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Summary (one page)
Smoking status is a clinical variable in (primary) healthcare, defining whether
or not a patient smokes or has ever smoked cigarettes or cigars. However, it
is currently under-reported by GP (General Practitioner) offices in the Nether-
lands. GPs experience a heavy documentation load, and often opt for describ-
ing complaints in the free text of the consultation (the ’SOEP’ text) rather than
formally documenting it in a variable - while a documented variable is more
retrievable for clinical professionals needing this information later. This the-
sis attempts to use Natural Language Processing (NLP) and Machine Learn-
ing (ML) to automatically classify smoking statuses recorded in the free text
of consultation reports in Dutch GPs. We found a specific problem: smoking
status is under-documented and sparsely labelled in EMRs (Electronic Medical
Records), while modern NLP approaches require large labelled datasets. We
use a weak supervision as well as a Transfer learning approach to combat this
"small dataset problem".

We attempt to answer the following question:"How canwe best automatically
detect and classify the smoking status of primary care patients’ EMR (Electronic
Medical Record) on the basis of the free text in GP doctor’s notes?"

We worked with medical data storage company Topicus to obtain 17.873
EMRs from 6 GP offices in the Netherlands, of which only a sub-set is labelled
for smoking status (4.978 training examples, 651 development examples and
628 test examples) into three classes: non-smoker, ex-smoker, and smoker.

Our results indicate Transfer learning is a potentially fruitful approach to
smoking status classification. We found a fine-tuned pre-trained Transformer
model BERTje model performs well (F1 (micro) = .79), and out-performs our
rule-based baseline (F1 = .55). Our results however do not match earlier work’s
results, where rule-based methods already obtain high performance scores (F1
= .91) on similar smoking status tasks in English. We cannot replicate these
high-performing rule-based methods, but our Transfer learning approach with
BERTje is relatively effective at correctly detecting especially the non-smoker
and ex-smoker class in EMRs. Increasing the training set size in a weak su-
pervision approach with a generative labelling model does not increase perfor-
mance of BERTje (F1 (micro) = .79), though does lead to a better classification
of ex-smoker and non-smoker examples.

Thus, we find a Transfer learning approach with BERTje a potentially in-
teresting approach for smoking status classification in Dutch EMRs even with
small datasets. These now popular pre-trained models could be a step for re-
search into smoking status classification away from rule-based methods.
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Myrthe Reuver 1 INTRODUCTION

1 Introduction
Smoking is a serious public health problem. The Dutch national bureau of
statistics (CBS) records an individual’s smoking status in three categories, based
on self-report data: smoker, non-smoker, and ex-smoker. Their data indicates
that 23% of Dutch adults above the age of 25 identify as smoker, with up to
50% identifying as smoker among those with little schooling (high school or
less) (Centraal Bureau Statistiek, 2018).

Smoking status - whether or not a patient smokes or has ever smoked - is
relevant for a number of treatment choices and health outcomes. These include
(but are not limited to) medication use: recent research indicates smokers have
a higher risk of opiate addiction when using painkillers (Young-Wolff et al.,
2017), a higher risk of cardiovascular disease even when the patient’s weight is
controlled for (King et al., 2017), and a higher risk of lung problems including
lung cancer (Islami et al., 2015). Thus, a physician’s knowledge of a patient’s
smoking status can aid the patient’s treatment and health, and such knowl-
edge remains relevant when the patient’s complaint is seemingly not directly
related to respiratory issues. Smoking status also negatively affects the health
outcomes of others, especially young children in a smoker’s household, and even
that of third parties in public spaces, as identified by the Care Standard and
Regulation on Tobacco Addiction by the Dutch governmental organizations re-
lated to healthcare (Partnership Stop met Roken, 2019). This Care Standard
document was designed in 2019 to improve and standardize care for tobacco
addiction and reduce the number of smokers in Dutch primary healthcare.

However, smoking status is now often not reliably and uniformly recorded in
EMRs. Instead, this information is often mentioned in the free, unstructured
text written about medical consultations (Partnership Stop met Roken, 2019),
which are known as SOEP texts in Dutch primary healthcare. Smoking status
classification with Natural Language Processing (NLP) and Machine learning
(ML) has been identified as a potential method to find smoking status informa-
tion in such free text of consultations for decades (Uzuner et al., 2008; Palmer
et al., 2019).

Such automatic methods depend on large-scale labelled datasets to train al-
gorithms to recognize new, unseen cases. The healthcare domain usually does
not have such large labelled datasets available for clinical problems, especially
not publicly available. This is also the problem for smoking status classifica-
tion: publicly available datasets for smoking status classification are small, or
not (fully) labelled for smoking status. In response, research on the automatic
classification of smoking status consists of solutions built with small data sets
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and simplemethods such as algorithms based on regular expressions (Palmer et
al., 2019) or logistic regression (Weng et al., 2017). These methods are not the
State of the Art (SOTA) for current NLP problems, and often under-perform
compared to more advanced methods with machine learning, deep learning,
and language modelling (Mikolov et al., 2013) on similar problems such as dis-
ease classification with text fromEMRs (Zhao et al., 2019) and the classification
of medical emergency levels in triage on the basis of text from the EMR (Horng
et al., 2017).

We thus identify the under-utilization of modernmethods and techniques on
smoking status classification, and a major factor in this situation being the fact
that there are only small datasets. We intend to overcome this problem with
a weakly supervised paradigm: we label unlabelled data points with LFs (la-
belling functions) in a generative LabelModel trained with SNORKEL (Ratner
et al., 2016, 2017), to then use a larger training set labelled by this model
to train a machine learning classification algorithm. This allows for a model
that is flexible enough to pick up on elements not seen by human developers
of rules by the machine learning model, while it also allows for more train-
ing data than in the original labelled dataset. Additionally, we do not train a
model from scratch, but use Transfer learning, where a large Transformer is
pre-trained on language understanding (Devlin et al., 2019). We use a Dutch
pre-trained language model (Vries et al., 2019) and then fine-tune this model
in the final layer with a relatively small number of labelled smoking status
examples. This also allows us to work with only a small number of labelled dat-
apoints, since the model already has knowledge of the Dutch language from its
pre-training phase. We thus intend to overcome the ’small dataset’ problem for
smoking status classification in twoways. First, by leveraging pre-trainingwith
Transformer-based models (Devlin et al., 2019) on large (language) datasets be-
cause we do not have such large datasets for this problem. Secondly, increasing
the number of labelled datapoints for smoking status classification in a manner
that is scalable (with a generative model).

Out of this analysis of the research gap and specific problem follows the
following research question:

"How can we best automatically detect and classify the smoking status of
primary care patients’ EMR (Electronic Medical Record) on the basis of the
free text in GP doctor’s notes?"

We intend to answer this question with three sub-questions:

• Canwe obtain similar performance with a rule-based baseline on smoking
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status classification as earlier literature (Palmer et al., 2019; Weng et al.,
2017; Palmer et al., 2019)?

• Does Transfer learning, by fine-tuning a pre-trained BERT Transformer
model (Vries et al., 2019), improve performance over the rule-based base-
line in classifying smoking status?

• Does a weak supervision programming paradigm (Ratner et al., 2016),
by labelling more training data points with a generative labelling model
(Ratner et al., 2017), improve performance over the rule-based baseline
and the earlier classification model in classifying smoking status?

This thesis will attempt to answer this question and its sub question with
the following chapters:

Chapter 2 provides an extensive background to smoking status classifica-
tion and smoking status detection, and to weakly supervised learning. It will
identify the gaps in previous literature, as well as analyze some phenomena
prominent in earlier work.

Chapter 3 describes the data and the extensive data pre-processing that
leaves us with a dataset use-able for answering our research question.

Chapter 4 discusses our methods for smoking status classification, with
Section 4.1 discussing our method for supervised learning with with a Trans-
fer learning framework by fine-tuning of a pre-trained Transformer language
model (Vries et al., 2019) as well as with our rule-based baseline. Section 4.2
describes our method for weakly supervised learning using a SNORKEL gen-
erative model (Ratner et al., 2017).

Chapter 5 explores the results of our smoking status classification experi-
ments. Section 5.1 describes the performance of our rule-based and supervised
models on our test set, while section 5.2 describes the performance of ourweakly
supervised model on the same test set.

Chapter 6 discusses the results in a broader context, explores the results’
implications and factors involved, and also discuss choices made in previous
chapters and the influence these might have had on the results.

Chapter 7 concludes the thesis by answering the research question and its
partial questions.

Several Appendices provide additional calculations or background infor-
mation. The text will refer to these appendices where they might be relevant
for the reader. Right before the appendices, there is a list of Figures and a
list of Tables provided, with descriptions and page numbers for reference.
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2 Background
The following chapter will outline earlier work related to smoking status de-
tection and classification, and also discuss related work that sort EMRs into
groups based on free text in the EMR (in primary healthcare). It will also dis-
cuss the current state-of-the-art in (clinical) NLP as well as some problems
related to clinical NLP. This chapter also introduces two useful paradigms for
this study: weakly supervised learning, and transfer learning.

2.1 Smoking Status inCurrentDutchPrimaryHealthcare

Medical information can nowadays be stored, processed and accessed more ef-
ficiently than ever before. EMR (Electronic Medical Records) document large
volumes of medical information connected to one specific patient. EMRs consist
of long-term, patient-specific data on consultations, medicine use, and health.
Medical professionals such as GPs, medical specialists, and dentists record the
details of a specific consultation, treatment, or illness, which aids the next med-
ical professional treating the patient. EMRs are thus meant to be a reliable
document of the patient’s medical history. In the Netherlands, a version of the
EMRhas been in use since 2012. It is currently (in 2020) widely used bymedical
professionals in the Netherlands (Medisch Contact, n.d.).

However, not all information is documented in the EMR, or documented in a
systematic and comprehensive way. Medical professionals often feel a tension
between coding information systematically (for instance recording a patient’s
complaint or illness as amedical code, or recording information in a specific field
of the EMR), and simply describing it in the text they write of the consultation
or procedure in in the EMR (Ford et al., 2016). The latter option takes less
time, as the medical professional does not need to navigate a codebook or an
electronic interface to find the right medical code or sub-field. This reduces
the documentation load, which leaves more time for actual medical work such
as consultation and treatment. In the Netherlands, some documentation load
is required by the government or health insurers, but additional, not required
documentation usually does not happen (Partnership Stop met Roken, 2019).
However, it greatly helps other medical professionals working with the patient
if information is recorded in a structured and systematic manner, as this allows
users of the EMR to quickly and reliably find and use the information.

One specific case where this tension is prominent is the smoking status
of patients. A patient’s smoking status is whether or not the patient smokes
cigarettes, and usually also includes information on whether a patient has ever
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smoked, and possibly also for how long and how many packs a year (Marston et
al., 2014; Partnership Stop met Roken, 2019). Primary care facilities such as
GPs can record smoking status, but this is not legally required in the Nether-
lands (Partnership Stop met Roken, 2019). Additionally, recent research into
primary care in the UK has indicated that clearly defined definitions of terms
such as "ex-smoker" and "non-smoker" are essential for reliable documentation
of this information (Marston et al., 2014), as otherwise individual GPs record
this information in different manners.

The 2019 Care Standard guideline for Tobacco Addiction was written to-
gether with healthcare organizations and the Trimbos addiction research insti-
tute, and requires all healthcare providers to advise smokers to quit smoking at
least once a year (Partnership Stop met Roken, 2019). The Care Standard ac-
knowledges that, in order for this to happen, documentation on smoking status
needs to improve.

One reason for this lack of uniformity in smoking status recording in pri-
mary healthcare in the Netherlands is health professionals not consistently
using the specific medical codes related to tobacco usage, claim a group of re-
search, healthcare, and governmental institutions under the supervision of the
Dutch Ministry of Health in the 2019 Care Standard for Tobacco Addiction:
Partnership Stop met Roken (2019). One example mentioned in the care stan-
dard is that the DSM definition of "tobacco addiction" has different aspects and
ways of diagnosis than the ICPC code for "tobacco abuse", meaning these cat-
egories have slightly different meanings. This leads to not every smoker being
recorded in them (as the DSM notes, not every person smoking cigarettes is
necessarily addicted, while of course a non-addict can also harm themselves
by abusing tobacco). This means a "tobacco addict" is differently coded from a
"tobacco abuser" in their EMR, while they both would likely be classified as a
"smoker" by any medical professional. Such confusion of category and termi-
nology is at the heart of the problems with smoking status classification.

The current codebook for primary case in the Netherlands, (the "Tabel Di-
agnostische Bepalingen", version 33), indicates there are 39 different ways of
recording tabacco use in the EMR. These include binary variables, text field
variables, and numeric variables, from "amount of sigarettes smoked a day",
"how often patient tried to stop smoking", "consultation on smoking", "reasons
not to stop smoking", and "given advice to stop smoking". Another documenta-
tion for smoking behaviour is the International Classification of Primary Care
(ICPC) code for "tabacco abuse", P17, while the DSM-5 and ICD-10 also have a
code for "tabacco addiction" (Partnership Stop met Roken, 2019).

Another factor is of influence in the documentation and the (lack of) record-
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ing of smoking status in EMRs is that the Dutch primary healthcare system
makes a principal distinction in their patient population, which also influences
how well smoking status is documented. Around 10% of all patients have a
chronic illness that requires long-term monitoring, such as heart disease, di-
abetes or COPD (Zorginstituut Nederland, n.d.). These patients are put in a
special track within the healthcare system, called Ketenzorg, in which these
patients have yearly contact moments with primary care, and have standard-
ized documentation of their illness - including their smoking status. This more
intense contact with primary healthcare has consequences for our research
project, because it means there is a sub-group of patients that has their smok-
ing status systematically and reliably documented, while for the majority of
patients (the other 90%) this is not the case. However, this also offers possibili-
ties: perhaps the 10% in Ketenzorg programs can be used to help more reliably
organize and extract the information from the patients not in this specialized
program. We further explore this option in our methods section and our further
study.

The specific problem is thus that EMRs are not often labelled for smoking
status, while such information is needed in primary care. In order to solve this
problem, this study turned to Natural Language Processing (NLP).

2.2 Natural Language Processing and Machine Learning
as a Solution

Natural language processing (NLP) is the analysis and understanding of
language with computers and computationalmethods. It is an interdisciplinary
field finding its roots in computer science, linguistics, mathematics, electrical
engineering and even psychology (Jurasky & Martin, 2000). The advantages of
using NLP techniques, especially for problems requiring the analysis of large
quantities of text (also known as TextMining), is that a computational approach
can quickly and consistently process information where humans would not be
able to do so. NLP is thus useful for solving a problem requiring the analysis
of large and complex corpora of text, such as the smoking status problem in
EMRs.

NLP, especially in combination withMachine Learning, has recently seen
a drastic increase in use and performance. Machine learning is a technique
where algorithms learn to independently do tasks that generally require intel-
ligence, without being specifically programmed to do these tasks (Ng, 2020).
Machine learning algorithms are usually trained, by seeing examples of data,
to then perform their task on data not seen in training. The use of machine
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learning has attracted increasing interest in the medical domain over the use
of "expert systems" (systems built out of rules made by the help of professionals
in a certain domain) (Obermeyer & Emanuel, 2016). A system based on rules
designed by experts, such as "if the level of value X is above Y", does not learn
from the data - making it fundamentally different from a machine learning ap-
proach, and also less flexible and adaptable to new data.

Recent uses of NLP and machine learning on medical text include the pre-
diction of the palliative phase on the basis of EMRs (Beeksma et al., 2019),
detection of medical concepts in unstructured text (Tulkens et al., 2019), or
predicting the risk of type 2 diabetes based on information in the EMR (Mani
et al., 2012). The most common recent techniques used in such research are
word embeddings, a manner of capturing semantic information. Word embed-
dings do this by placing words in a high-dimensional vectorspace while placing
words with similar contexts near one-another (Mikolov et al., 2013). Word em-
beddings are trained on large datasets of texts by predicting the context from
the word, or the word from the context. Words in similar context thus get a
similar vector representation, and in practice these words usually have similar
meaning. In this way, implicit semantic information is encoded in the vector.
Another technique that has seen recent widespread use in NLP and text clas-
sification is artificial neural networks (ANN): a highly flexible class of machine
learning algorithms using vectorized matrix operations, able to also learn com-
plex semantic and linguistic information from text. A neural network can be
defined as "a parallel, distributed information processing structure consisting
of processing elements (which can possess a local memory and can carry out
localized information processing operations) interconnected together with uni-
directional signal channels called connections" (Hecht-Nielsen, 1992). Such an
architecture can learn to map any mathematical input-output pair in training,
and then after training be used for new analysis on unseen examples. Back-
propagation is able to learn this efficiently by computing the gradient of the
loss by the weights of different computations in the network, and then adjust
these weights to better predict the outcome. The algorithm thus optimizes itself
to classify unseen examples.

