
School of Psychology and Artificial Intelligence

Bachelor Thesis

An Application Of Word Embeddings In Recommending
Alternative Query Terms In Domain-Specific Search

author: Sander Moonemans, s4608364
supervisor: dr. F.A. Grootjen

June 2019

Abstract

An Application Of Word Embeddings In Recommending
Alternative Query Terms In Domain-Specific Search

by
Sander Moonemans

Radboud University
School of Psychology and Artificial Intelligence

BSc in Artificial Intelligence
Supervisor: dr. F.A. Grootjen

June 2019

A Query is a statement of a requester specifying their information
need. A poorly formed query can be ambiguous, which can lead to poor
performance of an information retrieval machine. Aiding the user by sug-
gesting different query terms could be of use in avoiding this problem.
A common way of finding query recommendations is by using query logs
(Baeza-Yates et al.). However, smaller companies and institutions that
operate in a specific domain rarely possess such query logs as they require
large user-bases. Instead of using logs, one could use a language model to
find semantically similar terms to the input. A popular example of such
a model is a word embeddings (Word2Vec, Mikolov et al.) model. This
technique uses a neural network to encode word features to real vectors
based on neighboring words in texts of a corpus. These vectors can be
compared, so similar words to an input can be extracted. This research
proposes a system that can recommend words based on single query terms
provided by a user. This system functions as an add-on to an existing
domain-specific search engine. A model was trained as part of this thesis
and its quality was evaluated. Furthermore, the model was used in a rec-
ommendation system and subsequently experimented with. No significant
evidence was found regarding a performance gain in this thesis. Improve-
ments are proposed that could potentially lead to a significant result in
the future.

1

Contents

1 Introduction 3
1.1 Background . 3
1.2 Query recommendations and language models 4
1.3 Scope of the thesis . 7
1.4 Outline . 7

2 Materials 8
2.1 Data . 8

2.1.1 SoNaR Corpus . 8
2.1.2 Wolters Kluwer Dataset 8
2.1.3 Pre-processing . 8

2.2 Modeling procedure . 9
2.3 Recommendation System Interface 10

3 Experimental Design 11
3.1 Inspecting the Quality of Word Embeddings 11
3.2 Using the Recommendation System 12

4 Results 13
4.1 Word embeddings quality results 13
4.2 Search engine performance test results 13

5 Discussion 14
5.1 Interpretation of results . 14
5.2 Research design . 15
5.3 Limitations . 15
5.4 Future research . 16

6 Conclusion 17

7 Appendix 19
7.1 Appendix 1: Language Test Sets 19

7.1.1 Analogy Tests . 19
7.1.2 Cross-Domain Odd One Out 19
7.1.3 Domain-Specific Odd One Out 20
7.1.4 Cross-Domain Syntactic Tests 20
7.1.5 Domain-Specific Syntactic Tests 21

7.2 Appendix 2: Recommendation system GUI 22
7.3 Appendix 3: Instruction Manual For Experiment 2 23

2

1 Introduction

1.1 Background

A Query is a statement of a requester specifying their information need. Query-
ing is an essential part in the exchange of information between humans and
machines, but translating the information need of a user to a machine can be
a complicated task. The field of information retrieval (IR) is concerned with
tackling this exact problem. The information that needs to be retrieved can
take many forms, among which text, images or sounds.

Vast advances have been made in information retrieval in the last decades.
Modern IR techniques are very efficient in storing data en retrieving information
based on queries. However, the first step in information retrieval is construct-
ing the query. Retrieving a large amount of information rapidly is not useful
if the information need of a user does not reside in the information that is re-
trieved by the machine. Often too many results are retrieved which can lead
to overloading the user with information, which in turn lead to decreased in-
formation processing (Hwang and Lin (1999)). This means the performance of
the machine is dependant on the user’s ability to specify their information needs.

A common way of studying the performance of an algorithm or machine in
IR is by measuring the precision and recall of a set of retrieved information.
Precision is the fraction of relevant instances among the retrieved instances,
while recall is the fraction of relevant instances that have been retrieved over
the total amount of existing relevant instances. A poorly formed query can be
ambiguous, which can lead to poor performance of the IR machine. For ex-
ample, an ambiguous query can be interpreted in different ways. The machine
can decide to retrieve information of all these interpretations. This increases
the chance that the retrieved information contains the user’s information need
which increases the recall. However, this also results in a larger amount of re-
trieved information which can lead to lower precision. In modern search engines,
thousands or millions results are displayed, with only a small portion being rel-
evant. The user has to look through this heap of information themselves which
is very time consuming. Ideally, an IR system should have a high recall and a
high precision, but in practice this seems hard to achieve. A balance must be
found between recall and precision in order to get optimal results.

There are many ways to facilitate these trade-offs. In modern search engines
search results are ranked based on some relevancy metric which helps the user
with finding the most relevant documents, thus reducing the need for high preci-
sion. A classic, but outdated, example is Google’s PageRank system introduced
by Page et al. (1999). Expanding queries with synonyms can lead to a higher
recall but a lower average precision. However, combining query expansion with
relevancy based ranking reduces this downside.

