
Apparent Personality Prediction using 
Multimodal Residual Networks with 3D 

Convolution 
 

Bachelor Thesis Artificial Intelligence  

Stefan Iacob – S4575121 

Supervisors: 

prof. dr. M.A.J. van Gerven 

G.E.H. Ras, MSc 

July 2018 



2 
 

ABSTRACT 

In this thesis we propose a 3D apparent personality prediction model as extension of the 

multimodal residual neural network used for first impression analysis by Güçlütürk et al. [1]. The 

original model was trained on audio-visual data from YouTube videos and predicts the Big Five 

personality traits of the people in the video. The auditory data and the visual data were randomly 

selected within a clip, and thus not synchronized. The novel contribution of this research is to 

study the effect of extending the visual information over multiple frames, and of synchronizing 

the two modalities on the performance of the model. The model architecture was adapted to 

include these changes, and several new models were trained. Each performed better than the 

baseline models trained on the same dataset. Moreover, we provide evidence that temporal 

information improves the performance. However, a different network architecture is needed to 

prove the effect of the synchronization. 
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1 INTRODUCTION 

The combination of multiple modalities in the brain is crucial for humans to make sense of the 

world. Parts of the brain such as the parietal cortex are dedicated to integrating sensory 

information of different modalities [1]. Hence, conceptual representations are formed, which 

contain more information than just the separate sensory streams would provide. The 

robustness, as well as the failure of such mechanisms can be observed for example in the 

McGurk effect [2]. In this experiment, subjects have to report what syllable they hear. When 

the visual information shows a person pronouncing a different syllable, they fail to hear the 

correct syllable. This suggests that visual information is also included in the decision, even 

though the question is solely about auditory information. Moreover, ambiguous sounds can be 

interpreted in multiple ways, depending on the available visual information. Thus, valuable 

information is added by a second modality. The existence of such neuronal processes provides 

a strong biological motivation for exploring the possibilities of designing multimodal neural 



4 
 

networks. Another important reason for developing and improving multimodal neural networks 

is simply the great availability of information on different modalities. For example, in video 

mining problems a second synchronized modality is usually available: the sound in a video. 

Many researchers have been making use of multimodal machine learning techniques. Some 

applications, such as the models in [3] and [4] on apparent personality classification, have 

achieved high accuracy in predicting several apparent personality traits based on audiovisual 

data of faces. Certain personality features appear to be important predictors for success in 

different job types and are thus likely to be considered during interviews. For example, high 

levels of conscientiousness are typical of an individual that is likely to be dutiful and responsible 

- a trait that is valuable for many positions [5].  According to the Big Five model, human 

personality can roughly be characterized by five traits: openness, extraversion, agreeableness, 

conscientiousness, and neuroticism [6]. There is evidence that at least four of the Big Five traits 

can be predicted accurately from facial features [7].  

Moreover, apparent personality and first impressions are of great importance during job 

interviews and have significant influence on interviewers (at the very least on a subconscious 

level), and on their decisions in particular in situations when candidates have comparable 

qualifications. This is why neural network models could provide interviewers with a secondary, 

more objective measure, to aid in the decision of hiring that candidate. The advantage of such 

models is that they are trained on an apparent personality data set labeled by a large number 

of people, which eliminates to a large extent any trace of bias and/or subjectivity in the 

assessments produced by the model. This ensures that the objectivity of such models is 

preserved. Furthermore, the model can be applied consistently and uniformly to all applicants, 

irrespective of the context of such job vacancies. Furthermore, there is some evidence that 

predicted levels (using a CNN model) of personality traits, such as “Rule-consciousness”, 

“Openness”, “Perfectionism”, and “Tension” are correlated with self-reported personality as 

shown in [8], which strengthen the above objectivity claim. 

