
Getting the Best of Both Worlds?
Combining Local and Global Methods to Make AI Explainable

Masterthesis in Artificial Intelligence

Author:
Daphne Lenders
Radboud University Nijmegen

Internal Supervisor:
Luca Ambrogioni

Radboud University Nijmegen

External Supervisor:
Iana Nurdinova

Avanade Netherlands BV

April 2020



Acknowledgements

Firstly, I would like to thank my supervisor Iana Nurdinova for her guidance throughout
this project. I am grateful for the feedback I got on the way and for the great collabora-
tion I had with her. I would also like to thank my second supervisor, Luca Ambrogioni,
and his insights and advice on this work.

I am thankful for the nice time I had during my internship at Avanade. It was a
great opportunity to learn from the experience of others and be part of a friendly and
enthusiastic team. I am especially thankful to those, who participated in my usability
study.

I am grateful for the support I got from my family and friends. In particular, I would
like to thank my parents who always provided me with financial and emotional support
and for my sister Elène, who was a great company during many work-at-home Skype
sessions. Lastly, special thanks go to my university “study-buddies”, Masha Tsfasman,
Hugo Chateau Laurent and Anna Pillar. It was a pleasure to work side by side with
them, and an even greater pleasure to enjoy their company at the end of working days.

1



Abstract

With artificial intelligence (AI) models becoming increasingly complex, attention about
making their decision processes more transparent has been growing. SHAP and GIRP
are two techniques to do so and were investigated in this study. SHAP is a local explan-
ation method that assigns importance values to each feature of an input, indicating how
impacting that feature is for the corresponding output. GIRP is a global explanation
method that explains the inner-working of an AI model holistically, by summarizing
it into one decision tree. In this work, we set up a usability study to compare how
SHAP, GIRP and a combination of both explanations facilitate users’ understanding of
AI models. It was found that in terms of self-rated understanding SHAP explanations
were more preferred than GIRP, while the opposite was the case for objectively-measure
understanding. Combining both explanations was at no point found to be the most
beneficial option. This was hypothesised to be the case, because of users experiencing
an information overload when being presented with both explanations. There were in-
dications that this effect might be diminished by increased task relevance or increased
users’ motivation to perform well on the task. Whether this proposition holds, remains
to be tested. Next to the usability of explanations, we were interested in their fidelity
and stability. Fidelity concerts the extent to which explanations accurately reflect the
inner-workings of their original models, while stability refers to how robust explanations
are to small changes in their input. The results for the fidelity of explanations were
somewhat mixed and we advise to extend current evaluation measures. While we did
not find any reason to doubt the stability of SHAP, we found GIRP explanations to be
quite unstable. Therefore, we advise to improve this explanation method or search for
an alternative.
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1 Introduction

At the moment one of the most popular applications in the field of artificial intelligence
is machine learning. Some techniques, like deep neural networks, have yielded impressive
performances and thus the number of domains in which the algorithms can be used is
growing. With data being recorded in nearly every area of human life, it has become
possible to automate any sort of decision process. While some processes, like whether a
movie is being recommended to a Netflix user, are less impacting for individuals, there
are other decisions, e.g. whether a person gets a job or not, that can highly influence a
person’s life. Because of these critical domains, the need has been identified to only use
machine learning algorithms that produce fair and well-reasoned outcomes.

However, the problem is that many of the well-performing algorithms are very com-
plex and hard to understand. Commonly referred to as ”black-boxes”, they receive some
input and produce an output without giving any indication of how the output was de-
rived. Thus, by just using these algorithms there is no way to tell whether the decision
process was fair and logical. Because of this problem, the research field of explainable AI
(xAI) has emerged. The aim of the field is to make black-box models more transparent
and give users better ideas of how complex models derive their outputs.

Roughly speaking, two kinds of techniques for creating explanations can be distin-
guished: global explanation techniques, that aim to explain a machine learning models
as a whole; and local explanation techniques, that explain the behaviour of the model
for a specific input.

In this study looked at one type of each explanation category. The local explanation
method focused on is called SHAP. With this way of explaining machine learning models,
importance values are assigned to each feature of a given input instance, indicating how
impacting each feature is for the model’s output. The name of the global explanation
method we investigated, is “Global Model Interpretation via Recursive Partitioning”
(or short, GIRP). With this explanation method a black-box model is translated into a
decision tree, that summarizes the main decision processes going on in the model.

Regardless, of which explanation technique is used, it is crucial that explanations
can be easily understood and interpreted. The main goal of xAI is, after all, to make
decision processes of AI models more transparent and less complex for everyone who is
affected by them, including non-computer experts.

Since SHAP and GIRP highlight different characteristics of the models they explain,
we wanted to establish how they compare to each other from this usability perspective.
In other words, we wanted to find out how well users understand the two types of ex-
planations. Since “understanding” is a rather broad term, we defined it in an objective
and subjective way. Objective understanding refers to how well users can utilize explan-
ations to derive conclusions about AI models, while subjective understanding relates to
users’ self-rated satisfaction with the explanations.

Next to comparing SHAP and GIRP explanations individually, we were interested
to find out how users’ understanding is facilitated by presenting both explanations. As
mentioned, the two explanations techniques highlight different aspects of their original
models, thus we believed that combining both can be beneficial to gain a fuller under-
standing of the corresponding decision processes. To find an answer to our questions and
test our assumptions, we set up a usability study where participants were presented with
SHAP, GIRP or a combination of both explanations. Both aspects of their subjective
and objective understanding were measured.

