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Abstract
It is generally thought in cognitive neuroscience that the concept of functional hierarchy -
the notion that complex things can be decomposed into simpler elements and that simpler
elements make up a complex system - plays an important role in the production of skilled
(motor) behavior and situations that require cognitive control. According to schema theory,
behavioral elements make up behavioral primitives, which can be sequenced to achieve a global
goal. In robotics, there have been many different attempts to design paradigms for such
behavior productions but often a distinction is made between reactive and deliberative robots.
Hybrid systems incorporate both kind of behaviors, in which a higher level system controls
lower level reactive layers to produce behavior (e.g. the traffic regulator concept). Since it
is not really clear how such functional hierarchy is actually organized in the brain, it would
be interesting to see how this functional hierarchy can self-organize. In the current thesis,
a recurrent neural network model was used for such self-organization. Context units with
different multiple timescales were used, to incorporate the temporal organization of behavior.
The goal was to test how well such an MTRNN agent performed and what kind of behavior was
shown as compared to a traffic regulator on a survival task in a day-night environment, with
obstacles and food sources. Furthermore, since hybrid robots are consistent with embodied
embedded cognition, it would be interesting to see what kind of role environment type plays for
the behavior of the MTRNN agent. Therefore the behavior and performance of the MTRNN
was tested in two different environments, varying in the amount of structure. It was found
that the MTRNN agent performed worse than the other tested agents, but that performance
was better in more structured environments. This implicated that the environment is an
important factor but that the MTRNN agent is less suited to random environments. As for
the self-organization of functional hierarchy, it did not emerge through the use of different
timescales but the complexity of behavior was dependent on the right amount of food in the
environment. The results indicated that in order to achieve functional hierarchy and perform
well, the agent needs clear goal-directed tasks and structured environments.
Keywords: functional hierarchy, skilled behavior, reactive, deliberative and hybrid robotics,
embodied embedded cognition, recurrent neural network, multiple timescales
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1 Introduction

Every day humans encounter many situations in which difficult decisions must be made,
complex tasks must be completed and appropriate behavior in different contexts is required
to reach certain goals and in the end, survive through the day. In order to do that, humans
(and other organisms as well) perform skilled behavior - such as speech production, planning,
reasoning, a well as complex motor patterns. In cognitive neuroscience, it is widely believed
that such skilled behavior is possible because the brain is a system with functional hierarchy
(Braver, Paxton, Locke, & Barch, 2009; Botvinick, 2008; Ardila, 2008). The concept of
functional hierarchy in cognitive neuroscience can be defined as the notion that complex
systems can be decomposed into more simple, primitive elements and, the other way around,
these simple elements can be integrated to make up a more complex system. The concept of
functional hierarchy is one that is encountered a lot within the field of cognitive neuroscience.
A good example is the motor behavioral production system because it can be seen as a
system with a functional hierarchical organization; motor elements (such as moving left,
turn 50 degrees, etc.) are integrated to compose a behavioral primitive - a set of motor
elements to reach a certain sub-goal. Such behavior primitives can then be reused to make
up a sequence of motor primitives to reach a certain global goal. Agents with such functional
hierarchy can thus adapt very well to different situations. This idea has been expressed in
the concept of (motor) schema theory (Schmidt, 1975; Arbib, Erdi, & Szentagotha, 1988),
in which different primitives make up a schema in order to reach goals.

An important concept when it comes to skilled behavior and its adaptive properties is
cognitive control - the ability to act accordingly to internal goals and the current perceptual
context (Braver et al., 2009; Koechlin, Ody, & Kouneiher, 2003; Badre & Wagner, 2007;
Badre, 2008; Egner, 2009). This means that different behavior is required in situations
that are perceived the same but in which the context is different. Therefore, in order to
perform skilled behavior, an agent must be able to differentiate such situations and choose
and sequence the appropriate behavior primitives to handle the current context. The context
therefore plays an important role in the way behavioral primitives in motor schema theory
are sequenced.

In robotics, different approaches have been pursued to model behavior production. Within
this field of research, often a distinction is made between reactive behavior on the one hand
and deliberative behavior (such as planning, reasoning and strategy-driven tasks) on the
other hand (Murphy, 2000). The reactive paradigm (Brooks, 1986, 1991) deviates from the
belief that behavior should be decomposed into functions (in which output goes from one
functional module to the other until the final output is produced) and instead is based on
a more vertical decomposition of behavior into different activities that all have their own
goal. To be more specific, each layer has its own goal, takes its own input and reacts with-
out intermediate processing of information. The layers are organized in a vertical manner
and higher level behavior layers can inhibit or suppress lower layers, thereby forming a sub-
sumption architecture. Through this paradigm, an agent performs different combinations of
behaviors, can react very fast to changes in the environment and is therefore very flexible.

The reactive paradigm arises from the concept of embodied embodied cognition; the brain
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should not be seen as the central control system, but instead cognition arises through the in-
teraction between the agent’s body, it’s brain and the environment (Brooks, 1991; Haselager,
Dijk, & Rooij, 2008; Van Dijk, Kerkhofs, Van Rooij, & Haselager, 2008). This is exactly
what the reactive paradigm does: it uses the world as its model. This is consistent with the
work by Willems and Haselager (2003); they showed that the emergence of cooperative and
strategic behavior was dependent on the nature of the environment, which indicates the role
environment can play in behavior production.

Although reactive agents work very well in many situations, in more complex situations
also some deliberative behavior and cognitive control is required to also maintain a global
goal. The hybrid robotic paradigm incorporates both reactive and deliberative behavior
and such an agent is thus able to perform well in local situations while sequencing behavior
primitives to maintain a global goal as well (Aaron & Admoni, 2010; Huq, Mann, & Gosine,
2008; Peterson, Duffy, & Hooper, 2011). The traffic facilitator (Haselager et al., 2008;
Van Dijk et al., 2008) is a nice concept that illustrates how a hybrid system can incorporate
functional hierarchy and be consistent with embodied embedded cognition: at the lower level
the behavioral layers produce behavior primitives according to the current perceptual input,
while at a higher level a control system inhibits certain layers to maintain a global goal. The
higher control structure thus decides which behavior primitives become active and are thus
performed. This notion is consistent with the general belief that the prefrontal cortex (PFC)
plays an important role in action selection, task sequencing and cognitive control and the
literature covering this topic is almost endless (Braver et al., 2009; Ardila, 2008; Badre &
Wagner, 2007; Badre, 2008; Botvinick, 2008; Petrides, 2005; Egner, 2009; Koechlin et al.,
2003; Fuster, 2001). The PFC basically acts like the higher control system that controls
lower level systems, again stressing the idea of the functional hierarchical organization of the
brain.

The effectiveness of the traffic facilitator/regulator was shown in a study by Lagarde
(2009). He compared reactive agents and control agents (based on the hybrid traffic facilita-
tor) in an environment that had a day-night rhythm. All the agents had to survive as long
as possible by searching for food, avoiding obstacles and go to sleep at appropriate times
since sleep preserves energy (Berger & Phillips, 1995). In the control agents, the reactive
layers could all individually be inhibited by a higher control structure (a multilayered per-
ceptron). It was shown that the control agents were able to develop a day-night rhythm
without this rhythm being hardcoded and this enabled these agents to outperform the reac-
tive agent without hardcoded sleeping behavior and performed equal to the agent that had
a hardcoded sleep rhythm.

Although the literature seems to indicate that behavior and cognition has a functional
hierarchy, it is not really clear how this functional hierarchy is actually organized in the
brain despite all the hybrid models out there. The work by Yamashita and Tani (2008) and
Paine and Tani (2005) showed that functional hierarchy can self-organize in neural network
models without constraints on how this functional hierarchy is structured in the architecture.
Instead, both models include temporal aspects which is consistent with the notion that many
behavior depends on time as well (Fuster, 2001; Rajah, Ames, & D’Esposito, 2008; Smith,
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Ghazizadeh, & Shadmehr, 2006; Montebelli, Herrera, & Ziemke, 2008; Kiebel, Daunizeau, &
Friston, 2008). Although the two studies included similar constraints and had similar goals,
different network models were used. In Paine and Tani (2005), a network model with a bot-
tleneck architecture was created that incorporated topological constraints. These constraints
ensured that different network parts developed responsibility for different parts of the robot’s
behavior; one part developed fast dynamics producing behavior primitives, while the higher
part developed slow dynamics, thereby keeping a global goal in mind and sequencing the be-
havior primitives. In this particular study, different timescales evolved indicating that these
different parts do not work equally fast. In the second study (Yamashita & Tani, 2008), a
kind of recurrent neural network was proposed in which functional hierarchy self-organized
through the use of two different context units, each with their own time properties. The
context units with a fast timescale became involved in the generation of behavior primitives,
while the context units with a slow timescale were responsible for sequencing behavior prim-
itives to achieve a global goal. The different timescales ensured that the units’ activity is not
only influenced by the current input, but also by previous time states; in the fast context
units the activity is dependent on less previous states than in the slow context units, acting
like a short- and long-term memory.

Both the traffic facilitator and the work of Yamashita and Tani (2008) produce agents
with a functional hierarchy to produce behavior, both in their own way. This traffic facil-
itator was already shown to be effective in the day-night environment of Lagarde (2009)
and therefore it would be very interesting to see how well the agent with a model like that
of Yamashita and Tani (2008), a recurrent neural network with multiple timescales - called
MTRNN from this point on - is able to perform, i.e. survive as long as possible, in the same
environment. Therefore the first research question of the current thesis is:

(1) How well will the MTRNN agent survive as compared to reactive and hybrid agents
in a random day-night environment, such as proposed in Lagarde(2009)?

To answer this question, the MTRNN agent will perform the same task in the same en-
vironment as the reactive (Reactive & Reactive-DN agents) and control agents (Control
agent) of Lagarde (2009) and with two agents with simpler network structures, a perceptron
and multi-layered perceptron (called Perceptron and MLP agent, respectively).

Furthermore, it seems that the kind of environment plays an important role when it comes
to development of behavior structures. This indicates that it would also be very interesting
to know more about what kind of behavior the MTRNN agent will show in different environ-
ments and also to what kind of environments the MTRNN is best adapted. This proposes
two other research questions which will be investigated here:

(2) What kind of behavior and performance will the MTRNN agent show in random (such
as proposed by Lagarde (2009)) as compared to more structured environments?
(3) In what kind of environments and tasks will the MTRNN agent be able to benefit (show
effective survival behavior) from having multiple timescales, i.e. remember previous time
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states?

Question (2) will be answered by observing all six agents perfom the survival task in two
different environments. The first environment will be a random environment with food and
obstacles and is actually the same as used by Lagarde (2009). The other is a more structured
environment that incorporates no obstacles but cues to where the food is positioned. It is
expected that the MTRNN agent is able to benefit of this structure, by memorizing patterns.
The third question is answered by looking at the results of questions (1) and (2), but also
at the type of environments and tasks that were used in the work of Yamashita and Tani
(2008) and Paine and Tani (2005).