The audiovisual model proposed by [3] achieved an accuracy of 0.9109 in predicting the Big Five 

traits from audiovisual information of people facing a camera. In this study, we attempt to 

improve this model by revising and strengthening the biological plausibility of the neural 
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network architecture described in [3]. To this end, the problem we address is in regard to the 

timing of audio and video. To integrate audio and video, [3] used a random fragment of the 

audio data and a random frame of the video data, which were fed through separate streams in 

the neural network and concatenated in the last layer. The audio contains temporal 

information, whereas the visual input only represents a single snapshot in time. We argue that 

this design choice leaves room for improvement, as this approach does not take into account 

the possibility of additional bi-modal and temporal patterns, such as correlations between voice 

intonation, and facial movements. This limitation primarily has two causes. First, only one 

frame is picked from the video data, hence most of the temporal information is lost. Secondly, 

the audio and video modalities are not synchronized: they can span different time fragments 

and can thus contain different emotional expressions. This motivates the underlying 

assumption of this study, namely the usage of a longer video sequence, synchronized with the 

corresponding audio fragment. This means the audio and video data span the same time 

interval. 

Given the above considerations, the main research question is formulated as follows: 

Does using multiple video frames per sample along with a synchronization of the audio and the 

video streams improve the performance of the model by Güçlütürk et al. [3] in predicting Big 

Five personality traits? 

The hypothesis put forward, and the novel contribution of the current study is that this 

adaptation will increase biological plausibility, and subsequently, the performance of the model 

by exploiting the additional temporal and bimodal information included in a sequence of video 

frames. Here, we define temporal information as the additional information present in the 

changes between the videoframes, and bimodal information as the information that is added 

by certain combinations of audio features and video features. We test this hypothesis by 

designing, implementing and testing a 3D-Apparent Personality Prediction (3D-APP) model, 

which is an extension of the Güçlütürk et al. [3] model. 

Concerning the research methodologies followed during this research, it should be noted the 

we combined systematic literature review (to ensure that we have an exhaustive coverage of all 
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relevant literature) as prescribed by [9] and [10], with the principles of design science research, 

as formulated by [11], and [12]. 

The remainder of this document is organized as follows. Section 2 gives an overview of the 

relevant literature for this research. In Section 3, we describe the steps of the research process, 

the design and training of the baseline model (Section 3.1), and of the 3D-APP model (Section 

3.2). More precisely, in the new 3D-APP model the overall architecture, training process, and 

data of the baseline model have been preserved, in order to make possible the performance 

comparison of the original and new models. However, as it will be explained in Section 3.2, the 

3D-APP model introduces some key differences related to the way the audio and video data 

samples are used. The experiments, tests, and performance evaluation of the 3D-APP model 

are discussed in Section 4. We conclude this report with a summary of the main contribution, a 

discussion of the results and limitations of the proposed solution, and some pointers to future 

work. 

2 BACKGROUND AND RELATED WORK 

In this section we discuss the literature and topics that are relevant to this research. 

Multimodal Machine learning is the research area focusing on the development of models that 

are capable of processing information from multiple modalities [13]. The simultaneous 

processing of different modalities helps create associations between them, which should result 

in a better classifier performance compared to using single modalities. Multimodal neural 

networks have been used for a number of problems, such as language models [14], image 

captioning [15], emotion detection [16] and apparent personality classification [3] [4] [17], 

which is also the focus of this thesis. However, some interesting questions are still unanswered, 

such as how to combine in a meaningful way the different modalities in the network, or how, 

and at what point, to join the modality-specific networks into a single multi-modal network, to 

achieve a meaningful data fusion [13]. 

As mentioned earlier, the focus of the current research lies in the adaptation of the model 

proposed in [3]. The work in [3] was largely motivated by Chalearn Looking at People challenge 
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[18], in which it won the third place. The changes proposed in this research are partly present in 

the model proposed in [4], which ended-up in the second place in the same challenge. 

Subramaniam et al. [4] select multiple data frames from a video and perform a 3D convolution 

on them, hence implementing the same idea of temporally ordered frames. However, our 

approach essentially differs from [4] in the way audio data is preprocessed. Instead of using raw 

audio input, in [4] several features are extracted, which are then used to train the network. 

These features represent global characteristics of the whole audio fragment, so the temporal 

patterns in the audio channel are not explicit. Thus, no correlation between the audio and 

video patterns is possible. We argue that, when feeding the network raw audio data, no 

restrictions are posed on the relevant feature extraction, and hence such correlations are 

possible. 

Regarding the design of the network architecture, we make use of the Residual Neural Network 

framework defined in [19]. The building blocks of a residual network are called Residual Blocks. 