Next to usability, there are two other criteria explanations should satisfy: fidelity
and stability. Fidelity concerns the accuracy with which explanations reflect the inner-
workings of their original models, while the stability of explanations denotes how robust
explanations are to slight changes in the input they were based on. Both are crucial

5



criteria for the overall quality of explanations, and thus it was investigated to which
extent SHAP and GIRP explanations satisfy each criterion.

In the remainder of this thesis, we will first give a more extensive overview of the
importance of xAI, as well as different explanatory approaches and the different criteria
explanations should meet. What follows is the formulation of the research questions in
Section 3. In Section 4, we will demonstrate how the two explanation methods of interest
were implemented for two classification problems. The results of the implementation
will be shown in Section 5. A description of how the usability study was set up, as well
as a result analysis and discussion, will be included in Section 6. In Section 7, we will
illustrate how the fidelity of SHAP and GIRP were measured and discuss the results.
After this, we will discuss in Section 8 how the final explanation criterion, namely
stability, was measured and to what extent the explanations satisfy this criterion. In
Section 9 we will summarize our derived conclusions of this study and give suggestions
for further research.

2 Theoretical Background

2.1 Why Explainable AI?

The research of explainable AI is not as new as many people might think. Already in
the 80s the need to make explainable systems, that not only produce results but also
justify them, has been identified [36]. However, it has only been in recent years that the
research field has gained huge attention and advances have been made.

The rise in interest is largely due to the recent advances in AI or, more specifically,
machine learning. Traditional techniques that have been used in the early years of AI,
like rule extractions or decision trees, are quite transparent and easy to understand by
nature. However, newer and better-performing algorithms like deep neural networks or
ensemble methods, are inherently less interpretable. A general rule of thumb seems to be
that the better the performance of a model, the more complex and hard-to-understand
the model is [9]. Given also the increasingly socially relevant domains in which machine
learning is deployed, concerns have been growing. Work has been done on detecting
criminals based on tweets [15] or automatically ranking job applicants based on their
CV [11]. The decisions made by these systems can have tremendously high impacts on
peoples’ life and thus should be fair and well-reasoned.

This concern has been publicly brought to light by the case study of the COMPAS
algorithm, which is used to predict reoffending rates of criminals. Ever since it was
claimed that the algorithm wrongly predicts higher recidivism rates for Afro-American
than for Caucasian men, interest in detecting bias in machine learning algorithms has
risen [45, 48].

Another recent development, that highlights the need for explainable AI systems,
is the enforcement of the GDPR in 2018. Next to the many rights about how data is
gathered and stored, the GDPR provides individuals with the right to explanation as well
as the right to non-discrimination [17]. In short, the former one gives persons who are
affected by automated decision processes the right to be presented with the substantial
logic of how a decision was made [17]. The right to non-discrimination ensures that any
automated decision process cannot be based on the processing of sensitive information
like a person’s ethnicity, religion or sexual orientation [17].

Explainable AI is not only critical in the context of fairness and justice but can also
be of more commercial value. From a developers’ perspective, gaining insights into why
a model produces the output that it does can help in changing underlying mechanisms
of algorithms and hence improving their performance [43]. From a users’ perspective,
on the other hand, users are more likely to trust and therefore use a model, if they
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understand its inner-workings. Andras et al. have argued that the explainability of a
system is the key component to re-establish general publics’ trust in AI systems [3].

2.2 Different Kind of Explanations

As already mentioned, two types of explanations to make an AI system more transparent
can be distinguished: local and global explanations. To demonstrate different sorts of
these explanation techniques, we will make use of a running example in this subsection.
For this purpose, imagine a machine learning model that has been trained on CVs to
predict whether an applicant gets hired or not. Explainable AI aims to not only let
the algorithm produce an output, but also let it generate an explanation of its decision
process.

2.2.1 Local Explanations

Local explanations are meant to explain a models’ behaviour on one particular input
instance.

One of the oldest local explanation techniques are case-based methods [38]. Here
explanations consist of instances of the models’ training set, that are similar to the input
for which the model needs to be explained. When also providing the labels of these
similar instances, users can get an idea which kind of features lead to the generated
output. In case of a recruitment system, one might see that a candidate got hired,
because s/he had a similar educational background as other employees that already got
hired before. A problem with this approach is, that new input instances might not be
very similar to already known instances in the training set, which can make it hard to
give explanations for these.

Another local explanation method is the use of counterfactuals. Counterfactuals
show which features of the input of question needs to be changed, for the output to
change. Going back to the example of a recruitment system, a counterfactual explanation
could show that if an applicant had one year less of working experience, s/he would not
have been hired. Research has suggested that counterfactuals match the way humans
tend to reason about decisions [6]. However, a disadvantage of this approach is that
different inputs can have multiple counterfactuals. It then becomes hard to choose
which counterfactuals should be presented as an explanation for an AI system. Referred
to as the Rashomon effect [35] two counterfactuals can both be valid but can seem
contradictory to each other, which would be confusing for users.