A machine learning approach is thus more flexible (as it learns from the
data and can adapt to new data) and more suited to large, complex data with
complex relationships than a system with pre-programmed rules. This project
will thus focus on developing a Machine Learning solution to solve the problem
of smoking status classification.

As noted in the systematic overview by Kreimeyer et al. (2017), 46% of NLP
projects aiming to identify and extract elements fromunstructured text in EMRs
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still use rule-based systems, while the other large group uses a hybrid approach
of Machine learning and expert rules (26%). Only a minority (4%) uses solely
Machine Learning and does not use expert rules at all. This is remarkable,
since more general NLP has moved on to more advanced methods than heuris-
tic rules. Another systematic review Ford et al. (2016) also shows that research
in clinical NLP often does not use machine learning but rules made by experts
and keywords to tackle complex text mining problems such automatically iden-
tifying certain illnesses.

Most recent developments in the NLP field have moved away from rule-
based systems to other techniques. The most recent developments in NLP and
machine learning are the adoption of large-scale pre-trained Transformer net-
works. The central idea in these models is transfer learning: the transfer of
knowledge from one task to another. The famous first uses of such models in-
clude BERT (Devlin et al., 2019) and ELMO (Peters et al., 2018), trained on
millions of texts in performing a specific task, such as predicting masked words
or predicting the next sentence. The previously attained linguistic knowledge
in these networks allows the network tomore easily solve new, language-related
problems. However, this knowledge is language-specific, so recently researcher
have made Dutch BERT models (Text Mining Research Leiden, n.d.; Vries et
al., 2019), and also domain-specific, explaining the rise ofmodels likemedBERT
for the medical domain (Alsentzer et al., 2019).

These large-scale language models are able to capture semantic and linguis-
tic content from text by training on very large datasets of text. The task they are
trained on is predicting masked words, or predicting the next sentence, based
on input. This enables such models to learn which words are likely to occur
in similar contexts, and capture such semantic similarity in the word vectors.
In a large vector-space, words with similar contexts are thus placed close to-
gether. This technique builds on earlier language modelling approaches, such
as predicting a word from its context and context from its word in the WORD2VEC
method (Mikolov et al., 2013).

Especially BERT and BERT-based models have seen widespread recent use.
BERT’s innovation over earlier (large-scale) masked language models is that
it is a Transformer-based neural model which uses bidirectional prediction: a
word is predicted both from the left-to-right and the right-to-left word context,
in a large neural model able to learn from feedback, as all neural models with
backpropagation. The use of BERT or BERT-based language models has led
to greatly improved improvement all kinds of NLP tasks, from classification to
question answering.

These modern methods are not usually utilized in earlier research on smok-
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ing status classification, which we will explore in the next section.

2.3 SmokingStatusClassification and InformationExtrac-
tion in Earlier Literature

The first work related to automatic smoking detection and classification is a
shared task from 2006, described in (Uzuner et al., 2008). It had five smok-
ing status labels to predict (never, past, current, smoker temporality unknown,
and unknown smoking status), and the shared task consisted of consultation
notes in 502 patient dossiers. The most successful approach, in terms of perfor-
mance measured in F1 score, was designed with Weka and “Nuanced Medical
Extraction” rule-based system that identified markers such as smoking-related
medication to get features, together with unigrams and bigrams, and then used
SVM as a model to train on these features. This approach already pre-filtered
the training material for phrase-mention of smoking, as they classified any-
thing not mentioning “smok” as of unknown status in their first step. Another
successful approach in this study first searched for the stemmed tokens “smok”,
“tobac”, “cigar”, classifying the rest as “unknown”, and then used linear SVMs
for further classification, again with tri and bigrams. This solution fits neatly
in the trend (Ford et al., 2016) see for clinical NLP: relatively simple, rule-based
solutions are widely used.

Currently, the most cited paper related to smoking status in NLP is a paper
on automatic classification of patient groups related to the risk of cardiovascu-
lar diseaseWeng et al. (2017). One of the features used is smoking status. They
tried to identify patients that will ever have cardiovascular issues, and in their
study compare their system to a currently used baseline (clinical guidelines
changed into if/then rules). The machine learning approach led to significant
increase in precision, highest scoring is a neural model with .67 accuracy, but
most models are underspecified in the work, making it unclear which architec-
ture or design choices were used (a simple description such as “neural networks”
does not fully explain which technique or architecture is used). Additionally,
Weng et al. (2017) do not provide much attention to how this experimental out-
come is tested and validated, the authors only mention the use of a random
25% validation set. This also signifies a common trend in clinical NLP: the re-
search methodology and research term clash between clinical researchers and
machine learning experts. We will discuss this further below.

Later approaches on smoking detection seem to follow the earlier proven
rule-based regular expression approach, with systems working to simply detect
the words "smoking" and "tobac". Interesting is a recent bioinformatics paper
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by Palmer et al. (2019). This group worked with a small dataset (758 instances),
with as goal finding more detailed information about smoking behaviour such
as packs a year and cessation date (when patient stopped smoking). Methods
tested where a rule-based system with regular expressions. They also tested
SVM with the stemwords used in the best solution from the shared task from
2006 (!): “smok”, “cig”, “tobac”, “nicoti”, with +/- 5 words surrounding the words.
They received F1 = 0.90 with simple regex rule-based system, but also have
some validation issues. They have self-labelled data, and also artificially up-
sampled the amount of smokers to 50% of all training data by using a search for
stem “smok” as detector, while this is not realistic distribution of smoking data,
nor a good representation of all “smoking” data. Notable is that a rule-based
classification method from 2006 is still used in a paper from 2019.

2.4 Challenges in Clinical NLP in General, and Smoking
Status Classification in Particular

We thus identified a main problem: work concerning the identification of sys-
tematic information in free clinical text (such as smoking status) often does not
use state-of-the-artmethods. The question remains why. There are several sub-
stantial challenges to implementing state-of-the-art practices and techniques
in clinical NLP.

2.4.1 Explainability

One possible reason are possibly the low explainability of more state-of-the-
art approaches to NLP, such as word embeddings and neural networks. These
methods are highly effective at capturing and extracting complex semantic and
linguistic information in language, but are often not able to provide explana-
tions of their decisions. An example is Beeksma et al. (2019)’s use of Long
Short Term Memory networks to identify the palliative phase for individual
patients. The algorithm used performs better than medical specialists at iden-
tifying palliative patients, but cannot fully explain how it does so. This lack of
explainability can be problematic in an agewhere patients’ medical information
is increasingly their own, and where patients have a right to fully understand
why and how their data was used to reach a certain medical decision. Amedical
or clinical application is a high-stakes domain as identified by Rudin (2019) in
her analysis of the use of uninterpretable models, meaning such an algorithm
or model will greatly influence the individual’s life and choices, and thus the
patient has the right to understand and interpret the algorithm’s decisions.
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2.4.2 A Babylonic Misunderstanding

A related hurdle is the lack of understanding between the medical discipline
on the one hand, and the computer science and AI field on the other. This is
especially visible in methodology. While clinical research is rightly and care-
fully built upon rigorous inferential statistics (most commonly null hypothesis
significance testing), the AI field uses prediction and performance metrics re-
lated to a held-out test set of examples as their main approach to determining
the validity of an approach or study. These approaches can be complementary,
but are often seen as contrasting and incompatible. Together with a lack of un-
derstanding what machine learning exactly is, and similar or the same terms
being used in both fields, this can lead to confusion. For instance, "logistic
regression" can be used for inferential statistics and is often used in this man-
ner by clinical researchers, while it is essentially a machine learning model
that learns from the data, and thus also used by the computer science field.
This Babylonian language confusion can be seen in a fairly popular paper (Jie
et al., 2019), where the authors (clinical research specialists) claim "Machine
Learning" is not better than "logistic regression" for clinical prediction, without
clearly defining the boundaries between the two concepts and creating a false
contrast. Additionally, the authors seem to not understand the fine-grained
differences in machine learning architectures, especially different neural net-
works, or use terms underspecified machine learning specialists (such as "clas-
sification trees", which can refer to several very different learning algorithms).
This same problem is visible in Weng et al. (2017), where the authors describe
their algorithm as "neural network" without further specifying the architecture
of their model. Neural models are a class of models, and knowing exactly which
"flavour" is used is essential in understanding and reproducing the results.

To further illustrate the Babylonic confusion in using terminology in this
field, see Table 1 below, designed by Maarten van Smeden in a Twitter post on
5 February 2020 (van Smeeden, 2020)). Dr. van Smeden is a Dutch clinical spe-
cialist. The post, while not grounded in rigorous scientific study, illustrates the
confusion the two disciplines and paradigms lead to when a researcher trained
in one of them attempts to use methods from the other field, with terms such
as "model" and "noise" having different or conflicting definitions.

These terms are, furthermore, often not 1:1 ’translatable’. A feature is not
always a variable, and the term "confound" as used in hypothesis testing with
traditional statistics does not fully translate to "noise", as noise can also be a
"measurement error". This makes for a confusing landscape for researchers
on the crossover area between especially clinical prediction studies and clinical
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NLP/Machine Learning, and could explain why we see such under-specified or
simply wrong definitions in these studies. In order to correctly label and iden-
tify clinical classes or variables, one needs clinical expertise, but for machine
learning research one often needs expertise in the data science and machine
learning field as well.

Table 1: Babylonic Misunderstandings between traditional medical statistics
and the NLP/Machine Learning field, as based onMaarten van Smeden’s table.
These terms

Traditional / Inferential Statistics Machine Learning/NLP
Fitting Learning/Training
Measurement Error Noise
Predictor Variables Features
Outcome Variable Target/Label
Model for Discrete Var. (often: Logistic Regression) (Supervised) Classifier
Model for Continuous Var. (often: Regression / Linear Model) (Supervised) Learning Model
Covariate/Confound Noise
Sensitivity Recall
Positive Prediction Error Precision
Derivation-Validation Training-Test

2.4.3 The Hungry, Hungry Neural Network

A third problem is related to the data size, as we discussed briefly above in
Chapter 1 as well. First of all, due to very reasonable privacy and practical
concerns, clinical data is not easily accessible to researchers, while modern ma-
chine learning research benefits from large quantities of open-access, shared
datasets. This ethical conundrum is well described by Suster et al. (2017).
The process to get permission to use clinical data, especially clinical data with
personal information on individual patients, is long and complicated while re-
search and progress in the Machine Learning and especially NLP field happens
fast. Methods of only three to five years ago, such as Support Vector Machines,
seem outdated compared to word embeddings and even, especially, pre-trained
Transformer models. This means such ’data delay’ can cause slower progress
in clinical NLP, which might be another factor contributing to the use of older
methods in NLP recent as identified by Ford et al. (2016) and Kreimeyer et al.
(2017).

A related data problem is sparsity of labels. For supervised machine learn-
ing, where a machine learning algorithm learns to categorize or predict new
cases based on data seen in training, the training-data needs to have a label,
for instance the medicine name or group membership. However, due to the ear-
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lier mentioned lack of systematic recording in EMRs and medical data, labels
are often missing. This is especially challenging because state-of-the-art neu-
ral models require large quantities of data. Solutions have been the adoption of
unsupervised methods Tulkens et al. (2019), or attempts to work with carefully
selected smaller datasets as mentioned by Suster et al. (2017). However, these
smaller datasets have their own problems concerning generalizability across
situations, hospitals, or regions.

Especially the last problem is also a problem for smoking status classifi-
cation and detection in (Dutch) EMRs. As stated before, even positive cases
(where the patient is a smoker) are not always consistently labelled. Thismakes
training any supervised model quite difficult, as there is limited training data.
This is especially the case for Dutch-language corpora and data, as the major-
ity if not all publicly available smoking status classifiers are based on English-
language EMRs and pre-trained models.

We can thus conclude that NLP is a suitable method for approaching the
detection and classification of smoking status in Dutch EMRs, but that several
hurdles remain in the use of advanced NLP techniques on medical data, and
especially concerning smoking detection and classification.

2.5 (Weak) Supervision

In Machine Learning, the most common approach is to provide a training al-
gorithm with labelled examples. Supervised learning is a machine learning
paradigmwhere amodel learns to label, classify, or group new datapoints based
on earlier seen data in training. For instance, seeing many examples of patient
EMRs with the label "smoker" versus "ex-smoker", the model will be able to find
the parameters distinguishing the two classes, and apply these parameters to
new data. In order for this to work, the key ingredient is correctly labelled
training data. Especially when the labels require specialist knowledge, experts
in the specific (sub)fields are needed for careful and correct labelling.

As Ratner et al. (2017) explain, a common bottleneck in current machine
learning research is lack of such labelled training data. Wang et al. (2019) and
Suster et al. (2017) noted, this problem is even more pronounced in clinical
NLP: datasets are often hard to find due to understandable privacy and ethics
constraints, and the data that is available often lacks reliable, systematic la-
belling. Ratner et al. (2017) discuss several ways to solve this problem. One of
them is the recently popular transfer learning framework. In this context,
transfer learning would mean using a pre-trained model, trained before with
other data. However, in order for this to work, the pre-trained model also needs
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enough access to training data. We would be transferring the ’data scarcity’
problem simply one step ahead in the pipeline.

Another approach would be to obtain more labelled datapoints, without hav-
ing to hire new expert labellers while retaining the high-quality of the labels.
This could be done with a so-called weak supervision paradigm. In this form
of supervised learning, the labels are of lower quality because they are either
made by non-experts, based on other values or heuristics, or even based on ex-
pected distributions and statistics of the data (Ratner et al., 2017). In terms
of weak supervision, there is a recent paradigm possibly interesting: the ap-
proach by software package SNORKEL developed by Stanford, as described in
Ratner et al. (2017). It does not only use regular expressions and keyword-
based Labelling Functions (LFs) tested on a hand-labelled training set, but
also checks whether a label assigned by these rules is probable. It does this
by comparing the different LFs to determine inter-LF agreement but also the
most accurate LFs. All LFs get a vote, which allows for fuzzy labelling (e.g.
between 0 and 1) to denote certainty, with LFs also having the option to ab-
stain from judgment when a certain probability threshold is not reached for an
instance. This trained model can then be used to label millions of datapoints
with high accuracy, and this larger training set can in turn be used to train
models. SNORKEL is currently used by models of companies such as IBM and
Intel. In Figure 1, we see the entire pipeline explained of a SNORKEL model
as explained by Ghelani (2019). Labelling Functions are used to determine a
label with a generative model, after which the LabelModel is trained to dis-
tinguish noise from signal by weighting the different LFs and exploiting their
(dis)agreement. The output is then a trained LabelModel that can be used to
label unlabeled datapoints reliably.
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Figure 1: Visualization of SNORKEL fromGhelani (2019) , explaining the Data
Programming paradigm as implemented in SNORKEL. The idea is that experts
make Labelling Functions (first step on the left), which are tested on a subset
of the data - which allows researcher to test their accuracy. Then, Labelling
Functions are used to predict a label with a generative model (second step on
the left), after which the Noise-Aware LabelModel (third step from the left) is
trained to distinguish noise from signal by weighting the different LFs and ex-
ploiting their (dis)agreement. The output is then a trained LabelModel that can
be used to label unlabeled datapoints reliably. After this, a trained LabelModel
can label more examples, which can then be used for training a ML-model.

A useful usecase for our problem is Wang et al. (2019), who also noted lack of
ground-truth labelled data in clinical NLP due to privacy and time constraints.
They use the weakly supervised paradigm on three clinical NLP cases, one of
them being smoker status detection and classification. They used 23.336 in-
stances from the Mayo Clinic, and used a regular expression algorithm tested
on 475 hand-labelled dataset to label the other datapoints into the five smok-
ing status classes used in the shared task as seen above.1 This weakly labelled
dataset was then used in testing several algorithms, with CNNs performing the
best in terms of F1-score, but a simple RegEx-based rule based system also per-
formed well, better than SVMs. Another interesting find was that any training
size increased above 5,000 did not lead to increased performance for the CNN
model, which was 20% of the dataset. Word embeddings beat any other form of
featurization, including tf-idf.

Earlier literature thus shows us two key findings:

• Regular Expression or simple rule-based systems, sometimes alreadywork
fairly well for smoker detection or smoker status classification, and have
been in use for decades;

• The problem of sparse labelling can potentially be helped with a weakly
1However, it must be said that the paper explained the weakly supervised paradigmwith the

SNORKEL (Ratner et al., 2017) software, but did not provide information on their SNORKEL
labelling algorithm, instead only providing a simple rule-based regular expression labeller.
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supervised paradigm, which as been applied before to smoker status clas-
sification, or the popular transfer learning approach.

