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Abstract 

The default mode network (DMN) is one of the resting state networks (RSNs) in 

the brain that have been identified by investigating temporal correlations of 

spontaneous activity fluctuations in resting state fMRI (rsfMRI). The DMN is 

crucial for efficient cognitive functioning, although evidently decreasing in 

activity during many cognitive tasks. Even though the DMN is typically identified 

by independent component analysis (ICA), other methods have been used to 

extract and analyze the network as well and their relation to ICA has been 

explored. However, no comparison of  ICA and eigenvector centrality mapping, 

another data-driven, but graph-theory based method has been reported yet. Here, 

we used 100 rsfMRI data sets to show that the medial visual network, rather than 

the DMN, was the most central network during rest and that its eigenvector 

centrality correlated negatively with the centrality of the DMN. Accordingly, the 

most central areas during rest did not conform with the DMN extracted by ICA. 

Our results suggest that the visual RSNs play a more versatile and not strictly 

modular function during rest and that the investigation of their individual 

variations is more important than previously believed. 

 

Neuroscientific literature on the default mode network (DMN) has evolved and expanded 

considerably within the past 20 years (Raichle et al., 2001; Raichle, 2015). The DMN is 

comprised of the ventral and dorsal medial prefrontal cortex (v/d MPFC), precuneus/posterior 

cingulate cortex (PCC), retrosplenial cortex, inferior parietal lobe, and lateral temporal cortex 

– areas, which were shown to decrease activation in response to goal-directed tasks (Shulman 

et al., 1997) and which were therefore assumed to correspond to a baseline of neural activity 

in the brain (Raichle et al., 2001). The DMN particularly appears to contribute to internally 

focused processes such as theory of mind, self-referential thought, and autobiographical 
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memory (see Buckner, Andrews-Hanna, & Schacter, 2008 for a review), while aberrances of 

its intra- and inter-network connectivity are associated with e.g. depression (Greicius et al., 

2007), autism spectrum disorder (Kennedy, Redcay, & Courchesne, 2006), disorders of 

consciousness (Soddu et al., 2012), attention deficit hyperactivity disorder (ADHD) (Tian et 

al., 2006), and Alzheimer’s disease (AD) (Filippini et al., 2009; Binnewijzend et al., 2012; 

Hafkemeijer, Grond, & Rombouts, 2012; Broyd et al., 2009; Andrews-Hanna, Smallwood, & 

Spreng, 2014). Recent studies have further focused on potential roles of the network’s 

subcomponents (e.g. Andrews-Hanna et al., 2010; Kernbach et al., 2018) and more defined 

activation patterns of its most important hubs, like the PCC (Leech, Kamouriek, Beckmann, 

& Sharp, 2011).  

The DMN, along with other resting state networks (RSNs), is typically identified by 

the investigation of temporal correlations of activity fluctuations in resting state fMRI (i.e. 

resting state functional connectivity) and the ensuing extraction of coherent connectivity 

patterns with e.g. seed based connectivity analysis (SCA) (Biswal et al., 1995; Fox et al., 

2005) or independent component analysis (ICA) (Comon, 1994; McKeown et al., 1998; 

Pruim et al., 2015). In SCA, the functional relationship between a region of interest (ROI) and 

the remaining brain is defined by correlating its timeseries to the timeseries of every other 

voxel. In contrast, ICA is a multivariate and explorative approach, in which the data is 

decomposed into a number of statistically independent components by maximizing the 

negative entropy and thereby optimizing non-Gaussianity in the data (Hyvärinen & Oja, 1997; 

Beckmann & Smith, 2004; Beckmann, DeLuca, Devlin, & Smith, 2005). Recently, ICA has 

gained significant importance in network modelling (e.g. Zuo et al., 2010; van den Heuvel, 

Mandl, Kahn, & Hulshoff Pol, 2009; Damoiseaux et al., 2006; see Beckmann, 2012 for an 

overview), as it is able to identify coherent connectivity patterns without an a priori 

hypothesis about their spatial or temporal layout.  
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Along with the prominent application of ICA for functional connectivity analyses, its 

relation to other methods has been explored. For example, several studies compared the 

sensitivity of ICA and SCA with regard to age related changes in DMN connectivity (Koch et 

al., 2010; Bluhm et al., 2008). Results showed that reductions of co-activation magnitude in 

the DMN could only be detected with ICA. Also, evidence suggests that ICA has lower 

diagnostical power compared to volume of interest analysis regarding the classification of AD 

patients and healthy controls (Koch et al., 2012). Nevertheless, overall, ICA, SCA, and 

regional homogeneity analysis have been shown to derive a concordant spatial map of the 

DMN and task-positive network in healthy participants (see e.g. Long et al., 2008 for a direct 

comparison). Therefore, advantages and disadvantages of the respective methods have been 

further discussed (Cole, Smith, & Beckmann, 2010; Li et al., 2009). It has been emphasized 

that SCA is particularly sensitive to confounds like structural noise and RSNs that are not of 

interest, and that its interpretation is restricted to and biased by the selected ROIs. In contrast, 

ICA appears to account better for noise and avoids prior assumptions of ROIs. Yet, the 

iterative nature of the decomposition leads to variability across runs (e.g. multiple runs of 

ICA on the same dataset) and there is no ideal model order selection possible based on 

neurophysiology. Consequently, the number of extracted components is somewhat arbitrary 

and their interpretation and classification can be difficult, specifically in high order 

decompositions (Cole et al., 2010; Li et al., 2009). 

A method that addresses the challenges of both SCA and ICA is eigenvector centrality 

mapping (ECM). ECM is completely data-driven and operates without any a priori defined 

parameters, such as specifying the dimensionality in ICA, or ROIs in SCA. Beyond that, 

ECM considers the interregional connectivity of the entire brain, rather than parcellating the 

brain into distinct networks, or only considering specific ROIs. ECM is a graph-theory based 

method (Lohmann et al., 2010; Bonacich, 1972) which has recently been introduced and 

applied to fMRI data in the context of AD and its biomarkers (Binnewijzend et al., 2014; 
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Skouras et al., 2019; Skouras et al., 2020), DMN connectivity (Taruffi, Pehrs, Skouras, & 

Koelsch, 2017), attentive object tracking (Alnæs et al., 2015), emotional network modeling 

(Koelsch & Skouras, 2014), and others (Hadriche, Jmail, Blanc, & Pezard, 2019; Hove et al., 