Finally, since the functional hierarchy should be self-organized in the model that is cur-
rently investigated, it is also necessary to investigate if this is also really the case. The fourth
and final research question is therefore:

(4) Is the agent able to achieve functional hierarchy through different timescales in the
current survival task and environments?

This final question is answered by observing and comparing the behavior of the MTRNN
agent against the behavior of the MLP and Perceptron agents in both the environments; if
a sequence of different behavior primitives and patterns (such as a distinction between day
and night) is observed, it is likely that the agent uses a functional hierarchy of behavior
to produce and control behavior. However, if the same kind of behavior is observed in the
simpler network agents as well, the MTRNN agent may still have developed functional hier-
archy but this then would not be due to the specific neural network architecture and use of
different timescales.

In the following sections, first the methods to answer the various research questions are
explained. Second, the results of the various simulations and comparisons are described and
evaluated to finally draw a conclusion and discuss the many possibilities of future research.

2 Method

In this section is explained how the experiments to answer the four research questions are set
up. The experiment includes six different agents: Reactive, Reactive-DN, Control, MTRNN,
Perceptron and MLP agents. The characteristics of each agent will be described, as well as
the training methods for the Control, MTRNN, Perceptron and MLP agents. Furthermore,
the task, environments and simulations that were used are explained in detail. Finally, a
short overview of alternative training strategies will be given. These strategies were tested
in the same task setting but did not improve results so were eventually not further used in
the experiments, but are still worth noting.

The task, the random type environment (see Section 2.2.1) and the Reactive, Reactive-
DN and Control agent were first used in the work of Lagarde (2009) and later in Bax (2010).
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In the current experiment also a more structured environment was used and the behavior of
three new agents (the Perceptron, MLP and MTRNN agent) was evaluated. Environments
can obtain food sources, obstacles and sign posts. The latter object is a sort of pointer that
indicates that a food source is somewhere near in the environment.

2.1 The task setting

For every type of agents holds that it should perform the same task in every type of environ-
ment. The agents have to survive as many time steps as possible in a world with randomly
placed food sources and obstacles. In order to survive in this context, the agents must try to
keep their energy level above zero as long as possible. Naturally, consuming food will result
in energy gain and walking into an obstacle will result in energy loss. Also, if the agent
moves it will lose some of its energy but resting also costs energy, although of course not as
much as moving. Thus, the agent can keep its energy level as high as possible by searching
for food, avoiding obstacles or resting at appropriate times, dependent on the current states.
Whether or not the agents will in fact be able to survive successfully for quite some time
depends on the type of system (or paradigm) the agent uses to produce and control behavior.

2.2 The simulation environments

Since one of the goals of the current experiment is to find out more about the behavior of
the MTRNN controlling an agent in different environments, two types of environments were
used in the simulations.

Each environment consists of hundred grid cells forming a two-dimensional ten by ten
grid. At the start of a simulation, the agent is always placed at the same grid cell (coordinates
(0,0)) or as near as possible if this grid cell is already occupied by another object. Food
sources are the only objects that are used in both simulation environments. Agents can
consume food by stepping on a cell containing a food source. Consuming food will result in
an energy gain of 10.

All environments have the same build-in day and night rhythm; one day takes 30 steps
of which half is in day conditions and the other in night conditions. Each agent is able
to move to one of the adjacent cells of the grid cell the agent is currently standing on.
Furthermore, the environment has no boundaries so if an agent seems to walk off the edge of
the environment, the agent will reappear at the other side. Therefore the environment does
not seem to be flat and simulates a torus, a 3-dimensional donut-shaped world.

The two different types of environments are now described in more detail.

2.2.1 Random environment

An example of a random environment as used in the current experiment is depicted in Figure
1(a). In this specific type of world a cell can be occupied by empty ground or an object,
which is either a food source or an obstacle. A set number of obstacles and food sources are
randomly distributed across the grid so that the environment varies between simulations.
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(a) Example of random environment

(b) Example of structured environment

Figure 1: Examples of the two different types of environments. In the upper figure, dark gray
cells are obstacles, the lighter grey or green cells are food sources, white grid cells are empty
ground cells and the circle is the agent. In the lower figure, the grey or green cells are food
sources, the yellow or light grey cells are food indicators or sign posts, white cells represent
empty ground and the circle is the agent
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If food is consumed in this random environment, the food disappears and reappears at a
random place somewhere else in the grid. This ensures that the agent does not linger around
the same spot and that the amount of food remains constant during a simulation. Obstacles,
however, remain where they are during a simulation and their locations only differ between
simulations. Obstacles can be seen like quicksand or little swamps; it is possible to walk
through them but the agent’s energy level will then be decreased by 15.

This random environment does not require the agent to remember previous steps, because
each world is different from the next and there are no specific cues there to indicate the
current situation. Decisions can thus be made based on the current state the agent is in and
not let previous steps influence that decision, since previous steps are independent from the
current situation.

2.2.2 Structured environment

The second type of environment is, in contrast to the random environment described before,
more structured. To be more specific, the environment includes several cues that indicate
that food lies ahead. Therefore it might be useful for an agent to remember some of the
previous steps, because now the previous situations can say something about the current
situation (namely situations where the agent consumes food and has visited a sign post in
previous steps).

A cell can be empty or occupied by an object, which is either a food source or a food
indicator. In the current experiment, such a food indicator is called a sign post and is so
called because agents might learn that such an object points the agent into the direction of
a food source. Figure 1(b) shows an example structured environment. As can be seen in
this figure, more structure is created by forming vertical strips of four sign posts and at the
top a food source is placed. The presence of such a sign post thus indicates that above lies
a food source, so it is expected that the MTRNN agent will move up as soon as it detects a
sign post.

If food is consumed, the whole vertical strip of sign posts and food sources will disappear
and is relocated to another point in the environment. This replacement is not so random
as in the first environment however; in every simulation in this structured environment, a
grid column can only contain one vertical strip of sign posts and food and a food source can
only be replaced in an empty column (including the column it was just consumed in). This
also means that if there are ten food sources, there will be a food source in every column
during the whole simulation. Another possibility is to only replace the food source after
food consumption, but the problem then is that the agent may be misled by sign posts that
falsely indicate that food lies ahead.

In contrast to obstacles, sign posts do not cost the agent energy on top of the cost of
moving or resting since then the agents that learn to follow the sign posts would be punished.
This would result in the agents avoiding the sign posts and therefore also the food source,
which is the opposite of the task goal.
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2.2.3 Perceptual range

Each type of cell has its own unique pattern of light reflection, while empty ground does
not reflect any light. Thus agents are able to distinguish between obstacles, food sources,
sign posts and empty ground cells. At daylight, this classification of grid cells is flawless.
However, in night conditions the light reflections of the various grid cells become less clear
and thus the classification between objects less accurate. The image the agent than has of its
surrounding is not always correct, so the agent receives very uncertain and fuzzy information.
The information about the cell the agent is currently standing on is not fuzzy and is always
accurate at both day and night.

Although food, obstacles and sign posts can be classified correctly at daytime, the range
in which food can be perceived differs from the range in which obstacles and sign posts can be
perceived. Food is always perceived within a range of Manhattan Distance 2, while ground
cells, obstacles and sign posts are only perceived within a range of Manhattan Distance 1.
This means that food can be perceived behind obstacles and sign posts and therefore the
agent actually has two different ways of perceiving the current surrounding: with vision and
with smell. The agent is able to distinguish between food, obstacles, sign posts and ground
through vision (at Manhattan Distance 1) and distinguishes food from other types of cells
through smell (at Manhattan Distance 2).

It must be noted that due to the poor light reflection at night, food is not correctly
classified within both smell and visual range (although that is not something you would
expect in real life).

2.2.4 Discrete environments

Both random as structured environments are discrete, so time passes in discrete steps. Fur-
thermore, the environments are quite simple in the sense that grid cells can only be one of
three different types (in any type of environment) and the agent can only move in a small
number of directions, so only a small number of actions can be performed. This and the
discrete time factor make it possible that the agent can perform a discrete action every time
step and it does not matter that subsequent actions are very different from each other (e.g.
it does not matter if the agent goes up one time step and the next step in a completely
different direction).

2.3 Agents

In the current experiment, six different agents will be tested on their performance on the task
and in both the random as the structured environment. Although all agents use a different
kind of control architecture or behavioral paradigm, they do have some characteristics in
common; each agent starts out with an energy level of 250, which is also the maximum energy
level that can be achieved. Furthermore, moving always costs energy as well as resting but
the energy costs for these actions differ between agent types which corresponds with the
relation between energy preservation and sleep of organisms (Berger & Phillips, 1995). Each
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Parameter Value
Environment width 10
Environment height 10
Energy loss for obstacle 15
Energy gain for food source 10
Energy gain/loss for sign post 0
Number of obstacles if world I: 0 to 40 obstacles, if world II: 0
Number of food sources if world I: 0 to 40, if world II: 0 to 10
Number of sign posts if world I: 0, if world II: food x 4
Start position of agents (0,0) or as close as possible

Table 1: Summary of different environment parameters

agent has a motor system that allows it to turn and move in 8 different directions (UP, UP
RIGHT, RIGHT, DOWN RIGHT, DOWN, DOWN LEFT, LEFT, UP LEFT) or stand still
at each time step. Furthermore, the sensory system of the agents includes a light sensor, to
see ground, objects, food and sign posts and smell food within the corresponding perceptual
ranges.

In his bachelor’s thesis, Lagarde (2009) tested the performance of four agents, which
could be divided in reactive types and control types. The reactive types behaved according
to the reactive paradigm with behavioral layers (Brooks, 1986, 1991; Murphy, 2000) but in
the control systems, a higher control structure is present that can inhibit the lower level
behavioral layers when necessary. In the current experiment, the second type of control
agent is omitted from testing (why is explained below) but three new agents (on top of the
two reactive agents and the control agent) will be tested. In the latter three types, the
whole behavioral structure is replaced by a neural network. The first of these types uses a
recurrent neural network with multiple timescales (MTRNN) as described by Yamashita and
Tani (2008), with both slow context and fast context units. The second type uses a simple
perceptron and the third a multilayered perceptron, to compare the MTRNN to simpler net
structures used as a system to produce behavior.

To give an indication of the performance of the three neural network controlled agent
types in this experiment, their performance will be compared to the performance of the three
types already assessed before by Lagarde (2009). Overall, the following agents were used
and tested for their performance in the current experiment:

• Reactive: An agent producing behavior following the reactive paradigm (see below)
and without a higher control structure.

• Reactive-DN: A reactive agent with a build-in day and night rhythm and no higher
control structure.

• Control: An agent with a multilayered perceptron as a higher control structure that
inhibits several behavioral layers of the reactive system when necessary.