3

Another way of tackling ambiguous queries is by recommending alternative
input. Recommending queries can help the user define their information needs
by displaying related, yet different, ideas. Currently there are several ways of
recommending alternative queries. A commonly used technique of finding alter-
native queries is by the use of a query log. That is, a history of similar searches
to the input query performed by the same user or other users. Currently much
literature is available on the topic of query suggestion using query logs. Baeza-
Yates et al. (2004) presented an algorithm that recommends queries based on
the clustering of similar queries and their associated information from query
logs. This clustering process is based on term-weight vector representations of
queries. These vectors were obtained from the term-weight vectors of the URLs
clicked by users in the output of the queries. Baeza-Yates et al. propose that
even though semantically similar queries do not always share the same words,
they do share the same words that are contained in the documents that are
selected by the user.

The disadvantage of using query logs for the purpose of recommending
queries is the size of the logs that is required. In domain-specific or enterprise
search engines, these logs are not available or lack the necessary information
to learn appropriate models (Bhatia et al. (2011)). Instead of looking at the
implicit semantic relation of queries based on the documents selected by the
user, a recommendation model can be built purely by analyzing the language
in a corpus.

Some research has been done on query suggestion in the absence of query
logs. Bhatia et al. (2011) have proposed a probabilistic mechanism for generat-
ing query suggestions from a corpus without using query logs. They utilized a
corpus by extracting candidate sentences. This same corpus was being searched
in. Sentences are extracted by taking all N-grams of order 1, 2 and 3. In order
to avoid sentences that start or end with a stop-words, if such a sentence is
made, the next word will be taken into the sentence as well and the stop-word
is skipped. This technique is similar to a skip-gram. When the user starts
typing, some words are recommended to finish the query. This framework of
query suggestion has shown a statistically significant improvement upon two
state-of-the-art baselines. Besides giving recommendations for words coming
after a given query, not much research has been done on finding words that are
different, yet related to the input query. This could help the user specify their
information need as it gives a user different ideas that could fit the information
need even better.

1.2 Query recommendations and language models

In order to find similar words based on a single query term, the computer needs
some understanding of the meaning of the input. This requires a more in-depth
look of the language and semantics involved. A field that is concerned with

4

these kind of problems is the field of Natural Language Processing. Certain
NLP techniques allows the computer to learn models of language. An example
of such a model is the n-gram model. An n-gram model is a probabilistic lan-
guage model that is able to predict a word given a history; N previous words.
Although n-gram models could be used to finish queries, they are not that useful
for recommending different query terms.

In order to obtain meaningful different query terms, the machine needs to
have some semantic representation of the words. An influential field of research
that tries to quantify and categorize semantic similarity between linguistic items
is the field of distributional semantics. In a sense, words can be summarized as
a sum of its context. This is know as the ‘Distributional Hypothesis’ first coined
by Harris (1954). The distribution of an element is defined as the sum of all its
environments. In a sentence, the distribution of a word is defined as the sum
of all its neighboring words. The Distributional Hypothesis states that words
with similar distributions tend to have similar meaning. There is a correlation
between distributional similarity and meaning similarity, which allows us to use
distributional representations to estimate meaning similarity (Sahlgren, 2008).
Distributional representations of words are usually in the form of a vector. In
recent years machine learning techniques have been used to encode various fea-
tures of words into these vectors, the most influential architectures established
by Bengio et al. (2003) and subsequently Mikolov et al. (2013a).

Neural network based language models (NNLMs) have been proven to out-
perform N-gram models significantly in predicting words in a sequence (Bengio
et al., 2003). The main problem with complex language models is dealing with
the curse of dimensionality. Modelling the joint probability distributions be-
tween many discrete random variables yields a very large amount of free param-
eters. For example, modelling the joint probability distribution of N consecutive
words in a language with vocabulary size V yields V N - 1 free parameters. The
size of V can grow up over a million in some languages like Korean. This would
yield 11000010 − 1 free parameters. In their paper, Bengio et al. propose a way
to tackle the problem of dimensionality by using distributed representations of
discrete variables. In short, each word in a vocabulary is assigned a distributed
word feature vector. This vector is valued in the real domain R. The joint
probability function of word sequences are expressed in terms of the feature
vectors of the words in the sequence. The last step is simultaneously learning
the word feature vectors and the parameters of that probability function. A
word feature vector represents the different features of a word and can be pro-
jected as a point in a vector space. The number of features of the feature vector
is set arbitrarily. Bengio et al. experimented with 30, 60 and 100 features per
vector. These numbers are significantly smaller than the vocabulary size that
would be used in a naive modelling approach. When the modelling is done the
feature vectors can be compared to each other and the similarity between them
can be measured. A frequently used method of measuring similarity between
vectors is calculating the cosine similarity. The cosine similairty measures the

5

angle between two vectors. If the angle is small, it means that the vectors are
alligned in a similar orientation which means they are similar; the vectors have
similar features.

A team of researchers at Google recently introduced a method of achiev-
ing this in a more efficient way; Word2Vec. The Google researchers, Mikolov
et al. (2013a) expanded upon the idea of neural network based language model
by introducing the skip-gram model and the continuous bag of words model
(CBOW). The most computational expensive part of the feed-forward NNLM
resides in the hidden layer. This layer calculates probability distributions. In
these new architectures the hidden layer is removed and the projection matrix
is shared between all words. This would mean that the precision of the model
would suffer per training sample but it also means that it is possible to use much
more training data in the same amount of time. The second major difference
between these architectures and the neural network proposed by Bengio et al.
is that both past and future words are used for the prediction of words and
learning the vectors. The CBOW model tries to predict a current word based
on the context, whereas the skip-gram model predicts the context based on the
current word. These new architectures allow for reasonable training times on
large amounts of data. Because of the ability in training on much more data, the
vectors learned by the CBOW en skip-gram architectures actually outperform
the original neural network language models in semantic and syntactic language
tasks significantly.