A possibly less confusing, but still valid way of explaining decision locally are Scoped
Rules or so-called Anchors. Anchors are similar to counterfactuals, but rather than
explaining which features should change for the decision to change, they show which
features cannot change without the decision changing as well [42]. An anchor explanation
is given by providing a rule of the nature IF x THEN y, that shows which feature x
“anchors” prediction y. Along with this rule a precision of that rule is provided, which
shows for how many instances of a dataset the rule applies. In the case of a recruitment
system, an anchor could show that an applicant is hired because of their previous work
experience at a well-known and prestigious company. This would, in turn, imply that
in this case, the other CV entries of the applicant do not make any impact on the final
decision.

A disadvantage that counterfactuals and anchors have in common, is that they do
not provide an exhaustive overview of how a change in feature value affects a decision. A
counterfactual might e.g. state that an applicant would not get hired with one year less
of work experience, but this does not give any information on how the decision would
change if an applicant had more work experience than currently listed on their CV.
Individual Conditional Expectation (ICE) plots can be used to create more complete
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pictures of how the decision outcome is dependent on a feature value [16]. In these
plots, the feature of question is represented on the x-axis, while the outcome variable is
plotted on the y-axis. This visual representation gives a quick but complete overview of
how a decision can change with each different value of a feature.

Counterfactuals, anchors and ICE plots give a good impression of the impact of one
feature at a time. However, if one would want to understand the effect of multiple
features, looking at multiple of this explanation types might be rather time consuming.
Contrary, feature importance values are a very concise way to explain decisions locally
[1]. They summarize the impact of each feature in a decision process with one number,
which shows how important the feature was for generating the output of a model. In
the case of a recruitment system, it might show that features related to an applicant’s
skills have higher importance values than features related to an applicant’s hobbies.

Due to the ease with which feature importance values can be interpreted methods
that can compute these values, like LIME [41], DeepLIFT [44] and SHAP [29] have
become popular. Out of these methods, the most promising one is SHAP, which has its
foundations in coalitional game theory [29]. In game theory, so-called Shapely values
are computed to determine how much payoff each player in a team of players should
get. Imagine e.g. a company that has a yearly profit and some employees. Since
every employee has different skills and working hours, one would like to distribute this
profit among them, such that the individual payoff reflects how much each employee
contributed to the profit. To calculate the individual payoff for employee X, one would
compare for each possible coalition of employees the company’s payoff with and without
X. By averaging this marginal contribution over all coalitions, the individual payoff for
employee X is obtained [22]. With the same principle, SHAP values can be computed for
machine learning models. In the case of the recruitment system, the different employees
in the example above represent the different features of a CV and the profit represents
the output of the model. The downside of this approach is, that it takes a long time
to calculate the values, since the number of marginal contributions that need to be
calculated, grows exponentially with the number of features that are considered. Despite
this shortcoming, SHAP is still popular since it has a solid theoretical foundation and it
provides more stable outputs than methods like LIME, which may not have one unique
solution for one input [22]. Because of its solid theoretical background, this study will
further investigate the potential of SHAP as a local AI explanation method.

2.2.2 Global Explanations

Sometimes we do not want to examine a model’s behaviour on one particular input
but rather want to understand its inner-workings holistically. This is possible using
global explanation methods. The advantage of global over local explanations is, that it
can suffice to just inspect one global explanation to understand a model. In the case
of local explanations, always multiple instances need to be inspected to get a fuller
understanding of it.

The most straightforward way of gaining global explanations is by building machine
learning models that are self-explanatory, to begin with. Examples of inherently trans-
parent models include decision rules, decision trees or regression models [35]. Decision
trees and decision rules use data to derive global rules of the nature IF x THEN y for
a classification problem. These rules can be used to understand how decisions in a clas-
sification problem are made [26]. Regression models aim to estimate the relationship
between an outcome variable and several predictors, by assigning a coefficient to each
predictor. This coefficient is indicative of the relationship between the predictor and
outcome variable and thus makes the regression model more interpretable than black-
box models. While decision rules or regression models give satisfactory performances
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for some machine learning problems, they fail to give accurate results for tasks of more
complex nature. This, in turn, is the reason, why these methods are barely used in
practice and why studies in xAI focus on extracting global explanations from opaque,
yet well-performing models like deep neural networks or random forests.

One approach of obtaining a global explanation from these models is by averaging
local feature importance values over different instances. This is possible using e.g. SHAP
values. To go back to the example of the recruitment system, one might see that for all
possible input instances, features relating to an applicant’s skill level have the highest
average feature importance value. The disadvantage of this approach is that it does
not give any information about how feature importance values change depending on the
value of the feature. In the case of the recruitment system, it may be important that
applicants have certain skills relating to the job, while other skills may be less important
for the position. Thus, the feature importance values for some skills may be very high but
for others, they may be quite low. This information is not provided when only looking
at average importance values. A way to solve this problem is using partial dependence
plots as an explanation method [7]. This visual way of explaining AI models globally is
similar to the ICE plots, mentioned in the previous section. However, differently than
ICE plots they are not made for one specific output, but rather show how any output
change on average with a change in feature value. Again, the feature value is typically
represented on the x-axis of the plot, while the output value is visualized on the y-axis.
The quite obvious downside of this approach is that only the relation between the output
and one particular feature can be plotted at a time. To get a complete understanding
of the model, one had to examine the partial dependence plots of all different features.
Especially in models that are trained on a high number of features, this is not feasible.
Moreover, 2-dimensional partial dependence plots do not give any information about the
interaction between features. While it is possible to produce multi-dimensional plots,
those may be very complex and hard to read.