2015; Markett et al., 2015; Wink et al., 2012). The method derives a 3D spatial map of the 

most influential areas in the brain by identifying voxels that are most connected to other 

voxels that are themselves highly central. The eigenvector centrality of a voxel is thus not 

only determined by the degree of the voxel (meaning the number of voxels each voxel is 

connected to), but also by the importance of each respective connection, thereby considering 

the entire network hierarchy. Theoretically, this is achieved by 1) determining a correlation 

matrix of the time series of all possible voxel pairs, 2) defining each voxels’ first order 

centrality measure by the sum of the correlation coefficients of all its connections (i.e. degree 

centrality), 3) iteratively updating the centrality measure of each voxel with the sum of all its 

connections, but weighted by each connections’ centrality measure from the previous 

iteration. Eventually, with a proportionality factor of 1/𝜆, where 𝜆 is the largest eigenvalue of 

the similarity matrix, this process would converge to an eigenvector of the biggest eigenvalue 

of that matrix. The i-th entry of the eigenvector then describes the eigenvector centrality of 

the i-th voxel. In ECM, the respective eigenvector is determined by the power iteration 

method (Golub & Loan, 1996; see Lohmann et al., 2010 for further mathematical details 

about ECM). Like other centrality measures, eigenvector centrality has been evidenced to be 

valuable in identifying networks and their most influential nodes in a parsimonious manner 

(Joyce, Laurienti, Burdette, & Hayasaka, 2010; Zuo et al., 2012; Bullmore & Sporns, 2009). 

Thus, similar to ICA, ECM is a state-of-the-art voxel-wise and data driven connectivity 

analysis method. Yet, to our knowledge, up to date no systematic comparison has been 

reported between the two. 

In the present study, we investigate how ICA and ECM relate to and complement each 

other when it comes to the interpretation of functional connectivity during resting state, with 
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particular focus on the DMN. We explore whether the most central regions during rest, as 

indicated by their eigenvector centrality (EC), overlap with the regions that are to date 

considered to constitute the DMN. In other words, we ask the question: To what extent are the 

core areas of the temporally most coherent task-negative network also the most influential 

areas during resting state? To answer this question, we use 100 independent resting state 

fMRI (rsfMRI) datasets from the ‘Human Connectome Project 1200 Subject release’ (van 

Essen et al., 2013) and we compare the DMN, derived by probabilistic ICA, to the most 

influential areas during rest, derived by ECM. Importantly, different results are premised on 

the computational bases for the two methods1. Yet, with this study, we want to specifically 

establish the differences in the main clusters and show how both methods can complement 

each other with regard to the interpretation of functional connectivity during rest. Previous 

studies investigating the brain’s network structure with a variety of methods have consistently 

reported the precuneus/PCC, MPFC, inferior parietal lobe, and lateral temporal cortex as 

intrinsic connectivity hubs during rest (e.g. Yeo et al. (2011) and Lee et al. (2012) using 

clustering algorithms; Tomasi and Volkow (2011a), Power et al. (2011), and Sporns (2013) 

using graph-theory; Smith et al. (2009) using ICA on task- and resting state fMRI; Long et al. 

(2008) using SCA, ICA and ReHo; Andrews-Hanna et al. (2010) using correlation- and 

cluster based analysis). Therefore, we expected to find high EC in those areas as well. 

Secondly, we expected that areas comprising the DMN, rather than other RSNs, would show 

the highest EC during rest. 

Methods 

Dataset 

                                                
1Probabilistic ICA (PICA) assumes that the data, a p x n matrix with p = time points and n = voxels, is composed of multiple 
independent spatial components and their timeseries plus noise. To decompose that data, an unmixing matrix is approximated 
and optimized in a way that derives maximally independent components (Hyvärinen & Oja, 1997; Beckmann & Smith, 
2004). In contrast, ECM (Lohmann et al., 2010) operates by approximating the principal eigenvector of the data’s similarity 
matrix. This is similar to principal component analysis, which approximates orthogonal components. Thus, while ICA is 
based on statistical independence, ECM is based on orthogonality (McKeown et al., 1998). 
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In this study, rsfMRI data of the WU-Minn Human Connectome Project (HCP) 1200 

Subject release was used (https://www.humanconnectome.org; van Essen et al., 2013). 

Specifically, 100 unrelated, healthy subjects (Mage = 29.41, SDage = 3.56, 54 females and 46 

males) were assessed to provide independent measures and evade controlling for the HCP 

family structure. Under the HCP protocol, all subjects gave written consent and data 

acquisition was approved by the institutional review board of Washington University, St. 

Louis. 

Image acquisition 

Acquisition methods of anatomical and functional images are described in detail 

elsewhere (van Essen et al., 2012; van Essen et al., 2013; Glasser et al., 2013). T1 weighted 

anatomical, as well as functional MR images were acquired on a customized Siemens 3T 

Connectome Skyra scanner using a 32-channel head coil. A 3D MPRAGE T1-weighted 

sequence (TR = 2400ms, TE = 2.14ms, TI = 1000ms, FA = 8°, field of view (FOV) = 

224x224mm, bandwidth = 210Hz/Px) was used to acquire structural images with a 0.7mm 

isotropic resolution. Multiband multislice gradient-echo echo planar imaging (GE-EPI; 

Moeller et al., 2010; Xu et al., 2012) was used for blood oxygen dependent (BOLD) contrast 

based functional acquisitions (TR = 720ms, TE = 33.1ms, FA = 52°, slice thickness = 2mm, 

72 slices, 2mm isotropic resolution, multiband factor = 8, time points = 1200, bandwidth = 

2290Hz/Px) and phase encoding was applied in left-right/right-left (L-R/R-L) direction using 

an asymmetric acquisition matrix (104x90) with a 208x180mm FOV. A total of one hour 

resting state acquisition was split into two imaging sessions, with two 15-minute runs each. In 

every session, one run was acquired with L-R phase encoding, one with R-L, the order of 

which was counterbalanced. During resting state data acquisition, participants kept their eyes 

open, relaxed and fixated on a bright fixation cross superimposed over a dark background. 

