of the model was used, with fewer trainable
parameters.

CFPS
A different well-performing approach combines morphometric and texture-based features to put
the face representations in a multidimensional space called the Clinical Face Phenotype Space
(CFPS) [28]. These face representations are acquired by automatically detecting 9 landmarks in a
face, extending these to 36 using Active Appearance Models (AAMs), and extracting two different
kinds of vectors from these landmarks. The first vector is the appearance vector that consists of
a concatenation of the pixel intensities around the 9 initial landmarks. The second vector is the
shape vector that consists of the normalised pairwise distances between all the 36 landmarks. Both
of these feature vectors were concatenated and consequently, a PCA was performed, to reduce the
representation to a 340-dimensional feature vector.

Hybrid model
Recent research done at the Radboudumc concerning syndrome classification has combined two
of the previously mentioned models into a Hybrid model [23]. In this model, the Python library
Openface [27] has been used as well as the CFPS representations [28]. This combination makes
sense as both of these methods aim to put the face representation in a multidimensional Euclidean
space. Both face representations were concatenated, leading to a combined 468-dimensional face
representation.

This model was evaluated by measuring the Clustering Improvement Factor (CIF) [23, 28].
The CIF is used to evaluate how well a group of positives is clustered within a group of negatives.
This CIF score was compared, by using a statistical test, to the CIF you would expect when all
face representations are labelled randomly, whilst maintaining the original ratio of positives and
negatives. The results of this evaluation method for the Hybrid model were promising in compar-
ison with each of these models alone. However, no attempt has been made to apply this Hybrid
model to syndrome vs. control classification, as is the aim of this project.

This model combines two models which are both written in a different programming language.
The Openface model is written in Python and the CFPS model in MATLAB. A pipeline com-
bining these two models has been made and is available for use at the Radboudumc. However,
one downside of this model, is that it is computationally expensive, and analysing a single image
can take up to one hour, which is of course impractical. Therefore, the previously calculated face
representations of most of the data present at the Radboudumc will be used. This leads to some
small difference in the number of samples used per syndrome, in comparison with the number of
samples used for the other models.

As the Hybrid model combines the Openface [27] and CFPS [28] representation, which are both
aimed at putting face representation in a multidimensional Euclidean space, the k-NN classifier
will be used, again with k set to three.
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2.3 Experiments

Because of the small amounts of data available, there will be no static split into train, test and
validation data. For each syndrome, and for each model, a Leave One Out cross-validation is
used. Thus, a split is made into train and test set, where the test set only contains one sample and
this process is repeated for all samples. The class probabilities of this sample are saved and later
compared with all the true labels, leading to a ROC curve and an area under the curve (aroc)
score, as well as the specificity (spec) or the true negative rate, defined as spec = TN

TN+FP , and

the sensitivity (sens) or the true negative rate, defined as sens = TP
TP+FN .

The simple classifiers used, k-NN and Random Forest, only need to be fit to the data. The
PointNet model, however, is trained for 4 epochs on the training data. These syndrome vs. control
experiments are run three times per syndrome to ensure that the scores are not due to a lucky
pick of easy to classify control patients. Hence, the mean of three trials is reported, as well as
the standard deviation to see how stable the results are. For completeness, the number of unique
controls for each trial run per syndrome is reported as well.

Besides these experiments for syndrome vs. control classification, there will also be some
syndrome vs. syndrome classification experiments. Although this type of classification is not the
goal in this project, it can be beneficial to examine these results as they might give some insight
in the robustness of the performance of a model and to see whether there might be a bias in one
or more sets of data.

2.4 Visualisations

As mentioned before, it would be beneficial if there is some kind of visualisation of which features
are most decisive and thus most relevant for the classification. This could give some insight into
the decision making of the model, as well as serving as a check for biases in the data. This was
possible for two of the models, the Deepface model and the Distance model.