A more concise way of giving global explanations is among others offered by Zilke et
al. [51]. In this work, the authors describe an algorithm through which global decision
rules can be extracted from deep neural networks. These rules are based on the activation
of the neurons in different layers of the network and give a good understanding of which
feature values lead to which decisions. Similar work has been done to extract decision
rules from other black-box models, such as support vector machines or random forests
[31, 32]. A downside of these techniques is that they only work for a specific type of
model. The algorithm used to extract rules of deep neural networks, cannot be used
to extract rules of random forests. It would save time and efforts to have an approach
through which global explanations can be extracted model-independently. The use of
surrogate models may be a solution for this. Surrogate models are transparent models
like decision trees or decision rules, that are translated from black-box models. The
traditional way of obtaining them is to train the chosen surrogate model on the dataset
and outputs of the original model [46]. The assumption is that by being trained on the
outputs of the original model, the simple model will reflect its decision process. Though
this approach is model-independent and very straightforward, it comes with an obvious
downside. Because of the simplicity through which the surrogate model is obtained,
there is no guarantee that it will reflect the decision process of the original model. In
other words, the fidelity of the surrogate model may be very low. Recognizing this
shortcoming Yang et al. have recently proposed another method to generate surrogate
models: ’Global Model Interpretation Via Recursive Partitioning’ (GIRP) [49]. With
GIRP a decision tree is learned from the local feature importance values of a black-
box model. This is done in a recursive manner, where the best splitting variable in a
tree is the one that maximizes the difference in average feature importance values for
the left and right subtree (for a more detailed explanation of the GIRP algorithm refer
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to Section 4) [49]. While this approach is intuitively more promising than traditional
techniques, its quality still needs to be investigated, which will be one of the goals of
this study.

2.3 Criteria of Explanations

As has become apparent from the previous sections, there are several criteria local and
global explanations need to fulfil. In this section, we are going to discuss each of these
criteria individually. Since in our study we will focus on local explanation method SHAP
and global explanation method GIRP, it will be described to what extent these methods
already satisfy the criteria.

2.3.1 Usability

Arguably, the most important goal of xAI is to make complex machine learning mod-
els more understandable and transparent to its end users, who might not be computer
experts. Despite this clear goal, studies have revealed that many researchers do not
take users into account when designing explanations [34]. As a result, the generated
explanations may seem understandable to the ones who designed them but are far from
comprehensible to real users [34]. Based on these finding, the need for a user-centred
approach to usability has emerged and more research has been dedicated to this field.
Petkovic et al. e.g. tested their explanations by using a self-rating scale, asking parti-
cipants how much they understood the provided explanations [40]. Ribeiro et al. tested
users’ comprehension by investigating how explanations helped them to find bias in clas-
sifiers [41]. Also for the explanation methods of interest in this study, some attempts
have been made to study their usability. Lundberg and Lee have e.g. conducted a study
where they presented users with different classification problems and asked them to rate
how much they agreed with the assigned SHAP importance values of each feature [29].
Here it was shown that the feature importance values matched users’ intuition of how
AI systems should explain themselves [29]. In another study, it is demonstrated that
small and concise decision trees, as generated by GIRP, are generally well understood
by non-experts [24]. In this study participants had to utilize these types of explanations
to make predictions about the behaviour of AI models.

Though research in the area is growing, there are still some questions left unanswered.
Many of the user-centred studies only focus on the comprehensibility of one explanation
type, rather investigating multiple explanations at once. Therefore, it is unclear how the
usability of explanations compare to each other and how different explanation types may
be combined. Especially the combination of local and global explanation methods seems
to be worthwhile investigating, as together they may facilitate users’ understanding of
AI models [1, 46]. The global explanations can provide a more holistic overview of
the model’s working, while the local explanations support this overview with concrete
examples. To validate this idea, a usability study still needs to be conducted.

Another point that needs to be addressed, is how different aspects of understanding
relate to each other. Many studies only measure how users subjectively rate their un-
derstanding or how they utilize explanations to derive knowledge about AI models. To
our best knowledge, there are no studies that attempt to measure both these objective-
and subjective aspects of understanding. Understanding how global and local explana-
tion methods facilitate these different comprehension-levels, will be another goal of this
study.
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2.3.2 Fidelity

One concern regarding local and global explanations is how well they explain the decision
processes of their original model. This quality is also referred to as fidelity. Explanations
are always more simplified than the model they originate from, however, if they are too
simple they might not accurately reflect the inner-workings of their original model. A
consequence of presenting non-faithful explanations to users of AI systems is that we
create an illusion of control [8]. We might look at an explanation of an AI system and
judge it to be fair, but in reality, the system still contains bias that is not indicated by
the explanation.

SHAP In comparison to GIRP, some effort has been made to study the fidelity of
SHAP. In fact, the development of SHAP explanations was partly motivated by the
need for more faithful explanations. In the work where the explanation method ori-
ginated from, the authors demonstrate that SHAP is the only feature importance tool
that satisfies all three of the following fidelity criteria: local accuracy, missingness and
consistency [29]. The local accuracy requirement ensures that all feature importance
values for an input instance sum up to the corresponding output of a model. The miss-
ingness criterion states that any feature with a missing input value should have a feature
importance value of 0. Lastly, the consistency property requires that if a model changes
such that a feature has a higher impact on that model, the importance value of that
feature should not decrease.