2.6 Ethics: Humans in Categories

Several ethical questions and problems arise with clinical NLP research like
the current project. One specific issue we would like to address comes from the
fact "smokers" can be seen as a classification of people, while we are working
with representations of patient documents. These two things are not the same.
An Electronic Medical Record is a representation of data on a person, and not
representative of a person. They are a reduction of all complex factors in an
individual patient, and also likely have missing or incorrect information.

This becomes relevant in the use of suchmodels to detect smokers, or classify
humans into smoking status categories. The fact is: a model trained on EMRs
is unable to do this. It is trained on an by itself rudimentary representation
of a human’s medical history, with in its recording of data also biases: posi-
tive results are more likely to be recorded than negative ones for the general
population of patients, while chronically ill patients have been required by law
and insurance companies to have a recorded smoking status. In other words:
for some patient groups, smoking status is more likely to be recorded than for
others, leading to bias in any trained model.

Another important point is that machine learning algorithms can be wrong.
Mathematical models lead ultimately to reduction and error when actively ap-
plied in the categorization of humans, as O’Neil (2016) has shown. This is a
high-stakes domain as identified by Rudin (2019), which means these algo-
rithms could have real impact on an individual’s life, which is also problematic
because such models are indeed very fallible and far from 100% accurate.

In the medical setting, we find Bowker and Star (2000) have described the
problems in classifications and abstractions made by doctors, nurses, and hos-
pital administrators. They acknowledge classification is useful as a record-
keeping practice. Classification of cases and patients have the aim to give access
to the past and prepare for the future. However, classes are also often not able
to deal with ambiguity and uncertainty. Note that, for usefulness in clinical
practice, classification forms and schemes from death certificates to ICD diag-
nostic codes need to accept some inherent fuzziness in the categories, as not
every case neatly fits one cause of death or into a diagnosis. Bowker and Star
(2000) also mention the important concept of duration: membership to a cer-
tain class does not have to be fixed or eternal, and individual patients or cases
can move from class to class. This concept is especially important for smoking
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status classification, as it is inherent in this concept that patients will leave
certain classes (smoker) when they quit smoking. Computational models espe-
cially do not work well with classes with limited duration, as the assumption is
that examples are examples of a class and only of this class. This underlying
assumption of our method thus does not fit the real-life data practice.

Results of this project would be potentially harmful if medical professionals,
or potentially researchers analyzing large-scale data, believe an algorithm’s cat-
egorization into smokers and non-smokers applies to people instead of EMRs,
and also believe it is (nearly) always accurate in classification of smoking sta-
tus. In many situations, this is not the case and can lead to cascading errors
in research and analyses based on data labelled with our model(s). This thesis
project aims to prevent these problems by clearly stating this in this thesis, as
well as advising the company we worked with (Topicus) to not use this model to
predict smoking status of individual patients.

This study also aims to prevent the problem of bias for chronically ill pa-
tients by training separate models for patients in and outside of chronically ill
programme (Ketenzorg). Additionally, we deal with the duration problem by
looking only at one point in time (the latest identified label in the last four con-
sultations), and identify whether EMRs which in that time frame switch from
class membership are classified differently.

In the following chapter, we will describe our data and the methods and
processes used to preprocess this data for smoking status classification.
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3 Data and Preprocessing

3.1 Data Description

For this project, we worked together with software company Topicus. Topicus
is a software provider for the public domain, and one of their services in the
medical domain is the storage and management of data for GPs (General Prac-
ticioners), care centers, and other medical professionals. Topicus was able to
provide us with data on patient consultations from 6 large GP offices in the
Netherlands. These GP offices gave their permission for us to use their data
for the development of a novel method for smoking status classification. We ac-
cessed the data only in a secure server environment and were not privy to any
personally identifiable information such as name, birthyear, birthdate, year,
place of birth, address, or even the city of the GP office.

A query on these six GP databases provided us with data available in storage
from these GP offices. This data consists of EMRs of all patients currently
registered to these GPs, and especially their documented doctor’s consultations,
which encompasses the past 9 years (2011 to 2020) - but with most GPs only
storing the previous five years (2015-2020) in this system, leading to 75% of
data being from 2015 to 2020. 2

The query retrieved patient ID, age, and sex (M/F) information on patients
from these GP offices, text records of their consultations with the GP, and also
retrieved measurements on the Ketenzorg chronic illness programs as well as
measurements related to smoking. These smoking-related measurements in-
clude ’P17’, a long-term illness ("episode") icpc code for tabacco addiction, and
’1739’, a smoking status measurement which categorizes smoking behaviour
with more detail into non-smoker, past smoker, and current smoker, much like
previous literature on smoking status.

This query on the 6 GP offices provides 4 distinct data files for each GP office:
a PATIENTS file with information about patient’s age and sex; a CONSULTATIONS

table with text on patient’s GP consultations; a MEASUREMENTS table with pa-
tient’s icpc codes and diagnoses (in this case, 42 related to smoking as well as
identification whether a patient belongs to the long-term care program Keten-
zorg); and an EPISODES table where long-term illnesses are registered with icpc
codes.

The 24 datafiles in total contain information on 46.064 patients, of which
21.260 have at least one recorded consultation. Of these patients, 1.459 have a

2Wedecided not to restrict the data retrieval to the past five years, however, since the labelled
data we needed for supervised classification of smoking status is rare and our neural Machine
Learning (ML) models need large quantities of data.
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P17 tabacco notification (one, but not the only, documentation of current smok-
ers). Consultations are from 2011 to 2020, but with most (75%) falling between
2016 and 2020. We see all GPs have between 5.000 and 10.000 patients and are
comparable to one-another in terms of the ratio of patients that have recorded
consultations and recorded long-term tabacco addiction. This latest diagnostic
is not often used, with only a small percentage of patients in a GP office receiv-
ing a P17 label. We will further describe some general characteristics of these
different data files below, and also provide some general statistics in table 1
below.

Table 2: The content of each of the four tables for each GP office before prepro-
cessing procedures. We see all GP offices are roughly comparable in size and
number of consultations, though some (e.g. GP1) have more consultations per
patients than others (e.g. GP3). The dataset has 21.260 unique patients who
have had doctor’s consultations, of which 1.459 have a P17 tobacco notification.

NOTE: this is before under-age patients are deleted, so shows more EMRs
than will eventually be used in this study.

PATIENTS CONSULTATIONS MEASUREMENTS EPISODES

GP1 (0000) 5.022 241.220 25.377 286
N patients with consultations 3.868

GP2 (0594) 8.214 127.104 12.170 219
N patients with consultations 3.601

GP3 (1438) 5.804 119.709 10.144 210
N patients with consultations 2.900

GP4 (4970) 11.475 213.032 10.519 181
N patients with consultations 3.885

GP5 (6179) 4.781 110.517 13.018 308
N patients with consultations 3.454

GP6 (9048) 10.768 132.175 13.209 255
N patients with consultations 3.552

All
46.064 943.757 84.437 1.459

N patients with consultations 21.260

We first investigated whether our data could actually answer our research
question, since our research question demanded very specific data. We report
on this in the next section, after which we will describe our preprocessing steps.
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3.2 Can This Dataset Answer Our Research Question?

One of our questions is related to finding whether increasing the training data
set size with a programming paradigm and SNORKEL increases performance
of smoking status classification for clinical notes. This research question de-
mands a very specific dataset: one in which a large group of patient files is
labelled for smoking status, while a portion of patients have smoking status
recorded in a SOEP descriptive text on a GP consultation without this being
formally labelled.

These specifics are needed because we want to classify smoking status, and
also test whether we can use weak supervision in order to enlarge the training
set. For weak supervision to be reliable, we need unlabelled datapoints that do
contain smoking status information a weak labelling function (such as regular
expression-based rules in SNORKEL models) would be able to identify.

We thus need to ask ourselves: does our dataset meet these specifications?
In order to answer this question, we take two random samples from our un-
preprocessed dataset, one small sample of 1.000 doctors consultations and one
larger sample of 10.000 doctors consultations. Note that these are individual
consultations, and not the representations used for smoking status classifica-
tion. Both samples are only a fraction of the full un-preprocessed dataset, which
consists of 943.757 consultations.

One assumption, strengthened by domain experts and especially data ex-
perts whoworked on this database before, was that ketenzorg patients (patients
in programs for chronic illnesses such as COPD and heart disease) are a dis-
tinct population from the general patient population, with especially a better
recording of smoking status because of government and health insurance reg-
ulation of these programs. More attention to the recording of smoking status
for these patients would lead to better recorded smoking statuses. We thus in-
vestigated the prevalence of the smoking status classification variable ’P1739’
within and outside of the patients labelled as ketenzorg patients. There might
also be some inherent relationship between Ketenzorg patients and smoking
status: some chronic illnesses, such as COPD, are related to smoking, while
chronic illness is more prevalent in lower socio-economic classes (Centraal Bu-
reau Statistiek, 2018), which also see more patients smoking (Centraal Bureau
Statistiek, 2018).

An important note on these analyses is that we do not know whether all
ketenzorg patients are reliable labelled, andwhether this dataset containsmany
false negatives that are not labelled ’ketenzorg’ while in fact they are in the
ketenzorg program. In fact, some domain specialists have noted that it is diffi-
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cult to write a query returning all Ketenzorg patients. Usually, membership is
documented with a binary variable. We used three possible queries with these
binary variables: one where any Ketenzorg variable (whether heart disease,
COPD, or any other chronic illness program) was positive, one where the ’GP
as primary health professional’ variable was positive, and one where both vari-
ables were positive. Best results were obtained with the first option - combining
the ketenzorg variables to one binary variable, and leaving out the healthcare
provider variable. Requiring both to be positive actually reduced the number
of ketenzorg patients to 0, even though database experts considered this com-
bination one that was more reliable for identifying these patients than either
one.

3.2.1 Random Sample of 1.000 consultations

In a random sample of a 1.000 consultations, there are 941 unique patients. In
these 1.000 consultations, 22 mention smoking when testing with the regular
expression "([

¯
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¯
[
¯
Rr]oken|

¯
[Rr]ookte|

¯
[
¯
Rr]ook|

¯
[
¯
Rr]oker)

¯
".

These consultations also belong to 22 unique patients. Of these consulta-
tions, 4 are labelled with 1739, also 4 unique patients. Which means 18 pa-
tients do mention smoking in their consultations, but are not labelled with
1739. This means smoking status is indeed under-reported in these EMRs,
with more EMRs mentioning smoking status in the free text than in a recorded
variable.

Of the labelled consultations that do mention smoking in the free text, only
1 patient is in ketenzorg. However, this means that percentually 7.69% of the
13 ketenzorg patients mention smoking and are labelled. This counts for only 3
out of the 901 non-ketenzorg patients, or 0.33% of these patients. This suggests
ketenzorg patients indeed have a higher prevalence of recorded smoking status.

3.2.2 Random Sample of 10.000 consultations

In a random sample of a 10.000 consultations, there are 6134 unique patients.
In these 10.000 consultations, 121 mention smoking with regular expression
"([
¯
Rr]ookt niet|

¯
[
¯
Rr]oken|

¯
[Rr]ookte|

¯
[
¯
Rr]ook|

¯
[
¯
Rr]oker)

¯
". These consultations

also belong to 121 unique patients.
Of these consultations, 35 are labelled with 1739, also 35 unique patients.

Which means 86 patients do mention smoking in their consultations, but are
not labelled with variable 1739. Of these labelled consultations, 9 patients are
in ketenzorg. Of all labelled consultations, 25% (9 out 35) is thus KetenZorg.

Of all KetenZorg patients (103), 9 mention smoking and are labelled - which
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means 8.7% of all Ketenzorg patients have labelled training examples. Over
all EMRs (6134) this is only 35 EMRs, or 0.57%. This suggests the KetenZorg
EMRs are indeed better labelled on smoking status compared to the general
population.

Table 3: Two random samples of 1.000 and 10.000 consultations, and showing
the statistics (how many labelled for smoking status, how many mentioning
smoking in the textdata). This provides evidence this dataset is sufficient for
answering the research question on weak supervision, because a subset is la-
belled and a larger subset mentions smoking status in the textdata without
being labelled.

1.000 random 10.000 random
unique consultations 941 6134
ketenzorg consultations 13 (1.38%) 103 (1.68%)
RegEx mention smoking 22 121
mention smoking & are labelled 4 35
mention smoking, & labelled, and KetenZorg 1 9

3.2.3 Two populations: Ketenzorg and non-Ketenzorg

The fact that KetenZorg EMRs are more often labelled might not only be be-
cause they more often see their GP and because of more attention to smoking
status for these patients, but because of related aspects of the ketenzorg popu-
lation.

Ketenzorg population are patients who have COPD, heart disease, or dia-
betes. These patients, more often than the general population, likely smoke,
since there is a causal effect between smoking and these chronic illnesses. And
positive smoking status are more likely to be registered, especially if this smok-
ing status has an influence on health status - which is likely the case with COPD
and heart disease. Another factor of bias is that smoking behaviour is more
common in people of lower social-economic status, who also more frequently
deal with chronic illnesses. These factors can all lead to the higher prevalence
of smoking status labels in the ketenzorg population.

There are thus both inherent biases (with a smoking status being prevalent
in a certain population, the chronically ill) and recording biases (with the GPs
more often recording it for a the same sub-set of the population due to require-
ments.

Our research entails training models on this dataset. This might lead to
bias towards consultation descriptions of patient who are chronically ill, have
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lower socio-economic status, or both, while not detecting smoking status for
patients who are higher-class or not chronically ill. This bias in the dataset,
where Ketenzorg patients are more often labelled, can thus lead to a biased
model. Additionally, a model trained on ketenzorg data might fail to detect
non-ketenzorg smokers, since the specific descriptions of chronically ill, lower-
class patients could differ from other patients in the general population.

Testing whether Ketenzorg patients are indeed a different population than
non-ketenzorg patients, we performed a t-test that showed the difference in age
was significant (t = 45.7, p=0.0), with the ketenzorg (chronically ill) patients sig-
nificantly older, though the SD measure shows the age is spread widely within
both groups. We also found the ketenzorg group had relatively more male pa-
tients (50.1%) than the percentage of males in the non-ketenzorg population
(42.6%). The ketenzorg group is thus significantly older than the general pop-
ulation, and consists of more male patients than the non-ketenzorg patients.

In order to prevent a bias, or at least study its effects, we also separate
ketenzorg patients from non-ketenzorg patients when training our models to
see what the effect is of this variable.

These datafiles were not immediately useable for our research question.
The following section discusses steps we took to preprocess the data for our
research question and method. We worked in a step-wise fashion to preprocess
the dataset for our use, also shown in figure 2 below. Step 1 to 3 are performed
iteratively on data from one GP office (4 datafiles) at the time, while from step
4 we are working with one combined dataset with data from all GP offices.

3.3 Preprocessing

3.3.1 Step 1: CONSULTATIONS and unique ID

Within the CONSULTATIONS table for each GP office, every row consisted of a text
field. The texts on consultations are stored in a different variable for different
text entry fields, related to the SOEP system of GP administration: Subjec-
tief (Subjective), Objectief (Objective), Evaluatie (Evaluation) and Plan (Plan),
which allows the GP or medical professional to document different aspect of a
single consultation. A subjective aspect is for instance how the patient feels
or describes symptoms, while the GP notes heartrate or medicine use under
"objective". "Evaluation" is where the GP evaluates the situation, and "Plan"
is where the GP or medical professional documents what steps are taken to
take care of the situation. From a cursory glance at our dataset, we see that
sometimes this distinction between objective and subjective observations and
measurements is dilligently kept, while at other times all information is sim-
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ply entered in only one of the four text entry fields, with the others remaining
empty.

We decided to merge all these textfields to obtain one description of one GP
consultation, but also retain the separate fields for possible future research
interests. We first made each date for individual patients consistent with one
row. We were then able to combine all text written on this one date in one
variable.

For each table in each GP office, we also changed the ID variable to one
where the patient id was combined with the GP office ID, in order to ensure
each patient had a unique identifier that allowed us to link the different tables
to one-another.

3.3.2 Step 2: adding PATIENT information and age

We were then able to connect the patient’s information in the PATIENT table,
such as sex and age at query extraction time, to the texts on consultations by
the use of this new unique ID.

By combining the CONSULTATIONS table with the PATIENTS table, we were able
to now also calculate a patient’s age at the time of a consultation: by extracting
the year from the consultation date, subtracting this year from the year 2020
for the time passed since the consultation, and then subtracting this number
from the patient’s current age as registered at extraction time.