Together with their new architectures, Mikolov et al. (2013b) introduced a
way to extract common n-grams in texts, which in turn can be used as individual
feature vectors. The n-grams, or phrases, are formed based on unigram and
bigram counts:

score(wi, wj) =
count(wiwj)−δ

count(wi×count(wj)

Scores above a certain threshold are kept while other the other bigrams are
discarded. This method is usually run multiple times in order to get n-grams,
where n > 2. In this thesis, this technique is used in order to extract bigrams
from a large corpus.

The vectors constructed by these neural networks are called word embed-
dings. Two embeddings trained on different corpora could have different rep-
resentation as the embeddings are calculated from the context the words are
in. This means an word embeddings could have an added benefit in domain-
specific search. If an embedding is trained on a domain-specific corpus, logically
the embeddings should have a better understanding of the language used in that
domain.

6

1.3 Scope of the thesis

The research question of this thesis is the following: How can word embeddings
be used in a recommendation system to increase domain-specific search engine
performance? In order to obtain relevant query term recommendations, it is
important to first investigate the quality of the word embeddings in relation to
the texts that are searched for by users. If the texts are domain-specific it would
seem logical to train embeddings on these texts as they would best reflect the
semantics that reside in the corpus. This brings us at the first hypothesis: Word
embeddings trained on a domain-specific corpus outperform word embeddings
trained on a cross-domain corpus in language tasks containing domain-specific
language. In order to measure the quality of these word represenations we can
use the word embeddings in some language tasks that are quite intuitive to us.
In the ’experiment’ section these tasks will be outlined, together with an ex-
planation about what the results would tell us about the quality. Once we’ve
established the quality of these representation we can investigate their use and
potential influence in the act of querying.

The second hypothesis would be: Using a query recommendation system
based on word embeddings significantly improves search engine performance.
The most straight-forward way of investigating information retrieval paired with
a recommendation system is by performing two sets of tasks; a querying task
with the help of a recommendation system and one without help. Now the
results can be analyzed, marking them either as a relevant or irrelevant. This
allows the calculation of precision and recall, and gives us a good measure of
performance. One problem arises: the number of results that are returned is too
large. Using a domain-specific search engine provided by the publisher Wolters
Kluwer, a simple query can return over ten-thousand results. It is out of the
scope of this thesis to have domain-experts label all of these results multiplied
by multiple trials. It also means that all documents, around half a million, in
the database have to be marked for ALL queries performed in order to calculate
recall. What we can do however, is take a look at the first set of results returned
and calculate the precision of this set.

1.4 Outline

In the following section, the materials, experimental design and the results are
discussed. In the ’Materials’ section the different models that were used are
discussed as well as the user interface that was constructed for the query con-
struction process. The different models include a custom trained domain-specific
word embeddings model as well as a pre-trained model trained on a large cross-
domain corpus. For the domain-specific model, the data, pre-processing and
training process are discussed in detail. Following this section, it is discussed
how the materials were used for the experiments that investigate the hypotheses
and research question. The results are displayed afterwards and subsequently

7

discussed. Lastly, conclusions are drawn from the research presented in this
thesis.

2 Materials

2.1 Data

In this thesis two corpora were used for learning the word feature vectors. Both
corpora contain a similar number of words, four hundred million versus five
hundred million words. The key difference between these two data sets is the
contents of the corpus. One data set consists of domain specific texts while the
other corpus consists of cross domain texts retrieved from sources like newspa-
pers and books.

2.1.1 SoNaR Corpus

The SoNaR: STEVIN Dutch Reference corpus is collected as part of a project
of the Centre for Language and Speech Technology at the Radboud University
(Oostdijk et al., 2013). This corpus contains standard Dutch and Flemish texts
published after 1954. The corpus includes original Dutch texts as well as texts
that are translated to Dutch by a professional translator. The contents of the
texts cover a wide spectrum of domains and genres. The corpus serves as a
general reference for various research in language and language use. The corpus
itself was not processed as part of this thesis but a Word2Vec model trained
on the corpus was already published by other researchers of the University of
Antwerp, Tulkens et al. (2016).

2.1.2 Wolters Kluwer Dataset

Wolters Kluwer is the biggest publisher and information service provider of The
Netherlands. Wolters Kluwer Legal Regulatory provides up-to-date informa-
tion and software tools for legal and fiscal professionals. One of the services
they provide is the navigation through a large database of judicial documents.
The contents of these documents cover a vast array of topics including court
rulings, jurisdiction, legislation and regulations. Wolters Kluwers lend us access
to this database and search engine allowing the processing of these documents.
The corpus contains roughly five hundred thousand texts, which totals to four
hundred million words.