10



• MTRNN: An agent that uses a recurrent neural network with multiple timescales as
a structure to produce behavior and predicts the best next motor action according to
current sensory and motor information. Furthermore, the net uses fast context units
and slow context units (hence the multiple timescales) that serve as a memory.

• Perceptron: An agent that uses sensory inputs to learn the next appropriate motor
action.

• MLP: An agent that also uses sensory inputs to learn the next appropriate motor
action, but uses a hidden layer between input and output.

The Control-2 agent (Lagarde, 2009) is not tested in this environment, because it only differs
from the Control agent in the sense that additional costs are added for every output link of
the higher control structure that inhibits a behavioral layer. Since the goal of the current
experiment is to compare different functional hierarchical structures in this specific setting,
comparing the MTRNN agent with the Control agent will suffice.

2.3.1 Reactive and Reactive-DN agents

Reactive agents produce behavior according to the reactive paradigm, a paradigm with a
sense-act organization; the agent senses (part of) its environment and based on this sensory
information an action is immediately produced without extra intermediary processing or
planning (Brooks, 1986, 1991; Murphy, 2000). The paradigm consists of one or more of these
sense-act coupling or behavioral layers, structured in default and higher-level behavior. If
higher level layers are on, they may inhibit lower-level layers but still more than one layer
can be active at the same time. Through this paradigm, the agent will produce emergent
behavior; a combination of output of several behavioral layers.

Figure 2: The behavioral layers of the Reactive, Reactive-DN and Control agent and the
higher control structure of the Control agent (Lagarde, 2009)

Figure 2 shows the organization of the layers as also used and described in Lagarde (2009)
and Bax (2010). Each layer is briefly described:
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• The lowest layer is the Wander layer. Because this is the default layer, it takes no
input but only produces motor output. It moves the robot in a random direction or
randomly decides to rest at the same spot.

• On top of the Wander layer is the Food Direction layer, which takes as input its
surroundings at that time step. Based on this information, it determines whether or
not there is food within range and if there is, determines the location of a food source
and activates the wander layer to turn in the required direction.

• The third layer is the Evaluate Hunger layer. This layer inhibits its lower level, the
Food Direction layer, when the agent’s energy level is higher than a certain hunger
threshold. If the energy level becomes lower, the Food Direction layer is not inhibited
anymore and thus the agent is able to search for food.

• The next layer is the Obstacle Avoidance layer, which takes as input the current sit-
uation (existing of the four cells that are directly adjacent to the cell the agent is
currently standing on) and tries to detect whether or not there are no obstacles in its
surrounding. If the agent detects obstacles, it wanders in a direction where the agent
sees none.

• If the agent is really hungry, i.e. the agent’s energy level becomes lower than a certain
extreme hunger threshold, the Evaluate Extreme Hunger layer inhibits its lower layer
which is the Obstacle Avoidance layer. This means that the agent is then able to move
through an obstacle to reach food.

Both the Reactive and Reactive-DN agent use this paradigm. However, because the Reactive
agent does not have a day and night rhythm, it will try to behave at night the same as
in daylight. It will thus make more mistakes, since at night the sensory information is
inaccurate. The Reactive-DN agent does have a build-in day night rhythm, so the agent will
rest at night to preserve as much energy as possible and not make costly mistakes.

The costs for moving and resting are not equal for these two agents: moving costs Reactive
agent 2 and resting 1, while the Reactive-DN loses 3 when moving and 2 when resting.

2.3.2 Control agent

The control agents use the behavioral reactive layers as well, but differ from the reactive
agents in that there is higher control structure that is able to inhibit every reactive layer.
To be more specific, this higher control structure is a multilayered perceptron which has
an inhibitory output link to every reactive layer. Therefore there are five output units of
the MLP. Which behavioral layers are inhibited, depends on the sensory information the
network extracts from its environment. The sensory information is based on four sensory
inputs; (1) the energy level, (2) the log-likelihood of the agent’s surrounding, (3) whether or
not the agent stands on an obstacle and (4) whether or not the agent is standing on a sign
post cell. The fourth input was not used in Lagarde (2009), but was especially added to the
MLP for the Control agent to be able to handle the structured environment as well. The
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first, third and fourth input are internal information, so the input values are always accurate.
The second input, the log-likelihood of the current surrounding, is external information and
it depends on the time of day what this value is: at day this value is always 0, but at night
the visibility values of all the objects become unreliable and thus the log-likelihood of the
current surrounding will then not be equal to 0. Between the input and output layer is a
hidden layer consisting of six hidden units. The input and hidden layer are fully connected,
as well as the hidden and output layer. Each node layer has its own activation function:

• Input nodes use the identity function

• Hidden nodes use the hyperbolic tangent (tanh)

• Output nodes use the logistic sigmoid function

The output values lie between 0 and 1 and represent the probabilities of whether or not
the inhibitory link to a behavioral layer is activated. The weights between the layers evolve
according to an evolutionary algorithm (see Section 2.4).

Just as the Reactive-DN agent, the Control agent loses energy when moving (energy
decrement of 3) and a little less when the agent rests (decrement of 2).

2.3.3 MTRNN agent

The MTRNN agent uses a structure that supports the same functional hierarchy of orga-
nization as the control agents, but by using a different way of producing behavior, namely
through a multiple timescale neural network. The network used here is different from the
network developed by Yamashita and Tani (2008) in the way that it is adapted to the cur-
rent task and environments. However, the architecture is mainly the same and the current
network still covers the aspect of multiple timescales and uses the same kind of network
nodes. This type of agents has the same energy decrements as the Control and Reactive-DN
agents: moving costs 3, while resting costs 2.

In Figure 3 the structure of this MTRNN is shown. As can be seen, the network consists
of three different parts:

1. The input-output part that interacts directly with the environment by extracting sen-
sory and motor input from the agent’s surrounding and outputting the best next motor
action;

2. The fast context units that serve as a short-term memory and are influenced by the
actions of a number of previous time steps;

3. The slow context units that serve as a sort of long-term memory and are influenced by
more previous steps than the fast context units.

Below each of these separate parts are described in more detail and also the interaction
between the different network parts is explained.

13



Figure 3: Structure of the recurrent neural network with multiple timescales as used for the
MTRNN agent. M = motor nodes, S = sense nodes, FC = fast context nodes, SC = slow
context nodes, xi,t is the input activation for unit i, ui,t is the membrane potential for unit i
and yi,t is the output of unit i

Input-Output layer
The left most part is the input-output layer. This is the part of the network that interacts
directly with the environment. The MTRNN takes 24 different sensory inputs and 9 motor
inputs. The motor input is very simple: each input corresponds to one of the nine possible
directions (up, up right, right, down right, down, down left, left, up left and center/stay
put). If a direction is the direction the agent has moved to in the previous time step, the
corresponding input is 1, otherwise the input value is 0. So for example, if the agent has
moved up, the motor input is the vector (1 0 0 0 0 0 0 0 0).

The sensory module of the MTRNN is somewhat more complex, because the network does
not use behavioral layers that react on sensory inputs. Therefore the input to the MTRNN
has to be very elaborate to give this agent all the necessary information the reactive and
control agents receive through their behavioral layers. The 24 different sensory inputs are:

• The first and second input are the log-likelihood of the surrounding and the type of
cell the agent is currently standing on (the same as in the Control agent)

• The third and fourth input represent the hunger and extreme hunger thresholds: input
three is 1 if the agent’s energy level drops below 240 and 0 otherwise; input four is 0 if
the energy level is above 40, but 1 if the energy level drops below 20. For energy levels
between 20 and 40, input four increases linearly from 0 to 1 as the energy becomes
lower.

14



• The fourth to eighth input represent the direct surrounding of the agent, i.e. all cells
that lie at Manhattan Distance 1 from the agent. This sensory input represents the
vision of the agent. The agent discriminates obstacles on the one hand and food and
ground on the other hand, so that the agent can handle environments with food sources
and obstacles (like the random environment).

• The ninth to twelfth input also represents the direct surrounding of the agent, but now
a distinction is made between sign posts and other cells so that this agent can handle
environments with sign posts and food sources (like the structured environment).

• The thirteenth to twenty-fourth input represent the surrounding within range of Man-
hattan Distance 2 (this includes cells at Manhattan Distance 1). The inputs represent
the smell of the agent and the agent discriminates between food on the one hand and
other type of grid cells on the other.

This agent also does not perceive surrounding grid cells well at night. Since the input-output
units should not be affected by previous states, except indirectly through the context units,
the timescale for these units is 1.

Fast context and slow context layer
The multiple timescales in the MTRNN are achieved by using two different kind of context
units: fast context units and slow context units. The context units serve as a short-term and
long-term memory, respectively. The context units do not interact with the environment but
instead receive as input the output of the corresponding context units at the previous time
step. In the current experiment, fifteen fast context units and two slow context units are
used. The slow context units are set to an initial value when it becomes night and when day
starts, in order to let the slow context units learn different behavior for night and day (a
characteristic also used in Yamashita and Tani (2008)). Input and output values lie between
0 and 1.

Naturally, the two types of context units have different timescales: the fast context units
have timescale 2, which means that the fast context states are influenced by the previous
state; the slow context units have timescale 10 and thus their states are affected by the nine
previous states.

Interaction and activation within the network
Arrows in Figure 3 indicate weight layers between the different network parts, i.e. which
parts of the network interact with each other. It shows that sensory input and motor input
are not directly linked to each other; instead interaction between these two parts happens
indirectly through the fast and slow context units.

• Fast context units use weighted input from sense units, motor units, fast context units
(including itself) and from slow context units to calculate their activation.

• Slow context units receive weighted input from slow context units (including itself)
and fast context units to calculate their activation.
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• Motor units use weighted input motor units (including itself) and fast context units to
calculate their activation.

• Since the sense output is not necessary for the agent to calculate the best next action,
the activations of the sense units are not calculated. This means that there are no
weights from sense units and fast context units to the sense units (as is the case with
motor units), since those weights are obsolete.

For all kinds of units, inputs xi,t for unit i at time t are values between 0 and 1. Membrane
potentials ui,t+1 at the next time step for all units are calculated according to the following
formula:

ui,t+1 = (1− 1

τi
) · ui,t +

1

τi
·

[∑
j∈N

wijxj,t

]
(1)

where wij is the weight from unit j to unit i, xj,t the input for unit i at time step t and τi
the time constant for that particular kind of unit, which basically represents the timescale
for that unit (e.g. τi for fast context units is 2). The activations yi,t for sense and motor
units are calculated with the following formula:

yi,t =
expui,t∑
j∈Z expuj,t

(2)

where Z are motor or sense units. Activations for the context units are calculated according
to the conventional sigmoid function:

yi,t =
1

1 + e−x
(3)

The activation formulas ensure that all outputs are also values between 0 and 1.

2.3.4 Perceptron and MLP agents

Although the MTRNN agent and Control agent both use a kind of architecture in which
functional hierarchy is present, the way behavior is produced is quite different between the
two agent types. Therefore the MTRNN agent is also compared with two other agents using
a neural network structure to interact with the environment: the Perceptron and MLP agent.