A schematic representation of a residual block can be seen in Figure 1. Residual networks 

enable a much deeper network architecture while avoiding the degradation problem described 

in [19].  

 

Figure 1. Residual block. The output of each residual block is added to an identity mapping of the input. 
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3 METHODS 

In this section, we describe the steps of the general approach we followed for designing the 

architecture of the 3D-APP model, carrying out the data processing, and conducting the 

experiments. The neural network underlying the 3D-APP model is an adaptation of the residual 

neural network designed by [3], which is also used as baseline model for the purpose of 

performance benchmarking. The overall approach is shown in Figure 2 (in the form of a simple 

workflow diagram) together with the sections where the respective steps have been discussed. 

 

 

Figure 2. Research approach 
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3.1 BASELINE MODEL 

In this subsection the data input, model architecture, and training of the baseline model is 

described. 

3.1.1 Data Preprocessing 

The dataset used for the baseline model consists of 10000 mp4 files, with an average duration 

of 15 seconds. The videos show people speaking English, while facing the camera. The training, 

validation and test ratio was 3:1:1. The data was labeled in terms of the Big Five personality 

traits, with each trait value ranging from 0 to 1. For each of the clips, the data set was split into 

visual input and audio input. These pairs were used as single training samples, fed through the 

network in mini-batches of 32 samples. The audio was resampled to a sampling frequency of 

16000 Hz. For each audio clip, a random temporal crop of 50176 samples was made, 

corresponding to a time frame of 3.136 seconds. To obtain the visual input, a random frame 

was selected from the clip. A random 224 by 224 pixels spatial crop was taken from this frame. 

Güçlütürk et al. [3] argue that selecting random crops is the best approach, as this makes no 

assumptions on the importance of the different locations of visual patterns in the frame. For 

example, video background could also contain some information about the personality of the 

individual featured by that video sequence. 

3.1.2 Model Architecture 

The baseline architecture proposed in [3] consisted of audiovisual models and language models. 

For the purpose of this research, only the former is relevant. The audiovisual model consists of 

a visual stream and an audio stream. Both are 17 layers deep residual neural networks. They 

are joined together in a final fully connected layer. Each of the two streams consists of one 

convolutional layer and eight residual blocks, where each residual block consists of two 

convolutional layers (see Figure 3).  
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Figure 3. Architecture of the baseline model (source: [3]) 

It should be noted that two types of residual blocks are used in the baseline model. “Residual 

block A” consists of convolutional layers with a kernel size of 3 by 3 in the visual stream, and a 

kernel size of 9 in the audio stream, both having a stride of 1. This means there is no down-

sampling of the data. On the other hand, the convolutional layers in “Residual block B” have a 

kernel size of 1 by 1 with a stride of 2 in the visual layer, and a kernel size of 1 with a stride of 4 

in the audio layer. Residual block B down-samples the data. 

3.1.3 Network Training 

The training of this network was done using a stochastic gradient optimization method called 

Adam [20] using parameters α = 0.0002, β1 = 0.5, β2 = 0.999, ϵ = 10-8 and a minibatch size of 32 

samples. The training consisted of 900 epochs, where each epoch had 187 training steps 

consisting of samples selected randomly from the 6000-sample training set. Every 300 epochs, 

α was reduced with a factor 10. During the testing, the model achieved an average accuracy of 

0.9109, ending up in the third place in the Chalearn challenge [18]. 
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3.2 3D APPARENT PERSONALITY PREDICTION MODEL 

In Figure 4, a schematic overview of the new 3D-APP model pipeline can be seen. 

 

Figure 4.  Detailed specification of the online preprocessing and training 

When designing the new architecture of the network to allow for synchronized visual and audio 

streams, two aspects are important: 

• How should the video frames and audio samples be selected and pre-processed? 

• How are the two information streams synchronized? 

In the next two subsections, the design decisions we took with regard to these two problems 

are described and motivated. 

3.2.1 Data Preprocessing 

We assume that there exists an underlying association between the auditory and visual 

information. Thus, in order to create stronger associations and connections between the two 

separate streams, temporal information needs to be included in the network. This effectively 

means synchronizing the visual input with the audio input. This can be achieved in several ways. 