The outcome of this step is thus one table with patient and consultation
information for each patient, within one GP office.

3.3.3 Step 3: adding the smoking status and chronic illness indicators

For our classification experiments, we need labelled examples. The MEASUREMENTS
table as well as the EPISODES table provided us with 43 possible measurements
on smoking status, from number of cigarettes per day to "tabacco addiction"
as a long-term illness. We decided to take P1739, because this variable is in-
use (unlike some other, old-fashioned variables such as "pipe smoking"), and
also has three classes (ex-smoker, non-smoker, and smoker) much like the dis-
tinctions between classes made in earlier NLP work. This allows us to easier
compare our approach and results to these earlier approaches as well.

In the MEASUREMENTS table, variables are coded in three columns: a column
indicated the name of the variable, a binary column indicating whether or not
the variable is filled, and a third column with the value, as well as the date
when this measurement was recorded. We wrote a filter that kept each value
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in a row where the P1739 column was indicated as filled-in, and connected this
row to the correct patient ID.

We combined data from all 3 files (PATIENTS, CONSULTATIONS andMEASURE-
MENTS) for each GP office. 3 We combine all patients in the COPD, diabetes,
heart disease, or other Ketenzorg programmes from theMEASUREMENTS file
in one binary variable called ’Ketenzorg’, and then also add a variable which
addedwhether theGPwas themain healthcare provider, since data experts told
us some GPs did not use the Ketenzorg variable but the ’GP as main healthcare
provider’ variable to identify Ketenzorg patients. We thus use both variables
in our final dataset to identify ketenzorg patients.

All merging of these tables and combining of variables is done based on date
and patient id, ensuring the variables are connected to the correct patient and
consultation. We connected this table to the earlier file that combined the pa-
tient and consultation data.

This means the output of this step is one file per GP office (meaning: 6 data
files in total), with each patient having information on consultations consisting
of dates, doctor’s notes, smoking status, and long-term indicators of chronic
illness or tabacco addiction.

3.3.4 Step 4: combining GPs and filtering out minors

After having done these transformations for all GP tables, we then combine all
the six GP tables into one large datafile.

Our next step then consists of filtering out all minors, in two ways: every
patient who was less than 18 years old on the date of query extraction, and
any consultation where the patient was less than 18 years old. This had two
reasons: we consider it ethically dubious to further process sensitive textdata
on children, and minors usually do not usually smoke - so their data is less
relevant to our research question.

The output of this step is one file, consisting of all 6 GPs offices, with per
unique EMR all information found in the previous steps.

3.3.5 Step 5: Train/Test/Dev split

We then split the dataset in a 80% train, 20% test/dev set. We use the training
set to later train themachine learningmodels, while we use the development set
to fine-tune and develop the rule-based model and the SNORKEL LabelModel.

3We exclude the EPISODES file, as this file only had the P17 long-term smoking status we
decided not to use as labels for our classification task.
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The test set is used to compare the performance of all smoking status classifi-
cation algorithms.

We ensured there were different and unique patients in the train, test, and
develop set, in order to ensure there was no contamination that would lead to an
algorithm having already encountered a testing example in its training phase.

3.3.6 Step 6: split the subset in ketenzorg/non-ketenzorg and labelled/non-
labelled

We then split the train, test, and development set into a subset that is labelled
with P1739, and a subset that is not. We also split these sets into a subset
that is ketenzorg, and a subset that is not. We do this so we can easily use the
labelled examples for supervised training, and can compare the performance of
ketenzorg versus non-ketenzorg.

3.3.7 Step 7: only keep last labelled smoking status conversation from
each unique patient

Lastly, we were required to normalize the labelled smoking status EMRs. The
mean number of consultations per patient in our final preprocessed dataset is
around 4 (M = 3.7), but with large spread (SD = 2)

Some patients had several consultations labelled with a smoking status, and
some only one. However, the latest labelled consultation is the most relevant
one: we thus decide to normalize data length for all EMRs by only allowing one
consultation with smoking status per EMR as example, and this the latest one
for current smoking status. One consultation has a mean of 36 words, but with
large spread (SD = 42), and a lower median (23 words).

We also filter out some datapoints at this point from the labelled dataset.
This is the around 1% of datapoints having a nonsensical or unofficial P1739
label not mentioned in the codebook, such as "0" or "x". These are not values
used in P1739, and cannot be used in further classification experiments.

Our final dataset after this procedure consisted of EMR representations
from 17.236 unique patients. The preprocessing procedure is visually displayed
in figure 2 below, where the "episodes" table - also one of the four tables in the
dataset - is not further used in the preprocessing procedure and is thus shown
as grey and without connection to the final dataset. It consists of all previously
described steps, such as combining the GP ID with the patient ID to obtain a
unique identifier to the connection of the SOEP consultation text to one patient
and date.

Table 4 shows two fictional examples of the final data representation. The
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first column shows the unique identifier made from the patient ID and GP ID,
while other variables are connected to this variable. The columns used in the
further experiments are the SOEP text, used for the classification experiments
as examples to classify, and the smoking variable 1739, which is used as labels
for training models to classify smoking status.

Table 4: Two rows showing fictional examples of our final dataset, visualizing
how all information was structured per row. As shown here, each unique con-
sultation for each unique patient was one row in our dataset.

patient ID_GP ID Sex Age at consult Age in 2020 SOEP text date smoking (1739) Ketenzorg

9999_777 F 40 43 Mevrouw heeft buikpijn

Translation: Mrs. has stomach pain

23-04-2017 4 0

8888_666 M 63 62 Is gestopt met pasta eten, is afgevallen.

Has stopped eating pasta, has lost weight

05-07-2019 1 1
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Figure 2: This figure displays the full preprocessing pipeline in order to get to
the final dataset used for further experiments. For each of the 6 GP offices,
we have 4 data files (CONSULTATIONS (Table 1), PATIENTS (Table 2), MEASUREMENTS
(Table 3),and EPISODES (Table 4). First, we combine all documents coming from
one GP (Table 5), making a new identifying variable consisting of patient ID
and GP office id. We then combined these 4 GP databases into one database,
and then filtered out any underage patients and any patient underage at the
time of their GP consultation.
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3.3.8 Text Transformation: BERT and BERT finetuning

One of the latest great development in currentNLP is the use of large-scale, pre-
trained language models, such as BERT (Devlin et al., 2019). The BERT-based
language model we use is the Dutch BERTje (Vries et al., 2019). It is trained on
12GB of high-quality, formal text data (capturing around 12.4 billion tokens)
fromwikipedia and linguistic corpora like SoNaR. Their pre-training procedure
further incorporated the SentencePiece tool, allowing for sub-word embedding
as well. We use their cased model (meaning uppercase words retained their
upper- and lower casing in training) for text transformation in our classifica-
tion experiments. A possible downside to this choice is that BERTje is trained
on general-purpose language, not on specific medical language. With finetun-
ing, we can teach BERTje specific vocabulary for our task, in our case: Dutch
medical data, and smoking status classification.

One particular feature of BERT-based models is that these can only process
short texts (up to 152 tokens). Such a tensor-based model also needs all of its
input to be equal length, we decide to only take the 152 first tokens of each set
of each smoking status labelled consultation. If our text is shorter than 152
tokens, we add empty [PAD] padding tokens. 4

Our representation of an EMR for smoking status classification is thus the
latest labelled smoking status consultations of an individual patient, a binary
variable indicating whether this EMR consists of data from a patient belonging
to the chronic illness group (KetenZorg), as well as a GP-annotated variable
P1739 with 3 possible values: smoker, non-smoker, and ex-smoker.

All splits are stratified by GP office, ensuring that one large GP office does
not dominate the training set and thus leads to a biased model, or GP-specific
writing harms the generalizability of our models.

The development set is used to fine-tune a baseline, which is a rule-based
model based on earlier successful rule-based models for smoking status classi-
fication using regular expressions (Wang et al., 2019). We also use the develop-
ment set to fine-tune the BERT-based models and the SNORKEL LabelModel.
The test set is held out until we have built our final models, after which we
compare several models in performance on prediction of this test set.

The distribution across labels is visible in Table 6. Several things are no-
table. First of all, we see that the value "never smoked" is most used. In Figure
3, we also see that there are an (admittedly very small) number of incorrect val-

4We also looked at Sun et al. (2019), who found that for text classification, it worked best to
take a combination of the first 128 and last 382 tokens. We also explore this option, but find
the consultation actually often already reaches the maximum number of 152 tokens, with a
median length of 40 tokens per consultation.
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Table 5: Table showing the size of training, test, and development sets. Note
that this table does not show the distribution for only the labelled datapoints,
but shows all datapoints: both labelled and unlabelled EMR examples.

Training set Development Test
EMR representations 14.298 1.788 1.787

ues. That is, values the GP or assistant put into the system that are impossible
in the dictionary of values for the smoking variable 1739 as presented by the
National GP Society (NHG). In total, this is around 1% of the training and test
set, meaning a handful of examples (up to 88 in the training set) are labelled
with such a value, and need to be deleted. Most often the value ’0’ is used, while
this is not a value represented in the dictionary of values. These examples are
thus deleted from the labelled examples.

Table 6: The labelled datapoints in values used for the smoking status variable
’1739’ ("smoking"), as defined by the NHG (National GP Association)

Training Dev Test
"smoker" 794 115 103
"never smoked" 2081 268 274
"ex-smoker" 2103 268 251
total labelled EMR representations 4.978 651 628

3.4 Research Process

Our experimental set-up is as follows: we start with supervised learning, where
we only consider the labelled data. We then explore SNORKEL as a means to
increase the training size with weak supervision. We compare these approaches
to a rule-based baseline. We visually describe the research process and set-up
of our experiments in Figure 4. More information on the exact method of each
of these approaches can be found in Chapter 4 below.

34



Myrthe Reuver 3 DATA AND PREPROCESSING

Figure 3: Our train/development/test split of the pre-processed dataset, also
showing howwe split these sets in labelled and unlabelled EMRs, and ketenzorg
and non-ketenzorg EMRs.

Figure 4: Our research process, described in a process chart. We start with
the above-mentioned train/dev/test split, and then explore three approaches to
smoking status classification: rule-based classification, supervised learning,
and weakly supervised learning.

split patient
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4 Method
Our experiments come in two distinct parts with two different methods: su-
pervised learning and weakly supervised learning. We describe each of
these approaches in their own subsections in the methods and results chapters.
Subsections 4.1 and 5.1 are about the methods and the results of supervised
learning with BERTje. Subsections 4.2 and 5.2 describe the methods and the
results of the weakly supervised paradigm with SNORKEL and BERTje.

4.1 Method Supervised Learning

Our first experiments are supervised smoking status classification, thus we
are limited to the previously labelled datapoints. We are dealing with N = 4.978
labelled EMR consultations in the training set (out of 14.298 training examples
in total). In the development set of 1.788 EMR representations, there are 651
labelled EMR representations. The test set has 628 labelled EMR consulta-
tions.

4.1.1 Baseline: Keyword/Regex-Based Algorithms

Our baseline consisted of a rule-based classifier based on RegExes fromWang et
al. (2019) and Palmer et al. (2019), which obtained F-scores over > .90 in their
study. Other studies also obtained similarly high performance with similar
approaches on smoking status classification (Weng et al., 2017).

We develop and test three different versions of such a rule-based baseline:
two directly taken fromWang et al. (2019), and one designed ourselves from ear-
lier literature as well as our own additions. This last algorithm was fine-tuned
and developed with the labelled development set. The keywords were identi-
fied with data experts on the dataset, and were also obtained from the Zorg-
standaard (Partnership Stop met Roken, 2019) - in this latter category were for
instance medicine names for smoking cessation as used in the Netherlands by
GPs.

We translated the regular expressions fromWang et al. (2019) from English
into Dutch. There were two datasets mentioned in this paper, with distinct
regular expression algorithms: one developed on the Mayo Clinic dataset, and
one developed on the ib2b shared task dataset. Their smoking status classifi-
cation on the Mayo Clinic dataset was a binary classification, with only smoker
and never-smoker as classes, while their classification on the ib2b shared task
dataset had three classes: current smoker, ex-smoker, and non-smoker. We use
both to test on our test set. These regular expression rules for the classification
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of smoking status fromWang et al. (2019) are given in Appendix A. Some of the
regular expressions lose their meaning in translation (e.g. ENG ’cig’ -> Dutch
’sig’), so are removed, while others (different words for "quitting smoking", e.g.
"ceasing" or "discontinuing") are not Dutch collocations so are also removed.

Our own rule-based algorithm works as follows, and is depicted in pseudo-
code in Table 7. It first sets the label to -1 (abstain, or unknown), and then
identifies whether there is evidence of a positive smoking status, by matching
words such as "roken" (smoking) and "roker" (smoker). Then, it starts looking
for evidence of ex-smoking status, since ex-smoking status is usually identi-
fied by smoking status signifiers (e.g. the keyword "roken" (smoking)) with an
added negation ("niet" or "geen" (not)) or added information ("gestopt" (quit)).
If such a construction is found, the label is updated from "smoker" to "non-
smoker". Then, the algorithm checks whether constructions that signify ces-
sation of smoking ("rookt niet meer" (does not smoke anymore), "gestopt met
roken" (quit smoking)) are in the free text, and if these are there, updates the
label to "ex-smoker". In this way, the label is iteratively updated based on the
information in the text.
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Table 7: The regular expression algorithms used to detect different smoking
status classes, combining both the regular expressions by Wang et. al. 2019,
and terms from the Care Standard on Tobacco Addiction 2019.

smokeRegex = ’((e(-)?sig(aret)?)|pakje|pakjes|nicotineverslaving|tabaksverslaving|
(stoppen.*?met.*?roken)
|(heeft|doet|blijft).*?((ge)?rookt|roken)|(gebruikt.*?tabak)|(huidig|momenteel|nu|nog)
.*?(roker|roken)|tabak(s)?
gebruik*(ja|nog steeds|rookt.*?nog|rookt)|
(roker|rookt?|rookte|roken|rokers?)|tabak|sigaret(ten)?|sig?|pijp?
|nicotine|siga(a)?r(en)?)’

nonSmokeRegex = ’((heeft.*?nooit.*?gerookt|rookt.*?niet|geen.*?roker|is geen
roker)|((niet|non|geen|nooit|negatief).*?(roker|roken|rookte|tabak))
|niet(-)?roker|ontkent.*?roken|
(tabak|rook|roken|nicotine)*?
(nooit|niet)|rookt.*?niet|(0|nul).*?rokers?)’

exSmokeRegex = ’((was.*?roker|gestopt|is.*?gestopt.*?met.*?roken|rookt.*?niet.*?meer)
|((is gestopt|stopte|hield.*?op.*?met|hield.*?op).*?
(tabak|roken))|(vorige|vroeger|verleden|ooit|voormalig|
(ex-|ex).*?(tabak|roker|stop(te)?.*?(met)?).*?(roken|tabak(s)?))
.*?gebruik.*?*(rookte|stopte)|roken*(gebruikte|vroeger))’

for EMR in EMRs:
label = -1
if smokeRegex in EMR:

label = SMOKER
if nonSmokeRegex in EMR:

label = NEVER
if exSmokeRegex in EMR:

label = EX

4.1.2 Classification Model: Fine-tuned BERTje

Fine-tuning a pre-trained Transformer effectively means adding layers on top
of the previously trained layers, and adjusting the weights in the layers to the
new task or domain (Devlin et al., 2019). We use BERTje (Vries et al., 2019),
trained on Dutch text and consisting of 12 layers previously trained in language
understanding by next sentence prediction and word/context prediction.

We train BERTje on the task of smoking class prediction by adding an ad-
ditional untrained classification layer, and training with our own dataset in
several additional epochs. We follow most of the code in a tutorial by Chris Mc-
Cormick for our fine-tuning (McCormick & Ryan, 2019). In Figure 5 as adapted
from the basic BERT schema made by Lin (2020), we see schematically how
BERTje works, with an input sequence going through twelve Transformer lay-
ers and outputting a class. 5 The Transformer model consists of an input of

5The full architecture, with specification of all layers, is shown in Appendix B.
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tokenized texts separated by specific tokens signifying the start ([CLS]) and the
end ([SEP]) of a sequence. These token representations are then fed through
BERTje’s 12 pre-trained layers, after which a 13th added linear layer is tasked
with providing one of three smoking status labels: SMOKER, EX-SMOKER, or
NON-SMOKER.

We trained in small batches of 5 instances due to memory constraints. We
also tested batches of 3, but this led to worse performance on the validation
set. Our best performing settings on the development set are a learning rate of
0.00005 with 2 epochs (more led to overfitting on the training set, with higher
training loss than validation loss) and a batch size of 5.