The first agent uses a perceptron network to produce the best next motor action, as
the name also implies. The second agent uses a multilayered perceptron to produce motor
behavior. Both networks take as input the same sensory input as the MTRNN agent but
the motor input is omitted, thus therefore the input consists of 24 nodes. Furthermore,
the output of both networks are the probabilities for the nine different directions (including
resting at the same spot), just as is the case with the MTRNN agent. The direction that
has the highest probability will be the direction in which the agents will move. Naturally,
the difference between the Perceptron and MLP agent is that the latter has a hidden layer
consisting of 15 nodes between input and output layer.
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Parameter Value
Types of agents Reactive, Reactive-DN, Control, MTRNN, Perceptron, MLP
Maximum energy level 250
Costs of moving/stand still Reactive: -2/-1, Reactive-DN, Control, MTRNN, Perceptron,

MLP: -3/-2
Visual range Manhattan Distance 1
Smell range Manhattan Distance 2

Table 2: Summary of the different agent parameters

The same formulas for updating of the membrane potentials and calculating activations
of the MTRNN agent are used for both other network agents, but since no context units are
used, the timescale will always be set to 1. This means that the formulas can be rewritten
as follows:

• Updating of membrane potentials for unit i at time step t: ui,t+1 =
∑

j∈N wij · xj,t,
where wij is the weight from unit j to unit i and xj,t is the input for unit j at time
step t.

• Activations for motor output unit j at time step t: yi,t =
expui,t∑

j∈Z expui,t
where Z are motor

units.

The Perceptron and MLP agents have the same energy decrements for movement and resting,
namely 3 and 2, respectively.

2.4 Evolution and training

In the current experiment, an evolutionary algorithm is used to evolve optimal parameters
for the network. The parameters of interest are the weights between the different types of
network units. For the MTRNN holds that also the initial states of the slow context units
for both day and night are evolved to find the optimal setting to define difference between
day and night behavior. Since the structure for the network is relatively clear and fixed, the
evolutionary algorithm is not used to find the optimal network structure. The algorithm is
implemented using the JGAP package (Rostan, 2009). The Control, MTRNN, Perceptron
and MLP agents all use evolution to find their optimal parameters.

In the evolution process, chromosomes are created in which the genes represent the
different weights (and in the case of the MTRNN also the initial slow context states). For
the MTRNN agent there are 24 sense units, 9 motor units, 5 fast context units and 2 slow
context units which means there are 1000 weights and 4 (2x2 nodes) initial slow context
states. For the Perceptron agent there are 216 weights (24 inputs and 9 outputs) and for
the MLP agent there are 495 weights (24 inputs, 15 hidden nodes and 9 outputs). Finally,
for the Control agent there are 63 weights (4 inputs + 1 bias node, 6 hidden + 1 bias node
and 5 outputs). It was mentioned in Lagarde (2009) that adding bias nodes did not make
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any difference to the performance of the agent. It was also tested if adding bias nodes to
the MTRNN would improve the performance of this agent, but as this was also not the case,
bias nodes were not used in evolution of the MTRNN.

In Lagarde (2009) the search space of weights of the Control agent was restricted by
using integer genes in the range [-300,300] and each value was later divided by 100 so that
weight values would lie in the interval [-3,3]. A similar strategy was used for the MTRNN,
Perceptron and MLP agent, but instead weight values eventually lie in the interval [-5,5] and
initial slow context states in the interval [0,1]. Since there are quite some weights to evolve
in the MTRNN agent, the population size is set at 750. For the Perceptron agent, the MLP
agent and the Control agent the population size is 250, 500, and 125, respectively.

During evolution, each chromosome of weights is transformed into an agent. For all agents
that are evolved (the Control, MTRNN, Perceptron and MLP agent) the fitness value of a
specific chromosome is the average of the amount of steps the corresponding agent is able
to survive in 5 different runs and thus five different environments. This is done to ensure
that a more accurate value of the agent’s performance is calculated, since if the performance
would be based on one environment the agent might do very well in one environment but
perform worse in another. Since each simulation has a maximum duration of 750 steps, the
maximum fitness is also 750. If during the training/evolution phase the settings of optimal
parameters reaches the maximum fitness value, the agent’s fitness will be increased with 10
to emphasize its good performance. In simulations after the best agent has been picked (i.e.
in the testing phase), the maximum fitness value is 750 (see Section 2.5).

After every agent in a generation has been evaluated, the group of chromosomes with the
highest fitness are used to create a new population. The genetic operators used to do this are
mutation and recombination. For all agents, the algorithm will stop after 100 generations.

2.4.1 Alternative fitness functions for MTRNN agents

At the beginning of experimenting, different fitness functions for the MTRNN agent were
evaluated to find out which training strategy would result in the highest performance for this
specific agent and would thus be best fitted to use in the current experiments. The different
fitness functions were tested in the random environment.

The first fitness function, the one that is eventually used to evolve the MTRNN agents,
is the average amount of steps the agent was able to survive in a number of environments.
However, this fitness function provides a fitness value that is based on the overall fitness
in the whole simulation and therefore has a global character. An alternative method was
tested, for which the fitness value was the average amount of correct decisions the agent
was able to make in a number of environments. Correct decisions were for example avoiding
obstacles when perceiving an obstacle, or moving in the direction of a food source. The goal
of this latter fitness function was to provide a more locally based fitness value.

In Yamashita and Tani (2008) it is claimed that an agent using the MTRNN can learn
various tasks and also sequence these tasks in appropriate order. From this it follows that it
should be possible that the MTRNN can switch between different contexts to produce better
behavior as well. Therefore two alternative fitness functions were created that focused on

18



Parameter Value
Number of weights Control: 63, MTRNN: 1000, Perceptron: 216,

MLP: 495
Range of weight values Control: [-3, 3], MTRNN, Perceptron,

MLP: [-5,5]
Range of initial slow context state values MTRNN:[0,1]
Population size Control: 125, MTRNN: 750, Perceptron: 250,

MLP: 500
Number of evolutions Control: 100, MTRNN, Perceptron, MLP: 100
Maximum fitness 750

Table 3: Summary of the evolution parameters for the different agents

learning distinguishing different contexts and thus evolve different behaviors. Both of these
alternative functions used the same three contexts:

• Context 1: food is directly within visual range, so the agent only has to move one step
in the appropriate direction

• Context 2: food is within smell range, but a direct path may be blocked by an obstacle

• Context 3: No food is within range, so the agent can only be surrounded by obstacles,
sign posts or empty ground

In the case of the first fitness function that focused on different contexts, the following
happened: as soon as the agent perceived that it was in a certain context, the states of the
slow context units were set to corresponding values. This is a variation on what happens in
the fitness function that is currently used; in that case as soon as it becomes day or night,
the slow context states are set. The second fitness function that incorporated different
contexts enabled the agent to train on the three contexts separately instead of on the whole
environment. Therefore also three different fitness functions were used: in Context 1, fitness
was based on whether or not the agent was able to get the food in one step; in Context
2, a simulation had a time duration of four steps and fitness was based on whether or not
the agent was able to get to food without bumping into obstacles; in Context 3, four step
simulations were also used and fitness was based on how far away the agent was able to walk
without bumping into obstacles.

However, all alternatives did not improve performance of the MTRNN agent and thus it
was decided to stick with the old fitness function based on life duration.

2.5 Simulations

After the optimal parameter settings with the best fitness has been established for the agent
that is currently tested, the agent with these parameters is run in 5000 simulations and thus

19



Parameter Value
Number of simulations 5000
Variables Number of food sources, number of obstacles, type of environment

Table 4: Summary of simulation parameters

environments. In each simulation the environment consists of a 10 by 10 grid. Simulations
are run in both random and structured environments, but the type of environment remains
consistent over these 5000 simulations (i.e. each agent is tested in both environments in 5000
simulations). At the start of each simulation, each agent has an energy level of 250. The
final fitness result is the average of the fitness values of these 5000 simulations. A simulation
has a maximum duration of 750 steps. Furthermore, a constant factor in simulations is the
day and night rhythm and thus in all simulations the same rhythm is used.

Simulations are run to test the effect of various characteristics or variables. First of
all, the performance of each agent is assessed in each type of environment. In the random
environment, different ratios of food and obstacles are tested to get a clear idea of how
the different agents perform under different environmental constraints. In the second or
structured environment, the amount of obstacles is always zero and only the amount of food
sources (and thus the amount of sign posts) is varied. Second, next to the fitness value of
the agents also the observed behavior is analyzed, since the fitness value does not explicitly
show what kind of behavior the different agents are producing.

2.6 Summary of methods

Table 5 lists all the experiments and variables that are of interest in the current thesis. For
each test the performance value is varied over 5000 simulations.

3 Results

In this section the most important results will be shown and described. A complete and
detailed overview of all the results can be found in Appendix B. Results will be provided in
the form of performance graphs and a description of the visual behavior. The performance
measure is defined as the amount of steps the agent is able to survive, i.e. the fitness value
as described in the previous section.

3.1 MTRNN agent versus other agents in random environments

In this section the results answering the first part of the research question are shown and
evaluated. The first research question is how well the MTRNN agent will perform as com-
pared to other agents in a day-night environment, such as proposed in Lagarde (2009). This
question is answered by evaluating the performance of the Reactive, Reactive-DN, Control,
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Design Variables involved
Each agent is tested in the random environment with Agents: Reactive, Reactive-DN,
varying ratios obstacles/food Control, MTRNN, Perceptron, MLP

Environment: random
Obstacles: 0, 10, 20, 30, 40
Food: 0, 10, 20, 30, 40

Each agent is tested in the random environment with Agents: Reactive, Reactive-DN,
varying food sources and no obstacles Control, MTRNN, Perceptron, MLP

Environment: random
Obstacles: 0
Food sources: 0, 2, 4, 8, 10

Each agent is test in the structured environment with Agents: Reactive, Reactive-DN,
varying food sources (and thus sign posts) Control, MTRNN, Perceptron, MLP

Environment: structured
Obstacles: 0
Food sources: 0, 2, 4, 8, 10 and
sign posts: 4 * amount of food sources

Table 5: Summary of methods

MTRNN, Perceptron and MLP agent in the random type of environment with varying ra-
tios of food and obstacles. Specifically, the results of the MTRNN agent is compared to
the results of the Reactive, Reactive-DN and Control agent which were already assessed
by Lagarde (2009). Furthermore, the MTRNN agent is also compared to the Perceptron
and MLP agent, to get an indication of how well the sensory information works in simpler
network structures.

3.1.1 Performance graphs

In Figure 4(a) to 4(f), the performance of each agent is set out against different numbers of
food and obstacles.