They were instructed to stay awake, look at the fixation cross, and think of nothing in 

particular.  
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Preprocessing 

Images in volumetric space had been preprocessed by the HCP minimal preprocessing 

and ICA-FIX pipeline (for full details see Glasser et al., 2013 and Smith et al., 2013). Briefly, 

these pipelines were built using tools of the FMRIB Software Library (FSL; Jenkinson et al., 

2012), FreeSurfer (Fischl, 2012), and Connectome Workbench (Marcus et al., 2013). The 

functional data of every participant underwent correction for gradient distortion, subject 

motion, as well as EPI distortion, registration to the subject’s high-resolution T1-weighted 

structural image and MNI-152 standard space. All correction and registration transforms were 

combined into one nonlinear transformation for a single spline interpolation. All images were 

brain masked and their 4D whole brain mean intensity was normalized to 10,000. Temporal 

preprocessing included a high pass filter (2000s cut-off) and every 15-minute run was 

denoised using the FIX method (FMRIB’s ICA-based X-noisifier; Smith et al., 2013). 

Additionally, all images were smoothed by a Gaussian kernel of 6mm full width at half 

maximum (FWHM) and resampled to 3mm isotropic resolution.  

Independent component analysis 

Spatial group-ICA was carried out on the concatenated timeseries data of 100 subjects 

(four runs each) by means of PICA (Beckmann & Smith, 2004), which is implemented in 

FSL’s MELODIC (Multivariate Exploratory Linear Optimized Decomposition, version 3.15; 

www.fmrib.ox.ac.uk/fsl). Inherent preprocessing included masking of non-brain voxels, 

temporal demeaning, variance normalization, and data reduction using principal component 

analysis. The dimensionality was set to 20 (d = 20), based on previous literature indicating 

that 20-25 components reliably show the most anatomically relevant RSNs (e.g. Smith et al., 

2009; Damoiseaux et al., 2006; Laird et al., 2011). Raw IC maps were transformed to Z-maps 

based on the estimated voxel-wise standard deviation of the noise. Finally, spatial maps were 

thresholded with alternative hypothesis testing by fitting a Gaussian/gamma mixture model to 

the voxel intensity distribution of the spatial maps with a threshold of P > 0.5 (Beckmann et 
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al., 2005; Hartvig & Jensen, 2000). Given the loss function associated with the estimation 

process, this threshold assigns equal concern to false-positives and false-negatives (Hartvig & 

Jensen, 2000). Voxels surviving this thresholding had a modelled relative probability of being 

‘active’ that was higher than their probability of being ‘noise’. Spatial cross correlation (P < 

.005, corrected for multiple pairings) of all components against previously defined RSNs 

(Smith et al., 2009) was used to define nine RSNs of interest, including the default mode, 

medial visual, lateral visual, auditory, left and right frontoparietal, sensory motor, occipital 

pole, and executive control network. 

Eigenvector centrality mapping 

 ECM as described in Lohmann et al. (2010) was applied to all subjects’ preprocessed 

whole-brain data using LIPSIA v3.1.0 (released May 13, 2019; Lohmann et al., 2001). 

Eigenvector centrality measures were derived by approximating the principal eigenvector of 

the temporal correlation matrix of every dataset, using the power iteration method (Golub & 

Loan, 1996). The EC of each voxel then corresponded to the weighted sum of ECs of that 

voxel’s direct neighbors, scaled by a proportionality factor of 1/λ. To maximize 

interpretability and comparability with our previous ECM studies (Koelsch & Skouras, 2014; 

Taruffi et al., 2017; Koelsch, Skouras, & Lohmann, 2016; Skouras et al., 2019; Skouras et al., 

2020), EC values were based on positive correlations, meaning that negative correlations in 

the correlation matrix (also known as beta-centrality) were set to zero (see Skouras et al., 

2019 for a detailed justification). This analysis resulted in four EC maps per subject, one map 

for every dataset (coming from two acquisition sessions with two runs in each session).  

Statistical Inference 

 To ensure that centrality measures were comparable across runs and subjects, every 

EC map was standardized to an ECz-map, with ECzi = (ECi - µ)/σ, 1 ≤ i ≤ N, where µ and σ 

are mean and standard deviation of the EC across all N voxels in the brain (Zuo et al., 2012; 

Buckner et al., 2009). The respective four ECz-maps were averaged per subject, resulting in 
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100 standardized EC maps. To identify voxels with significant EC in the brain, a 

nonparametric one-sample t-test was performed on the 100 ECz-maps using FSL randomise 

(1,000,000 permutations). Multiple comparisons were FWE corrected using TFCE (threshold 

free cluster enhancement; Smith & Nichols, 2009) and thresholded at Pcorrected < .000005. To 

investigate and compare EC values across RSNs, every subject’s weighted average ECz was 

computed for each relevant component (i.e. default mode, medial visual, lateral visual, 

auditory, left and right frontoparietal, sensory motor, occipital pole, and salience/executive 

control network) using FSL (fslmeants routine). Then, the computed network-specific ECz’s 

were entered as the dependent variable in a repeated measures MANOVA with RSN as the 

within subjects factor2.  

Results 

Independent component analysis 

 Nine independent components corresponding to the most consistently reported RSNs 

(Beckmann et al., 2005; Smith et al., 2009; Laird et al., 2011; Cole et al., 2010) were 

identified by means of spatial cross-correlation to the 10 components reported by Smith et al. 

(2009) (mean r = .59 (0.31; 0.77), Pcorrected < .005). None of the components in the present 

study correlated significantly with the component comprising only the cerebellum (“RSN 5” 

from Smith et al., 2009). As there were no explicit hypotheses about the connectivity of that 

area, we did not further consider the cerebellum as an RSN. Accordingly, the following nine 

networks were assessed from the data (reported in the order of variance explained by the 

respective component; see Figure 1 and Appendix, Figure A1): 

(1) Default mode: This component comprised the ventral precuneus, PCC, MPFC, 

superior frontal gyrus, and middle, superior temporal lobe. Furthermore, the angular 

                                                
2A repeated measures ANOVA assumes sphericity, i.e. equal variance of the differences between within-subject pairs. In 
cases where that assumption is violated, a repeated measures MANOVA, which uses difference scores as dependent variable, 
has higher power than available corrections for a repeated measures ANOVA, if the sample size is relatively large (N ≥ 
K+30, where K = number of conditions) and epsilon is low (< .85) (O’Brien & Kaiser, 1985; Algina & Keselman, 1997). 
Both methods are implemented in SPSS (IBM Statistical Package for Social Sciences; version 25). Here, given the strong 
violation of sphericity (indicated by Huyn-Feldt epsilon = 0.334) and a large sample, a MANOVA was conducted.  
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gyrus, hippocampus, and parts of the cerebellum (including Crus I and Crus II) 

belonged to this component. 