2.4.1 Deepface model

As the Deepface model is a neural network, it is possible to plot the activation per patient in each
of the convolution layers, summed over all the filters. The average of the activation of all patients
for a specific syndrome, and the chosen control patients, will be shown per layer. This might give
some insight in which areas of the face lead to higher activation and might be important in the
classification decision.

2.4.2 Distance model

Since a Random Forest classifier has been chosen for this model, it is possible to visualise the most
important feature according to the classifier. This feature importance is based on the decrease in
node Gini impurity, weighted by the probability of reaching that specific node. The importance
of all features returned by the model sum up to one. The features that have an accumulated
importance of at least 0.8, with a maximum of 30 features, are visualised, to get some insight in
which distances are most important.

2.5 Practical application

Ideally, the best performing model or models would be integrated into a practical tool that doctors
can actually use for guiding their diagnosis of a specific syndrome. Doctors would be able to use
this tool by uploading an image of a patient, selecting the syndrome they are interested in and
then they would receive a prediction or probability for that specific syndrome. If the uploaded
images would be sent to the Radboudumc, they could be used to increase the database and further
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improve upon the models.

In this project a prototype has been made for this tool, using Python and the library Flask3.
Research will continue at the Radboudumc after this project to see how this tool can be made
available within the Radboudumc and later on also for doctors outside the Radboudumc.

3https://flask.palletsprojects.com/en/1.1.x/
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3 Results

3.1 Syndrome vs. Control classification

In Table 4 the mean results of three runs of the syndrome vs. control experiments are shown.
The number of samples mentioned refers to the number of syndromic patients included in the set,
so the total set, including controls, is twice as large. The best performing model, looking at all
the three evaluation metrics, is shown in bold. Besides reporting the aroc value, the ROC curves
have also been plot. In Figure 5 the ROC curves of the third run for the syndromes ADNP and
EHMT1 are visible. The other syndromes are visible in Figure 14 and 15 in the Appendix.

The Deepface model has in, general, quite a bad performance. Only for some syndromes, like
ANKRD11 and EHMT1 it has an acceptable performance, looking at all the three evaluation
metrics.

The PointNet model has quite a varying performance. For the syndromes, DEAF1, EHMT1
and 22q11, it performs relatively well, whilst the performance for the syndromes ADNP, ANKRD11,
DRYK1A, FBXO11, WAC is bad, with the sensitivity score even below 0.5. A general trend can
be seen of a lower sensitivity value than the specificity value.

The Distance model performs well for the syndromes CDK13, EHMT1, WAC, YY1 and 22q11.
For the other syndromes, the performance is bad with often a sensitivity value lower than 0.5.

The Ensemble model performs well for the syndromes CDK13, EHMT1 and YY1. The general
idea of ensemble learning, where combined weak learners result in a strong and robust learner,
clearly did not happen here, as the performance is not evidently higher than of the models sepa-
rately and also the performance still fluctuates just as much as the single models.

The Hybrid model performs best overall, as it has the best performance for most of the syn-
dromes. Even for the syndromes it did not have the best performance for, it still had quite a
decent performance, except for the syndrome YY1.

There is a general trend visible that some syndromes are easier to classify for most of the
models than others. Examples of easy to classify syndromes are EHMT1, YY1 and 22q11 and
examples of more difficult to classify syndromes are ANDP, DYRK1A and FBXO11.

Syndrome Run 1 Run 2 Run 3 Total
ADNP 24 24 24 33
ANKRD11 13 14 14 25
CDK13 14 16 14 30
DEAF1 8 12 8 19
DYRK1A 9 11 12 16
EHMT1 16 19 16 39
FBXO11 8 11 11 17
KDVS 31 38 32 75
SON 11 12 13 18
WAC 7 8 7 12
YY1 5 6 5 10
22q11 25 25 25 45

Table 3: Number of unique control patients chosen per run.