2.1.3 Pre-processing

In order to obtain the tokenized input for training a Word2Vec model, some
pre-processing was done on the documents. The database consisted mostly of

8

XML documents which are tagged by hand by the company. The tags were con-
sistent throughout the data set. Two tags containing the most usable text were
extracted for further processing. Some of the text snippets are interrupted by
‘references’ which reference other documents or legislative articles. These refer-
ences did not contain useful information and were removed from the texts. The
most common abbreviations were restored to their full form in order to make to-
kenization simpler and increase their usability when recommending them using
the model. Moreover, digits, special characters and multiple whitespace were
removed in order to obtain clean text. Hereafter the text was tokenized. Tokens
of length 1 (single letters) were removed. If the text contained less than 5 tokens,
the text was excluded as it contains too few tokens for the training process. In
total 7 million training texts were collected consisting of four hundred million
words. Furthermore, common bigrams were extracted and tokenized.

2.2 Modeling procedure

The first modeling choice is whether to use the skip-gram model architecture
or the CBOW model. Both models have some upsides and downsides. The
CBOW model’s training time is very fast. This is due to the amount of com-
putations needed for every input token at the cost of the quality of the vectors
of infrequent words. The skip-gram model has to perform a number of calcu-
lations equal to the context window, the CBOW model averages the vectors of
the context window, which is much faster. In this setting, we have extracted
bigrams from the corpus which increases the vocabulary size. This also means
some of these bigrams have a relatively low frequency. In order to get the best
vector representations it is best to use the skip-gram model. An added benefit of
using skip-gram model is that you can apply so-called negative sampling, which
speeds up the training process (Mikolov et al., 2013b).

In their paper, Tulkens et al. evaluated unsupervised Dutch word embed-
dings as a linguistic resource. The quality of the word embedding model depends
on the parameters used in the modelling process. The most important param-
eters are the dimension of the vectors D, the word window size, the minimum
word count and the amount of training epochs. The dimension of the vector
represent the number of features that will be encoded for every word. This
means the dimensions of the vector space model is equal to D × V where V
is the vocabulary size. The window size is the maximum distance between the
target word and the predicted word. Tulkens et al. found that optimal results
where found with a vector size of 320 and a window size of 5 across all corpora.
Tulkens et al. released the word embeddings of the SoNaR database which is
used further in this research as the cross-domain embedding.

In order to compare the the SoNaR embeddings and embeddings learned
from the Wolters Kluwers dataset, the latter was learned with the same parame-
ters as the former. This allows for good comparisons while controlling important

9

variables. Both corpora have similar sizes, 400 million vs 500 million, and both
embeddings are trained with the same parameters. For the Wolters Kluwer
corpus the model was trained using the Word2Vec implementation (Mikolov
et al.) from gensim (Řeh̊uřek and Sojka, 2010). The original Word2Vec im-
plementation was written in C by Mikolov et al..The gensim implementation
ported the algorithms of the C implementation to Python and extended them
with additional functionality and optimization.

2.3 Recommendation System Interface

The figure below displays the recommendation system interface as it may appear
during use. The user can enter one or multiple query terms. 15 recommenda-
tions will be given based on the last word typed. The user may click on one
of the recommendations to replace the last query term with the recommended
one. When the user is finished constructing the query, the user may click on
search, which will open a search engine and copies the query to clipboard.

Figure 1: An example of the interface during use, the word ’advocaat’ has been
entered

10

3 Experimental Design

3.1 Inspecting the Quality of Word Embeddings

The first step in answering the research question is by investigating the first
hypothesis: Word embeddings trained on a domain-specific corpus outperform
word embeddings trained on a cross-domain corpus in language tasks contain-
ing domain-specific language. Mikolov et al. themselves proposed a way to
measure the quality of a word embeddings model trained with their architec-
tures. They noticed that simple algebraic manipulations could be performed
on the vectors to find meaningful syntactic and semantic relationships between
words. Multiple degrees of similarity were expressed through the vectors. For
example, the model has an ’understanding’ of analogies. A basic example would
be the analogy: A king is to a man what a queen is to a woman, denoted as
King : Man :: Queen : Woman. The model can accurately predict one of the
words given the other 3. This is done by performing the following operations:
v(King)−v(Man) +v(Woman) this results in a new vector that is closest to v(Queen).
This sort of test can give us an intuitive sense of the quality of the semantic
representations inside the vectors.

Besides semantic similarity, syntactic similarity can also be measured by ap-
plying the same algebraic operations as above on a different setting. Take a
verb for example, we can find the conjugations of a verb given another verb
with its correct conjugation. This problem can be represented the same way as
the analogies: Walking : Walked :: Swimming : Swam. In turn the conjugation
of swimming can be calculated as: v(Walking) − v(Walk) + v(Swimming) ≈ v(Swam).
This principle can be applied to a number of different syntactic settings like
opposites, comparatives, adjective to adverb conversion, superlatives and plural
nouns or verbs.

Another way of testing the semantic quality of the embeddings is by look-
ing at different kind of language tasks. One of those tasks is the ’odd one
out’ task, where a subject has to pick a word out of a sequence that is con-
ceptually not related to the other words. For example, given the sequence
(dog, cat, bird, giraffe), the odd one out is ’giraffe’ because it is not a pet.
A word embedding model can be used to solve this by averaging the vectors
v(Dog), v(Cat), v(Giraffe), v(bird) which results in a new vector : v(X). We can cal-
culate the cosine similarity of the words in the sequence to v(X) and measure
which one is most dissimilar. The order of the words was randomized for all
tests.