(2) Medial Visual: The medial visual component comprised primary visual areas, 

including the intra calcarine cortex and superior occipital gyrus, the cuneus, and 

lingual gyrus. 

 
Figure 1 
 
ICA results 
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Note. A. Left and right lateral (top) and medial (bottom) views of thresholded Z-maps of eight 
independent components estimated by probabilistic group ICA (d = 20) of 100 healthy subjects. 
Thresholded by fitting a Gaussian/gamma mixture model to the data, with P > 0.5. Positive Z-values 
were mapped on an ICBM152 brain surface. B. Full view of the thresholded DMN. Top row shows 
anterior, posterior, dorsal, and ventral view, middle and bottom row show left and right lateral and 
medial views, respectively. Positive Z-values were mapped on an ICBM152 brain surface. AG = 
angular gyrus, LTL = lateral temporal lobe, PCC = posterior cingulate cortex, MPFC = medial 
prefrontal cortex, MTL = medial temporal lobe. 

 

(3) Lateral Visual: This component mainly comprised extrastriate visual areas in the 

lateral 
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occipital cortex, including the middle and inferior occipital gyrus.  

(4) Auditory: The auditory component comprised areas in the primary and secondary 

auditory cortices, among which the temporal pole, planum temporale and planum 

polare, Heschl’s gyrus, and anterior supramarginal gyrus. The anterior cingulate was 

also part of this network.  

(5) Frontoparietal left lateralized: This component spanned frontal and parietal areas, 

including the angular gyrus, inferior frontal gyrus, medial frontal lobe, and superior 

parietal lobe, as well as parts of the temporal gyrus. Its mirrored counterpart, 

component (6), which comprised the frontoparietal right lateralized network, covered 

homotopic areas in the right hemisphere. 

(7) Sensory Motor: Above threshold areas in this component were the pre- and postcentral 

gyrus, supplementary motor area, and anterior supramarginal gyrus. 

(8) Occipital Pole: This component comprised the occipital pole, i.e. primary visual areas. 

(9) Executive Control/Salience: Here, lateral and medial frontal areas (including middle 

frontal gyrus, superior frontal lobe), as well as the paracingulate gyrus, temporal pole, 

and anterior cingulate gyrus were covered. 

Eigenvector centrality mapping  

The nonparametric one-sample t-test on the standardized EC maps showed that most 

voxels were significant (FWE corrected P < .000005). Further, due to the exceedingly high 

significance observed, combined with the unfeasible amount of permutations needed for a 

more precise significance estimate, the range of p-values was limited and the corrected p-

values reached a ceiling value (corresponding to Z = 4.75). Therefore, the local maxima of the 

most central areas (mean ECz > 1.6) within all significant voxels were identified to enable a 

meaningful interpretation. These included primary and secondary visual areas in the intra- and 

supra-calcarine cortex (BA17), the medial occipital cortex, particularly the cuneus 

(BA18/BA19), as well as the superior lateral occipital lobe (BA19). Also, the supramarginal 
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gyrus (BA40), the superior parietal lobe/posterior dorsal precuneus (BA7), and postcentral 

gyrus/parietal operculum (BA1, 2 & 3) were significant and highly central (Table 1, Figure 

2).  

 

 

 

Comparison 

To investigate which RSN had the highest EC, a repeated measures MANOVA (using 

the multivariate approach following O’Brien & Kaiser, 1985) with average ECz as dependent 

variable and RSN (default mode/medial visual/lateral visual/auditory/left frontoparietal/right 

frontoparietal/sensory motor/occipital pole/executive control) as within subjects factor was 

conducted (N = 100). With a significant multivariate test (F(8,92) = 273.120, p = 1.28E-60), 

the univariate contrasts showed that the mean ECz of the DMN was significantly lower than 

the mean ECz of both the medial and lateral visual network (F(1,99) = 93.707, p = 5.45E-16, 

Table 1  

Most central areas with significant EC 
 

 
Brain region 

Brodmann 
area (BA) 

Local max 
ECz value*    

M (SD) 

MNI-
coordinate 

(x) 

MNI-
coordinate 

(y) 

MNI-
coordinate 

(z) 

Lateral occipital lobe BA19 2.33 (0.85) -27 -87 27 

Superior parietal lobe/ 
Precuneus BA7 2.54 (0.86) 9 -80 45 

Calcarine cortex BA17 1.62 (0.79) -3 -87 3 

Medial occipital 
lobe/Cuneus BA18/BA19 1.70 (0.98) 3 -80 27 

Inferior parietal lobe/ 
Supramarginal gyrus BA40 1.61 (0.91) 57 -30 27 

Postcentral 
gyrus/Parietal 
operculum 

BA1, 2 & 3 2.40 (0.90) -61 -21 15 

*All specified areas had a Z statistic of 4.75, see Eigenvector Centrality Mapping section in Results for a more detailed explanation. 

Note. ECz values represent mean standardized EC values at respective MNI coordinates, with voxel-wise standard 
deviation (SD) in parentheses. 
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eta2 = . 486 and F(1,99) = 66.035, p = 1.29E-12, eta2 = .400, respectively). Also, the mean 

ECz  

Figure 2 
 
ECM results 

 
 
Note. Full view of thresholded ECM results mapped on an ICBM152 brain surface. Top row shows 
anterior, posterior, dorsal, and ventral view, middle and bottom row show left and right lateral and 
medial views, respectively. Thresholding was done using TFCE, FWE corrected P < .000005. The 
most central areas (mean ECz > 1.6) are labelled. BA = Brodmann area. 
 

of the auditory, sensory motor, and occipital pole network was significantly higher than the 

mean ECz of areas in the DMN (F(1,99) = 67.539,  p = 8.16E-13, eta2 = .406; F(1,99) = 
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34.315, p = 6.15E-8, eta2 = .257; F(1,99) = 18.437, p = 4.99E-5, eta2 = .157 respectively). The 

mean ECz in the executive control network was significantly lower than the mean ECz of the 

DMN (F(1,99) = 56.863, p = 2.28E-11, eta2 = .365). See Table 2 (and Table A1, Appendix) 

for pairwise comparisons and corrected p-values. To further explore the relation between the 

centrality of the different networks, Pearson’s correlations between the average ECz of all 

nine RSNs were calculated (Table 3). In line with the results of the MANOVA, it appeared 

that EC in the medial and lateral visual network correlated negatively with EC in the DMN (r 

= -.466, pcorr = 8.10E-5 and r = -.537, pcorr = 6.61E-7; p-values are Bonferroni corrected for 

multiple comparisons) (Figure 3). In contrast, EC of the frontoparietal networks correlated 

positively with EC in the DMN (r = .373, pcorr = 0.011 and r = .438, pcorr = 4.05E-4).  