One is to pair every input frame with corresponding audio information, i.e. in the form of raw 

audio segments in the duration of that single frame. However, with an average frame rate of 25 
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frames per second, the duration of a single frame is 0.04 seconds. Given that the average 

duration of a word uttering is much longer than 0.04 seconds, the amount of added 

information would be very low. Using such a short corresponding audio fragment is therefore 

unlikely to increase performance of the model. Furthermore, using single frame-audio pairs 

leaves out the temporal information over multiple frames. A more feasible approach to this 

problem is to pick a sequence of frames within in a specified time interval, and feed them 

through the network simultaneously, along with an audio fragment corresponding to that 

interval. This means that input data of the visual stream is represented as 4D matrices of the 

shape time x width x height x color, rather than single frame 3D matrices. This approach to 

temporally order video-frames is similar to that proposed in [4], [21], and [22].  

When selecting the visual samples, the size of these clips must be taken into account. Using full 

frames would take a lot of memory and slow down the batch making process. As mentioned 

earlier in Data Preprocessing, Güçlütürk et al. [3] try to make as little assumptions as possible 

on importance of visual features by selecting random crops. It is possible that background 

information is relevant for personality prediction, but this could only be the case if the video 

creators consciously or unconsciously chose their own video background and location. Although 

this is true for this dataset, such an assumption would prevent the generalization to other 

videos, in which this is not the case. Furthermore, according to [7], internal and external facial 

features are accurate predictors of four of the five personality traits. Hence, facial information 

is highly relevant to personality prediction. Lastly, we attempted to create better associations, 

on the one hand between visual information and auditory information, and on the other hand 

between different visual frames in time. For the former aspect, the visual information must 

somehow be relevant to the auditory information. For the latter, there must exist some 

continuity between the visual frames. Facially centered crops would provide both of these 

aspects: lip movements and sound are correlated, and sequential facially centered frames 

contain relevant information about movement.  

For the reasons mentioned above, sequences of 208 by 208 pixels facially centered frames were 

chosen, along with audio segments corresponding to the time window of the frames (see Figure 

5). The pre-processing of the audio was performed in a similar way as in the baseline model.  
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Figure 5. The data preprocessing step 

Due to the relatively large time interval necessary for the audio sample, the volume of data 

corresponding to the video frames in this time interval is too large to be processed efficiently 

by the network, resulting in a prohibitive training time. On the other hand, the change in visual 

information between two consecutive frames is very low. Therefore, it is much more efficient 

to select a subset of the frames, equally spaced over the duration of the selected time interval. 

The time duration of the intervals, the number of frames, and the audio sampling frequency are 

fixed.  

3.2.2 Model Architecture 

The changes that are made in the architecture are limited to the visual stream. Therefore, in 

this subsection the auditory stream is not further discussed.  

To implement this approach of simultaneously feeding multiple frames through the network, 

we replace the original 2D convolutional layers in the visual stream with 3D convolutional 

layers, hence also including the time dimension, which is inspired by models such as [4], [21], 

and [22]. A schematic representation of 3D convolution can be seen in Figure 6.  
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Figure 6. Processing Layer with 3D convolution. The formulas show the new dimensions of the visual sample after convolution.  

A detailed overview of the 3D-APP model architecture can be seen in Figure 7. Similar to the 

model architecture described in section 3.1.2, the 3D-APP model makes use of the residual 

blocks A and B. In order keep the 3D-APP model similar to the baseline model, the kernel sizes 

for the width and height of the frames are kept the same. However, to account for the 

relatively limited number of frames, the depth of the kernel must also be small. For the 

convolutional layers in residual block A, we choose a kernel size of 3 by 3 by 1, with a stride of 

1. Convolutional layers in residual block B use a kernel size of 3 by 3 by 3 with a stride of 2. 

Hence, the depth of the sample is reduced.  
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Figure 7. 3D-APP model architecture 

 

Besides changing the shape of the input data and the mechanics of the convolutional layers in 

the visual stream, no changes are made to the rest of the network. 

3.2.3 Network Training 

The most important challenge regarding the definition of the network training was to establish 

which temporal parameters to use for obtaining the best performance. These parameters 

consist of the number of selected frames and the size of the time window, as well as the 

resulting frame density. Several models were trained with varying number of frames and time 

window sizes: 

• model 2.5_5, with 5 frames over 2.5 seconds, resulting in 2 frames per second,  

• model 5_5, with 5 frames over 5 seconds, resulting in 1 frame per second, 

• model 5_10, with 10 frames over 5 seconds, resulting in 2 frames per second, and 

• Model 8_8, with 8 frames over 8 seconds, resulting in 1 frame per second. 