Of all these tests we can calculate the accuracy of the model over a number
of trials which in turns gives an indication of the quality of the semantic and
syntactic representations in the word vectors.The second part of the hypothesis
has to do with domain-specificity. The language tasks mentioned before can
be used in two different settings; a cross-domain setting and a domain-specific

11

setting. The former are tasks that include very broad and general language like
cities, animals or persons. The latter contains language that is less likely to be
used outside of a domain. The domain in this case is general and fiscal law. The
tests are set-up in such a way that the answers are not obvious and require some
expertise in the domain. An example used in the ’odd one out’ set (for dutch
readers): (staatsrecht, bestuursrecht, fiscaalrecht, burgerrecht), where the first
three are part of public law but the last one is not. In this case the ’odd one
out’ and various syntactic tests were performed using both cross-domain and
domain-specific language.

A total of 20 analogy tests, 20 cross-domain and 20 domain-specific ’odd
one out’ and syntactic tests were performed, for a total of 100 tests, whereof 40
containing domain-specific language. The answer to all test cases were prede-
termined and only that answer is seen as a correct answer. In order to measure
the quality of the embeddings, the accuracy was computed as a performance
measure. The accuracy is calculated as the fraction of correct answers over all
test cases.

3.2 Using the Recommendation System

the second hypothesis was defined as follows: Using a query recommendation
system based on word embeddings significantly improves search engine perfor-
mance. In order to investigate this hypothesis, tests need to be performed in two
settings: one where the recommendation system is used and one where it is not
used. the best way to test if this system has any added value to domain-specific
search is by having a domain-expert naturally query for some information and
see if the performance is better while using the recommendation system. In
this case ’better performance’ is defined as the higher precision in the results of
the first page. When the domain-expert chooses to use a recommended word
in his/her query, we can compare those results to the results from the original
query and measure which of the results has a better precision.The recommenda-
tion system simply returns the ten most similar words in the word embeddings
when the user is typing the query. The recommendations for a query term pop
up after the term is entered. In total 15 words were recommended to the user
per query term.

The second thing measured is the number of useful recommendations per
query term entered. Every individual query term that was used before was
put in the recommendation system again and the useful recommendations were
counted.

12

4 Results

4.1 Word embeddings quality results

The following table displays the accuracy that was obtained from the tests that
were performed with the domain-specific word embeddings and the cross-domain
word embeddings. Highlighted are the results from the domain-specific tests and
the average over all tests.

Task Wolters Kluwer
Dataset

SoNaR

Analogy task 0.25 0.45

odd-one-out(cross-domain) 0.85 0.75

odd-one-out(domain-specific) 0.85 0.80

syntax test(cross-domain) 0.40 0.60

syntax test(domain-specific) 0.30 0.45

Average 0.53 0.61

Table 1: Accuracy of semantic and syntactic word embeddings tasks

4.2 Search engine performance test results

The following tables outline the precision that was achieved using the domain-
specific search engine in the two settings. The first one without using a recom-
mendation system, the second including the use of the recommendation system.

Query #Relevant
items

#Irrelevant
items

Total results Precision

1 9 8 17 0.529
2 6 12 18 0.333
3 8 10 18 0.444
4 12 6 18 0.666
5 2 7 9 0.222
6 0 7 7 0
7 4 10 14 0.286
8 4 9 13 0.308
9 3 12 15 0.200
10 1 11 12 0.083

Average 0.307

Table 2: Precision of search engine without using the recommendation system

13

In 4 situations the domain-expert chose to change their query based on the
recommendations that were provided. These queries are highlighted.

Query #Relevant
items

#Irrelevant
items

Total results Precision

1 9 8 17 0.529
2 5 11 16 0.313
3 8 10 18 0.444
4 12 6 18 0.666
5 6 6 12 0.500
6 5 7 12 0.417
7 6 8 14 0.429
8 4 9 13 0.308
9 3 12 15 0.200
10 1 11 12 0.083

Average 0.389

Table 3: Precision of search engine in combination with the recommendation
system

In order to test for siginificant differences between the two means a one-
tailed T-Test was performed. No significant differences in mean were found
(p = 0.606 > 0.05)

In total the domain-expert found an average of 6,875 query recommendations
useful out of fifteen.

5 Discussion

5.1 Interpretation of results

From the results of the first experiment we can conclude that word embeddings
trained on domain-specific data do not yield significant better results in seman-
tic and syntactic language task. The accuracy of the domain-specific embedding
is just a little bit better in the odd one out tests than the cross-domain embed-
ding. In this case, the domain-specific word embedding perform poorly on tests
that use vector manipulation, the analogy tasks and the syntax tasks, in rela-
tion to the cross-domain embeddings. What the results from the odd one out
tests mean is that in 85% of the cases, the odd one is indeed selected. With a
sequence of length 4, we can assume that baseline performance is equal to 25%.
Both embeddings have a much higher accuracy than chance level, but both per-
form similarly despite of the difference in training data. In the syntax test the
cross-domain embedding performs even higher than the domain-specific embed-
ding in domain-specific tasks. Both embeddings perform on a similar level as
the embeddings trained originally by Mikolov et al. (2013a) which was around

14

40%. Because the there is no quality gain in training an embedding on domain-
specific data, we can safely conclude that using a cross-domain embedding in
domain-specific query recommendation should have no adverse consequences.
Rather, Mikolov et al. (2013b) showed that training on more data, billions to
tens of billions of words instead of hundreds of millions, significantly improves
word embedding quality.