Figure 5: A depiction of BERTje’s architecture as well as the input and output
for the smoking classification task. Image is based on figures in the BERT paper
(Devlin et. al., 2018) and adapted by Jimmy Lin for public use (Lin, 2020)
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4.2 Method Weak Supervision

We are interested in seeing whether a larger training set, with additional ex-
amples labelled with a weakly supervised labelling model, is able to improve
performance over a model only trained with hand-labelled datapoints.

We increase our training set size with SNORKEL (Ratner et al., 2017) and
the Data Programming Paradigm (Ratner et al., 2016). This means we train a
LabelModel to learn the optimal weighting of heuristic rules designed to label
the unlabelled training examples. This generative labelling of examples works
with the idea that each LF is an unique Labeller, which allows for more reli-
able labelling than with a simple rule-based labelling method. The SNORKEL
method is also able to deal with noise by learning which rules are reliable. With
the additionally labelled examples by the SNORKEL LabelModel, we hope to
fine-tune a better performing BERTje model.

4.2.1 Labelling Model: SNORKEL

We start our experiments with a pre-defined set of 32 labelling functions (LFs)
or heuristics. Of the 32 LFs, 4 are regular expressions and 28 are keyword
scanners. 8 of these keyword scanners predict the ex-smoker class, 19 pre-
dict the smoker class, and the other 5 predict non-smokers. Rules predicting
smoking (the positive class) are more common because positive cases have more
signifiers. For our SNORKEL development, we initially found 6 of our 32 rules
lacked coverage. Among these were 2 of the 3 mentioned medicines for quitting
smoking in the 2019 Care Standard for the Tobacco Addiction (Partnership Stop
met Roken, 2019). A full list of the 32 LabelFunctions can be seen in Appendix
D. Many of these LFs are similar to the keywords and regular expressions used
in the rule-based algorithm described above, with the important distinction
that SNORKEL’s LabelModel can weigh different rules in order to give highest
weighing to the most reliable LabelFunctions - which is something our simple
baseline cannot do.

Our process is one of iteratively tuning and improving these labelling func-
tions to determine (1) how effective they are at capturing the three smoking
status classes (EX, SMOKER, NON-SMOKER), and (2) how they perform in a
generative SNORKEL (Ratner et al., 2017) model.

Our optimization process is shown in figure 6 below. Optimization shows
these steps, where iteratively the LFs performing below a certain accuracy
threshold are removed, after which the LabelModel is re-trained and again
tested on the development set.

We iteratively remove LFswith low performance, and then train a SNORKEL
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Labelling Model with a learning rate of 0.005 learning rate and 500 epochs.
The specific results of our process, with the accuracy thresholds and the LFs
left after each iteration, are shown in Figure 7. We first train a Label Model
on the labelled training set with all Labelling Functions with coverage, then
train a Label Model with all LFs with an accuracy above .20 (21 LFs) on the
1407 labelled training examples, then all LFs with an accuracy above .40 on
the labelled training set, then all LFs with an accuracy above .70 and later an
accuracy above .80 on the labelled training set. After each step, we validate
the model on the held-out development set. We then choose our best perform-
ing model on the development set to label the unlabelled datapoints in the test
set, which turns out to be the latest LabelModel with only the 6 LFs with > .80
accuracy.
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Figure 6: A step-wise depiction of the process of our fine-tuning of SNORKEL,
showing how the process is iterative with the arrow showing the loop from step
7 to step 4 and back.
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Figure 7: Our label model fine-tuning process with specific accuracy thresh-
olds and LFs during the process, visualizing how we eventually arrived at a
LabelModel with 6 LFs.
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Table 8: Performance of trained LabelModels on development set

LabelModel nr LFs nr examples labelled accuracy F1 micro F1 macro
in unlabelled training set

all LFs with coverage 26 5.061 .33 0.33 .31
> .20 accurate LFs 21 5.061 .33 .33 .31
> .40 accurate LFs 17 1.572 .35 .35 .35
> .70 accurate LFs 12 527 .37 .37 .34
> .80 accurate LFs 6 512 .38 .38 .37

This final trained LabelModel canmoderately accurately label an additional
512 examples. We attempt to label as much of the the 9.232 unlabeled EMRs in
the training set as possible, without losing accuracy. We observed that relative
noisy LFs do not contribute to the overall performance.

We saw some peculiar behaviour of the LFs: some of them seem to not be-
have like the Care Standard (Partnership Stop met Roken, 2019) requires. For
instance, the keyword scanning rule "e-sigaret" (e-cigarette) is more often con-
nected to the SMOKING label than to the NON SMOKER label, while accord-
ing to regulations someone using an e-cigarette is a non-smoker. Perhaps e-
cigarettes are being used by current smokers. The word "roken" (smoking) also
seems to occur more with ex-smokers than smokers.

We found model 5 the best performing - the one with only 6 LFs, but 6 that
are highly accurate. Evenwith 6 highly accurate LFs, themodel fails accurately
labelling many examples from the development set.

The results in accuracy are seen below in Table 21. The accuracy is below
.50, even with many individual rules above .60, and the best LabelModel is not
greatly accurate at labelling examples (an accuracy of .38), and also cannot label
many additional examples (512). However, such a small increase alreadymeans
1/3 more data, as the originally labelled training set only had 1.407 examples.

Our second phase consisted of fine-tuning the hyperparameters of the La-
belModel (learning rate and epochs) to see if we could improve over this latest
score. We see a very slight increase with a lower learning rate, from an accu-
racy of .38 to an accuracy of .39. The number of additionally labelled examples
does not increase, and remains 512.

When we increase epochs, we effectively give the model more opportunity
to fine-tune on the training set because epochs are how often the full dataset
passes through the entire network, allowing for more opportunity to optimize
the weights. As seen in Table 10, we see absolutely no difference in performance
with a higher number of epochs, unlike the (slight) difference of performance
with different learning rates. However, the number of additionally labelled
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Table 9: Performance in accuracy (right-most column) and number of additional
examples labelled (middle column) by the LabelModel on the development set
when increasing the learning rate (left-most column)

learning rate examples labelled accuracy
0.005 512 .392
0.0005 512 .393
0.00005 512 .393

Table 10: Performance of different numbers of epochs on the LabelModel, with
a development set with learning rate = 0.00005.

epochs examples labelled accuracy
250 512 .393
500 512 .393
1.000 512 393

examples also does not increase when increasing the number of epochs. Neither
does it improve when reducing the number of epochs, which would effectively
prevent overfitting if this would have been applicable.

4.2.2 Classification Model: BERTje

We then fine-tune BERTje (Vries et al., 2019) with the labelled data combined
with the data additionally labelled by the best performing Labelling Model,
in the same manner as we did with the supervised BERTje model in Section
4.1.2, but in this case use the labelled training data together with additionally
labelled datapoints as training set.

4.3 Evaluation

We evaluate each classification algorithm’s performance on the 628 labelled un-
seen test examples with the evaluation metrics precision, recall, and F1-score.
Precision shows the proportion of predictions of one class are actually a mem-
ber of that class. The recall score shows how many existing members of a class
are found by the algorithm. The F1 score is the harmonic mean of precision
and recall, as seen in Equation 1 below.

F1 =
2 · precision · recall
precision+ recall

(1)

Where 0 ≤ F1 ≤ 1
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and F1 = 1⇔ precision = recall = 1.

Precision and recall are defined as below, in Equation 2 and 3:

precision =
TP

TP + FP
(2)

recall =
TP

TP + FN
(3)

Where TP = True Positives (predicted the correct class)
FP = False Positives (incorrectly predicted member of a class)
FN = False Negative (incorrectly predicted not member of a class)

We use micro-F1 score to calculate the F1-statistic over all classes. That
is, we do not average the F1 statistic over the three distinct classes (smoker,
ex-smoker, non-smoker) but rather take all false positives, true positives, and
false negatives of all classes together to calculate the overall score on the test
set. This ensures classes with less examples, such as ex-smokers of which there
are simply less than non-smokers, get weighted according to the number of
examples and the classes are not weighted equally - which would lead to more
influence for the less populous classes than their size warrants. 6

We compare the performance of several algorithms: the rule-based models,
the supervised model, and the weakly supervised model, on the same labelled
test set of 628 labelled EMR conversations.

4.4 Software and Packages

The preprocessing as well as the data analysis was done with Python 3.6 with
the PyCharm Professional development environment. For our preprocessing
we use the pandas package 0.25.3 (The Pandas Development Team, 2020) as
well as Scikit Learn (Pedregosa et al., 2011) for evaluation.

Loading, training and testing our BERTje classification models is done with
the Transformers python package (Wolf et al., 2019) version 3.0.2 with PyToch
1.5.1 and NumPy 1.18.4. For our classification experiments, we mostly use
the code shared in a BERT tutorial (McCormick & Ryan, 2019). For our weak
supervision experiments, we use the SNORKEL python package version 0.9.5
(Ratner et al., 2017).

6In Appendix C are the results also included macro and weighted performance measures on
the test set.
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All software was installed on a remote linux server where the data was also
stored, and our scripts were run there without us downloading the data to a
local environment or directly accessing the data in any way.
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5 Results

5.1 Supervised Learning

5.1.1 Baseline: Keyword/Regex-Based Algorithm

We compare the performance of the several rule-based models we developed:
the translated one fromWang et al. (2019) as well as an algorithmwe developed
with our development set consisting of both phrases in these earlier works as
well as rules and words from the the Care Standard (Partnership Stop met
Roken, 2019). We test each algorithm on the unseen test set of 628 labelled
EMR examples.

All results can be seen in table 20 below, which shows the performance
of each algorithm (columns) on precision, recall, and F1-score (rows). In our
baseline performance, we found that the translated Mayo Clinic algorithm per-
formed best on overall recall (.44) and F1 (.65), however, this algorithm only
detected 2 classes (smoker and never smoker), and did not take into account
the EX-SMOKER class. 7

When we compare our algorithm to the other algorithm classifying three
classes, the ib2b algorithm, we see a marked improved of over .10 points in
precision, recall, and F1 score. The ib2b algorithm has .43 on precision, 0.41
on recall, and .30 on F1, while our developed algorigm has a precision of .54, a
recall of .43, and an F1 of .49.

When looking at in-class performance in Table 12, we see our own algorithm
performs best at classifying EMRs that are ex-smoking and non-smoking, but
is compared to the mayo algorithm (which, once again, is a binary algorithm
- only detecting non-smoking versus smoking - performing badly on especially
recall and F1. Our algorithm however scores higher on precision (0.24) than the
Mayo clinic one (0.23) for the SMOKING class. All in all, our own algorithm -
consisting of a combination of the two others and our own keywords such as
’tabaksverslaving’ (tabacco addiction) performed especially well for detecting
non-smokers (F1 = 0.63), but also drastically out-performed the translated ib2b
algorithm for ex-smokers (F1 = 0.24 versus F1 = 0.02 for the ib2b algorithm).

7Additional results also showing weighted and macro precision, recall, and F1 score can be
found in Appendix C.
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Table 11: Performance on the test set for all of the smoking status classes for
models trained with the labelled development set.
NOTE; the mayo clinic algorithm only has 2 classes.

algorithm ib2b algorithm Mayo clinic own algorithm
precision (micro) 0.39 0.44 0.49

recall (micro) 0.36 0.65 0.43

F1 (micro) 0.38 0.52 0.55

Table 12: In-class performance on the test set for all of the smoking status
classes for models trained with the labelled development set.

algorithm ib2b algorithm Mayo clinic own algorithm
precision recall F1 precision recall F1 precision recall F1

SMOKING 0.20 0.23 0.22 0.23 0.32 0.27 0.24 0.30 0.26
NON-SMOKING 0.46 0.85 0.59 0.51 0.77 0.62 0.55 0.74 0.63
EX-SMOKING 0.50 0.01 0.02 - - - 0.65 0.15 0.24

5.1.2 Classification Model: Fine-tuned BERTje

We then looked at the performance of the BERTje fine-tuned classificationmodel
on the test set, we see an improved performance over the rule-based baseline,
with a weighted F1-score, recall, and precision all at .79 or .80.

When we look at in-class results, we see BERTje is significantly better at
precision for the smoking class, while recall for the non-smoking class is higher.
8

5.1.3 Analyzing Confusion matrices

In order to fully understand how the classificationmodels work, we also analyze
confusion matrices. These enable us to see when the models confused one class
for the other.

In Figure 8, we see the absolute numbers of this confusion matrix. The test
set had 628 EMRs to predict, of which 103 had a SMOKER smoking status,
251 had an EX-SMOKER status and 274 a NEVER smoking status. Of the 103
SMOKING status, 69 were correctly predicted - an in-class accuracy of 66%.

8In Appendix E we have also described the classification experiments with BERTje where
we only train on chronically ill patients in the Ketenzorg program. We do see that especially
detecting smokers is easier with a BERTje only fine-tuned on KetenZorg EMRs.
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Table 13: In-class performance on the test set for all of the smoking status
classes for models trained with the labelled development set.

Rule-Based BERTje
precision micro 0.49 0.79

recall micro 0.43 0.79

F1 micro 0.55 0.79

Table 14: In-class performance on the test set (628 EMRs) for all of the smoking
status classes for models trained with the labelled training dataset

baseline: own algorithm BERTje
precision recall F1 precision recall F1

SMOKING 0.24 0.30 0.26 0.92 0.67 0.78
NON-SMOKING 0.55 0.74 0.63 0.77 0.83 0.80
EX-SMOKING 0.65 0.15 0.24 0.78 0.81 0.79

The other classes, EX-SMOKER and NON-SMOKER, had more correctly clas-
sified elements, and less confusion. In Figure 9, we see the in-class accuracy
of this confusion matrix. Of the 251 EMRs that were EX-SMOKER, 203 were
correctly predicted, or an in-class accuracy of 81%. And of the 274 that were
NEVER-SMOKER, 227 were correctly predicted, or 83% in-class accuracy. This
makes the SMOKER status relatively the least accurately predicted class. How-
ever, the most confusion - both absolutely and relatively - does not happen with
the SMOKER class, but with the EX-SMOKER and NEVER SMOKER class,
where up to 18% of EX-SMOKERS get classified as NEVER SMOKERS, and
16% of NEVER SMOKERS getting classified as EX-SMOKERS.

In Figure 10, we see the relative distribution over the predicted smoking
status classes, also known as the in-class precision. We see that the majority
of predicted labels is predicted correctly: 92% of predicted smokers are actually
smokers, 77% of predicted never smokers are actually never smokers and 78%
of predicted ex-smokers are truly ex-smokers. The most confusion happens be-
tween ex-smokers and smokers: 15% of predicted never-smokers are actually
ex-smokers, and 17% of predicted ex-smokers were actually never-smokers.
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Figure 8: Confusion Matrix of the supervised model’s performance on the
test set, showing the distribution of predicted labels (in the vertical columns)
and the true labels (horizontal columns) in the test set. There are a total of 103
EMRs with a ’smoker’ smoking status, 251 with an ’ex-smoking’ status and 274
’non-smoker’ status.
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Figure 9: ConfusionMatrix of the supervisedmodel’s performance on the test
set, showing the relative (in percentage) distribution over True labels (in the
vertical columns) and the true labels (horizontal columns) for the test set (628
EMRs in total). This matrix shows that 67% of all SMOKER smoking status
EMRs were correctly predicted, versus 83% and 81% of all NEVER and EX-
SMOKING items respectively. We do see that 16% of true NEVER SMOKED
items gets classified as an EX-SMOKER, as well as 18% of EX-SMOKER getting
classified as NEVER SMOKER.
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Figure 10: Confusion Matrix of the supervised model’s performance on the
test set, percentage of predicted labels. In the most left column we see the per-
centages for smoking prediction: 92% of predicted smokers are actually smok-
ers.
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5.2 Weak Supervision

5.2.1 Classification model: BERTje trained with SNORKEL-labelled
data.

We then use the LabelModel to label an additional 512 EMRs with smoking
status, and then fine-tune BERTje with this new dataset. Then, we evaluate
this model’s performance against the BERTje fine-tued with the new dataset.

In Table 15, we see that this leads to no discernable performance increase
over only BERTje: precision, recall, and F1 is the same at respectively 0.79,
0.79 and .79 for both methods.9

However, looking at in-class performance in 16 we see something interest-
ing. The model trained with the 512 additionally labelled SNORKEL examples
performance significantly better especially on detection of the NON-SMOKING
class, with F1 = 0.81 compared to F1 = .75 with the BERTje trained model
on only the hand-labelled examples. There is also some improvement in the
SMOKING class (F1 = 0.73 & prec = 0.86 compared to the older F1 = .72 and
prec = .86). The EX-SMOKING class, in contrast, does not improve the model
with the new labelled trained examples, and even performs worse (F1 = 0.79)
than in the earlier trained BERTje (F1 = 0.82).