 

Discussion 

Table 2 

Descriptives of nine RSNs 
 

 
RSN 

% of 
explained 

variance in 
ICA 

Average 
Mean 
ECz 

SD 
ECz 

T (df = 
99) 

Puncorrected 

against 
DMN 

Pcorrected 
against 
DMN 

DMN 6.12 0.3578 0.375 - - - 

Medial Visual 6.11 1.0020 0.402 9.680 5.45E-16 4.36E-15 

Lateral Visual 5.66 0.8003 0.242 8.126 1.29E-12 1.03E-11 

Auditory 5.40 0.7756 0.224 8.218 8.16E-13 6.53E-12 

Frontoparietal left 4.99 0.3939 0.318 0.924 ns ns 

Frontoparietal right 4.92 0.4437 0.283 2.402 0.018 ns 

Sensory Motor 4.91 0.6493 0.202 5.858 6.15E-8 4.92E-7 

Occipital Pole 4.33 0.5857 0.349 4.294 4.99E-5 3.99E-4 

Executive control  3.63 0.0787 0.135 -7.541 2.28E-11 1.82E-10 

 
Note. Percentage of explained variance was reported per RSN and adopted from ICA MELODIC’s 
output report. Per RSN, the average of mean ECz values and their standard deviation (SD) is stated. 
The mean ECz of the default mode network (DMN) was compared to the mean ECz of every other RSN, 
P-values are Bonferroni corrected for multiple comparisons. ns = non-significant. 
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 In this study, we used probabilistic ICA and ECM to investigate whether the core 

areas of the DMN (the temporally most coherent task-negative network) are also the most 

influential 

 

 

brain areas during resting state. Our results show that the areas identified as most central do 

not coincide with the areas that constitute the DMN that is typically extracted by ICA. In fact, 

the medial and lateral occipital cortices, as well as the posterior dorsal precuneus, 

supramarginal gyrus (SMG), and postcentral gyrus were identified to have the highest EC 

during rest. Consistent with that, we showed that the medial and lateral visual network, rather 

than the DMN, were on average the most central RSNs and that their mean EC correlated 

negatively with the EC of the DMN.  

Independent component analysis 

 The networks identified by group-ICA matched results of existing studies using either 

ICA or other methods to investigate connectivity patterns during rest. The DMN was 

composed of the PCC, MPFC, lateral temporal cortex, angular gyrus, ventral precuneus 

Table 3 

PeaUVRn¶V cRUUelaWiRnV beWZeen aYeUage EC] Rf all RSNV 
 
 

1 2 3 4 5 6 7 8 

DMN (1)                 

Medial Visual (2) -.466*        

Lateral Visual (3) -.537** .783***       

Auditory (4) -.404* -.226 -.065      

Frontoparietal left (5) .373* -.730*** -.638*** .178     

Frontoparietal right (6) .438* -.705* -.592** .148 .878***    

Sensory Motor (7) -.437* .414* .501** .252 -.530** -.478*   

Occipital Pole (8) -.072 .468* .318 -.286 -.324 -.309 -.004  

Executive control (9) .218 -.584** -.575** .266 .662*** .643*** -.294 -.310 
*Pcorrected < 1.0E-2, **Pcorrected < 1.0E-5, ***Pcorrected < 1.0E-10 
 
Note. P-values are Bonferroni corrected for multiple comparisons. DMN = default mode network. 
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(central precuneus in Margulies et al., 2009, or L/R5 and L/R6 as described in Luo et al., 

2019), as well as the hippocampus and parts of the cerebellum, which is in concordance with 

our hypothesis and the 

 

Figure 3  

Scatterplots 
 

 
 
Note: Scatterplots and marginal densities of the weighted mean ECz (N = 100) of the DMN against (A) 
medial visual network, (B) lateral visual network, (C) left frontoparietal network, (D) right frontoparietal 
network, (E) auditory network, and (F) sensory motor network. DMN = default mode network, EC = 
eigenvector centrality.  
 

typically reported DMN (Raichle et al., 2001; Buckner et al., 2008; Andrews-Hanna et al., 

2014). Among the other 19 independent components, eight RSNs were identified (medial 

visual, lateral visual, auditory, left and right frontoparietal, sensory motor, occipital pole, 

executive control/salience network) that corresponded to networks described in other studies 

as well (e.g. Beckmann et al., 2005; Daimoiseaux et al., 2006; Smith et al., 2009; Laird et al., 
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2011). The remaining components were classified to be either noise or components that 

spanned small subregions of sensory cortices and were not further analyzed.  

 While the DMN corresponded closely to earlier reports of existing RSNs, other 

components were less consistent with the literature. For example, in our results, the occipital 

pole is a separate RSN, which is not reported consistently (see e.g. Laird et al., 2011 and 

Smith et al., 2009 vs. Beckmann et al., 2005 and Yeo et al., 2011). Also, the current 

decomposition did not identify the cerebellum as one RSN, which is in line with a few (e.g. 

Beckmann et al., 2005; Yeo et al., 2011; Daimoiseaux et al., 2006), but not all studies (e.g. 

Laird et al., 2011; Smith et al., 2009). The absence of one coherent RSN in the cerebellum 

might be due to the distinct connectivity patterns of its subregions (Ren, Guo, & Guo, 2019), 

but this should be further investigated in future works. Finally, although the ninth RSN 

reported here, the executive control/salience network, spatially correlated significantly with 

the executive control network reported in Smith et al. (2009), its pattern corresponds less 

clearly to known RSNs than the other networks identified in the current study. Usually, the 

executive control network is composed of dorsolateral and -medial prefrontal areas, as well as 

the frontal eye field (Beckmann et al., 2005; Smith et al., 2009), while the salience network is 

described to comprise the insular cortex, dorsal anterior cingulate cortex, temporal pole, and 

amygdala (e.g. Seeley et al., 2007; Menon, 2011). The ninth RSN found here comprised areas 

of both, the salience and executive control network, which makes its interpretation somewhat 

ambiguous. Areas similar to the ones comprised in RSN 9 are sometimes referred to as one 

“task-positive network”, associated with top-down attention modulation and working memory 

(e.g. Fox et al., 2005). However, the notion of only one task-positive network is debated (see 

e.g. Di & Biswal, 2014; Vincent et al., 2008; Smallwood, Brown, Baird, & Schooler, 2012) 

and RSN 9 does not entirely conform to that network. Thus, further investigation of the 

network would be needed to fully understand its interpretation and functional associations.  