The results from the second experiment are clear, in this experiment we
cannot conclude that querying with the recommendation system significantly
outperforms querying without such a system. This means the hypothesis is
discarded. However, we can see that there is a small performance increase and
some improvements to the system will be discussed in the sections below. We
can observe however, that a large portion of the recommendations were thought
as useful to the user.

5.2 Research design

The design of the first experiment was appropriate to investigate the first hy-
pothesis. The experimental setting was controlled, both embeddings had com-
parable training set sizes and were trained with the same parameters. The
most important difference between the two embeddings were the vocabulary
sizes. The biggest flaw of this experiment was that the sample size per test was
rather low (20 tests per set). However, this still gives a good indication of the
quality of both embeddings. Both word embeddings underwent two conditions;
cross-domain and domain-specific with varying results.

The second experiment was partially appropriate to investigate the second
hypothesis. The first problem with this design was the dependence on an ex-
ternal search engine. The domain-expert noticed that the results on the first
page retrieved by the search engine were irrelevant most of the times (precision
≈ 0.307) without digging deeper into every individual article. Because the re-
sults were so unremarkable, investigating the influence of the recommendation
system was obstructed. However, the design of the experiment itself could have
been effective. A simple comparison of the precision in two settings would give
us a good measure of performance difference. In the experiment 10 trials were
performed for each setting. Admittedly the amount of trials per setting were
low (N=10). Performing more trials would yield a better representation of the
performance of the search engine in both settings.

5.3 Limitations

An important limitation posed by word embeddings are single word vectors.
Often a user queries more than one query term, but as of now, the program
can only return recommendations based on the last keyword entered. The se-
mantics of the combination of different query terms, if they are not bigrams,
is lost. There is a solution available however, although not perfect, that can

15

take multiple queries terms into account. It is possible to sum or average two
or more word vectors. We can compute the cosine similarity of this vector to
other vectors in the model which will return new results. This is a simple way
of creating ’sentence embeddings’. The problem with this method however, is
that semantics of the individual words get diluted. In practice this means that
the recommendations that are given by this new word vector are a mix of the
separate word recommendations with barely any new recommendations.

Another limitation of word embeddings are the recommendations given for
broad terms and verbs. Terms that are ambiguous or too general return results
that are also very general. This result is actually the opposite what this thesis
is trying to achieve. A recommendation system that takes a vague query and
returns another vague query is not that helpful, as stated by the domain-expert
during the experiment. Finding recommendations for verbs usually results in
different conjugations of that same verb. For example, for the word ’publiceren’,
translated as ’to publish’, the first six recommendations are: ’publicatie’, ’pub-
likatie’, ’publiceert’, ’gepubliceerd’, ’gepubliceerde’, ’publicaties’. Only below
these words some different words are recommended like ’krant’ and ’dagblad’,
translated as ’newspaper’ and ’daily newspaper’. One way of tackling this prob-
lem is by lemmatizing these words. However, this means that any syntactic
value of the embedding is lost.

5.4 Future research

Considering the results from the first experiment, it can be concluded that using
a domain-specific source as training data does not yield significant improvements
to embedding quality. Rather, Mikolov et al. showed that training on billions
of words significantly increases the quality of the embeddings. Future research
could include a larger training data set if available. Combining different corpora
could pose an easy solution to increase dataset size. In the case outlined in this
thesis, it might have been beneficial to train only one embeddings model on
both the Wolter Kluwer dataset and the SoNaR corpus, which would double
the amount of training data.

Like described previously, there are also some improvements possible to the
recommendation system itself. Future research could apply sentence embeddings
or even document embeddings, which are extensions of word embeddings, in or-
der to improve search en query recommendations. Queries can be represented
as individual vectors based on the individual terms by averaging or summing
the corresponding vectors. However, recommending complete sentences based
on word embeddings might be a difficult task to achieve on itself.

The biggest problem with the second experiment was the dependence on a
pre-built search engine. The domain-expert noticed that the results retrieved
by the search-engine were often irrelevant or it was not clear at all what those
results were about. In order to fully control the variables concerning search, it

16

would be recommended to build a stripped-down version of a domain-specific
search engine by using open-source search engine platforms like Apache SolrTM.

Future research could include a recommendation system that uses word em-
beddings trained on lemmatized texts in order to get more useful recommenda-
tions. Researchers could investigate the importance of syntactic word features
of the embeddings in relation to search. If the syntactic value of the embed-
dings are small in relation to search, this opens a relatively easy way to improve
recommendation quality.

6 Conclusion

The research proposed in this thesis was about building a recommendation sys-
tem that could increase domain-specific search engine performance. The re-
search question is: How can a word embeddings model be used as a query
recommendation system to increase domain-specific search engine performance?

From this research we can conclude the following: training a word embed-
dings model on domain-specific texts yield no better quality embeddings in that
domain. The second thing we can conclude is that using a word embeddings
model in a recommendation system does not significantly increase search engine
performance in the way that was tested in the second experiment. Both hy-
potheses stated in this thesis are rejected. From the second experiment we can
conclude that a large portion of the recommendations were useful to the user.