Table 15: Comparison of performance by BERTje and SNORKEL-trained
BERTje on the test set (628 examples)

BERTje SNORKEL + BERTje
precision (micro) 0.79 0.79

recall (micro) 0.79 0.79

F1 (micro) 0.79 0.79

9In Appendix C, we provide results with also macro and weighted F1, precision, and recall
of smoking status classification with this method.
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Table 16: In-class performance of predicting the test set (628 examples) by the
BERTje model (left side) and the BERTje model with SNORKEL.

BERTje SNORKEL+BERTje
4.978 training examples 5.490 training examples
precision recall F1 precision recall F1

SMOKING 0.82 0.64 0.72 0.86 0.64 0.73
NON-SMOKING 0.74 0.76 0.75 0.79 0.84 0.81
EX-SMOKING 0.82 0.83 0.82 0.78 0.80 0.79

5.2.2 Analyzing Confusion matrices

We then analyze the confusion matrices to see whether the model confuses the
classes for one another. Compared to the confusion matrix of the supervised
BERTje model in Figure 8, the model as shown in Figure 11 below identifies
less items correctly as SMOKER and EX-SMOKER, but 2 more correctly as
NEVER-SMOKER.

In Figure 13, we see a relatively large decrease of accurate prediction, with
83% of all predicted smokers being correctly smokers (versus 92% in the model
trained without BERTje), and more confusion as well: 21% of the predicted
NEVER smokers are actually SMOKER, compared to only 15% by the model
without SNORKEL data as seen in Figure 13

We also see a decline of recall of the individual classes, as seen in Figure 12
compared to the earlier model performance displayed in Figure 9. Now, 64% of
all SMOKERs are correctly identified (compared to 67% in the BERTje with-
out SNORKEL data). The only improvement we see is .01% more correctly la-
belled on the NEVER class (84% correct compared to 83% in Figure 9. We also
see a percentage point doubling of confusion between SMOKER and NEVER
SMOKER (from 3% of smokers being identified as NEVER smokers to 6%), and
also more confusion between EX-SMOKER and SMOKER (8% of EX-SMOKER
predictions are actually SMOKERS, compared to 5% in the BERTjemodel with-
out SNORKEL).
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Figure 11: Confusion Matrix of the weakly supervised model’s performance
on the test set, showing the distribution of predicted labels (in the vertical
columns) and the true labels (horizontal columns) in the test set. There are
a total of 103 EMRs with a ’smoker’ smoking status, 251 with an ’ex-smoking’
status and 274 ’non-smoker’ status.
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Figure 12: Confusion Matrix of the weakly supervised model’s performance
on the test set, showing the relative (in percentage) distribution over True
labels (in the vertical columns) and the true labels (horizontal columns) for
the test set (628 EMRs in total). This matrix shows that 64% of all SMOKER
smoking status EMRs were correctly predicted, versus 84% and 80% of all
NEVER and EX-SMOKING items respectively. We do see that 16% of true
NEVER SMOKED items gets classified as an EX-SMOKER, as well as 16% of
EX-SMOKER getting classified as NEVER SMOKER.
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Figure 13: Confusion Matrix of the weakly supervised model’s performance
on the test set, percentage of predicted labels. In the most left column we see
the percentages for smoking prediction: 83% of predicted smokers are actually
smokers.
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5.2.3 Summary of Results

We found the pre-trained Transformer model BERTje was able to reliably pre-
dict smoking status from EMR consultations in the dataset, with an F1 of .79.
This is a better performance than our best-performing rule-based method (F1
= 0.49). Working with SNORKEL to label more datapoints did not lead to an
improved performance in BERTje (F1 = 0.79), though we did see in-class per-
formance improving especially for the non-smoking class with SNORKEL (from
F1 = 0.75 to F1 = 0.81).

In order to allow an easy comparison between models, we show a table here
showing all of the model’s performance on the same test set of 628 EMRs.

Table 17: Comparison of all models and their performance on the test set (628
EMRs) in precision (top row), recall (middle row) and F1-score (bottom row). We
see training with additionally labelled examples by the SNORKEL LabelModel
makes little to no difference in performance, while both improve performance
over the rule-based method.

Rule-Based BERTje SNORKEL + BERTje
precision (micro) 0.49 0.79 0.79
recall (micro) 0.43 0.79 0.79
F1 (micro) 0.55 0.79 0.79
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6 Discussion

6.1 The Fuzziness of Classes

Notable in the preprocessing phase was the simple rarity of smoking status doc-
umentation. Less than 1% of all EMRs had a registered smoking status. Also
notable was that there were values in the smoking status P1739 that were not
in the official GP codebook, the "Tabel Diagnostische Bepalingen", version 33.
This shows not only such a real-life dataset is more noisy and messy than the
datasets provided in the shared tasks on smoking status classification in for in-
stance (Wang et al., 2019; Weng et al., 2017), but also shows the inherent fuzzi-
ness and ambiguity in clinical or medical categorization identified by Bowker
and Star (2000). One such an invalid entry used for smoking status P1739 was
"0", which is not one of the documented and official values of the 1739 smoking
variable. One could speculate about what 0 means - does it mean the smoking
status is unknown? That it is negative, i.e. a non-smoker? Or that it is not
relevant? We simply do not know. Fact is that such labels cannot be used in
training for the classification model, because the machine learning approach is
only based on examples from our established classes - not for these un-defined
cases.

Another potential issue to this classification problem is that even the cate-
gorizations made within the validated codebook are not always clearly defined,
and can be fuzzy and unclear in their definitions and boundaries. This seems
counter-intuitive, as "smoker" seems such an easily definitive class ("someone
who smokes cigarettes"), and yet this is not always clearly the case. In the
smoking Care Regulations, for instance, someone is still a smoker for one year
after someone has smoked his or her last cigarette (Partnership Stop met Ro-
ken, 2019), based on scientific and clinical literature also claiming a six months
to one year wait before a patient’s status has reliably changed from "SMOKER"
to "EX-SMOKER" due to the risk of relapses. The distinction between what is
a "smoker" and an "ex-smoker" thus becomes less clear, and in practical use
less easy to define. Additionally, someone who smokes with an e-cigarette is
not a smoker according to the Care Regulations (Partnership Stop met Ro-
ken, 2019). The Care Regulations also mention that the several official defi-
nitions of "smoker" also lead to confusion. For instance, the DSM-5 classifica-
tion of a "smoker" mentions addiction is neccessary to be classified a SMOKER
(Partnership Stop met Roken, 2019), while a positive smoking status in the
1739 smoking variable used in our work does not imply an addiction to tobacco.

We found in our development of LFs based on this care standard that these
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definitions also show some fuzzy, unclear categorizations even when there is
only one smoking status variable (1739). For instance, we attempted to use
a Labelling Function in our LabelModel to label ex-smokers based on the key-
word "e-cigarette", but found this keyword was more related to SMOKERS than
EX-SMOKERS, despite the formal definitions in (Partnership Stop met Ro-
ken, 2019) showing the opposite. Additionally, we found that medicine used for
quitting smoking (such as champix) was not related to SMOKERS (who would
take such medication while they were within the one-year period), but to EX-
SMOKERS.10

This fuzziness of definitions and boundaries between smoking status classes
leads to obvious problems in assessing any trained model in performance. Our
labellers are theGPs using perhaps their own internalmodels of what a "SMOKER"
is, despite the regulations indicating this differently. Some values as used by
GPs that thismodel is trained and evaluated on are not the same as ones defined
in the Zorgstandaard or other formal definitions, with care providers either us-
ing a different category than formally defined in the care standard or even using
a category not used in the care standard at all. This phenomenon reiterates
the work by Bowker and Star (2000) that identifies the inherent fuzziness in
medical classification, especially the classification of patients and medical con-
ditions, where formal guidelines sometimes do not capture the needs and cat-
egories in everyday use. This also calls into question the practical use of these
methods for clinical practice. While established NLP research shows that ex-
tensive labelling guidelines for classification should be used to ensure multiple
labellers adhere to the same definitions and standards, this is in stark contrast
with clinical practice and real-life data, where the data is classified based on
the individual GP’s preferences.

However, our models do not regularly confuse "EX-SMOKERS" and "SMOK-
ERS", as might be expected based on the basis of these observations of guide-
lines, LFs, and practical use showing some friction between these definitions.
Instead, our models showed most confusion between the "ex-smoker" and "non-
smoker" class, as seen in the confusion matrices in the previous chapters. This
shows the training data actually shows less conflicting information when it con-
cerns "ex-smokers" and "smokers" than perhaps expected from the conflicting
guidelines and literature.

The problem of the real-life data not adhering to formal clinical standards
and definitions comes on top of the earlier mentioned problem of the model be-
ing trained on EMR representations which are not even representative of the

10The medicine-based LF were relatively ineffective in any case because these keywords were
fairly rare.
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entire EMR (only consisting of the last labelled consultation text per unique
patient), let alone representative of an entire patient’s medical history. EMRs
themselves are a limited ad one-sided representation of an individual patient’s
situation or history, as they cannot possibly contain all medical or clinical in-
formation of a patient - and especially where it concerns smoking behavior can
have omissions or lies, also influenced by confounds such as Ketenzorg patients
being asked more often about smoking status (Partnership Stop met Roken,
2019). Data is always a reduction and proxy of real life concepts and elements.
We cannot capture someone’s entire medical history, or even the entire consul-
tation, simply also because it is not recorded as such.

Thus, there is categorical fuzziness of smoking status classes in the data,
where someone could be identified as a SMOKER andEX-SMOKER by different
GPs, medical codes, and sources even within one smoking status variable such
as P1739. Together with earlier-defined problems, such as that that the data
representation we used is not the same as representing an entire individual
patient’s medical history, is why any of our models cannot be used to reliably
predict or identify individual smokers, and should not be used as such.

6.2 Data Representation

Our experiments are with a machine learning method, which requires exam-
ples (the labelled consultations) to learn how to label new, unseen examples.
However, we throw away many consultations that were never used in the fi-
nal representation, only using the last labelled consultation for each patient.
This was a major choice and possibly major flaw in our research: why, if data is
already sparsely labelled, to only use a subset of the labelled data points?

This decisionwas based on several practical rather than conceptual grounds.
First of all, the last smoking status for each patient was the datapoint clini-
cally relevant. Since smoking status is a fluid concept and the duration of class
membership is not lifelong (Bowker & Star, 2000), for each EMR only the latest
registered smoking status is relevant.

Secondly, we only used one consultation per EMR. There are several other
options to provide examples for the machine learning model from the EMRs,
and make representations of one EMR. One of these is the combination of sev-
eral consultations from one patient into one text. However, we chose to only take
only the last labelled consultation per EMR because of our method. A machine
learning-based approach cannot process more evidence for one patient than for
the other, as this can lead to more evidence for one EMR rather than the other,
and thus unequal evidence per instance. Combining several consultations into
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one representation for each unique EMR then leads to some EMRs being repre-
sented by (much) more textual information than others, and that information
is biased as well since chronically ill Ketenzorg patients have more consulta-
tions. Thus, we would indirectly build a bias into our model that would make
the detection of smoking status in the EMR of a chronically ill patient more reli-
able. An added reason for only using one consultation was that BERTje (Vries
et al., 2019), our Transformer model used for classification, can only classify
short instances with 512 tokens. All text from an EMR could not be used as
one example in this method, since this text would in some cases far exceed 512
tokens.

However, we could have used multiple one-consultation instances from one
EMR instead of having one large text per EMR. Why did we not do that? We did
not use multiple instances related to the same EMRbecause of similar method
constraints. This can lead to data leakage - one consultation for a patient is
used in the training set, while another in the test or validation set. This is
problematic, because a GP will use some similar descriptions in both consulta-
tions on the same patient - especially mentioning patient names or identifiers,
since this dataset was not anonymized. Sincewewanted themodel to absolutely
not have any prior knowledge at test time - it needed to identify entirely new,
unseen information - we could not use these multiple consultation examples re-
lated to one patient. Otherwise, themodelmight learn that "ms. Jansen" EMRs
have a P1739 smoking status that is SMOKING simply because the name "ms.
Jansen" is mentioned, rather than learning anything about signifiers of actual
smoking status. It would also lead to unfair advantages at test time, since the
model would score higher on performance metrics simply because it had seen
earlier information from ms. Jansen’s EMR, rather than because the model is
better at identifying smokers.

These are all methodological constraints: they do not fully reflect the med-
ical or clinical practice. A non-machine learning method, such as a rule-based
method, is not necessarily harmed by having multiple consultations of one pa-
tient, or having one large text file consisting of multiple EMRs instead of only
one short consultation. That means the machine learning method we employed
was limiting how and how much of the available data we could use, and not
the other way around. Realizing this, we can further question whether the Ma-
chine Learning approach is a useful approach for practical use in primary care
documentation, and actually the previous literature’s use of rule-based method
is not that strange.
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6.3 Transfer learning with Pre-Trained Transformer

Our results indicate that it is possible to classify Dutch smoking status clas-
sification better than a rule-based baseline with a machine learning approach
(with F1 = .79) by fine-tuning a pre-trained Transformer, BERTje (Vries et al.,
2019). While this performance does perform better than the rule-based base-
line, it performs notably lower than the reported F1 scores in earlier work by
rule-based methods (Weng et al., 2017; Palmer et al., 2019) and other machine
learning methods (Wang et al., 2019) on smoking status classification, who re-
port F1 > .90 for similar smoking status tasks on English-language datasets.

We can explain this result in several ways. First of all, these earlier papers
worked with pre-processed and especially selected shared task datasets, which
likely leads to easier smoking status classification than in our real-life, realistic
dataset. It is very well possible word use in our EMRs is less uniform than in
these publicly released datasets. This likely means it is simply easier to get a
higher score on such shared task data, such as from the ib2b task and the Mayo
Clinic used in Wang et al. (2019). The latter dataset also only allows for binary
smoking status classification, rather than multi-class smoking status classifi-
cation, which also allows for higher performance simply because the choice is
only between two classes rather than three or more.

Secondly, we are working in a different language than these earlier papers:
Dutch. This affects several aspects of our research, including the Transformer
model we use. We use a Transformer pre-trained on 12GB of Dutch text data
(Vries et al., 2019), but there is simply much more text data available in En-
glish, with the original BERT (Devlin et al., 2019) trained on 16GB of language
textdata. Additional pre-training data might improve performance on down-
stream tasks such as smoking class classification, as the Transformer model is
then able to learn more semantic information about the language and is thus
possibly able to better identify words.

Another reason we could explain our low performance compared to earlier
work is that these largely rule-based methods perform so high because they
are over-fitted towards their specific datasets. There is some evidence for that
in Wang et al. (2019), where the authors describe very specific rule-based al-
gorithms for their two distinct datasets. Such over-specification to the training
data can lead to bad generalizability to other datasets or even other datapoints.
This would make the reported score of F1 = .91 on this task far less useful for a
comparison across studies using different datasets, since the performance only
relates to that very specific small dataset and not to the task of smoking status
classification in general.
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Lastly, we wonder whether our Transformer under-performed over the re-
ported scores in earlier literature because we used a Transformermodel trained
on general language. The semantic space of such a language model might be
significantly different than that in the clinical or medical sector, which our texts
are in. There are previously reported pre-trained language models on clinical
text, such as Alsentzer et al. (2019), but these are trained on English language
data rather than Dutch. Furthemore, many of such pre-trained models are not
publicly available because of its training on sensitive material.

All in all, we can conclude that smoking status classification is possible with
a pre-trained Transformer model, but that it cannot seem to perform ss well as
earlier state-of-the-art performances on similar smoking classification tasks in
the literature. However, this was with other datasets, and in English instead
of Dutch texts.

6.4 Weak Supervision and Data Programming Paradigm

We worked with SNORKEL (Ratner et al., 2017), a software package allowing
us to use the Data Programming approach, to see whether this increases perfor-
mance on smoking status classification and also whether it is a viable approach
to label the sparsely labelled data. The LabelModel function in SNORKEL is
able to learn from a set of heuristics and rules (Labelling Functions) the opti-
mal weighting for these individual Labelling Functions, in order to optimally
label new examples. The LabelModel exploits the conflicts between LFs to find
the optimal label for an example.

We first of all found that, despite SNORKEL’s weighting, even a model with
all individual labelling fuctions of > .80 accuracy performed on the labelled de-
velopment set with only .39 accuracy. This is surprising: we expected the model
to be able to generalize above the accuracy and performance of the individual
rules in the LFs, but it was not.