Eigenvector centrality mapping 
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 The overall spatial layout of the ECM results differed considerably from the DMN 

identified by ICA. The highest EC was found in the precuneus, an area that is often referred to 

as centrality- and connectivity hub in the brain (e.g. van den Heuvel & Sporns, 2011; 

Hagmann et al., 2008; Tomasi & Volkow, 2011a; Bullmore & Sporns, 2009), and which is 

also frequently reported as part of the DMN, along with the neighboring PCC. However, it 

has been argued that the precuneus is in fact not part of the DMN (Buckner et al., 2008; 

Margulies et al., 2009) and recent studies exploring the functional parcellation of the area 

identified a more complex classification of the three (Margulies et al., 2009; Zhang & Li, 

2012), or up to six (Luo et al., 2019) subparts of the precuneus. Specifically, only the ventral 

precuneus (Zhang & Li, 2012; or L/R5, L/R6 in Luo et al., 2019; central precuneus in 

Margulies et al., 2009) is functionally connected to areas of the DMN and other association 

areas, and corresponds to the division that is mostly reported, and here identified, as part of 

the DMN. In contrast, the division of the precuneus with the highest EC corresponds to the 

dorsal (posterior) precuneus (Zhang & Li, 2012; respectively L/R4 and L/R2 in Luo et al., 

2019), which in turn shows functional connections to the adjacent visual network (Luo et al., 

2019), negative connectivity to temporal gyri and parts of the cerebellum, and, when 

compared to the ventral precuneus, increased connections to occipital and parietal cortices 

(Zhang & Li, 2012). Thus, the most central part of the precuneus, as identified in our study, 

does not conform with the division of the precuneus associated with the DMN.  

 Another area that showed high EC during rest was the SMG of the inferior parietal 

lobe. 

This area has been evidenced as centrality hub before (e.g. Liu et al., 2012; Tomasi & 

Volkow, 2011a; Tomasi & Volkow, 2011b) and generally appears to be involved in semantic 

processing (Chou et al., 2006), executive control of motor behavior (Kübler, Dixon, & 

Garavan, 2006), as well as somatosensory discrimination (Akatsuka et al., 2008). Beyond 

that, the SMG is sometimes referred to as part of the “temporo-parietal junction” (TPJ; a 
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converging point of the angular gyrus, SMG, and superior temporal gyrus), which in turn is 

related to bottom-up reorienting of attention, perception of the self, mind wandering, social 

cognition, and autobiographical memory retrieval (Igelström & Graziano, 2017). More 

specifically though, the SMG corresponds to the anterior subdivision of the TPJ (Igelström & 

Graziano, 2017) and is functionally connected to the anterior cingulate, anterior insular, 

inferior parietal lobe, and the thalamus (Zuo et al., 2012; Igelström & Graziano, 2017; Mars et 

al., 2011) – areas, which are referred to as attention control- (e.g. Zuo et al., 2012) or cingulo-

opercular network (e.g. Sadaghiani & D’Esposito, 2014). In contrast, the angular gyrus or 

posterior subdivision of the TPJ (Igelström & Graziano, 2017) is functionally connected to 

areas of the DMN (Igelström & Graziano, 2017; Igelström, Webb, & Graziano, 2015; Mars et 

al., 2011; Zuo et al., 2012) and in turn did not appear as one of the most central areas in ECM.  

 The largest cluster with high EC was found in primary and secondary visual cortices 

(the cuneus, calcarine sulcus, and lateral occipital lobe), which was not expected based on the 

existing DMN literature. Still, high centrality in visual areas during rest has been reported 

before, albeit mostly incidentally and therefore not thoroughly discussed. For example, 

Tomasi and Volkow (2011a) identified the primary visual cortex along with the precuneus as 

global functional connectivity density hub, and the cuneus has been reported as cortical 

connectivity hub as well (Tomasi & Volkow, 2011b). A study comparing different centrality 

measures further showed that EC during rest was the highest in lateral and medial visual 

areas, the parieto-occipital sulcus, and around the TPJ (Zuo et al., 2012). Also, EC, when 

compared to degree centrality (DC), was higher in the medial visual cortex, while DC was 

higher in the PCC (Zuo et al., 2012). Finally, Cole and colleagues reported the visual regions 

among the globally most connected ones, and the cuneus and precuneus were mentioned as 

structural core regions in the brain (Cole, Pathak, & Schneider, 2010; Hagmann et al., 2008). 

Importantly, the aforementioned studies include both, “eyes open” and “eyes closed” rsfMRI 

acquisitions, which rules out the possibility that findings of high centrality in the visual cortex 
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are simply due to incoming visual information during “eyes open” data acquisition. Beyond 

research demonstrating high global centrality of occipital areas, studies have evidenced that 

the primary visual cortex shows significant fluctuations during rest, which were associated 

with activity in a network comprised of the middle occipital gyrus, cuneus, lingual gyrus, 

precuneus, pre- and postcentral gyrus (Wang et al., 2008; Nir et al., 2006), as well as parts of 

the temporal lobe (Wang et al., 2008). These task-free activation patterns, which widely 

overlap with the centrality hubs found in the current study, were associated with memory-

related mental imagery and replaying information for visual memory consolidation (Wang et 

al., 2008). Lastly, a study showed that alcohol induction in healthy participants induced 

increases in functional connectivity and rsfMRI signal fluctuations in the visual network, and 

no other RSN (Esposito et al., 2010). This not only confirms the importance of the visual 

network during rest, but also suggests that it serves a more versatile and not strictly modular 

function. 

Network centrality correlations  

Reconfirming and broadening the aforementioned findings, we for the first time 

compared the EC of different RSNs and showed that the medial and lateral visual network 

were on average significantly more central than the DMN. More specifically, the weighted 

average of the EC in areas defined by every RSN’s thresholded spatial ICA map indicated 

that the medial visual network was the most central network (and significantly more central 

than all other RSNs), while the DMN was significantly less central than all visual networks, 

the auditory network, and the sensory motor network. Furthermore, the average EC of the 

DMN was negatively correlated to the EC in the medial and lateral visual, sensory motor, and 

auditory network, while it correlated positively with the left and right frontoparietal network. 