In the appendix an overview is presented in Table 5 of the standard deviation of the scores for
these three trials, to see how robust the models perform when different sets of control patients are
chosen. Most models perform quite stable as the standard deviation is low, with some exceptions
here and there. Especially the PointNet model has the most varying scores as it has the highest
average standard deviation.
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(a) ADNP (b) EHMT1

Figure 5: ROC curves of ADNP and EHMT1 of run 3. Model 1 refers to the Deepface
model, Model 2 refers to the PointNet mode, Model 3 refers to the Distance model, Model

4 refers to the Ensemble model and Model 5 refers to the Hybrid model.

For each trial, new control patients were chosen, but due to the age, gender and ethnicity
constraints, there is some overlap in the control set for the three runs. In Table 3 an overview is
presented of unique controls per run, so these control patients were not included in any of the two
other runs, as well as the total number of controls chosen per run.

3.2 Syndrome vs. Syndrome classification

For each of the five models, a syndrome vs. syndrome classification task has been run. For each
pair of syndromes, one was seen as the syndrome data set and the other as the control data set.
The number of selected controls for the different models is visible in Figure 19 in the Appendix. If
there were not enough samples in total, the threshold was set at 2 patient samples and 2 control
samples, a zero is displayed.

In Figure 6 the performance of the Deepface model is displayed. A lot of aroc scores are around
0.5, which is chance level. The Deepface model performed well for the syndromes ANKRD11 and
EHMT in the syndrome vs. control classification task, as can be seen in Figure 4. However, in
the syndrome vs. syndrome classification task, the Deepface model only performed relatively well
for the syndrome ANKRD11.

In Figure 7 the performance of the PointNet model is displayed. It is visible that for quite some
pairs of syndromes, not enough samples were present, as there are a lot of zeros in the top right
corner. This due to the fact that not all of the syndromic patients have a FaceReader landmark
representation and thus these scores could not be calculated. The same pattern is visible for the
Distance model in Figure 8 and for the Ensemble model in Figure 9. The PointNet model did
not perform well for the syndrome pairs that did have enough samples. Even for the syndromes
DEAF1, EHMT1 and 22q11, which had a high performance in the previous classification task,
there are no high aroc scores.

In Figure 8 the performance of the Distance model is displayed. The Distance model performed
well on the syndromes CDK13, EHMT1, WAC, YY1 and 22q11 in the previous task, but here it
is visible that the model only performs well for the WAC syndrome. The other syndromes have
highly fluctuating performances.
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Deepface model PointNet model Distance model Ensemble model Hybrid model