As was analyzed and described in more detail by Lagarde (2009), the Reactive, Reactive-
DN and Control agent performed quite well and as to be expected for all combinations of
food and obstacles. To be more specific, these three agents follow a rather sensible line of
performance: as the number of food sources increases or the number of obstacles decreases,
the performance also increases until it reaches the maximum performance level at certain
food/obstacle ratios and vice versa. Difficult environments - with many obstacles - are a lot
harder to survive in than in environments where there is more to gain, which makes a lot of
sense.

In very easy environments that only contain food and no obstacles, the Reactive Agent
performs best of all agents (see Figure 5). In such environments, there is no need to go to
sleep because there is no danger of bumping into obstacles at night. Although the agents do
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(a) Performance of MTRNN agent in envi-
ronment I

(b) Performance of Perceptron agent in envi-
ronment I

(c) Performance of MLP agent in environ-
ment I

(d) Performance of Reactive agent in envi-
ronment I

(e) Performance of Reactive-DN agent in en-
vironment I

(f) Performance of Control agent in environ-
ment I

Figure 4: Performance of all the agents in the random environment with several different
food/obstacles ratios
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Figure 5: Performance of all agents in the random environment with 10 obstacles set out
against the amount of food sources

not perceive their surrounding correct at night, the agent still collects enough food at night
to not go to sleep. The Control agent will learn to walk at night in such situations, but the
Reactive agent has lower costs for moving and resting than this agent. Therefore the Control
agent still performs worse than the Reactive agent.

Figures 4(a) to 4(c) show the lines of performance for MTRNN, Perceptron and MLP
agents, respectively. One can easily observe that these three agents have a similar learning
curve; performance varies around 125 until the amount of food is higher than the amount of
obstacles. After this threshold is passed, the performance increases linearly as the amount of
food also increases. In contrast to the case of the Reactive, Reactive-DN and Control agent,
this is not what one would expect for agents to show. Clearly, the ratio obstacle/food plays
a very important role in the evolution of these agents.

Figure 6(e) shows that for 20 obstacles and several amounts of food sources, the Control
agent performs equal or higher than the MTRNN agents. In situations where the environ-
ment is completely empty, i.e. no obstacles and no food sources, both agents will use their
neural networks to figure out that to stay at the same spot during a simulation is the best
strategy and thus the agents perform equally well. Almost the same holds for the Reactive
and Reactive-DN agents compared to the MTRNN agent, but in situations where there is no
food and no obstacles, the MTRNN agent will live longer on average. This can be explained
by the fact that the reactive agents still wander around even when there is no food, which
costs more than resting.

In situations where the amount of food is higher than the amount of obstacles, both the
Perceptron and MLP agent have higher performance than the MTRNN agent, as can be seen
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(a) Performance of MTRNN agent versus
performance of Perceptron agent

(b) Performance of MTRNN agent versus
performance of MLP agent

(c) Performance of MTRNN agent versus
performance of Reactive agent

(d) Performance of MTRNN agent versus
performance of Reactive-DN agent

(e) Performance of MTRNN agent versus
performance of Control agent

Figure 6: Performance of MTRNN versus all other agents with 20 obstacles and varying
amount of food sources in random environment
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in Figure 6(a) and 6(b). However, the difference in performance is bigger in the case of the
Perceptron. These figures also show that this difference is not observed anymore when the
amount of food (40) is a lot higher than the number of obstacles; in that case, all agents will
approach maximum performance value. In opposite situations, so in environments where
the amount of food is smaller than or equal to the amount of obstacles, the three agents
have equal performance. This all suggests that the hidden layer in the MLP agent and the
different context units in the MTRNN agent do not add anything to the effectiveness of the
agent.

Overall the six agents can be divided in two groups: on the one hand the Reactive,
Reactive-DN and Control agents that perform quite well in different circumstances, even
when the amount of obstacles is higher than the amount of food; on the other hand the
MTRNN, Perceptron and MLP agents, for which performance only increases when the
amount of food is larger than the amount of obstacles and is quite constant otherwise.

3.1.2 Observed behavior in random environments

Below the behavior that was observed for all agents in the random environment is described
in detail.

Reactive, Reactive-DN and Control agents
Since the default behavior is to wander randomly, the Reactive agent is in motion most of
the time, even at night. In daylight, obstacles are always avoided - except when the Eval-
uate Extreme Hunger layer is activated - but at night, when grid cell types become hard
to distinguish, the Reactive agent bumps into obstacles regularly. As mentioned before, in
situations where there are no obstacles and just food, this strategy is very successful.

Due to its build-in day and night rhythm, the Reactive-DN agent moves only at daytime
and rests during the night. Its behavior at day is the same as that of the Reactive agent,
namely searching for food while avoiding obstacles.

The Control agent is able to develop different day and night behavior without a hardcoded
day and night rhythm. Therefore in many situations the behavior of the Control agent is
similar to that of the Reactive-DN agent. However, different behavior for Control and
Reactive-DN is shown when there is enough food (> 10 food sources) and no obstacles;
in such situations, the Reactive-DN will still go to sleep at night while the Control agent
will search for food the whole time. To preserve energy, the Control agent takes short naps
during the day in some situations, as also reported by Lagarde (2009).

It must be noted in the current context that all of these agents show obstacle avoidance
behavior. This is of course due to the Obstacle Avoidance layer, but it is an important point
to keep in mind since the MTRNN, Perceptron and MLP agent do not use such a behavioral
layer and may not behave in such a straightforward way.

The MTRNN, Perceptron and MLP agents
In this random type of environment, the MTRNN agent shows a lot less nuanced behav-
ior. The performance graph of this agent (Figure 4(a)) already suggested that the ratio
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food/obstacles is very important and this notion is further supported by the behavior that
is observed: if there are more or equal obstacles as compared to the amount of food, the
agent will not move throughout the whole simulation, except for some idle movements in
any direction. In opposite situations, the agent will always move around in the same kind
of pattern (for example, 2 steps to the right, 1 up). Therefore, the agent heads in the same
direction throughout the simulation (for example, from the upper left corner to the upper
right corner). The same strategy is thus used during the whole simulation. In very few cases,
the MTRNN agent is able to develop different behavior for day and night; the agent will walk
at day and rest at night. This behavior is only observed for special ratios of food/obstacles,
e.g. if this ratio is 20/20.

The MLP agent shows behavior similar to that of the MTRNN agent, except with none
of the ratios food/obstacles that were evaluated does the MLP agent show different behavior
for day and night. The Perceptron agent also shows the same kind of behavior pattern
throughout one simulation. Furthermore, the Perceptron agent is able to show different
behavior for day and night for specific food/obstacle ratios as well. The latter indicates that
the fact that this is not observed for the MLP agent is a matter of parameter choice: the
MLP agent probably will show different day and night behavior for specific ratios as well,
just not for the ones that were evaluated in this experiment.

An interesting observation is that all these three agents never show obstacle avoidance
behavior, not even when it is day and obstacles are correctly perceived. Since also Perceptron
and MLP agents show this specific behavior, it cannot be due to the fact that sensory
information is processed indirectly by fast context units in the MTRNN agent. A possible
explanation for this observation could be that these three agents are only able to develop
very global behavior (such as the same behavior patterns shown throughout a simulation)
and cannot handle local situations.

3.1.3 Conclusion

The results showed that in the majority of the different food/obstacle ratios, the MTRNN
agent has equal or lower performance than every other of the five agent types. The only
exception is in situations where there are only obstacles and no food sources; the MTRNN
agent than is able to survive longer on average than Reactive and Reactive-DN agents and
has equal life duration as the Perceptron, MLP and Control agent. This indicates that the
random environment just may be too random for the MTRNN to benefit from its multiple
timescales, i.e. to remember the past. This notion is also supported by performance graphs
6(a) and 6(b), which furthermore show that the MLP and especially the Perceptron agent
perform better than the MTRNN agent in situations when the amount of food sources is
larger than the number of obstacles.

Both the performance graph as well as the observed behavior support the suggestion that
the amount of food versus the amount of obstacles plays an important role in what kind of
behavior is shown. Only if there are more food sources than obstacles, the agent will learn to
move during the day and with fewer specific ratios will the agent show a day-night rhythm.
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3.2 Random versus structured environments

The second research question - will the MTRNN agent behave more effectively in an environ-
ment with more structure versus purely random environments - is answered by comparing
results for all agents in random and structured environments. In the random environments
also no obstacles are placed, so only the presence of sign posts is put to the test. Results
for the Reactive, Reactive-DN and Control agent will only be mentioned quickly, since these
agents do not have a behavioral layer to handle sign posts. Therefore the main focus will be
on comparing the results for the MTRNN agent in different worlds and to the results of the
other network agents as well.

3.2.1 Performance graphs

Figure 7(d) shows that the performance of the Reactive agent is in both environments, the
random and structured environment, almost completely the same. This was to be expected,
since these agents cannot distinguish sign posts from ordinary ground cells because there
is no reactive layer that handles sign posts. The results of this agent in the structured
environment are thus not very useful to get to know something about the environment.
Still, the results can be used to find out how effective walking around randomly searching
for food is in the structured environment as compared to the performance of the MTRNN
agent. The same holds for the Reactive-DN agent (see Figure 7(e)). Although the Control
agent is in fact able to recognize situations in which it stands on a sign post cell, it still
misses a reactive layer that commands specific behavior when sign posts are encountered.
The Control agent might still be able to develop different behavior than in the random
environment, but observed behavior will be evaluated in the next section. However, Figure
7(f) suggests that no different behavior is shown in the different environments, except in the
case of 10 food sources: the performance in the structured environment is higher in such a
case as compared to the random environment. See below for a discussion of this observation.

In 7(a) it can be observed that the MTRNN agent performs the same in both environ-
ments for the majority of the evaluated situations. However, two points provide an interesting
exception: the fitness value of the MTRNN agent in the structured world is higher than in
the random world when the amount of food sources is 4 or 10. The latter fluctuation is also
observed in other agents and will be discussed below. However, something interesting seems
to happen when the amount of food sources is 4. It remains to be seen in the next section
when observed behavior is evaluated what might be the reason for this, since this cannot
be derived from the performance graph. Figures 7(b) and 7(c) show the comparison of the
performance in the different environments for the Perceptron and MLP agent. The fitness
value of the Perceptron agent is almost always higher in structured environments, but this
difference becomes bigger in the case of 8 food sources. For the MLP agent performance is
only higher in the structured environment when there are 8 food sources or more. Again,
the next section should explain more about the possible reasons for these fluctuations.

It must be noted that the performance graph of the MTRNN agent (Figure 7(a)) scales
differently than the other performance graph in this figure; the y-axis for the MTRNN agent
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(a) Performance of MTRNN agent in the
random versus the structured environment

(b) Performance of Perceptron agent in the
random versus the structured environment

(c) Performance of MLP agent in the random
versus the structured environment

(d) Performance of Reactive agent in the ran-
dom versus the structured environment

(e) Performance of Reactive-DN agent in the
random versus the structured environment

(f) Performance of Control agent in the ran-
dom versus the structured environment

Figure 7: Performance of all the agents in the random environment versus the structured
environment
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only goes to 300, while the y-axes of the rest of the figures go to 800. This shows that the
MTRNN agent performs quite worse than other agents in both environments, but it also
implicates that the differences observed are not as big as differenes in other plots.