The reason for choosing such variations in the number of frames and fragment duration was to 

make possible a comparison between various amounts of temporal information in the video 
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stream, and thus to provide the means for evaluating the importance of this additional data 

dimension.  

In order to create models that are comparable to the baseline model, all other training 

parameters were kept constant, with one exception. In the baseline model, each epoch 

consisted of 187 training steps using batches of 32 samples, thus covering the entire training 

set. In the training procedure of the 3D-APP model models, all training data was traversed as 

well, but occasionally a video was too short for the selected time frame. In this case, the video 

was skipped, resulting in a slightly shorter epoch. We worked under the assumption that this 

will not affect the results, since the skipped videos are a tiny fraction of the training set. 

Furthermore, to account for the use of facial crops instead of full frames in the adapted model, 

two new baseline models were trained on the same facial crops. However, the same temporal 

parameters were used as in the model by [1]: one frame selected at random from the whole 

video, and an audio fragment of 3.136 seconds. Thus, the resulting baseline models provide a 

better frame of reference for the 3D-APP model. 

Lastly, as mentioned in section 3.2.1, each of these models are synchronized. In order to make it 

possible to test whether the synchronization of audio and visual information indeed leads to an 

improvement of the model’s performance (as originally hypothesized), an additional 

desynchronized model was trained, using 5 frames over 5 seconds, which can be compared with 

the synchronized 5_5 model. It should be noted that, besides selecting the audio samples and 

video frames from independently selected time windows, no other changes were made 

compared to model 5_5.  

3.3 TECHNICAL SPECIFICATIONS 

In this subsection, the technical details needed for the implementation of the models are 

summarized.  

All neural network implementations were made using Chainer, CUDA, and cuDNN. For facially 

cropping the videos, the Python library dlib1 was used. For frame and audio selection, we first 

                                                      
1 https://github.com/davisking/dlib 

https://www.google.com/url?q=https://github.com/davisking/dlib&sa=D&source=hangouts&ust=1529420491048000&usg=AFQjCNFvDq2YUyPjpj4u3pulSIp-np2qmg
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attempted to use FFmpeg, which is a multimedia framework able to decode and encode media 

[23]. Equally spaced frames and the corresponding audio are directly selected from mp4 files, 

and then saved as arrays. Unfortunately, reading the data from mp4 files is too slow for a 

reasonable training time. It results in an average batch making time of 8 seconds. To solve this 

problem, we choose to save the data as HDF5 files. HDF5 is a data model, library and file format 

that supports unlimited datatypes [24]. This change lowered the batch making time to 1.5 

seconds on average.  

4 RESULTS 

In this section, the different models that were trained will be discussed, compared and 

evaluated in terms of convergence, test loss, and performance.  

4.1 TRAINING 

As mentioned in the previous section, each model was trained for 900 epochs. During the 

training phase, the average loss over all samples of the model was recorded after each epoch. 

This loss was computed by taking the mean absolute error between the predicted samples and 

the labels. In Figure 8, the training loss of each model is plotted as a function of the epoch 

number. The training loss is defined as the mean absolute error of the predictions during the 

training phase. 
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Figure 8. Training loss graphs 

4.2 TESTING 

A quick overview of the test accuracies of the different types of model architecture can be seen 

Table 1. The accuracy is defined as 1 – the mean absolute error of the test predictions. Each 

model was trained for 900 epochs and saved every 10 epochs, resulting in 90 available models 

per architecture, from which the best was selected. 
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Table 1. Test loss of the best performing models. The abbreviations Ex, Ne, Ag, Co, and Op stand for respectively, extraversion, 
neuroticism, agreeableness, conscientiousness, and openness. 