ADNP

N = 33
aroc = 0.612
spec = 0.737
sens = 0.455

N = 13
aroc = 0.668
spec = 0.944
sens = 0.383

N = 13
aroc = 0.420
spec = 0.528
sens = 0.398

N = 13
aroc = 0.609
spec = 0.867
sens = 0.218

N = 33
aroc = 0.734
spec = 0.757
sens = 0.576

ANKRD11

N = 25
aroc = 0.809
spec = 0.707
sens = 0.773

N = 19
aroc = 0.589
spec = 0.800
sens = 0.362

N = 19
aroc = 0.716
spec = 0.712
sens = 0.581

N = 19
aroc = 0.854
spec = 0.892
sens = 0.580

N = 21
aroc = 0.835
spec = 0.714
sens = 0.857

CDK13

N = 30
aroc = 0.559
spec = 0.478
sens = 0.600

N = 16
aroc = 0.780
spec = 0.876
sens = 0.595

N = 16
aroc = 0.722
spec = 0.753
sens = 0.607

N = 16
aroc = 0.786
spec = 0.733
sens = 0.629

N = 30
aroc = 0.870
spec = 0.733
sens = 0.778

DEAF1

N = 19
aroc = 0.499
spec = 0.526
sens = 0.614

N = 15
aroc = 0.743
spec = 0.794
sens = 0.657

N = 15
aroc = 0.448
spec = 0.501
sens = 0.319

N = 15
aroc = 0.728
spec = 0.727
sens = 0.567

N = 19
aroc = 0.666
spec = 0.614
sens = 0.772

DYRK1A

N = 16
aroc = 0.694
spec = 0.750
sens = 0.479

N = 10
aroc = 0.508
spec = 0.700
sens = 0.267

N = 10
aroc = 0.525
spec = 0.633
sens = 0.400

N = 10
aroc = 0.520
spec = 0.767
sens = 0.300

N = 16
aroc = 0.750
spec = 0.688
sens = 0.646

EHMT1

N = 39
aroc = 0.843
spec = 0.846
sens = 0.632

N = 15
aroc = 0.704
spec = 0.667
sens = 0.733

N = 15
aroc = 0.849
spec = 0.867
sens = 0.689

N = 15
aroc = 0.901
spec = 0.822
sens = 0.844

N = 39
aroc = 0.882
spec = 0.855
sens = 0.761

FBXO11

N = 17
aroc = 0.580
spec = 0.627
sens = 0.392

N = 15
aroc = 0.473
spec = 0.503
sens = 0.433

N = 15
aroc = 0.444
spec = 0.544
sens = 0.362

N = 15
aroc = 0.492
spec = 0.546
sens = 0.340

N = 17
aroc = 0.593
spec = 0.529
sens = 0.588

KDVS

N = 75
aroc = 0.740
spec = 0.582
sens = 0.778

N = 52
aroc = 0.494
spec = 0.484
sens = 0.522

N = 52
aroc = 0.463
spec = 0.593
sens = 0.342

N = 52
aroc = 0.628
spec = 0.587
sens = 0.516

N = 70
aroc = 0.748
spec = 0.676
sens = 0.681

SON

N = 18
aroc = 0.718
spec = 0.592
sens = 0.648

N = 10
aroc = 0.807
spec = 0.892
sens = 0.558

N = 10
aroc = 0.515
spec = 0.592
sens = 0.492

N = 10
aroc = 0.797
spec = 0.700
sens = 0.575

N = 18
aroc = 0.698
spec = 0.630
sens = 0.685

WAC

N = 12
aroc = 0.418
spec = 0.639
sens = 0.278

N = 9
aroc = 0.665
spec = 0.843
sens = 0.477

N = 9
aroc = 0.828
spec = 0.764
sens = 0.732

N = 9
aroc = 0.722
spec = 0.764
sens = 0.542

N = 12
aroc = 0.790
spec = 0.694
sens = 0.778

YY1

N = 10
aroc = 0.683
spec = 0.567
sens = 0.767

N = 7
aroc = 0.748
spec = 0.794
sens = 0.587

N = 7
aroc = 0.883
spec = 0.801
sens = 0.849

N = 7
aroc = 0.801
spec = 0.746
sens = 0.786

N = 10
aroc = 0.545
spec = 0.433
sens = 0.567

22q11

N = 45
aroc = 0.756
spec = 0.503
sens = 0.778

N = 16
aroc = 0.759
spec = 0.824
sens = 0.681

N = 16
aroc = 0.603
spec = 0.673
sens = 0.562

N = 16
aroc = 0.622
spec = 0.666
sens = 0.541

N = 45
aroc = 0.793
spec = 0.720
sens = 0.729

Table 4: Results of the mean of three trials of syndrome vs. control classification with 12
syndromes.
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In Figure 9 the performance of the Ensemble model is displayed. Just like the three models
this Ensemble model is based on, this model did not perform well for most of the syndromes. It
performs relatively well for the ANKRD11 and KDVS, but still varies quite a lot.

In Figure 10 the performance of the Hybrid model is displayed. It is visible that for more than
half of the syndrome pairs, the aroc score is above 0.5, which shows that the Hybrid model also
performs best in the syndrome vs. syndrome classification task.

Figure 6: Aroc scores for the Deepface model for Syndrome vs. Syndrome classification.
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Figure 7: Aroc scores for the PointNet model for Syndrome vs. Syndrome classification.

Figure 8: Aroc scores for the Distance model for Syndrome vs. Syndrome classification.
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Figure 9: Aroc scores for the Ensemble model for Syndrome vs. Syndrome classification.