Why could this be? One reason could be the limited coverage of many of the
LFs, meaning they simply do not apply to many items. Low coverage does not
only lead to fewer items labelled, but it can also lead to a worse performance due
to the LabelModel’s ability to learn from especially conflicts between labelling
functions. Nearly all LFs had a coverage below 5%, as is visible in Appendix
D. This low coverage is also a feature of the data: not only is smoking status
variable P1739 rarely documented, words related to smoking are also rarely
mentioned in the consultation texts. This makes it quite difficult to find the
overlap and conflict the LabelModel needs to accurately adjust the weighting of
different LFs (Ratner et al., 2017). Our data therefore might be less suitable
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for such a weak supervision paradigm than earlier assumed.
The second step of the Data Programming Paradigm consisted of extended

the training data size with the LabelModel, and label a fraction of the 9.232 un-
labelled EMR examples in the training set. With our most accurate LabelModel
on the labelled dataset, this led to 512 more examples. This is 10% of the al-
ready labelled training set of 4.978 items, thus leading to a 10% increase of
training data size. This is not a large newly labelled dataset, but training with
a less accurate LabelModel might actually lead to more noise in the training set
instead of more training evidence and better performance. We found the small
training set increase did not lead to better performance. We did find an im-
provement of in-class performance of the NEVER smoker class, while the added
examples added more confusion for the fine-tuned BERTje model between the
NEVER and SMOKER class. Future work might opt to see if labelling more
examples with SNORKEL might improve performance even if such a larger la-
belled dataset is more noisy due to a less accurate LabelModel.

6.5 Future Work and Related Tasks

The set-up with a pre-trainedmodel and a Data Programming paradigmmakes
sense for tasks where there is little (labelled) data, but sufficient evidence in
the texts to identify the classes with Labelling Functions. This might be a
fruitful research methodology for several related research problems where a
high documentation load is resulting in a low number of documents labelled
with ICD codes or other clinical variables in clinical practice, such as sleep
disorders (Filip et al., 2017) and obesity (Hossain et al., 2018), both described
as under-documented and under-reported in EMRs.

Our approach is also especially useful for tasks with fuzzy or ever-changing
labels. This is because the LFs allow domain experts to have control over the
machine learning algorithm by controlling the training data, which could be
used for similar tasks in different domains. For instance, in the financial do-
main the usage of Labelling Functions to weakly supervise and increase train-
ing data for potential classification of fraudulent transactions or scams (Ngai et
al., 2011). Such classes and especially signifiers and heuristics of these classes
can change rapidly when scammers and fraudsters change their tactics and the
words they use to describe the tactic. Then it is very useful to be able to imme-
diately influence the training data systematically by adjusting the LFs, which
in turn would change the model’s predictions. This is similar to our find that
the real-world category SMOKER had e-cigarette as keyword, rather than the
on the basis of the guidelines expected NON or EX-SMOKER. We could eas-
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ily adjust our LFs based on real-world knowledge about the data not in official
guidelines

Lastly, future work might explore improvements on our weak supervision
approach. The low coverage of our LFs could possibly have been prevented
if we used a data mining technique rather than a literature search, manual
inspection of development set cases, and expert guidance to design the LFs.
For instance, we could have attempted some data mining technique to extract
meaningful features from the labelled EMRs that could be turned into Labelling
Functions. This is what (Kunde et al., 2020) did, who used Principal Com-
ponent Analysis (PCA) to identify common features and words in e-commerce
and financial classification, which would then be used to expand the dataset.
Such data-based rather than expert-based heuristics are not what SNORKEL
(Ratner et al., 2017) is designed to do. In fact, it goes against SNORKEL’s main
principle of allowing high-quality labels related to the expert knowledge of hu-
mans, because such an approach would not neccesarilty give high-quality labels
based on quality guidelines and expert knowledge. However, a data mining ap-
proach could be very effective in finding LFs that are accurate and have high
coverage. Future research might explore this tension between SNORKEL’s in-
tended use and possible data mining applications to improve a LabelModel.

Additionally, we used only one smoking status variable: P1739. Future work
might want to combine several smoking status variables, including for instance
P17 (a long-term smoking status), in order to see whether this allows for more
training and test data for smoking status classification of EMRs. It might also
be a more realistic representation of the clinical practice of smoking status, as
GPs use several of these variables. However, a potential problem then is concept
drift: these different smoking status classes in different variables might not
have the same meaning, either in official definitions or simply in how they are
used by GPs.

6.6 Limitations and Reflections

This thesis has several limitations. First of all, the relatively large amount of
data we worked with was positive for large-scale neural models, and also useful
because the phenomenon we were interested in (smoking status) was fairly rare
in the EMRs. Previous work used pre-processed Shared Task data, which was
publicly available but a small and simplistic dataset. Our pipeline was more
realistic, with real-life clinical data. However, this also meant we worked with
tens of thousands of samples that needed preprocessing, and it was difficult to
oversee all features, variables, and aspects of the data influencing the research
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question. Thus, we would advice future work and especially future thesis stu-
dents to not take on such a large, complex dataset and expect to preprocess and
research it in within 4 to 6 months.

Another limitation of this study is the testing and training of our models on
data from six different GP centers in the Netherlands. While six different GP
offices is more diverse than only one or two, it still only provides data from a
very limited subset of the roughly 5.000 GP centers in the Netherlands. Other
GP offices might have different documentation practices concerning smoking
status, leading to a model that is less universally applicable than ideal.

Additionally, another possible limitation related to the generalizability of
our results is the earlier mentioned problem of bias. In our dataset, EMRs of
patients in the chronic illness program were much more likely to have a doc-
umented smoking status, leading to their over-representation in the training
data. This could lead to a model biased towards the detection of smoking sta-
tus in EMRs of chronically ill patients, while other patient groups’ EMRs are
less likely to be correctly identified in terms of smoking status by our model.
Furthermore, this bias intersects with social-economic status and wealth, as
such chronic illnesses are often related to poverty. This would lead to the kinds
of biases mentioned by O’Neil (2016) in harmful machine learning practices:
underprivileged and poor groups are disproportionately identified by machine
learning models identifying certain behaviours or risks simply because these
groups are more prevalent in the training data. Such a situation is something
we would want to avoid, so future work should carefully identify such biases,
and attempt to minimize them.

Lastly, our set-up with results based on training data labelled with another
algorithm (the SNORKEL model) can especially lead to cascading error: if the
SNORKEL LabelModel is wrong, the classification model will learn the wrong
information. Such "cascading bias" is something inherent in our set-up of the
weak supervision approach, and a potential weak spot of it, and thus also some-
thing to be wary of when interpreting the results.
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7 Conclusion
In this thesis, we set out to do automatically classify and extract smoking sta-
tus from Dutch Electronic Medical Records (EMR) from General Practicioners
(GPs). We found a gap in previous research on smoking status classification.
Earlier work often worked with small, English-language dataset, and used sim-
plemethods. We also found a specific problem: smoking status is under-documented
and sparsely labelled in EMRs. We explored using a weak supervision as well
as an transfer learning approach to combat this small dataset problem.

We attempt to answer the following question:

"How can we best automatically detect and classify the smoking status of
primary care patients’ EMR (Electronic Medical Record) on the basis of the
free text in GP doctor’s notes?"

from which we obtained three sub-questions:

• Canwe obtain similar performance with a rule-based baseline on smoking
status classification as earlier literature (Palmer et al., 2019; Weng et al.,
2017; Palmer et al., 2019)?

• Does transfer learning, by fine-tuning a pre-trained BERT Transformer
model (Vries et al., 2019), improve performance over the rule-based base-
line in classifying smoking status?

• Does a weak supervision programming paradigm (Ratner et al., 2016),
by labelling more training data points with a generative labelling model
(Ratner et al., 2017), improve performance over the rule-based baseline
and the earlier classification model in classifying smoking status?

We made representations of 17.873 EMRs from 6 GP offices in the Nether-
lands in order to answer this question. We obtained the data through working
with software provider Topicus, who stores data for these GP offices. In order
to develop our models, we split the dataset in 14.298 training examples, 1.788
development items, and 1.787 test items. We then use the labelled subset of the
training data (4.978 examples) to fine-tune the pre-trained Transformer model
BERTje (Vries et al., 2019), and use the labelled development set (655 labelled
EMRs) to both develop the rule-based baseline algorithm for smoking status
classification and develop a LabelModel with SNORKEL (Ratner et al., 2017).
Such a LabelModel is able to label the unlabelled examples from the training
set by training on the labelled training data, and setting weights to a set of La-
belling Functions or heuristics. We then again fine-tune a BERTje model with
the training data enlarged with the datapoints labelled by the LabelModel.
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We test all our machine learning model on the same unseen test examples:
the 628 labelled datapoints from the test set portion of our dataset.

7.1 Question 1: Rule-Based Baseline

We first attempted to develop a rule-based baseline such as in earlier literature.
We test earlier developed algorithms in (Wang et al., 2019) as well as combine
these with our own heuristics to make our own algorithm. For sub-question
1, we found that we could not replicate the high performance of F1 > .90 with
a rule-based method. In earlier studies (Wang et al., 2019; Weng et al., 2017),
rule-basedmethods seemed to perform very well even when these were baseline
approaches in the study, while this was not the case for us. Our replications of
the earlier algorithms performed worse (F1 = 0.52) than our own (F1 = 0.55),
but none of these come close to the score reported in the literature (F1 > .90)
on smoking status classification with rule-based methods on English-language
datasets. We cannot determine whether this is because we did not fine-tune
(and perhaps overfit) the rules enough to the dataset, or whether perhaps the
language use on smoking status is more diverse than we anticipated. This lat-
ter hypothesis was reinforced by the low coverage of the LFs in the SNORKEL
model, since this means some words only very rarely appear in these texts.
More research is needed, but this result does provide some tentative evidence
that rule-based methods are not always the best approach for smoking status
classification in EMRs.

7.2 Question 2: Transfer Learning results with BERT

We found transfer learning with the pre-trained Transformer network BERTje
trained on general Dutch texts (Vries et al., 2019) is able to, with a minimum of
computing power and training time, safely beat simple rule-based baselines for
the smoking status classification task. We add one linear classification layer on
top of BERTje, and training of 2 epochs and a learning rate of 0.00005.

This fine-tuned model has a micro-F1 of .79 on the labelled test set. This
out-performed the baseline (F1 = .55), but did not out-perform the reported
high performance scores for especially rule-based systems in the literature on
other datasets with similar smoking classification tasks (F1 = .90).

Transfer learning does not seem to improve over state-of-the-art smoking
status classification reported in other studies. However, it does perform sig-
nificantly better than a rule-based method on our own dataset, and that with
minimal training time and computing power with a Transformer model trained
on a different language domain. This shows promise for pre-trained language
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models, and shows such models are versatile in the tasks they can perform on
datasets distinct from their previous training data.

The fact we do not come close to performance reported by earlier machine
learning work such as Wang et al. (2019) on smoking status classification can
possibly be explained by the fact we work on a different language (Dutch rather
thanEnglish) and that weworkwith realistic clinical data rather than prepared
shared task data sets.

7.3 Question 3: WeakSupervisionwith SNORKEL+BERT.

Our final experiments consisted of a weak supervision approach with the Data
Programming paradigm of SNORKEL (Ratner et al., 2017), allowing us to train
a model that can learn how to label new training data on the basis of rules
(Labelling Functions, or LFs). We found that a LabelModel with fewer LFs but
ones that were accurate was performing better on the development set than one
with more, but less accurate, LFs. However, the best performing LabelModel
still performed with an accuracy of only .39.

We were able to label an additional 512 examples with this LabelModel,
leading to 5.490 training items instead of 4.978. Fine-tuning BERTje again
with two additional epochs led to a micro F1 of .79 compared to a similar F1
of .79 for the model without this extra data. However, we do see some im-
provements in especially the in-class performance of the SMOKER and NON-
SMOKER class as compared to the same in-class results for the model only
trained with hand-labelled data.

The answer to our third partial research question is that a learning model
SNORKEL can partially improve performance over amodel without SNORKEL.
While overall performance on the test set did not seem to increase, in-class per-
formance for SMOKER and NON-SMOKER clearly gained from the extra la-
belled datapoints. This effect might be more pronounced with more datapoints
labelled by SNORKEL, or with a stronger and more accurate LabelModel.

7.4 Overall Research Question

This thesis attempted to answer the following question: "How can we best auto-
matically detect and classify the smoking status of primary care patients’ EMR
(Electronic Medical Record) on the basis of the free text in GP doctor’s notes?"
All in all, we can answer our research question as follows.

We found a machine-learning based Transfer learning approach works over-
all well, while a weak supervision approach to data labelling can increase in-
class accuracy for some classes. In this study, despite earlier literature such as
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(Palmer et al., 2019) stating otherwise, we found a rule-basedmethod is not nec-
essarily the best method to classify smoking status in EMRs. We found such a
method performs worse than the pre-trained Transformermodel BERTje (Vries
et al., 2019), which obtained F1 = .79 on the same test set while the rule-based
method only scored F1 = .55. While BERTje does not come close to results
shown in earlier literature on English-language smoking status classification
(Wang et al., 2019; Weng et al., 2017), it does perform rather adequately, classi-
fying more than 80% of all NON-SMOKER and EX-SMOKER EMRs correctly
and 64% of SMOKER EMRs. This result falls in line with previous literature,
where BERTje and other Transfer learning models perform well on all kinds of
language task with minimal fine-tuning.

We also explore a weakly supervised approach, where we attempt to en-
largen the training set size by a trained LabelModel with SNORKEL (Ratner
et al., 2017). We find no performance improvement with this method on the test
set over the BERTje trained on only the hand-labelled datapoints, but we do
see some improvement on the classification of EX and NEVER smokers. There
also is the additional factor of Ketenzorg: for chronically ill patients in this pro-
gram, training on only Ketenzorg EMRs helps the model distinguish especially
Ketenzorg NEVER and EX SMOKING EMRs.

All in all, smoking status classification is a text mining problem in a complex
domain (the clinical setting, specifically: primary care) with several societal
and technical factors influencing the results. However, BERTje allows us to set
a promising first step in performing smoking status classification more accu-
rately than a rule-based approach, with minimal training time and computing
resources. Future work can carefully step forward based on these results.
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A Appendix: Details of Rule-Based Algorithms

Table 18: The regular expression algorithms used to detect different smoking
status classes in different datasets by Wang et. a. 2019)

dataset RegEx
"smoker" Mayo Clinic Smoker smokes?, smoked, smoking, smokers?, tobaccos?,

cigarettes?, cigs?, pipes?, nicotine, cigars?, tob
"never smoked" Mayo Clinic (no|non|not|never|negative)*(smoker|smoking|smoked|tobacco),

nonsmoker, denies*smoking,
(tobacco|smoke|smoking|nicotine)*(never|no),
doesnt́ smoke, 0|zero smokers?

"current smoker" ib2b 2006 (does|has|continues to) smoked?,
uses tobacco, active smoker,
(current|currently) (smoker|smoking), current smoker,
tobacco use*(yes|still using|still smoking|smokes)

"ex-smoker" ib2b 2006 (stop|stopped|quit|quitted|discontinued) (tobacco|smoking),
(previous|prior|remote|distant|former|ex-|ex) (tobacco|smoker),
stop(ped)? smoking,
tobacco use*(smoked|quit), smoking*(used|former)

"non-smoker" ib2b 2006 default: other patients

Table 19: Our Dutch translated regular expression algorithms used to detect
different smoking status classes in different dataset by Wang et. al. (2019)

dataset RegEx
"smoker" Mayo Clinic roker, rookt?, rookte, roken, rokers?, tabak?,

sigaretten?, sig?, pijp?, nicotine, siga(a)?r(en)?
"never smoked" Mayo Clinic (niet|non|geen|nooit|negatief)*(roker|roken|rookte|tabak),

niet-roker, ontkent*roken,
(tabak|rook|roken|nicotine)*(nooit|niet),
rookt niet, 0|nul rokers?