At first glance, the positive correlation between the DMN and the frontoparietal networks 

might seem counterintuitive, as correlations between task-positive networks and the DMN are 

usually reported to be negative (e.g. Fox et al., 2005; see Anticevic et al., 2012 for a review). 
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However, the relation between the DMN and the frontoparietal network (FPN) in particular 

has been demonstrated to be more complex, by studies showing their positive functional 

coupling (Spreng et al., 2010) and their cooperation to manage external and internal trains of 

thoughts (Smallwood et al., 2012). Importantly, functional coupling, i.e. the temporal 

internetwork correlation, is not equivalent to the correlation between centralities of different 

networks shown here. While the former directly reflects joint fluctuations of BOLD activity at 

a particular point in time, the latter indicates how the average centralities across time relate to 

each other. Thus, although our results might support the assumption of cooperation between 

DMN and FPN during rest by showing that high centrality of the former is generally 

accompanied by high centrality of the latter, future work is needed to confirm this. 

Specifically, dynamic EC correlations between the different RSNs should be investigated to 

understand how their importance behaves and relates to each other at specific points in time.  

The negative correlation between the DMN and medial and lateral visual network 

(VN) shows that their centrality during rest was reversed – overall low centrality in the DMN 

was accompanied by high centrality in the VNs, and vice versa. Negative correlations 

between the primary visual cortex and the DMN during rest have been shown before 

(Scheeringa et al., 2012) and there is more evidence for functional coupling of primary visual 

areas and the DMN in association to visual mental imagery (Zhang et al., 2018). Also, both 

the DMN and VNs have been shown to be at the highest level of the hierarchical modular 

organization of the brain during rest (Meunier et al., 2009). Together with our finding that the 

medial VN is the most central, this evidence might suggest that the negative centrality 

correlation points to an interplay between the DMN and VN, in which the latter plays a 

dominant role. We further propose a functional interpretation of the appearing predominance 

of the VNs, in which the VNs are involved in the monitoring of incoming stimuli and internal 

processing during rest. Relevant evidence for this interpretation comes from (i) research 

showing VN aberrancies in clinical conditions associated with increased levels of trait 
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impulsivity (“the tendency to act quickly without considering the broader […] consequences 

of one’s actions”, Davis et al., 2012), (ii) research suggesting that trait impulsivity is related 

to anomalies in VN activity and connectivity, and (iii) the existing notion that neural alpha 

oscillations (8-12 Hz) in the occipital cortex facilitate internal processing by gating incoming 

stimuli during rest. The three aspects are elaborated in the following. 

Firstly, AD, ASD, bipolar disorder, schizophrenia, and ADHD have been associated 

with deviant connectivity of the VNs during rest. For example, decreased functional 

connectivity (Lehmann et al., 2015; Binnewijzend et al., 2012; Sanz-Arigita et al., 2010), 

regional homogeneity (ReHo) (Cui et al., 2016), and EC (Binnewijzend et al., 2014; 

Adriaanse et al., 2016) of the lateral and medial VN have been found in AD and bipolar 

disorder. Reduced nodal efficiency and increased ReHo in the medial occipital cortex during 

rest have been associated to ADHD (Wang et al., 2009; Cao et al., 2006) and medial VN 

connectivity, as well as connections of the VN to the DMN were found to be essential for the 

diagnostic classification and symptom severity of ASD (Chen et al., 2015; Keown et al., 

2013). The connectivity between VN and DMN has also been associated to positive 

symptoms in schizophrenia (disorganized thought and behavior; Meda et al., 2012). 

Importantly, all aforementioned conditions are also commonly associated with increased trait 

impulsivity (Najt et al., 2007; Rochat et al., 2008; Mayes, Calhoun, Mayes, & Molitoris, 

2012; Wistanley, Eagle, & Robbins, 2006; Ouzir, 2013), which ties in with the second line of 

evidence: Research suggests that impulsivity is associated with anomalies of VN 

connectivity. High trait impulsivity has been related to changes in resting state connectivity of 

the medial and lateral VN in healthy participants (Davis et al., 2012) and to connectivity of 

lateral visual areas to the amygdala in abstinent heroin dependent subjects (Xie et al., 2011). 

Better inhibitory control was further related to increased ReHo in the medial VN (Tian, Ren, 

& Zang, 2012) and reduced gray matter volume in the parieto-occipital sulcus was shown in 

subjects with high trait impulsivity (Ide et al., 2017). Also, inhibitory control in children with 
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ADHD has been related to connections of the VN to the cingulo-opercular network and 

connectivity between the DMN and cuneal cortex was related to impulsivity in typical 

developing children (Mennes et al., 2011; Inuggi et al., 2014). Lastly, a review of the 

phenotypic associations of different RSNs has emphasized the relation of the VN to affective 

states and emotional functioning, specifically to impulsive behavior and inhibitory control 

(Vaidya & Gordon, 2013).  

 At last, all abovementioned conditions associated with VN anomalies (ADHD, AD, 

ASD, schizophrenia, and bipolar disorder) also show decreased occipital alpha activity during 

rest (Woltering, Jung, Liu, & Tannock, 2012; Başar et al., 2012; Osipova et al., 2005; Wang 

et al., 2013; Goldstein et al., 2015). Power in the occipital alpha frequency band is suggested 

to facilitate internal processing by gating incoming stimuli (e.g. Mo, Liu, Huang, & Ding, 

2013; Klimesch, Sauseng, & Hanslmayr, 2007), which is based on the link between alpha 

oscillations and decreased cortical excitability, inhibition of task irrelevant cortical regions, 

and attention modulation (Mayhew, Ostwald, Porcaro, & Bagshaw, 2013; Capotosto, 

Babiloni, Romani, & Corbetta, 2009; Klimesch et al., 2007; Palva & Palva, 2007). Evidence 

for positive correlations between occipital alpha oscillations and DMN BOLD activity further 

corroborates the notion that they facilitate internal processing during rest (Jann et al., 2010; 

Knyazev, Slobodskoj-Plusnin, Bocharov, & Pylkova, 2011; Mo et al., 2013). Importantly, 

alpha oscillations have been shown to mainly source in the occipital cortex (e.g. Hari et al., 

1997; Moosman et al., 2003). 