Figures 8(a) to 8(c) show the performance plots of the MTRNN, Perceptron and MLP
agent against each other in the structured environment. Clearly, both the Perceptron and
MLP agent perform better than the MTRNN agent. This indicates that there is some
difference in the sort of behavior the MTRNN agent performs and might suggest that the
various timescales do have an effect on this behavior, albeit a negative effect.

(a) Performance of MTRNN agent versus
Perceptron agent in the structured environ-
ment

(b) Performance of MTRNN agent versus
MLP agent in the structured environment

(c) Performance of Perceptron agent versus
MLP agent in the structured environment

Figure 8: Performance of Perceptron, MTRNN and MLP agents compared with each other
in the structured environment

As briefly mentioned above, another interesting point that can be observed in Figure
7(a) to 7(f) is that all agents (except for the Reactive and Perceptron one) have higher
fitness values in the structured environment when there are 10 food sources. Because also
the performance of the Reactive-DN agent is improved in that situation, this increase is
probably not due to the fact that there is more structure in the environment. Instead, it
must be noted that when there are 10 food sources there will be a food source in every grid
column. Therefore the food is much more evenly distributed than in the case of 10 food
sources in the random environment and thus walking around searching for food will result
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in more food consumption in the structured environment. This difference is not observed
for the Reactive and Perceptron agents, but the performance for these agents has already
reached maximum value for both environment types.

3.2.2 Observed behavior in random versus structured environments

Below the behavior that was observed in both the environments is described in detail for all
agents, although the focus will be on the MTRNN, Perceptron and MLP agents. It must be
noted that the different amounts of food sources tested here are quite low. Such low amounts
were not tested for the random environment in the previous sections, so it is possible that
new behavior in this environment is observed as well.

The Reactive, Reactive-DN and Control agents
As the Reactive agent performs the same in both worlds, the behavior of this agent is also
similar in the random and structured environment. Both day and night the agent walks
around randomly and if a food source is perceived, the agent will try to move towards it.
In the structured environment there are no obstacles, so no obstacle avoidance behavior is
needed and thus is not observed. Furthermore, since the agent does not use a reactive layer
that handles sign posts, these type of grid cells are classified as empty grid cells and thus no
specific behavior for sign posts is observed.

The Reactive-DN agent also does not show different behavior in the two environments;
in both the random and structured world the Reactive-DN agent will walk around randomly
at day searching for food while ignoring sign posts. When night falls, the agent will rest at
the same spot. Again, no obstacle avoidance behavior is needed.

Although the Control agent can identify sign posts if it stands on such a grid cell, the
agent behaves almost always the same in the structured environment as in the random en-
vironment. For both environments holds that if the amount of food is quite low (± 2 food
sources), the agent will only minimally move at day and definitely stand still at night. There
are just too few food sources for the agent to risk wandering around a lot. As the amount
of food increases (e.g. 4 food sources), a difference in behavior for the two environments is
observed. In this specific situation, agents in the random environment will sometimes have
little naps at day, while for agents in the structured environment such naps are not observed.
If food increases, this difference at day is not observed anymore. For all food amounts that
were tested and in both environments, the agent will rest at night most of the time.

The MTRNN, Perceptron and MLP agents
The first observation that can be made is that there is some sort of default movement pat-
tern underlying the behavior of the MTRNN agent. This holds for both the random and the
structured environment. It is very situation dependent whether or not the agent will sub-
sume this pattern with other behavior (e.g. to collect a food source in range). Moreover, the
MTRNN agent shows quite some different sorts of behavior. It must be noted that behavior
varies more between different amounts of food in the structured environment. The behavior
of the MTRNN agent for different numbers of food sources:
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• 0 or 2 food sources: both in the random as in the structured environment, the
MTRNN agent will not move (or only minimally) throughout the simulations.

• 4 food sources: Figure 7(a) shows that the average fitness value for the MTRNN
agent is higher in the structured environment as compared to the random environment.
What actually is observed in the structured environment is that at day, the agent will
move in a diagonal movement pattern until a sign post or food source is detected. If a
sign post is encountered, the agent will follow the upward strip of sign posts until the
food source at the top is consumed. The agent can abandon this upward movement
and get food if food on the left or right side is closer than the food source at the top of
the sign post strip. In the random environment, the agent will largely follow the same
movement pattern throughout the simulation (since there are less interesting points -
no sign posts - to abandon default behavior). Furthermore, the agent takes little naps
at day, which is not observed in the structured environment. In both environments the
agent rests at night.

• 6 food sources: in the structured environment, the agent does not make use of the
sign posts anymore. Instead, the agent adopts a movement pattern at day which
approaches the food sources from above and thus the agent will not encounter many
sign posts. At night, the agent will go to sleep. In the random environment the agent
sticks to the same movement pattern throughout the simulation, even at night.

• 8 food sources: again, the MTRNN agent does not make use of the sign posts
explicitly in the structured environment. The agent will move at day in an upward
diagonal movement pattern, which is not abandoned when a sign post is encountered.
A similar movement pattern (although with almost no diagonal movements) is adopted
in the random environment. In the structured environment the agent will go to sleep
at night, while in the random environment the agent will keep on moving.

• 10 food sources: Figure 7(a) shows that, again, the performance of the MTRNN
agent in the structured environment is remarkably higher than in the random en-
vironment. As explained in the previous section, this is probably due to the equal
distribution of the food sources. The behavior that is observed in the structured en-
vironment is that the agent will not leave a certain grid column; as soon as food is
consumed, another food source will appear in the same grid column. In the random
environment, the agent will walk around the environment. In both environments, the
agent will also walk at night.

The behavior that is observed in the Perceptron is quite similar to that of the MTRNN agent,
except for some small differences. In the structured environment, the Perceptron agent will
use the sign posts when there are 4 food sources and not anymore when the amount of food
is higher. However, the Perceptron agent will start to walk at night sooner than the MTRNN
agent (this was observed for 6 food sources). Furthermore, if there are 10 food sources the
Perceptron agent will not stay in the same grid column (except at night) but will explore
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the environment searching for food. In the random environment, the Perceptron agent will
adopt a specific movement strategy throughout the simulation. At night, the agent will move
but takes little naps as well.

Contrary to the Perceptron and MTRNN agent, the MLP agent will not use the sign
posts in the case of 4 food sources. Instead it adopts a similar movement pattern that was
also observed in the MTRNN agent for 6 food sources. However, sign posts are used in the
case of 8 food sources, especially at night. This may explain the higher performance in the
structured environment in Figure 7(c). It must be noted that the agent then also adopts
a movement pattern in upward direction and thus more sign posts are encountered. In the
case of 10 food sources in the structured environment, the MLP agent will not stay in the
same column (except at night) but occasionally will move to an adjacent column. In the
random environment, the MLP agent will show similar behavior to that of the Perceptron
agent.

Although observed behavior is thus at some points quite similar in these three agents, the
movement patterns that the Perceptron agent and MLP agent adopt must be more effective
than the patterns of the MTRNN agent since otherwise the performance of these agents
would not be as high in the second environment (see Figure 7(b) and 7(c)).

3.2.3 Conclusion

The results described in the current section show that in the case of 4 food sources, the
MTRNN agent has higher performance level in the structured environment than in the
random environment. More specifically, the agent uses the sign posts to develop a more
effective strategy to reach the food. In some other of these situations, the agent does have
higher performance but develops a strategy that does not include sign posts. This suggests
that if there is too much food, using the sign posts will not be effective anymore. Therefore
the situation of 4 food sources poses an interesting case in the current context.

The MLP and Perceptron agent also followed the sign posts for 4 and 8 food sources,
respectively. This suggests that all three agents were able to learn similar patterns - including
different day and night behavior. This indicates that it is not really necessary to have multiple
timescales in this specific environment to reach higher performance. However, Figures 8(a) to
8(c) show that the performances for the MLP and Perceptron agent are a lot higher than for
the MTRNN agent. This may indicate that the MTRNN agent does use different cognitive
skills than the other agents - namely using it’s long- and short-term memory - although it
is not really effective in the current task and environment. Since in situations where sign
posts are used the performance is higher than in other situations for all three agents, this
suggests that adding sign posts really improves the performance for network agents (albeit
only for specific cases).

All agents - except for the Reactive and Perceptron agent which already reached max-
imum performance in the random environment - performed better in the structured envi-
ronment when there were 10 food sources. As suggested earlier, this is probably due to
the fact that in the structured environment the food is more evenly distributed across the
environment. The performance increase is thus due to the structure of the environment
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itself.

3.3 Optimal environment and task

In Sections 3.1 and 3.2, it was observed that the performance of the MTRNN agent was
worse than the MLP and Perceptron agent in both types of environments (see Figures 6(a),
6(b), 8(a) and 8(b)). This highlights the importance of the next research question: In what
kind of environments and tasks will the MTRNN agent be able to benefit (show effective
survival behavior) from having multiple timescales, i.e. remember previous time states?
Although Section 3.2 may suggest that the worse performance value of the MTRNN agent
is due to the multiple timescales, this is actually not proved but it clearly suggests that the
agent does not benefit from having multiple timescales. However, the results of the previous
two sections and some background information should give some pointers to what kind of
environments and tasks are suitable for the MTRNN agent.

In many random environments, the MTRNN agent will not move throughout the simula-
tion unless there is enough food to overcome the ratio food/obstacle threshold. This suggests
that the MTRNN agent does not extract any more information than whether or not enough
food is available in the environment. The strategy the agent will pursue is thus too holis-
tic (or global for that matter) to handle local situations as well. Although the structured
environment was less random and it was observed that in some situations the sign posts
were used, overall the MTRNN agent followed the same movement pattern throughout the
simulation and again the strategy was holistic.

In contrast to the current experiment, the work of Paine and Tani (2005) and Yamashita
and Tani (2008) shows that the MTRNN or a similar structure can be effective; the net-
work architectures were able to develop a functional hierarchy through self-organization and
multiple timescales and could develop different behavior primitives and sequences of such
primitives. However, it is important to note that the task and environment of their experi-
ments were quite different from the ones that are used in the current research. Specifically,
in Yamashita and Tani (2008) the agent had to perform five different behaviors (such as
move object left and right three times). The agent always started out in the same position
and which behavior was to be performed depended on the initial states of the slow context
units. In Paine and Tani (2005), the agent had to find different goals in a static maze; which
goal was to be found was again dependent on the initial slow context states. In the current
experiment, the task was to survive as long as possible which could be done by avoiding ob-
stacles, consume food and resting. However, the environment was not static at all and thus
the agent really had no benefit of remembering where food had been before consumption.
Therefore the subgoals (food sources) to reach the more abstract goal (surviving) were also
not static, while in Yamashita and Tani (2008) and Paine and Tani (2005) the goals were
precisely that and thus much more concrete.