"current smoker" ib2b 2006 (heeft|doet|blijft) (ge)?rookt|roken,
gebruikt tabak, huidig roker,
(huidig|momenteel|nu|nog) (roker|roken),
tabakgebruik*(ja|nog steeds|rookt nog|rookt)

"ex-roker" ib2b 2006 (is gestopt|stopte|hield op met|hield op) (tabak|roken),
(vorige|vroeger|verleden|ooit|voormalig|ex-|ex) (tabak|roker,
stop(te)? roken,
tabaks?( )?gebruik)?*(rookte|stopte), roken*(gebruikte|vroeger)

"non-smoker" ib2b 2006 default: other patients
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B Appendix: Architecture of BERTje
Structure of BERTje:

==== Embedding Layer ====

bert.embeddings.wordembeddings.weight (30000, 768)
bert.embeddings.positionembeddings.weight (512, 768)
bert.embeddings.tokentypeembeddings.weight (2, 768)
bert.embeddings.LayerNorm.weight (768,)
bert.embeddings.LayerNorm.bias (768,)

==== First Transformer ====

bert.encoder.layer.0.attention.self.query.weight (768, 768)
bert.encoder.layer.0.attention.self.query.bias (768,)
bert.encoder.layer.0.attention.self.key.weight (768, 768)
bert.encoder.layer.0.attention.self.key.bias (768,)
bert.encoder.layer.0.attention.self.value.weight (768, 768)
bert.encoder.layer.0.attention.self.value.bias (768,)
bert.encoder.layer.0.attention.output.dense.weight (768, 768)
bert.encoder.layer.0.attention.output.dense.bias (768,)
bert.encoder.layer.0.attention.output.LayerNorm.weight (768,)
bert.encoder.layer.0.attention.output.LayerNorm.bias (768,)
bert.encoder.layer.0.intermediate.dense.weight (3072, 768)
bert.encoder.layer.0.intermediate.dense.bias (3072,)
bert.encoder.layer.0.output.dense.weight (768, 3072)
bert.encoder.layer.0.output.dense.bias (768,)
bert.encoder.layer.0.output.LayerNorm.weight (768,)
bert.encoder.layer.0.output.LayerNorm.bias (768,)

==== Output Layer ====

bert.pooler.dense.weight (768, 768)
bert.pooler.dense.bias (768,)
classifier.weight (3, 768)
classifier.bias (3,)
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C Appendix: Extensive Performance Metrics

C.1 Defining macro, micro, and weighted F1 score

• macro-average:
score class 1 + score class 2 + score class 3 / number of classes = F1-macro

• micro-average:
TP = TP of all classes together, FP = FP of all classes together, FN = FN of
all classes together

• weighted average F1:
(weight * score1) + (weight * score2) + (weight * score3) / number of classes

C.2 Results with macro, micro, and weighted F1 score

Table 20: Performance on the test set for all of the smoking status classes for
models trained with the labelled development set. NOTE; the mayo clinic algo-
rithm only has 2 classes

algorithm ib2b algorithm Mayo clinic own algorithm
precision micro - 0.44 0.49

macro 0.39 0.39 0.48
weighted 0.43 0.44 0.54

recall micro - 0.65 0.43
macro 0.36 0.55 0.40
weighted 0.41 0.65 0.43

F1 micro - 0.52 0.55
macro 0.28 0.44 0.38
weighted 0.30 0.52 0.49
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Table 21: In-class performance on the test set for all of the smoking status
classes for models trained with the labelled development set.

Rule-Based BERTje
precision micro 0.49 0.79

macro 0.48 0.83
weighted 0.54 0.80

recall micro 0.43 0.79
macro 0.40 0.77
weighted 0.43 0.79

F1 micro 0.55 0.79
macro 0.38 0.79
weighted 0.49 0.79

Table 22: Comparison of all models and their performance on the test set (628
EMRs)

Rule-Based BERTje SNORKEL + BERTje
precision micro 0.49 0.79 0.79

macro 0.48 0.83 0.81
weighted 0.54 0.80 0.79

recall micro 0.43 0.79 0.79
macro 0.40 0.77 0.76
weighted 0.43 0.79 0.79

F1 micro 0.55 0.79 0.79
macro 0.38 0.79 0.78
weighted 0.49 0.79 0.79
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D Appendix: Labelling Functions Performance

D.1 LabelFunctions Coverage

keyword_esig_coverage coverage: 0.0%
keyword_nvm_coverage coverage: 0.0%
keyword_pakje_coverage coverage: 0.7%
keyword_pakjes_coverage coverage: 0.3%
keyword_roken_coverage coverage: 31.4%
keyword_champix_coverage coverage: 0.6%
keyword_gerookt_coverage coverage: 2.9%
keyword_gestopt_coverage coverage: 7.7%
keyword_gestopt2_coverage coverage: 2.6%
keyword_heeftgerookt_coverage coverage: 0.1%
keyword_nicotine_coverage coverage: 0.2%
keyword_nicotineverslaving_coverage coverage: 0.0%
keyword_nooitgerookt_coverage coverage: 0.3%
keyword_roker_was_coverage coverage: 0.0%
keyword_roker_coverage coverage: 0.7%
keyword_rookt_coverage coverage: 12.0%
keyword_rookte_coverage coverage: 0.6%
keyword_rooktgeen_coverage coverage: 0.1%
keyword_rooktgeenis_coverage coverage: 0.0%
keyword_rooktniet_coverage coverage: 3.0%
keyword_sig_coverage coverage: 1.5%
keyword_sigs_coverage coverage: 1.0%
keyword_stoppen_coverage coverage: 2.6%
keyword_tabak_coverage coverage: 0.1%
keyword_tabaksverslaving_coverage coverage: 0.0%
regex_rookt_niet_coverage coverage: 7.0%
regex_rookt_niet_meer_coverage coverage: 1.1%
regex_heeft_gerookt_coverage coverage: 1.4%
regex_is_roker_coverage coverage: 0.3%

D.2 Conflicts Individual Labelling Functions
• Polarity -> Does the LF output all possible labels?

• Coverage -> How many datapoints does the LF cover?
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• Overlaps -> Does this LF overlap with at least one more LF on datapoints?

• Conflicts -> Does this LF disagree with one other LF?

Based on Given Labels in Development Set:

• Correct -> How many of data points does this LF label correctly in the
development set?

• Incorrect -> How many data points does this LF label incorrectly in the
development set?

• Accuracy –> What is the accuracy of this LF on the development set?

Polarity Coverage Overlaps Conflicts
keyword_e-sigaret 0 [0] 0.000402 0.000402 0.000402
keyword_nvm 1 [2] 0.000201 0.000201 0.000201
keyword_pakje 2 [0] 0.007431 0.006829 0.005021
keyword_pakjes 3 [0] 0.002812 0.002812 0.001808
keyword_roken 4 [1] 0.313918 0.102832 0.102832
keyword_champix 5 [0] 0.005624 0.005222 0.005021
keyword_cytisine 6 [] 0.000000 0.000000 0.000000
keyword_gerookt 7 [0] 0.028721 0.028721 0.022294
keyword_gestopt 8 [2] 0.077325 0.057240 0.057240
keyword_gestopt met roken 9 [2] 0.025909 0.025909 0.025909
keyword_heeft gerookt 10 [0] 0.000603 0.000603 0.000603
keyword_nicotine 11 [0] 0.002410 0.002209 0.002008
keyword_nicotineverslaving 12 [] 0.000000 0.000000 0.000000
keyword_heeft nooit gerookt 13 [1] 0.002611 0.002611 0.002611
keyword_was roker 14 [] 0.000000 0.000000 0.000000
keyword_roker 15 [0] 0.006829 0.005624 0.004820
keyword_rookt 16 [0] 0.119703 0.107451 0.098012
keyword_rookte 17 [2] 0.005824 0.005824 0.005824
keyword_geen roker 18 [1] 0.000803 0.000803 0.000803
keyword_is geen roker 19 [] 0.000000 0.000000 0.000000
keyword_rookt niet 20 [1] 0.029725 0.029725 0.029725
keyword_sigaret 21 [0] 0.014862 0.014862 0.012251
keyword_sigaretten 22 [0] 0.010042 0.010042 0.007833
keyword_stoppen met roken 23 [0] 0.025507 0.025507 0.025507
keyword_tabak 24 [0] 0.001406 0.001205 0.001205
keyword_tabaksverslaving 25 [0] 0.000201 0.000201 0.000201
keyword_varencline 26 [] 0.000000 0.000000 0.000000
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regex_rookt_niet 27 [1] 0.070094 0.070094 0.070094
regex_rookt_niet_meer 28 [2] 0.011247 0.011247 0.011247
regex_heeft_gerookt 29 [0] 0.013657 0.013657 0.011649
regex_was_roker 30 [0] 0.000803 0.000803 0.000803
regex_is_roker 31 [0] 0.003013 0.003013 0.002209

D.3 Accuracy Individual Labelling Functions

Correct Incorrect Emp. Acc.
keyword_e-sigaret 1 1 0.500000
keyword_nvm 1 0 1.000000
keyword_pakje 21 16 0.567568
keyword_pakjes 3 11 0.214286
keyword_roken 549 1013 0.351248
keyword_champix 13 15 0.464286
keyword_cytisine 0 0 0.000000
keyword_gerookt 15 128 0.104895
keyword_gestopt 277 108 0.719481
keyword_gestopt met roken 125 4 0.968992
keyword_heeft gerookt 1 2 0.333333
keyword_nicotine 5 7 0.416667
keyword_nicotineverslaving 0 0 0.000000
keyword_heeft nooit gerookt 13 0 1.000000
keyword_was roker 0 0 0.000000
keyword_roker 18 16 0.529412
keyword_rookt 268 328 0.449664
keyword_rookte 21 8 0.724138
keyword_geen roker 0 4 0.000000
keyword_is geen roker 0 0 0.000000
keyword_rookt niet 96 52 0.648649
keyword_sigaret 53 21 0.716216
keyword_sigaretten 41 9 0.820000
keyword_stoppen met roken 99 28 0.779528
keyword_tabak 6 1 0.857143
keyword_tabaksverslaving 1 0 1.000000
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keyword_varencline 0 0 0.000000
regex_rookt_niet 128 221 0.366762
regex_rookt_niet_meer 37 19 0.660714
regex_heeft_gerookt 8 60 0.117647
regex_was_roker 3 1 0.750000
regex_is_roker 11 4 0.733333
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E Appendix: Training on only Ketenzorg EMRs
Our second set of experiments consisted only those EMRs that are in the Keten-
Zorg group. These are chronically ill patients - with diabetes, COPD, or heart
failure - and these patients have yearly consultations with their GP, where the
GP is also required to ask about smoking status (Partnership Stop met Roken,
2019).

There are 2.726 training EMR representations that are ketenzorg. There
are 363 EMR representations in the development set that are ketenzorg. We
train our models in this section with only these examples, and test them also
with this sub-section.

E.1 Model I: Rule-Based Baseline

In Table 23, we see the results from the overall classification results. We see the
Mayo Clinic algorithm working really well for the ketenzorg population on the
general performance on the test set, with the highest F1 score both measured
in micro (F1 = 0.41), macro (F1 = 0.29) and weighted (F1 = 0.43). Apparently,
the Mayo clinic algorithm works well for smoking status classification in this
specific EMR group.

Our in-class results in Table 26 show something else: there, the individual
classes perform best within the ib2b algorithm. Interesting to note is that the
EX-SMOKING class has optimal precision (prec = 1.00) on this test set, while
very low recall (rec = 0.01), which is almost opposite for the NON-SMOKING
class: there, the ib2b algorithm as developed by Wang et al. (2019) gives high
recall (rec = 0.86), but not high precision (prec = 0.39).

E.2 Model II: BERTje FineTuned on Ketenzorg

The results of our fine-tuning of BERTje (Vries et al., 2019) is also displayed
in Table 25. We compare three models on the same test set: the KetenZorg ex-
amples from the test set. We compare a rule-based model, a Ketenzorg-trained
BERTje model, and the BERTje model trained on everything in their perfor-
mance on the Ketenzorg examples in the test set, which are 176 EMR examples.

Despite being trained with smaller sample of examples (1.407 training ex-
amples areKetenzorg, versus the 4.978 in the entire training set), theKetenzorg-
trained Bertje appears to, however slightly, improve over the BERTje trained on
all the dataset. The same effect is not seen when only training on non-ketenzorg
examples (3.571), which harms performance on the BERTje test set. This can
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Table 23: Performance on theKetenzorg labelled test set for all of the smoking
status classes. NOTE; the mayo clinic algorithm only has 2 classes

algorithm ib2b algorithm Mayo clinic own algorithm
precision micro 0.31 0.44 0.35

macro 0.50 0.22 0.36
weighted 0.71 0.33 0.49

recall micro 0.34 0.61 0.31
macro 0.38 0.43 0.30
weighted 0.71 0.61 0.31

F1 micro 0.34 0.41 0.33
macro 0.24 0.29 0.26
weighted 0.22 0.43 0.29

Table 24: In-class performance of the rule-based algorithms on the test set of
only Ketenzorg examples

algorithm ib2b algorithm Mayo clinic own algorithm
precision recall F1 precision recall F1 precision recall F1

SMOKING 0.11 0.29 0.15 0.05 0.14 0.08 0.06 0.14 0.08
NON-SMOKING 0.39 0.86 0.54 0.39 0.71 0.51 0.41 0.65 0.50
EX-SMOKING 1.00 0.01 0.02 - - - 0.61 0.11 0.19

be seen in Table 25, where we see especially the weighted and micro perfor-
mance scores (where size of the predicted classes is taken into account) is out-
performing a BERTje model trained on all classes.

Looking at in-class performances, we see this difference in performance be-
comes more pronounced for especially the ex-smoking and non-smoking class.
Interestingly, identifying the SMOKER class is considerably easier with the
BERTje trained on the entire dataset, while the other classes become easier to
detect with a non

This strengthens two assumptions we had: that the Ketenzorg population
is a separate population from the general population, and that within keten-
zorg there are different descriptions used of smoking status than in the general
population.

A short glance on some of our development texts show indeed this: the keten-
zorg texts on a positive smoking status often describe longer, more narrative
texts, while "never smokers" in the non-ketenzorg groep often describe cough-
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ing or astma.

Table 25: Performance of predicting only the Ketenzorg examples of the test
set (176 EMR examples)

Rule-Based Ketenzorg-trained BERTje all-trained BERTje non-Ketenzorg-trained BERTje
precision micro 0.35 0.81 0.79 0.75

macro 0.36 0.76 0.79 0.73
weighted 0.49 0.80 0.79 0.75

recall micro 0.31 0.81 0.79 0.75
macro 0.30 0.73 0.74 0.63
weighted 0.31 0.81 0.79 0.75

F1 micro 0.33 0.81 0.79 0.75
macro 0.26 0.75 0.76 0.66
weighted 0.29 0.80 0.79 0.74

Table 26: In-class performance of predicting only the Ketenzorg examples of
the test set (176 EMR examples)

Ketenzorg-trained BERTje all-trained BERTje non-Ketenzorg trained BERTje
1.407 training examples 4.978 training examples 3.571 training examples

precision recall F1 precision recall F1 precision recall F1
SMOKING 0.67 0.57 0.62 0.82 0.64 0.72 0.71 0.36 0.48
NON-SMOKING 0.78 0.75 0.76 0.74 0.76 0.75 0.71 0.70 0.70
EX-SMOKING 0.84 0.88 0.86 0.82 0.83 0.82 0.78 0.84 0.81
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E.3 Analyzing Confusion Matrices

We also analyzed the confusion matrices for the Ketenzorg trained model pre-
dicting the 176 EMRs in the test set that are ketenzorg. We see that the model
also when only trained and tested on ketenzorg is primarily good at identify-
ing the NEVER and EX SMOKING status, with Figure 14 showing most con-
fusion happens when the model predicts EX-SMOKER for NEVER-SMOKER
(15 items), or predicts NEVER=SMOKER for EX-SMOKEr (also 15 items). In
Figure 15 it is visible that 61% of all smokers are correctly labelled, while up
to 75% of NEVER-SMOKERS and 81% of EX-SMOKERS. Apparently, these
are easier to detect for the model. Figure 16 does show there is least confu-
sion of the SMOKER class with another class: 83% of all predicted SMOKER
items are really SMOKER, against only 72% of NEVER smokers and 77% of
EX-SMOKERS.
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Figure 14: Confusion Matrix on the ketenzorg trained model, showing the
distribution of predicted labels (in the vertical columns) and the true labels
(horizontal columns) of the test set. The test set has a total of 176 examples with
14 SMOKER examples, 63 NEVER SMOKER, and 99 EX-SMOKER. We see
most examples are correctly predicted, though there is considerable confusion
between the NEVER and EX class.
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Figure 15: Confusion Matrix on the ketenzorg trained model, showing the
relative (in percentage) distribution over True labels (in the vertical columns)
and the true labels (horizontal columns) for the ketenzorg examples in the test
set (176 examples). We see 61% of all smokers are correctly predicted, with 75%
of NEVER and 81% of EX
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Figure 16: Confusion Matrix on the ketenzorg trained model, percentage of
predicted labels. In the most left column we see the percentages for smoking
prediction: 83% of predicted smokers are actually smokers.
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