With these three criteria already satisfied, the fidelity of SHAP is generally believed
to be high. Nevertheless, multiple researchers have highlighted the idea of sanity checks,
to make sure that local explanations indeed reflect the workings of the model they
originate from [43, 27]. A method to study the fidelity of local explanations has been
proposed by Lin et al. [27]. The main idea behind their approach is that if a feature
with a high importance value is indeed important, leaving out the feature should lead
to change’s in the model’s prediction. The authors quantify this intuition through their
so-called “Impact Score”. This score measures the percentage of instances for which the
prediction or the confidence of the prediction will change if important features are left
out from the prediction process [27].

GIRP While the fidelity of SHAP has already been measured to some extent, it is
completely unknown how faithful GIRP explanations are to their original models. In
general, it is believed that surrogate explanations like GIRP do not provide a high fidelity
to their original models. After all, the models they originate from are usually very big
and complex. Trying to catch every detail of them would result in equally complex
explanations which would defeat the purpose of xAI [33]. Nevertheless, a certain degree
of fidelity must be fulfilled. A way to study faithfulness of surrogate models is proposed
by Messalas et al. with their TopjSimilarity method [33]. This method assumes that a
surrogate model is faithful to its original one if both models base their decisions on similar
features. To determine this, one can compute for multiple instances of a dataset the local
feature importance values for the original and the surrogate model. The TopjSimilarity
measure is derived by seeing how similar the most important features for the surrogate
and original model are. The authors state, that if for more than 80% of all instances,
both models base their decisions on the same five most important features, the surrogate
model can be called faithful to its original one.

Of course, it is not only important that decisions are based on similar features, but
that the output of the original and the surrogate model are comparable. To compare
the output of the two models we can use an agreement measure like Cohen’s Kappa [52].
The Cohen’s Kappa coefficient measures how similar the output of the surrogate model
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is to the original while controlling for the expected similarity that would be obtained by
chance.

2.3.3 Stability

Another criterion for local and global explanations is their stability. This quality refers
to the degree to which the explanation of a model changes when being provided with
different input.

SHAP For local explanations stability can be measured, by investigating how a model’s
behaviour for two similar input instances is explained. Ideally, we expect that if two
inputs for a model are similar the explanations for both inputs are similar as well. This
quality is very important to establish trust in explanations. If local explanations vary
too much for similar inputs, it becomes hard to derive general patterns from them.

Recently, it has been shown that SHAP explanations are not guaranteed to be very
stable [2]. Therefore, more attention has been paid on how to measure the stability of
local explanation methods. One of them is the Sens(Max) measure as proposed by Yeh
et al. [50]. With this measurement, several input instances are sampled and randomly
perturbed. For each input instance, the distance between the feature importance values
before and after perturbation is measured. The maximum obtained distance is then
taken as an indication of the stability of the SHAP values.

GIRP Stability can also be measured for surrogate models, like the decision tree
generated by GIRP. As mentioned before, surrogate models are based on the dataset
the black-box model was trained on. Usually, this is a random sample of a larger dataset
where the rest of the data is held out for validation and testing purposes. Friedler et
al. point out the sample that the surrogate model is based on should not have much
impact on the nature of the model [12]. In other words, generating the surrogate model
based on a different sample should not significantly change the size, nodes or leaves
of the resulting decision tree. Thus, the stability of surrogate models can be tested by
investigating how the surrogate model changes when another random sample is drawn to
generate it. The fidelity measures resulting from different samples can indicate how much
surrogate models vary. By visually inspecting some of the resulting trees, it can be seen
which aspects of the tree are most prone to instability. Just like for SHAP, establishing
stability in GIRP is important to gain trust in explanations. This especially holds since
decision trees are known to be quite unstable [25]. If one tree is very different from the
other it is hard for users to tell which tree reflects the inner-workings of the model it
originates from.

3 Research Questions

The main goal of this research is to compare how global, local and a combinaton of both
explanations affect users’ understanding of AI systems. This goal can be translated into
the following research question:

RQ 1: How is users’ understanding of a model affected by the presentation of SHAP
explanations, compared to GIRP explanations or a combination of both?

Since “understanding” is a rather broad term, the first research question will be split
into three sub-questions. With the first one, we measure users’ ability to deploy ex-
planations to answer basic comprehension questions about AI models. The focus of the
second sub-question lies on users’ self-rated understanding of the explanations, while
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the third one is about measuring users’ ability to utilize explanations when choosing
between biased vs. non-biased models. Note that 1.1 and 1.3 relate to users’ objective
understanding of the explanations and their corresponding models, while RQ 1.2 relates
to users subjectively measured understanding.

RQ 1.1: How is users’ ability to answer comprehension questions about models af-
fected by the presentation of SHAP explanations, compared to GIRP explanations or a
combination of both?

RQ 1.2: How do users’ self-rated satisfaction of SHAP explanations, compare to their
self-rated satisfaction of GIRP explanations or a combination of both explanations?

RQ 1.3: How is users’ ability to detect bias in models affected by the presentation
of SHAP explanations, compared to GIRP explanations or a combination of both?