Model Average Ex Ne Ag Co Op 

Baseline 1 (epoch 
819) 

0.900825 0.899148 0.89727 0.906019 0.900043 0.901645 

Baseline 2 (epoch 
529) 

0.902124 0.899695 0.901094 0.909605 0.897208 0.903018 

2.5 seconds, 5 
frames (epoch 639)  

0.905445 0.906947 0.900495 0.910346 0.903762 0.905677 

5 seconds, 5 frames 
(epoch 319) 

0.906305 0.907046 0.90363 0.910904 0.902743 0.9072 

5 seconds, 10 frames 
(epoch 399) 

0.907497 0.908668 0.905557 0.911338 0.903853 0.908067 

8 seconds, 8 frames 
(epoch 499) 

0.907736 0.911171 0.90351 0.911663 0.9048 0.907536 

5 seconds, 5 frames, 
desynchronized 
(epoch 479) 

0.906894 0.909574 0.90398 0.910854 0.903853 0.906208 

 

The models were tested using a separate dataset, by computing the average loss over all test 

samples. Besides the mean absolute error of all output traits, separate losses for each individual 

trait were recorded as well. Hence, we can determine to what extent the 3D-APP model is able 

to classify each trait separately. 

To observe the progressions in test loss throughout the training process, the mean absolute 

error was computed for each epoch. To obtain a fair comparison between the epochs, the same 

time fragments were used at each test. In the desynchronized model, the audio fragments were 

shifted two seconds forward compared to the video fragments.  

In Figure 9, the test loss of each model architecture is plotted as a function of the epoch 

number. In Figure 10, a comparison is shown between model 5_5 and the desynchronized 

model 5_5. 
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Figure 9. Mean Absolute Error of the trained models. 

 

 

Figure 10. Comparison between a synchronized and desynchronized model. 
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4.3 EVALUATION 

First, a comparison between the speed of convergence in the training phase can be made by 

looking at the graphs in Figure 8. We can see that the baseline models decrease the slowest in 

the training loss, followed by model 2.5_5, models 5_5 and 5_5 desynchronized, model 5_10 

and lastly, model 8_8. This suggests that using more frames and using a longer time fragment 

improves the model’s ability to fit the training data. However, this does not tell us anything 

about the model’s ability to generalize to the test set.  

Secondly, when looking at the graphs in Figure 9 and average accuracies in Table 1, we observe 

that model 8_8 achieves the highest performance, followed by model 5_10, model 5_5, model 

2.5_5 and the two baseline models. The baseline models maintain a decreasing trend in test 

loss until the last epochs, whereas models trained with multiple frames have the tendency to 

reach their lowest test loss in an earlier stage of the training, sometimes followed by a rising 

trend, which could indicate overfitting.  

In Figure 11, a comparison is shown between two models trained with fragments with the same 

duration, but different frames densities. It appears that the model with more frames (the blue 

graph) converges faster, reaches a slightly better performance, but also presents a rising trend 

after 400 epochs. A possible explanation is that the difference between successive frames is 

smaller than for the other fragments, and thus more frames are presented with similar visual 

content. 
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Figure 11. Test Loss of model 5_10 and model 5_5 as a function of epochs. 

The presence of cross modal temporal patterns should result from the better performance of a 

model trained with synchronized audio and video, with respect to a model trained with 

desynchronized modalities. 

 

Figure 12. Test loss for the models 5_5 with synchronous and desynchronized audio, respectively. 

However, from Figure 12 and from Table 1, it results that the difference between these two 

models is insignificant. This may be due to the fact that the fusion of the two modalities is only 

performed in the last layer, so cross-modal temporal patterns could not be learned. A network 
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architecture with early fusion needs to be implemented in order to achieve more relevant 

results related to the learning of cross-modal patterns. 

When looking at the performance in for each individual trait, it appears that some of the five 

traits are more easily predictable than others. For comparison the best performing model is 

chosen (8 frames over 8 seconds). The best overall performance is achieved, in all models, by 

Agreeableness and Extroversion, while Neuroticism and Conscientiousness are the most 

difficult to estimate. Figure 13 shows the losses for the average between Extroversion and 

Agreeableness in comparison with the average between Neuroticism and Extroversion.  

 

Figure 13. Comparison between the losses for different traits by the model 8_8, plotted against the epoch number. 

5 CONCLUSION 

In this section, we reflect back to the research question and hypothesis proposed in section 0. 

We conclude this thesis with an overview of the limitations of the research and some pointers 

to future work. 