Even though not directly proven in this thesis, the author is confident that
with a some mild tweaks to the recommendation system, more training data
for the embeddings and a different search engine, performance increases can
be expected. Building a recommendation system could pose a useful and in-
expensive way in creating a query recommendation system in domain-specific
or enterprise search engines. The non-significant outcomes are layed out in the
discussion section.

The research question is answered as follows. Word embeddings could be
used in a query recommendation system, but not necessarily in the same way
as proposed in this thesis. With some adjustments to the recommendation
system the author is optimistic about significant improvements to search engine
performance.

17

References

Baeza-Yates, R., Hurtado, C., and Mendoza, M. (2004). Query recommendation
using query logs in search engines. In Proceedings of the 2004 International
Conference on Current Trends in Database Technology, EDBT’04, pages 588–
596, Berlin, Heidelberg. Springer-Verlag.

Bengio, Y., Ducharme, R., Vincent, P., and Janvin, C. (2003). A neural proba-
bilistic language model. J. Mach. Learn. Res., 3:1137–1155.

Bhatia, S., Majumdar, D., and Mitra, P. (2011). Query suggestions in the
absence of query logs. In Proceedings of the 34th International ACM SIGIR
Conference on Research and Development in Information Retrieval, SIGIR
’11, pages 795–804, New York, NY, USA. ACM.

Harris, Z. S. (1954). Distributional structure. WORD, 10(2-3):146–162.

Hwang, M. I. and Lin, J. W. (1999). Information dimension, information over-
load and decision quality. Journal of Information Science, 25(3):213–218.

Mikolov, T., Chen, K., Corrado, G. S., and Dean, J. (2013a). Efficient estimation
of word representations in vector space.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G., and Dean, J. (2013b). Dis-
tributed representations of words and phrases and their compositionality. In
Proceedings of the 26th International Conference on Neural Information Pro-
cessing Systems - Volume 2, NIPS’13, pages 3111–3119.

Oostdijk, N., Reynaert, M., Hoste, V., and Schuurman, I. (2013). The Con-
struction of a 500-Million-Word Reference Corpus of Contemporary Written
Dutch, pages 219–247. Springer Berlin Heidelberg, Berlin, Heidelberg.

Page, L., Brin, S., Motwani, R., and Winograd, T. (1999). The pagerank citation
ranking: Bringing order to the web. Technical Report 1999-66, Stanford
InfoLab. Previous number = SIDL-WP-1999-0120.

Řeh̊uřek, R. and Sojka, P. (2010). Software Framework for Topic Mod-
elling with Large Corpora. In Proceedings of the LREC 2010 Workshop on
New Challenges for NLP Frameworks, pages 45–50, Valletta, Malta. ELRA.
http://is.muni.cz/publication/884893/en.

Sahlgren, M. (2008). The distributional hypothesis. Italian Journal of Linguis-
tics, 20(1):33–54.

Tulkens, S., Emmery, C., and Daelemans, W. (2016). Evaluating unsupervised
dutch word embeddings as a linguistic resource. CoRR, abs/1607.00225.

18

7 Appendix

7.1 Appendix 1: Language Test Sets

7.1.1 Analogy Tests

reads as: hij : zoon :: zij dochter Algabraic operation performed:
v(zoon) − v(hij) + v(zij) ≈ v(dochter)

1. zoon hij zij dochter
2. vader hij zij moeder
3. christendom jezus mohammed islam
4. duitsland berlijn parijs frankrijk
5. nederland amsterdam warschau polen
6. spanje madrid rome italië
7. frankrijk wijn bier duitsland
8. facebook posts tweet twitter
9. hamer spijker haar kam
10. wit zwart boven onder
11. nat droog lang kort
12. nacht maan zon dag
13. potlood schrijven knippen schaar
14. wolven roedel school vissen
15. eten honger moe slapen
16. auto straat zee boot
17. voetbal veld baan tennis
18. benzine auto fornuis gas
19. zoogdier koe slang reptiel
20. mens huid vacht hond

7.1.2 Cross-Domain Odd One Out

The last word is the odd one. The order was randomized while testing:
1. aardbei banaan peer hamburger
2. hamburger kip biefstuk broccoli
3. frankrijk duitsland nederland warschau
4. finland noorwegen denemarken spanje
5. rome madrid parijs rotterdam
6. facebook twitter linkedin internet
7. sneeuw regen hagel zon
8. cd floppy dvd laptop
9. varken koe schaap olifant
10. boom struik plant stoepv
11. takken stam wortels gras
12. bier wijn champagne water
13. dokter ziekenhuis verpleegster brandweer
14. jodendom christendom islam monarchie

19

15. monarchie democratie dictatuur gemeente
16. voetbal hockey tennis knuppel
17. toernooi clubs wedstrijden bal
18. vuurwapen kogel revolver steekwapen
19. paus aartsbisschop priester imam
20. mes keuken koken misdaad