As mentioned in the previous section not just the usability of explanations is important,
but also their fidelity and stability should be taken into account. Both fidelity and sta-
bility can be influenced by a lot of factors, such as the data the explanations derive from
or the type of model they aim to explain. As it lies not within the scope of the study
to consider all these variations, the last research questions will be more of exploratory
nature:

RQ 2:What is the fidelity of SHAP explanations to their original models, as meas-
ured by the Impact Score proposed by Lin et al.[27]?

RQ 3:What is the fidelity of GIRP explanations to their original models, as estim-
ated by the TopjSimilarity measure [33] and Cohen’s kappa?

RQ 4: What is the stability of SHAP explanations as estimated by the SensMax measure
as proposed by Yeh et al. [50]?

RQ 5: What is the stability of GIRP explanations as estimated by its performance
on different train-test-splits?

If it turns out that SHAP and GIRP provide faithful and stable explanations, both
explanation techniques can safely be combined, should it be found that combining them
facilitates users’ understanding of models.

4 Implementation

To answer the research questions both the SHAP and GIRP explanations needed to be
implemented. For this purpose, an XGBoost classifier was trained on two datasets for
different prediction tasks. How the classifier was trained and how explanations were
extracted from it, will be the topic of this section. All implementation was made in
Python and the final code can be obtained on GitHub1

4.1 Classification Tasks

The classification tasks the explanations were generated for, were chosen in such a way
that their nature is already somewhat intuitive for users without much experience in

1www.github.com/DaphneLenders
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machine learning. Out of this reason and due to the scope of this study, the classification
tasks were also chosen to be on tabular data only.

4.1.1 Portuguese Class problem

The first dataset that was used to implement the different AI explanations was the
“Portuguese Class” dataset, obtained from kaggle2. This dataset contains information
from 649 different secondary school students following a Portuguese class. Among others,
it has data about the students’ gender, their age, their extracurricular activities and their
past school performance. The classification task that was chosen for this problem, was
predicting whether a student passes or fails the second exam of the course.

Preprocessing Before the XGBoost Classifier was trained, several preprocessing steps
were taken. The original dataset consisted of 30 features and to not overload participants
of the usability study with too much information, it was decided to reduce this number
of features for the generated explanations. Many features did not prove to have a high
correlation to a student’s grade in an exam (e.g. the family size of students or their
travel time to school) and were thus removed. The only exceptions for this were the
variables “gender” and “age”: even though they were not highly correlated with exam
grades, it was decided to use these variables either way since they intuitively are the
most basic terms to describe a student.

One final preprocessing step was changing the range of the variable ’G1’ and the to
be predicted variable ’G2’, both of which originally ranged between 0 and 20. Since the
aim of the classification task was to predict whether a student passes or fails the second
exam of the course, the variable G2 was binarized, such that any value greater than 10
was translated to ’pass’ and any value lower than 10 to ’fail’. The range of the variable
’G1’ was changed to be 0-10 since this is a more common range for grading systems. The
features that were finally used for the classification tasks, as well as their range/number
of levels can be seen in Figure 1.

Gender—Describes the gender of the student (female/male) 

Age — Describes the age of the student (number between 15 and 22) 

Dad-edu—Describes the education level of the student’s father. It can have one of the following five values: 

None     Primary Education (4th grade)        5th to 9th grade        Secondary Education        Higher Education 

Mom-edu—Describes the education level of the student’s mother. It can have one of the following five values: 

None     Primary Education (4th grade)        5th to 9th grade        Secondary Education        Higher Education 

Past Grade — Describes the grade the student received for the first exam of the course (number between 0 and 

10) 

Failures — Describes the number of times the student failed the class before (number between 0 and 4) 

Absences —Describes how many times the student was absent from school (number between 0 and 93) 

Studytime —Describes how many hours the student studied for the exam and can be one of the following values 

less than 2 hours  2 –5 hours  5 –10 hours     more than 10 hours 

External Activities — Denotes whether the external student engages in any activities outside school  (yes/no) 

Figure 1: Variables used for the first classification task

Training The XGBoost classifier was trained on a training set consisting of 80% of all
data instances. 10% of the instances were held out as a validation set and another 10%
as a test set. The python package xgboost was used to implement the classifier. Since
it was not the aim of the study to optimize the classification performance, but merely

2https://www.kaggle.com/uciml/student-alcohol-consumption
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use the model to explain it, the default hyperparameters were used for training and no
further steps were taken to improve the performance. The results will be discussed in
Section 5.

4.1.2 German Credit problem

The second dataset the explanations were implemented for is the German Credit dataset
[18]. Here the classification task is to predict whether a loan applicant is credible enough
to receive a credit, based on features like their current account balance, their past
credit history and so on. Again, this dataset was chosen because of its simplicity and
intuitiveness.

Preprocessing The German Credit dataset consists of 1000 data instances with 20
variables each. To again avoid information overload, only some features were chosen to
be taken into account for the classification task. Just like for the previous dataset, the
choice of features was based on their correlation to the variable of interest (receiving a
loan or not). An overview of the features that were selected for training can be seen in
figure 2.

Training Again an XGBoost classifier was used to solve the classification task. The
data was split into a train, validation and test set (80%, 10%, 10%). The default
parameters of the xgboost package were used and no further attempt to parameter
optimization was made.