Figure 10: Aroc scores for the Hybrid model for Syndrome vs. Syndrome classification.
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(a) ANKRD11: average activation of
convolutional layers.

(b) WAC: average activation of convolutional
layers.

Figure 11: Average activation of all the filters in different convolutional layers for the
syndromes ANKRD11 and WAC.

3.3 Visualisations

For two of the used models in this project, an attempt has been made to visualise the decision
making of the model to gather some insight in which features are most decisive.

3.3.1 Deepface model

In Figure 11 the activation of each layer, averaged over the set of ANKRD11 and WAC patients
and selected control patients, is visible. The other 10 syndromes are included in the Appendix in
Figure 16, 17 and 18. The syndromes ANKRD11 and WAC are chosen as they are the syndromes
for which the Deepface model performs best and worst, respectively, looking at Table 4.

However, there is no clear difference in activation when comparing the average activation for
the syndromic patients and the control patients, for both of the chosen syndromes in Figure 11.
So, even when the Deepface model is performing well, plotting the activation for each layer does
not give any clear insight into the features which bear the most importance.

3.3.2 Distance model

In Figure 12 the most important features are plotted. These features together have at least 0.8
importance in the decision of the Random Forest, with a maximum of 30 features. It is visible
that a lot of syndromes only have between 10 and 15 features that carry some importance, which
is not a lot, knowing that the total number of features is ± 72k. In many of the plots, the drawn
features are, roughly, symmetric in both halves of the face, as was expected.
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(a) ADNP: 14 features
with 0.81 importance.

(b) ANKRD11: 13 features
with 0.81 importance.

(c) CDK13: 14 features
with 0.81 importance.

(d) DEAF1: 12 features
with 0.82 importance.

(e) DYRK1A: 9 features
met 0.80 importance.

(f) EHMT1: 9 features
with 0.83 importance.

(g) FBXO11: 16 features
with 0.81 importance.

(h) KDVS: 30 features and
0.56 importance.

(i) SON: 10 features with
0.84 importance.

(j) WAC: 9 features with
0.90 importance.

(k) YY1: 9 features with
0.90 importance.

(l) 22q11: 13 features with
0.81 importance.

Figure 12: Plots of features that hold at least 0.8 importance in Random Forest classifier.

20



(a) Screenshot of Home page of the prototype.

(b) Screenshot of Analyze page of the prototype.

Figure 13: Screenshots of the prototype.

3.4 Prototype

In Figure 13 screenshots of the web tool made with Flask and Python are visible. Research will
continue at the Radboudumc to develop this tool further, with the goal that doctors within the
Rabdoudumc and outside this specific hospital can use this tool to help with diagnosing specific
syndromes.
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4 Discussion

In the future, it would probably be most practical if there was one model for this task of syndrome
vs. control classification, such that all focus can be put on this single model. In this project, it
has been seen that all models had varying performances over the 12 different syndromes. Hence,
it might be difficult to find one model that is suitable for all syndromes, especially as there are
even more syndromes than the 12 used in this project.

Using a model that is pre-trained on face verification and recognition for the task of syndrome
vs. control classification did not lead to good results.This could be due to the data not being
preprocessed in the same way as had been done for the original Deepface model, but it could also
be because these two domains differ too much, making transfer learning impractical.

The 3D landmark representations that were used as face representations in this project did
not result in a consistent performance. So, although this face representation is less susceptible to
a bias than 2D images, it is not decisive for the syndrome vs. control classification task, as might
have been expected. It also needs to be noted that the 3D landmark representation was not that
robust, as quite a large number of images did not have a 3D landmark representation. This might
be due to the variety in the data, with regards to partly covered or angled faces.

In this project, ensemble learning did not lead to better results. Hence, the usual reasoning
behind ensemble learning, that multiple weak learners together can work as a strong learner, is
not the case here. This could be because the models are not dissimilar enough.

It would be best if future research focuses on expanding the Hybrid model [23], as that model
has been found to have the best results. More progress can be made concerning the computation
time and explainability of the predictions it makes. As this model combines two face represen-
tations, relating the prediction of the model back to the most important features might be quite
difficult.