From all this the following can be derived:

1. The environment must contain a lot of structure, so that it is beneficial for the MTRNN
agent to remember;
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2. The goals the agent has to achieve in a task must be static between simulations

A third constraint could be that the task and environment require a global and holistic
strategy for effective behavior, but this already follows from the two constraints mentioned;
if the world is completely static the agent will always use the same behavior patterns for the
same goals, again dependent on the initial slow context states.

An example of a task and environment in which the MTRNN agent might be able to
benefit from its cognitive abilities is a task for which the agent must reach different goals
from different points in a static world. One can think of some kind of quest in which the
agent gets an initial goal and only gets to know the next goal if it has reached the previous
goal. The subgoals are also not always in the same order. This is very much like the maze
navigation task of Paine and Tani (2005), but the difference is that in their task the agents
always navigated to a goal from the same point, while in this task the agents must be able
to navigate to different goals from different starting points.

Another possibility might be to add a random factor to an otherwise static world by for
example letting a predator loose while the agent has to survive by searching for food. The
behavior of agents for such a task when a predator is present was already evaluated by Bax
(2010), but only for the Reactive, Reactive-DN and Control agent. The same could thus
be done for the MTRNN agent as well. It is expected that because the world is static, the
MTRNN agent can handle the task well but the random factor would encourage the agent
to produce more reactive behavior than in the current experiment.

A third possibility is to use a task and/or environment in which the agent has to follow
a specific kind of order to complete certain subgoals. Because of the timescales, the agent
might be able to develop subgoal-specific behavior through the fast context units. The exam-
ple of the quest given above also includes ordering of behavior patterns, but other examples
in which the order varies not much are also possible.

Although random environments are not really an option for the MTRNN agent, still many
different environments and tasks are possible. These tasks and environment do have some
constraints; the world must not contain too many random or unexpected things, is static or
at least has much structure and contains clearly specified goals and sub goals.

3.4 Emergence of functional hierarchy

This section focuses on the fourth research question: is the agent able to achieve functional
hierarchy through different timescales in the current survival task and environments? Again,
this question can be answered by comparing the MTRNN agent with the Perceptron and
MLP agent; these latter agents use the same kind of sensory information but will not have
functional hierarchy of behavior through different timescales, implicit nor explicit. Further-
more, observation of the MTRNN agent’s behavior in both environments should give some
indication of whether or not this agent develops functional hierarchically organized behavior.

In Section 3.1 and 3.2 is described that in both environments the MTRNN agent performs
worse than the MLP and Perceptron agent. However this is only the case for situations in
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which the amount of food is higher than the number of obstacles (as shown in Figures 6(a),
6(b), 8(a), 8(b). This indicates that for all agents it holds that the ratio food/obstacles
should be beneficial, otherwise the agents will not move at all. These situations should
therefore not be included when evaluating emergence of functional hierarchy in the MTRNN
agent. The fact that the Perceptron and MLP agent performed better than the MTRNN
agent suggests that remembering previous states and use of different timescales have an
effect on the performance, albeit a negative effect. It also suggests that the MTRNN agent
develops different behavior patterns than the MLP and Perceptron agents, but again not
very effective ones.

In the Methods section was described that the states of the slow context units were
set to corresponding values as soon as it became night or day. This should have triggered
the MTRNN agent to develop different behavior for day on the one hand and night on the
other, but is this also the case? According to the observed behavior (as described in detail in
Section 3.1.2 and 3.2.2): yes, again but only for some situations did the MTRNN walk at day
and stay still at night. Furthermore, although not as much in the MTRNN agent, different
day and night behavior was also observed for the MLP and MTRNN agents. This indicates
that such different behavior patterns are not necessary due to the setting of the initial slow
context states in the MTRNN agent but probably because all these network agents recognize
the pattern of day and night.

One interesting observation must be noted; in the case of 4 food sources in the structured
environment (the one with the sign posts), the MTRNN agent will most of the time hold
on to a default movement strategy but abandons this as soon as a sign post or food source
is perceived. When this happens, the agent will temporarily move to achieve this sub goal.
This suggests there is some subsumption of different behaviors; as soon as an interesting
surrounding is perceived (such as a food source), the agent will move towards this goal and
thereby subsumes the default behavior patterns. In other situations and in particular in the
random environment, the MTRNN agent sticks to one global strategy of movement and will
not visibly react to particular situations, such as encountering a food source, obstacle or sign
posts.

Since other network agents also show different behavior for day and night, it is not
possible to conclude that this is due to emergence of functional hierarchy in the MTRNN
agent, in the sense that these behavior patterns were not developed due the setting of initial
slow context states and the multiple timescales. However, it cannot be denied that overall
the MTRNN agent performs worse than the MLP and Perceptron agent and thus there must
be some difference in the behavior that is produced by the MTRNN agent. Furthermore, in
a particular case the MTRNN agent performs quite well and seems to show behavior as a
result of some sort of subsumption architecture.

In all, the MTRNN agent does not really benefit from having multiple timescales in
this type of environment and task, but the differences with other network controlled agents
suggest that these timescales do have an effect on performance. Since other network agents
also show different behavior patterns, the current context that is perceived seems to play a
much bigger role than the architecture of the networks. The case of 4 food sources in the
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structured environment does show some potential of emerging functional hierarchy, but in the
current experiment there is not enough evidence to fully support this notion. It remains to
be seen in future work if the MTRNN agent can really self-organize this functional hierarchy
in similar tasks and environments.

3.5 Statistical significance

In the previous results sections, many differences between different agents or between differ-
ent worlds were described. But are these differences statistically significant? In the following
section an answer to this question is provided by giving an example of statistical testing.

3.5.1 Evolution statistics

During evolution of the Control, MTRNN, Perceptron and MLP agents, the fitness value was
based on the average of the fitness values obtained in five different simulations and thus five
different environments. However, there are many possible environments; take for example
the situation with 10 obstacles and 20 food sources in the random environment. The amount
of possible environments is then:(

100

10

)
·
(

100− 10

20

)
= 8, 82 · 1032

so the population of environments can be considered virtually infinite. According to the
Central Limit Theorem and the Law of Large Numbers (Billingsley, 1986), for a reliable
approximation of the population average the sample size should be large enough - N > 40.
This is clearly not the case in the current experiment because during evolution, the fitness
value is averaged over only five different environments, which means that the average fitness
value on which the fitness during evolution is based does not reflect the real average fitness
well.

3.5.2 Comparison of different agents and environments

To answer the various research questions in this thesis, many comparisons were made between
agents and between environments. One of the most interesting observations was that the
performance of the MTRNN agent was higher in the structured environment as compared
to the random environment. Whether this difference is also significant will now be assessed
as an example.

Each type of agent with optimal parameters (and thus the best fitness value) for the
current environment acquired through evolution was tested in 5000 different environments.
The final performance value was the average fitness value of these 5000 environments. Be-
cause the sample size is this big, all differences that are found in the data will probably be
significant.

In this specific example, the focus is on whether or not the performance of the MTRNN
agent is significantly higher in the structured environment than in the random environment.
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Structured environment Random environment
Average Xgem(A) = 142, 4130 Xgem(B) = 124, 7870
Stdev sA = 13, 0497 sB = 9, 584...
# of subjects nA = 5000 nB = 5000

Table 6: The statistics acquired for the comparison of the performance value of the MTRNN
structured and random environment with 4 food sources

We therefore have the following design and hypotheses:

Design:
Dependent variable = the performance of the MTRNN agent with 4 food sources and 0
obstacles
Independent variable = type of environment (structured, random)

Hypotheses:
H0 = µ(Structured) ≤ µ(Random)
Ha = µ(Structured) > µ(Random)

The following statistics were acquired for the two environments and can be found in Ta-
ble 6. With help of the formulas listed in Appendix C, the p-value for the current statistic
test is calculated. p < 0.0005, which means that there is significant proof that the null
hypothesis can be rejected and thus that the performance of the MTRNN agent in the
structured environment is significantly higher than in the random environment for 4 food
sources.

4 Conclusion

In this thesis, the main goal was not only to investigate the effectiveness and possibilities of
the MTRNN agent compared to other agents and in different environments, but also whether
or not the agent develops functional hierarchy of behavior through self-organization and use
of multiple timescales. The goal consists of four sub goals:

1. Evaluate and observe how effective the MTRNN agent performs in a random day-night
environment (Lagarde, 2009) as compared to agents with different behavior paradigms;

2. Evaluate and observe the behavior of the MTRNN agents in the random environments
as compared to a more structured day-night environment;

3. Discuss and derive from the results and other information in what kind of environment
the MTRNN agent will benefit from having multiple timescales, i.e. remember previous
time states;
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4. Evaluate whether or not the MTRNN agent was able to achieve functional hierarchy
in the current experiment.

To answer the first research question, six different agents - two reactive agents, one regulative
controlled agent and three network agents controlled by a Perceptron, MLP or MTRNN
network - were compared to each other in a randomized day-night environment with obstacles
and food sources. The results showed that the performance and behavior of the MTRNN
agent was in almost every case worse than the reactive, Control and Perceptron agents. In
many cases, the MTRNN agent behaved and performed the same way as the MLP agents.
This suggests that agents with a simpler architecture were better adapted to the random
environment than an agent with a more complex architecture such as the MTRNN agent.
The MTRNN agent was not able to extract more information of what it has seen in previous
situations than whether or not there was enough food to risk walking around, so it seems
that the random environment is just too random for the MTRNN agent to be effective.

To answer the research question concerning the second goal, the performance and behav-
ior of the MTRNN was evaluated in two different environments. The first environment was
the random world with food and obstacles, the second environment did not contain obstacles
but instead used strips of sign posts leading to and therefore indicating a food source. These
sign posts were used to create a more structured environment, although the strips of food
sources and sign posts were still randomly placed in each simulation (under the constraint
that maximally one food course could be placed in a column). Because of the structure, it
was expected that the MTRNN agent (and the Perceptron and MLP agent as well) would
be able to recognize patterns and the MTRNN agent could thus benefit from remembering
previous states. However, this expectation was only partially supported by the results; the
MTRNN agent was still constrained by the fact of whether there was enough food but the
use of sign posts did improve performance in some specific cases. A very interesting ex-
ample is the situation with 4 food sources; in the random environment the agent will take
many naps at day to preserve energy, but in the structured environment the agent will move
around more and make use of the sign posts to reach food and therefore performance will
be higher in the latter situation. However, the agent still performs worse than the MLP and
Perceptron agent. Also, the MTRNN agent will largely follow the same kind of movement
strategy throughout a simulation, which suggests that the second type of environment is still
not structured enough for the MTRNN agent to benefit from having a memory.