Age — Describes the age of the loan applicant (between 19 and 75 years) 

Credit Amount—Describes how much loan the applicant is looking for (between 250 and 18424 euro) 

Purpose—Describes for which purpose the applicant wants loan for. It can have one of the following values: 

Car   Home-related Other 

Duration of Credit (Month) — Describes how long the appliants wants a loan for (between 4 and 72 months)  

Account Balance — Describes the current amount of money on the loan-applicants account. It can have one of the 

following values: 

No Account   Less than 0€  0-200€  More than 200€   

Credit History — Describes whether the applicant had problems before when paying off debts. It can have one of the 

following values: 

No Problems  Some Problems 

Guarantors— Describes whether the loan-applicant has a guarantor (someone who can pay of the loan, if the applicant will 

not pay it off in time) (yes/no) 

Telephone—Shows whether a telephone number is registered for the applicant (yes/no) 

 

Figure 2: Variables used for the second classification task

4.2 Creation of Explanations

4.2.1 SHAP

To extract the SHAP values from the trained XGBoost models, the python toolpackage
shap was used. As already mentioned, SHAP values are calculated for every feature of
an input instance. They then reflect how important a feature was for the prediction-
output, corresponding on the input. In this section, an overview will be given on the
basic idea behind SHAP values and how they are calculated for XGBoost models.

Shapley values SHAP values originate from so-called Shapley values that haven been
proposed in the context of cooperative game theory [22]. Though there they are used to
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calculate the individual payoff for all players in a game with a total payoff, the problem
can easily be translated to fit the context of classification problems. Instead of a game,
we are then dealing with a classification task. The features used in the classification task
reflect the individual players of the game and the output of a classifier reflect the game’s
total payoff. The Shapely values, in turn, demonstrate the impact of each feature on
the obtained output.

To compute the Shapley value of feature i of input x, one has to determine all possible
subsets S over all features N excluding i. One can then compute the difference in the
classifier’s prediction for when i is included in S compared to the classifier’s prediction
for S itself. If we take the weighted sum of all these differences, we obtain the Shapley
value for feature i. Formula 1 quantifies this idea:

Φi =
∑

S⊆N\{i}

|S|!(N − |S| − 1)!

N !
[fS∪{i}(xS∪{i})− fS(xS)] (1)

SHAP Looking at formula 1 it is not clear yet how the prediction of a classifier can
be obtained when a feature is missing in a classification problem. Since most classifiers
cannot provide an output for an input if feature i is missing, Lundberg and Lee propose
the method SHAP to calculate Shapely values by approximating an output f(zS) with
E[f(z)|zS ] [29]. How E[f(z)|zS ] is derived, depends on the classifier model that is being
used. The most simple way of calculating it is by setting the value for i to the average
value of that feature over all input instances.

While this way of dealing with missing features is easy, it is not very precise. Lund-
berg et al. therefore propose a method specific to tree-models, to calculate the expected
classification outcome if a variable is missing [28]. This method is called Tree SHAP.

Tree SHAP For any tree-based model, it is possible to accurately estimate E[f(z)|zS ],
by recursively following the decision path for z if the split-feature is in S and by taking
the weighted average over all branches if the split-feature is not in S [28]. Though this
way of estimating is accurate, it is very computationally expensive. In a classification
problem with M features, where a model contains T trees and the biggest tree has L
leaves, running the algorithm for all 2M subsets will cost O(TLM2M ) time.

Out of this reason, a new algorithm has been developed to reduce the exponential
runtime of the algorithm to polynomial time. The basic intuition here is to compute
E[f(z)|zS ] for all 2M subsets at once, rather than computing it for each subset indi-
vidually. This can be done by recursively keeping track of which proportion of subsets
flow down into the different leaves of a tree. The resulting algorithm runs in O(TLD2)
time and was used to compute the SHAP values for the chosen classification tasks. For
a more detailed explanation of the algorithm refer to [28].

4.2.2 GIRP

For the GIRP algorithm no existing tool package is available yet, so this algorithm had
to be implemented from scratch.

The implementation of the algorithm was completely based on the work of Yang et
al. [49] and can be divided into the following steps:

Generating the Contribution Matrix The decision tree generated by GIRP is
learned from the local feature importance values of all instances of the training set.
Together these feature importance values constitute the so-called ”contribution matrix”
C of size m x n. Here m denotes the number of instances of the training set, while

n represents its number of variables. Thus the element ci
j from this matrix shows the
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feature importance value of feature i for dataset instance j. The contribution matrix
was obtained by using the SHAP library mentioned in Section 4.2.1

Contribution Var 1 Var 2 .... Var i .... Var N Prediction
Sample 1 c11 c21 ... ci1 ... cN1 p1
Sample 2 c12 c22 ... ci2 ... cN2 p2

.... ... ... ... ... ... ... ...
Sample j c1j c2j ... cij ... cNj pj

.... ... ... ... ... ... ... ...
Sample M ciM c2M ... ciM ... cNM pM

Table 1: Contribution Matrix for a dataset of N instances and M features. ci
j shows

how much feature i contributed to the prediction pj for Sample j

Growing the initial tree Once the contribution matrix is obtained, the initial tree
can be grown. For this a greedy approach is taken, where both the variable that is going
to be split and the value it is going to be split on is maximized. The variables are split

on their actual input value, denoted by vi and not on their contribution ci
j. Dependent

on the variable type, splits can be made with different kind of splitting criteria. The
most straightforward variable type for splitting, are binary variables where the split
criterion is simply vi = 1. For continuous variables the splitting point can be any
constant number d, which would result in the split criterion vi < d. When dealing with
a categorical variable the splitting criterion checks whether the vi belongs to a certain
subset D of the set of different levels of the categorical variable.