 All in all, given that evidence strongly suggests the relation between connectivity of 

the VNs and trait impulsivity, their predominance shown in the current study might point to a 

role of the VNs in regulating impulsivity and premeditation during rest, i.e. balancing 

incoming stimuli and internal processing. In other words, our findings might be another 

manifestation of the mechanism proposed for occipital alpha oscillations, where high EC of 

the VNs would indicate enhanced occipital alpha power, i.e. efficient dampening of external 
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stimuli, decreased impulsivity, and accompanied BOLD activity in the DMN (note here that 

activity is not equal to centrality). In contrast, low EC of the VNs would indicate lower alpha 

power, i.e. increased cortical excitability and decreased DMN activity. The negative 

correlation between the EC of VN and DMN might thus point to a cooperation, in which 

global connectivity of the VNs (rather than the DMN) is maintained to facilitate appropriate 

regulation of higher order network activity via global connections. 

Other research is in line with this interpretation. For example, evidence suggests that 

during rest, the occipital gyrus modulates interactions between DMN and dorsal attention 

network, as well as interactions between anterior and posterior DMN (Di & Biswal, 2014). 

Also, there is evidence for the link between occipital alpha power and resting state 

connectivity in general, within the visual system, and between visual and ventral medial 

prefrontal areas (Tagliazucchi et al., 2012; Scheeringa et al., 2012). However, the current 

results are not sufficient to develop a thorough model and it should be noted that the 

aforementioned studies show decreased rather than increased connectivity of occipital regions 

in response to high alpha-power. Also, whether there is an association between alpha power 

and EC (of the VN) in particular is unanswered. Generally, future work should further 

investigate the role of the medial and lateral VN during rest. Considering that typically, the 

FPN is reported with regard to attention modulation and inhibitory control (e.g. Marek & 

Dosenbach, 2018; Chadick & Gazzaley, 2011), and the salience network (specifically the 

insula) with regard to network switching (e.g. Sridharan, Levitin, & Menon, 2008), their 

relation to the VN should be researched as well. Finally, dynamic EC and the according 

changes in (effective) connectivity of the two visual RSNs should be explored to identify their 

separate roles, and the relation between EC, metabolic activity, and local connectivity should 

be analyzed to further incorporate the current results into the existing literature. 

Functional connectivity in ECM and ICA 
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Our study demonstrates that ECM and ICA extract different aspects of intrinsic 

functional connectivity in the brain and that the two methods can be meaningfully combined 

with the here explored analyses. We showed that ECM derives a different resting state 

connectivity pattern than the DMN extracted by ICA and we thereby highlighted the aspects 

of resting state connectivity that these methods distinguish: ICA enables to understand the 

entire data at once and extracts multiple independent, temporally coherent networks from the 

brain, among which the DMN. In contrast, ECM considers the whole brain as a network, and 

derives one global description of its intra-connectivity. Therefore, the most central regions 

extracted by ECM can be less understood as one coherent neurobiological entity, like the 

RSNs extracted by ICA, but rather as an independent description of the most influential areas 

across space and time, i.e. across networks (see similarly also McKeown et al. (1998) and 

Cole et al. (2010) for a discussion and comparison of PCA as opposed to ICA for fMRI 

analyses). All in all, ECM is an analysis technique which provides a global perspective and 

straightforward interpretation of the brain’s connectivity organization during any cognitive 

state. By comparing the average centrality of RSNs identified by ICA, ECM can be combined 

with ICA and the two methods can be interpreted cohesively. 

Limitations 

The spatial smoothing applied to the rsfMRI data, as well as the interpolation during 

resampling could have led to artificially increased temporal correlations between neighboring 

voxels. However, the same resampling and smoothing has been applied to the data used in 

both analysis methods, which rules out that it had an impact on the difference between the 

results of the two. Secondly, the inherent preprocessing of ICA included temporal demeaning 

and variance normalization. These steps are not required for ECM, but the lack of application 

to the data used for ECM could have potentially led to differences between the respective 

results, although unlikely. Thirdly, we only included a limited amount of the components 

extracted by ICA in our analyses. In the future, a more extensive comparison of EC in various 
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networks could be addressed to enable a more overarching understanding of their interactions. 

Fourthly, the current ECM results exceeded conventional significance levels, which available 

tools were unable to capture. Although a higher than traditionally used number of 

permutations (1,000,000) in a nonparametric t-test was applied, the range of significance was 

restricted, as an overall ceiling p-value was reached in most voxels. Future studies should 

consider increasing computational power to enable a higher number of permutations and 

hence a more precise estimate of significance. Lastly, we did not further explore the 

functional connectivity of the most central areas during rest, which should be done in future 

works to better understand the connectivity organization of those regions. 

Conclusion 

To conclude, this study shows that ICA and ECM, when applied to the same rsfMRI 

data with the same pre-processing, reveal different spatial maps of the most prominent areas 

during resting state. The DMN does not conform with the most central areas during rest, 

which demonstrates that ECM and ICA reveal distinct aspects of resting state connectivity. 

We show that the medial and lateral VN are the most central RSNs during rest and propose a 

mechanistic explanation, in which the VNs are involved in monitoring incoming stimuli and 

internal processing. Altogether, our results suggest that the investigation of individual 

variation in VNs is more important than previously believed and they further motivate future 

work exploring the relative EC of different RSNs as a potential neuromarker for diagnostic 

applications. The exceedingly high significance and large effect sizes of the current findings 

are particularly promising for personalized applications. 
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Note. Thresholded Z-maps of nine independent components estimated by probabilistic group ICA (d = 
20) of 100 healthy subjects. Positive (red) and negative (blue) Z-values are displayed on slices of a 
MNI152 T1 structural. Thresholding was done by fitting a Gaussian/gamma mixture model to the data, 
with P > 0.5. 
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Table A1 

Pairwise comparisons 
 

 
RSN 

T (df = 99) 
against medial 

visual 

P against medial 
visual (Bonferroni 

corrected) 

T (df = 99) against 
lateral visual 

P against lateral 
visual (Bonferroni 

corrected) 

DMN 9.680 1.963E-14 8.126 4.634E-11 

Medial Visual - - 7.749 2.967E-10 

Lateral Visual 7.749 2.967E-10 - - 

Auditory 4.508 0.001 0.726 ns 

Frontoparietal left 9.080 3.993E-13 8.017 7.948E-11 

Frontoparietal right 8.809 1.553E-12 7.618 5.643E-10 

Sensory Motor 9.598 2.966E-14 6.739 3.838E-8 

Occipital Pole 10.676 1.327E-16 6.027 1.000E-5 

Salience 12.958 8.954E-33 12.952 2.441E-37 

 
Note. The mean ECz of the medial and lateral visual network was compared to the mean EC of every other RSN. 
ns = non-significant, DMN = default mode network. 
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