From the syndrome vs. syndrome classification task, it became clear that there is no distinct
bias in the syndromic data for the different models. No syndrome was performing well in the
syndrome vs. control classification task that also performed well for all the models with regard to
all the other syndromes in the syndrome vs. syndrome classification task. As the results of the
syndrome vs. control classification task were also quite stable over the three different runs, there
is only a small probability there is a hidden bias in the control data.

For two models, visualisations have been made to gather some insight into the most important
features. However, making heatmaps of the activation did not result in a clear indication of the
most important features. Plotting the most important distances was more clear, but it needs to
be decided by doctors whether these features can be considered as actually relevant, or that they
are still too general.

5 Conclusion

This project has compared several models for the task of syndrome vs. control face classification.
It has been found that the Hybrid model has the best performance for most of the syndromes.
The performance of all the used models fluctuates over the different syndromes. Hence, it will
be quite challenging and possibly even too ambitious to come up with one model that performs
well for all genetic syndromes. This research has used multiple different models, as well as face
representations to explore what the possibilities are, and therefore adds value to the current body of
research regarding this topic. Hopefully, this project can guide new research in the right direction
of a model that performs well for all syndromes in a syndrome vs. control classification task.
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6 Appendix

(a) ANKRD11 (b) CDK13

(c) DEAF1 (d) DYRK1A

(e) FBXO11 (f) KDVS

Figure 14: ROC curves of run 3. Model 1 refers to the Deepface model, Model 2 refers to
the PointNet mode, Model 3 refers to the Distance model, Model 4 refers to the Ensemble

model and Model 5 refers to the Hybrid model.
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(a) SON (b) WAC

(c) YY1 (d) 22q11

Figure 15: ROC curves of run 3. Model 1 refers to the Deepface model, Model 2 refers to
the PointNet mode, Model 3 refers to the Distance model, Model 4 refers to the Ensemble

model and Model 5 refers to the Hybrid model.
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Deepface model PointNet model Distance model Ensemble model Hybrid model