7.1.3 Domain-Specific Odd One Out

The last word is the odd one. The order was randomized while testing:
1. advocaat rechter verdachte kantoor
2. jaarrekening balans resultatenrekening accountant
3. egks eeg eu navo
4. salarisadministratie voorraadadministratie debiteurenadministratie boekhouder
5. statuten bv mededinging secretariaat
6. vennootschapsbelasting inkomstenbelasting btw for
7. wajong ziektewet bijstand salaris
8. omgevingsvergunning wabo bestemmingsplan wethouder
9. adolescentenstrafrecht jeugdstrafrecht volwassenenstrafrecht eigendomsrecht
10. repliek pleidooi bezwaar jurisprudentie
11. ondertoezichtstelling voogdij jeugdzorg strafrecht
12. onderbewindstelling kantonrechter bewindvoerder ondertoezichtstelling
13. cumulatie procesrecht rechtsvordering risico
14. curator failliet schuldeiser jeugdrecht
15. derdenverzet vonnis rechtsmiddel bev
16. gevangenis bewaring gevangenhouding politiebureau
17. personenrecht privaatrecht handelingsbekwaamheid strafrecht
18. publiekrecht wetten vergunningen burgerrecht
19. tekortkoming schuldeiser schuldenaar donatie
20. testament erflater akte schuldenaar

7.1.4 Cross-Domain Syntactic Tests

Algabraic operation performed:
v(groene) − v(groen) + v(blauw) ≈ v(blauwe)

1. groene groen blauw blauwe
2. mooie mooi interessant interessante
3. ronde rond vierkant vierkante
4. grootste groot klein kleinste
5. beste goed veel meeste
6. gespeeld spelen bouwen gebouwd
7. gedacht denken leren geleerd
8. geschreven schrijven typen getypt
9. spreken spreek speel spelen

20

10. lopen loop spring springen
11. drink drinken eten eet
12. vaar varen rijden rijd
13. nederlands nederland frankrijk frans
14. spaans spanje italië italiaans
15. kippen kip varken varkens
16. tassen tas beker bekers
17. muis muizen tafels tafel
18. bellende bellen schieten schietende
19. invoegende invoegen kruipen kruipende
20. brabant brabantse amsterdamse amsterdam

7.1.5 Domain-Specific Syntactic Tests

1. civiele civiel burgerlijk burgerlijke
2. bewijzen bewezen opgespoord opsporen
3. geschillen geschil behandeling behandelingen
4. meervoudige meervoudig enkelvoudig enkelvoudige
5. overtreden overtredende verzoeken verzoekende
6. verdagen verdaagd uitgesteld uitstellen
7. verleen verlenen plegen pleeg
8. strafzaak strafzaken aanklachten aanklacht
9. gesubsidieerd gesubsidieerde gedaagde gedaagd
10. adviseren geadviseerd vervolgd vervolgen
11. draagkrachtige draagkrachtig financieel financiële
12. voorgeleid voorgeleiding oproep opgeroepen
13. wetsontwerp wetsontwerpen maatregelen maatregel
14. terechtzitting terechtzittingen verslagen verslag
15. verkrijg verkregen begrepen begrijp
16. preventief preventieve mondelinge mondeling
17. gerechtsgebouwen gerechtsgebouw rechtsgeleerde rechtsgeleerden
18. behandelen behandelt veroordeelt veroordelen
19. exploiteren exploitatie administratie administreren
20. executoriaal executoriale conservatoire conservatoir (’executoriaal’ was not
in the SoNaR embeddings vocabulary.

21

7.2 Appendix 2: Recommendation system GUI

Code can be accessed on: https://github.com/SanderMoon/QueryRecommendations

22

7.3 Appendix 3: Instruction Manual For Experiment 2

Instruction manual

Thank you for agreeing to participate in this study about information re-
trieval. Your full attention is required for this experiment and an instructor
will be present at all times. All results gathered from this experiment will be
made anonymous. Read the following instructions carefully. This experiment
will require you to use two programs; one is a web-based search engine, the
other is program provides a comparable interface as the search engine but with
some recommendations provided. The experiment proceeds in three stages:

• An instruction round, in which you will get familiar with the programs.
Any questions related to one of the programs can be directed at the in-
structor.

• The first trial consists of finding information through the use of a provided
search engine. You can type one or multiple words in the search bar that is
provided. It is not allowed to use the aids provided by the web page. Once
the words are typed in you can press the ’zoek’ button or the ’ENTER’
key on the keyboard. The instructor will ask you to briefly take a look
at all results on the first page. Subsequently, the instructor will ask you
whether a result is relevant or irrelevant to the information that you were
looking for, it is allowed to inspect the links by clicking on them. Pressing
the browser return button will bring you back to the results. This task is
repeated a number of times.

• The second trial is comparable to the first trial, however, the query is not
typed in the same search bar as before. Another program is provided in
which you first enter a query. When you are content with the words that
you typed in, you can press ’search’. The use of the list of recommended
words is permitted by clicking on a word, this will replace the last word
you typed in. Pressing Search will open a web page where you now can
paste the query by pressing ’CTRL+V’ or by clicking the right mouse
button on the search bar and press ’Paste’. The instructor will again ask
you which of the results are relevant or irrelevant to the information you
were looking for. This trial will again be performed multiple times.

Again, thank you for your participation and good luck! Any questions during
the experiment can be directed to the instructor. If there are any questions left
after the experiment is over, they can be directed to the following e-mail address:
s.moonemans@student.ru.nl

23