5.1 CONTRIBUTION 

The hypothesis put forward in section 0 can be split up into three parts: 

1. The 3D-APP design performs better than the baseline model. This is because: 

2. The 3D-APP models exploit the additional temporal information, and 

3. Bimodal associations are learned from a sequence of video frames synchronized with 

audio. 



24 
 

We can conclude that each of the 3D-APP models indeed achieve a higher accuracy than the 

baseline architecture trained on the same dataset. Thus, the first part of the hypothesis is 

confirmed. Moreover, to obtain a more complete comparison between the models, the testing 

loss throughout the training process and the speed of convergence are also taken into account. 

The 3D-APP models converged in fewer epochs compared to the baseline model. 

Regarding the second part of the hypothesis, the contribution of the temporal information is 

confirmed by the fact that the model 2.5_5 performs slightly worse than model 5_5. This 

suggests that a longer time fragment results in better performance when the number of frames 

is kept constant. A possible explanation is that the variation between the different frames from 

a video is higher, resulting in more information per data sample. However, these models need 

to be trained multiple times to provide conclusive evidence. 

Furthermore, the benefit of exploiting cross-modal patterns should have been proven by a 

worse performance of the desynchronized model 5_5 compared to the synchronized model. 

This did not result from our experiments. A possible explanation is that the visual and auditory 

channels are only merged in the last layer, so the association between these is minimal. An 

early fusion approach should be used to get a stronger conclusion about the value of cross-

modal patterns. This is explained in more detail in Section 5.3. 

Lastly, we can observe clear differences in the prediction performance of individual traits. 

Figure 13 shows that the models consistently have a higher prediction error for traits 

neuroticism and conscientiousness. A higher error for conscientiousness is in accordance with 

the research from [7], as they were unable to predict this trait from internal and external facial 

features. 

5.2 LIMITATIONS 

In this subsection, we discuss several aspects of this research that can be improved in order to 

strengthen the evidence for the improved performance of the 3D-APP model. 

Due to time constraints, each 3D-APP model architecture was trained once, and the baseline 

architecture was trained twice. Although the results of the testing have shown a clear 
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performance improvement of the 3D-APP models, in to order to be able to conclude with a high 

degree of certainty that the 3D-app model consistently performs better than the baseline 

model, the models should be trained multiple times. 

Secondly, more research is needed on the internal associations between audio and video. We 

cannot yet conclude that the increase in performance and the faster convergence can be 

attributed to the earlier mentioned bimodal temporal patterns, as the synchronized model 

does not show improvement compared to a desynchronized model in the current state of the 

network architecture.  

Furthermore, the parameters of the 3D convolution were not varied, and may be suboptimal. 

Further experimentation is necessary to establish the settings of the optimal network 

architecture. Such parameters include the number of kernels, stride and kernel size. 

Lastly, further experimentation with the parameters of the optimization algorithm could 

improve the training result. 

5.3 FUTURE WORK 

The applications of audiovisual neural networks go further than personality detection. In the 

case of models such as the 3D-APP model, which synchronizes audio and video data, interesting 

future applications might include the detection of discrepancies between facial cues and vocal 

cues. A particular field that might benefit from this, is lie detection. There is evidence that cross 

modal discrepancies of personality perception are associated with dishonesty [25]. The 

architecture of this network is ideal for such an application, as it uses both modalities and can 

be trained on short videos containing a statement, labelled either true or false.  

Secondly, it would be interesting to investigate whether some personality traits are more 

accurately predicted from just one of the audio, or the video streams. Such research could lead 

to more fine-tuned trait-specific models that exhibit a better prediction accuracy. 

Lastly, in its current state, the 3D-APP model performs a concatenation followed by a fully 

connected layer at the end of the network. Thus, data fusion occurs late in the processing, and 

as a consequence, the associations formed between synchronized audio and video is limited, as 
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described in section 5.1. Shifting the data fusion to an earlier point in the processing of the two 

streams could prove beneficial in the context of synchronized modalities. This might also 

provide the opportunity for studying the activation of neurons after the point of fusion, which 

could lead to a better understanding of the underlying patterns in the data. For example, 

multimodal neurons may arise, that do not respond to either video or audio patterns, but 

rather to a combination of the two.  
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