ADNP

N = 33
aroc = 0.070
spec = 0.046
sens = 0.046

N = 13
aroc = 0.192
spec = 0.096
sens = 0.464

N = 13
aroc = 0.073
spec = 0.125
sens = 0.097

N = 13
aroc = 0.105
spec = 0.119
sens = 0.256

N = 33
aroc = 0.070
spec = 0.053
sens = 0.109

ANKRD11

N = 25
aroc = 0.033
spec = 0.061
sens = 0.061

N = 19
aroc = 0.085
spec = 0.029
sens = 0.217

N = 19
aroc = 0.076
spec = 0.115
sens = 0.120

N = 19
aroc = 0.044
spec = 0.094
sens = 0.166

N = 21
aroc = 0.035
spec = 0.048
sens = 0.048

CDK13

N = 30
aroc = 0.032
spec = 0.051
sens = 0.067

N = 16
aroc = 0.192
spec = 0.061
sens = 0.313

N = 16
aroc = 0.049
spec = 0.092
sens = 0.118

N = 16
aroc = 0.176
spec = 0.126
sens = 0.143

N = 30
aroc = 0.017
spec = 0.034
sens = 0.102

DEAF1

N = 19
aroc = 0.086
spec = 0.139
sens = 0.031

N = 15
aroc = 0.060
spec = 0.077
sens = 0.081

N = 15
aroc = 0.063
spec = 0.090
sens = 0.047

N = 15
aroc = 0.032
spec = 0.011
sens = 0.088

N = 19
aroc = 0.069
spec = 0.061
sens = 0.080

DYRK1A

N = 16
aroc = 0.130
spec = 0.108
sens = 0.191

N = 10
aroc = 0.135
spec = 0.200
sens = 0.058

N = 10
aroc = 0.111
spec = 0.115
sens = 0.100

N = 10
aroc = 0.074
spec = 0.115
sens = 0.100

N = 16
aroc = 0.062
spec = 0.000
sens = 0.036

EHMT1

N = 39
aroc = 0.018
spec = 0.068
sens = 0.030

N = 15
aroc = 0.201
spec = 0.200
sens = 0.067

N = 15
aroc = 0.046
spec = 0.067
sens = 0.038

N = 15
aroc = 0.082
spec = 0.039
sens = 0.139

N = 39
aroc = 0.015
spec = 0.015
sens = 0.039

FBXO11

N = 17
aroc = 0.158
spec = 0.034
sens = 0.180

N = 15
aroc = 0.098
spec = 0.157
sens = 0.088

N = 15
aroc = 0.050
spec = 0.051
sens = 0.094

N = 15
aroc = 0.070
spec = 0.135
sens = 0.057

N = 17
aroc = 0.055
spec = 0.059
sens = 0.102

KDVS

N = 75
aroc = 0.028
spec = 0.020
sens = 0.050

N = 52
aroc = 0.035
spec = 0.053
sens = 0.065

N = 52
aroc = 0.068
spec = 0.073
sens = 0.049

N = 52
aroc = 0.059
spec = 0.036
sens = 0.044

N = 70
aroc = 0.022
spec = 0.068
sens = 0.030

SON

N = 18
aroc = 0.052
spec = 0.140
sens = 0.032

N = 10
aroc = 0.090
spec = 0.014
sens = 0.274

N = 10
aroc = 0.285
spec = 0.274
sens = 0.181

N = 10
aroc = 0.106
spec = 0.200
sens = 0.066

N = 18
aroc = 0.079
spec = 0.085
sens = 0.064

WAC

N = 12
aroc = 0.040
spec = 0.127
sens = 0.210

N = 9
aroc = 0.198
spec = 0.137
sens = 0.383

N = 9
aroc = 0.109
spec = 0.133
sens = 0.058

N = 9
aroc = 0.173
spec = 0.133
sens = 0.091

N = 12
aroc = 0.024
spec = 0.096
sens = 0.127

YY1

N = 10
aroc = 0.045
spec = 0.153
sens = 0.058

N = 7
aroc = 0.226
spec = 0.180
sens = 0.220

N = 7
aroc = 0.128
spec = 0.077
sens = 0.014

N = 7
aroc = 0.148
spec = 0.099
sens = 0.258

N = 10
aroc = 0.130
spec = 0.058
sens = 0.153

22q11

N = 45
aroc = 0.174
spec = 0.122
sens = 0.059

N = 16
aroc = 0.208
spec = 0.046
sens = 0.283

N = 16
aroc = 0.071
spec = 0.068
sens = 0.063

N = 16
aroc = 0.101
spec = 0.059
sens = 0.071

N = 45
aroc = 0.129
spec = 0.085
sens = 0.201

Table 5: Results of the standard deviation of three trials of syndrome vs. control
classification with 12 syndromes.
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(a) ADNP: average activation of
convolutional layers.

(b) CDK13: average activation of
convolutional layers.

(c) DEAF1: average activation of
convolutional layers.

(d) DYRK1A: average activation of
convolutional layers.

Figure 16: Overview 1/3 of all convolutional layer activation averaged per syndrome.
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(a) EHMT1: average activation of
convolutional layers.

(b) FBXO11: average activation of
convolutional layers.

(c) KDVS: average activation of
convolutional layers.

(d) SON: average activation of convolutional
layers.

Figure 17: Overview 2/3 of all convolutional layer activation averaged per syndrome.
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(a) YY1: average activation of convolutional
layers.

(b) 22q11: average activation of
convolutional layers.

Figure 18: Overview 3/3 of all convolutional layer activation averaged per syndrome.
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(a) Number of selected controls for the
Deepface model.

(b) Number of selected controls for the
PointNet model, the Distance model and the

Ensemble model.

(c) Number of selected controls for the
Hybrid model.

Figure 19: Overview of the number of selected controls for the Syndrome vs. Syndrome
classification for all models.
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