The third question - in what kind of environments and tasks will the MTRNN agent be
able to benefit from its multiple timescales - was answered by evaluating the results obtained
in the current experiment and other research in the same field of interest, specifically the
work by Tani (Yamashita & Tani, 2008; Paine & Tani, 2005). The research suggested that
an environment that is completely static throughout the experiment and with static goals
or sub goals is a typical environment in which it is useful to remember previous states and
also develop different behavior primitives that can be sequenced. However, these types of
environments and tasks may not be that challenging because the situations stay the same.
Therefore such environments can be expanded by introducing a random factor (such as a
predator agent) or by introducing multiple static goals at multiple starting points. In any
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case the environments and tasks should encourage the agent not only to have a global idea
of the world, but also develop behavior that handles local situations.

The fourth research goal focused on whether or not functional hierarchy of behavior
emerged in the MTRNN agent. This question was answered by comparing observed be-
havior of this agent against the MLP and MTRNN agent and by evaluating the different
behavior patterns that were observed in the different situations. The results and observa-
tions showed that all network controlled agents were able to recognize different day- and
night patterns, dependent on the environment settings, indicating that environment context
plays a more important role than the structure of the network models and use of different
timescales. However, differences between MLP and Perceptron agents on the one hand and
the MTRNN agent on the other suggested that the multiple timescales did have an effect
on the performance, albeit a negative effect. Furthermore, it seemed like there was some
subsumption of behavior in the case of 4 food sources in the structured environment for
the MTRNN, which is in favour of the notion of functional hierarchy but in the current
experiment there is not enough evidence to support this notion. This, and the constraints
on the environment and tasks derived from these experiments, again emphasize the need for
further research in this field of interest.

5 Discussion & future research

In the previous sections different possible environments and tasks were proposed in which
the behavior of the MTRNN agent might be able to act effectively. It would therefore be
very interesting to evaluate and observe what kind of behavior the MTRNN agent will show
in such environments and tasks.

In the current context, the concept of cognitive control (Aaron & Admoni, 2010; Badre
& Wagner, 2007; Badre, 2008; Braver et al., 2009; Egner, 2009; Koechlin et al., 2003; Rajah
et al., 2008) - the ability to react different to the same situation dependent on the context -
is also important. For example, take the static world in which also a predator is present; the
agent must be able to react to the same environment but in either a context of danger or a
context in which no immediate threat is visible. The formalization by Vroon (2011) was also
concerned with cognitive control. He formalized the idea that regulative controlled agents
(the Control agent in the current experiment) would be better able to handle situations with
different contexts than just plain reactive agents. It would be very interesting to test (for
lack of a better word) to what extent this formalization also holds for the MTRNN agent.

Instead of finding ways to improve the task and environment, one could also try to alter
the neural network model in such ways that the multiple timescales remain intact but the
agent is able to act reactively as well. For example, the MTRNN model could be expanded
with a third layer of nodes that decides when the slow context units should be on (to indicate
shifting of contexts) and when the fast context units are on, so that local behavior can be
learned. This last suggestion is probably very difficult and too far-fetched to research, but
still it would be very nice to incorporate the best of both worlds - a little like regulative
control does, but incorporating multiple timescales as well.
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Finally, the memory context units play a large role in producing behavior of the MTRNN
agent and therefore the agent comes up with a solution that is too global and too deliberative
to have the agent react well to local situations. This poses an important follow-up research
question: how can we ensure that the global memory filters and remembers the information
that is needed to react in a chaotic environment such as the random environment used in this
experiment? To investigate this, one needs a quantifiable measure. Such a measure might
be entropy (i.e. information density or the amount of chaos (Martyushev & Seleznev, 2006))
- a measure that indicates the uncertainty one has about some set of possible outcomes.
The higher the entropy, the less information is present and thus the more uncertain an
environment is. In random environments, the amount of possible environments is enormous
and thus entropy is very high. There are two ways to deal with this problem; both focus on
decreasing entropy for the agent itself. One is to increase the number of units so that more
different situations and information can be stored and memory is increased. However, it is
not really natural to deal with all the information in the environment; the other solution is
thus to filter out the relevant information to decrease entropy in the agent itself. The goal
of decreasing entropy should be that the agent will handle obstacles and food sources well
by using relevant information from the past.

In any case, this research was only a little step in the direction of finding out more
about the behavior, characteristics and effects of different timescales of agents controlled by
recurrent neural networks. There is still a lot more interesting research to be done in this
field of science.
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Setting Control Perceptron MLP MTRNN
Population size 125 250 500 750
Representation Integer Integer Integer Integer

vector vector vector vector
Mutation Addition of Addition of Addition of Addition of

value value value value
in interval in interval in interval in interval]
[-100,100] [-100,100] [-100,100] [-100,100]

Muation probability 1
12

1
12

1
12

1
12

Recombination One-point One-point One-point One-point
crossover crossover crossover crossover

Recombination 1
2

1
2

1
2

1
2

probability
Parent selection Roulette wheel Roulette wheel Roulette wheel Roulette wheel
Survivor selection Generational Generational Generational Generational
Termination condition 100 generations 100 generations 100 generations 100 generations

Table 7: The JGAP settings for the different agents as used in the current experiments

Appendices

A JGAP Settings

The JGAP package was used to evolve the different weights of the Control, MLP, Perceptron
and MTRNN agnets and initial slow context states of the MTRNN agent. Weights of the
Control agent had values between the interval [-300, 300] and were later transformed to
double values in the interval [-3,3]. The same was done for the other three agents, but then
initial weights values were in the interval [-500,500] and the initial slow context states had
values between -100 and 100. Since this project uses the same settings as Lagarde (2009)
and he used the default configuration, the default configuration was also used here. The
JGAP settings for the different agents can be found in Table 7.

B Results

Beside the different agents and different environments, there were many more variables that
could be tested. However, due to time constraints and the fact that many of these variables
were already assessed in the thesis of Lagarde (2009) (although not with the Perceptron,
MLP and MTRNN agent), only the effects of different environments and different ages were
obtained and are listed here in more detail.
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Nr of obstacles Nr of food MTRNN Perceptron MLP
0 0 125 125 125

10 207,3458 705,6486 511,1334
20 749,4396 748,3348 750
30 741,42 749,9064 735,7106
40 741,5034 749,92 743,5982

10 0 125 124,9698 124,9126
10 104,9766 151,861 106,0946
20 245,8366 425,5718 423,8084
30 747,0762 700,7696 746,3166
40 750 749,6808 733,4012

20 0 125 124,463 124,9346
10 89,1352 108,0912 94,6444
20 114,4408 99,2096 113,9246
30 214,5934 609,8378 332,2796
40 719,3690 744,747 743,379

30 0 125 117,4204 111,7124
10 96,5286 106,4912 105,9768
20 108,059 86,1418 97,1512
30 107,1362 93,8474 85,48
40 219,6644 371,8028 354,5370

40 0 125 125 124,2224
10 111,5772 102,8402 101,389
20 123,1578 99,3136 92,974
30 91,4706 82,9398 76,2564
40 97,6158 92,7918 99,5224

Table 8: Fitness values for various combinations of obstacles and food for the MTRNN,
Perceptron and MLP agent

B.1 Fitness of agents in environment I

In the current experiment, the agents were tested in the first environment with different
food/obstacle ratios of which in Section 3 also graphs are showed. In Table 8 and 9 you can
find the exact fitness values for the MTRNN, Perceptron and MLP agent, and the Reactive,
Reactive-DN and Control agent, respectively.

B.2 Fitness of agents in different environments

The performance of the different agents were also compared in the different environments.
In Table 10 to 13 one can find the exact fitness values for the agents in the different envi-
ronments. The first two tables show the results for the agents in the random environment,
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Nr of obstacles Nr of food Reactive Reactive-DN Control
0 0 125,4982 99,0356 125

10 749,7928 553,3584 535,6112
20 750 749,9596 749,098
30 750 750 750
40 750 750 750

10 0 95,2172 98,0318 124,6348
10 497,459 451,8964 419,0428
20 749,4952 749,9592 705,1114
30 750 750 747,6192
40 750 750 748,0944

20 0 76,9814 97,1308 124,471
10 195,0938 356,7732 294,1572
20 694,537 749,3564 743,9784
30 747,8064 750 666,0596
40 749,9814 750 736,136

30 0 64,4194 96,5028 117,1528
10 118,4094 285,0464 241,973
20 335,4088 744,4264 730,7184
30 668,6916 749,6958 698,2012
40 737,011 750 576,368

40 0 56,9062 95,8948 123,8178
10 86,3642 226,6354 195,799
20 155,5332 709,0156 686,249
30 352,517 744,7668 732,8226
40 617,0698 748,5738 738,2538

Table 9: Fitness values for various combinations of obstacles and food for the Reactive,
Reactive-DN and Control agent
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Nr of obstacles MTRNN Perceptron MLP
0 125 125 125
2 124,942 122,4864 124,5216
4 124,787 156,1016 151,3748
6 132,9438 253,8136 194,3394
8 154,8592 269,5376 329,2668
10 207,3458 705,6486 511,1334

Table 10: Fitness values for MTRNN, Perceptron and MLP agents in the random environ-
ment with various amounts of food and no obstacles

Nr of obstacles Reactive Reactive-DN Control
0 125,4982 99,0356 125
2 165,538 116,5470 122,3166
4 249,4672 149,118 146,0398
6 495,4986 203,2598 199,3292
8 737,3174 312,1822 295,681
10 749,7928 553,3584 535,6112

Table 11: Fitness values for Reactive, Reactive-DN and Control agents in the random envi-
ronment with various amounts of food and no obstacles

the last two tables in the structured environment. It must be noted that the tables for the
MTRNN, Perceptron and MLP agent are of main interest, since they are only able to handle
sign posts.

C Statistical results

In the Results section it was briefly described how the statistical significance was assessed
for a specific example. In this assessment, the following formulas were used:

Deviation within groups: sp =
√

(nA−1)·s2A+(nB−1)·s2B
N−2

Effect size = Xgem(A)−Xgem(B)

sp

Effective sample size: N∗ = 1
( 1
nA

+ 1
nB

)

t =effect size ·
√
N∗

degrees of freedom: df = N − 2
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Nr of obstacles MTRNN Perceptron MLP
0 125 124,9908 124,9774
2 125,0352 124,6536 129,3654
4 142,410 185,6794 155,2702
6 138,3224 247,365 244,9642
8 163,8272 540,9444 569,222
10 270,4208 748,9202 747,7726

Table 12: Fitness values for MTRNN, Perceptron and MLP agents in the structured envi-
ronment with various amounts of food and no obstacles

Nr of obstacles Reactive Reactive-DN Control
0 125,4968 99,036 124,9524
2 165,2782 116,691 123,7764
4 244,7258 146,3906 145,5914
6 479,1526 196,5288 188,1374
8 743,9668 312,6936 299,7846
10 750 719,5816 715,6928

Table 13: Fitness values for Reactive, Reactive-DN and Control agents in the structured
environment with various amounts of food and no obstacles
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