Splitting any variable results in a left subtree SL, containing the dataset instances
not satisfying the splitting criterion and a right subtree SR, dataset instances that satisfy
the splitting criterion. Given then the contribution values of these dataset instances,
one can define the split-strength of variable i as follows:

G(spliti) =

(∑
SL
cji

|SL|
−
∑

SR
cji

|SR|

)
(2)

This equation quantifies the difference between the average feature contribution of
the left subtree and the average feature contribution of the right subtree. In other words
it is measured how differently the variable i contributes to the predictions in SL and
SR. Thus a large absolute value of G(spliti) demonstrates that the value of variable i is
highly indicative for the final prediction of the original classifier.

With this reasoning, the split strength is calculated for every variable and the variable
with the largest split strength is chosen as the next splitting variable for the tree. Since
categorical and continuous variables can be split in different ways, the splitting criterion
which maximizes the split strength for that variable is chosen. Once a node has been
split the left and right subtree can further be split recursively, until the tree reaches a
maximum depth or if there are not more than a minimum number of samples to split.
The tree that is obtained through this process, can also be referred to as T0. Both the
maximum depth of a tree and the minimum number of samples are hyperparameters of
the GIRP algorithm that can be optimized later on.

Pruning and selecting the best-sized tree The initial tree that has been grown
might be very large and overfitted on the training set. To make sure that the tree will
also generalize well to new data, one solution is to prune it. The first step in pruning
is to define all subtrees from the initial tree T0 and then make use of a validation-set
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to select the best subtree. The validation set here consists of the dataset instances not
present in the training set. By feeding the validation data in each subtree, the validation
split-strength for each internal node of the tree can be calculated as follows:

Gvalidation(t) = sgn((G(t))

(∑
SL
cji

|SL|
−
∑

SR
cji

|SR|

)
(3)

sgn((G(t)) here denotes the sign function of the split strength of the node in question,
as calculated by formula 2.

The validation split strength of one subtree is then calculated as the sum of the
validation strengths of all internal nodes:

Gvalidation(Tk) =
∑
t∈Tk

(Gvalidation(t)) (4)

The subtree with the highest validation split-strength can be chosen as the tree that
generalizes best on new data.

Choosing Hyperparameters As already mentioned, two hyperparameters can be
adjusted to generate GIRP trees. The first one of them is the maximum depth of the
tree and the second one is the minimum number of data samples that should be present
when splitting a node. Both parameters can be chosen, such that the validation split
strength of the resulting tree is maximized. In this work, the possible values for max
depth were limited to range between 5 and 8, while the minimum number of samples
always felt in the range between 6 and 8. This ensured that the resulting trees would
not be too large and complex, but small and easy to understand.

5 Implementation Results

5.1 Classification Tasks

5.1.1 Portuguese Class problem

After training the XGBoost Classifier the F1-score obtained on the training set was
0.90, on the validation-set 0.86 and on the test-set 0.82. As mentioned before the aim
of the study was it not to maximize classification performance, and since the results
were already satisfactory no further effort was put into improving the classifier. The
confusion matrix for the test-set can can be seen in Table 2

Predicted

Pass Fail

A
c
tu

a
l

Pass 49 2

Fail 5 9

Table 2: Confusion Matrix Portuguese Class problem

5.1.2 German Credit problem

Training an XGBoost Classifier on the German Credit problem, yielded a F1-score of
0.85 on the training set, 0.78 on the validation-set and 0.79 on the test-set. Again these
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results were deemed as satisfactory and no further work was put into hyperparameter
optimization. The confusion matrix for the test-set is shown in Table 3

Predicted

Credit No Credit

A
c
tu

a
l

Credit 64 6

No Credit 15 15

Table 3: Confusion Matrix German Credit problem

5.2 SHAP

In this section, the results of the SHAP implementation are shown. Though the SHAP
values themselves already give an understanding on which features are important for a
classification task, they can be made more tangible by so-called force plots. Figures 3,
4, 5 and 6 show such force plots and they can be interpreted by paying attention to the
blue and pink arrows. The pink arrows highlight which feature-values contributed to
the prediction that an input instance belongs to output-class 1. Thus in the case of the
Portuguese Class problem, they denote which characteristics make a student more likely
to pass an exam, and for the German Credit problem, they show which makes a loan
applicant more likely to receive a loan. The blue arrows, on the other hand, highlight
the feature values that made the classifier inclined to predict the opposite label for the
input instance. The sizes of the arrows correspond to the importance of these feature
values for the final decision. The labels on the axis correspond to the actual SHAP
values of the different features. Lastly, the output-value shown in each plot shows the
log-odds of the probability that the given input instance is assigned class label 1.

5.2.1 Portuguese Class problem

In Figure 3 the SHAP explanation is displayed for a student that is predicted to pass
the course. Figure 4 on the other hand shows the SHAP explanation for a student who
was predicted to fail the course. Table 4 show the SHAP values corresponding to Figure
4.

Figure 3: SHAP explanation where prediction = pass

Figure 4: SHAP explanation where prediction = fail
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feature value SHAP value
sex female 0.147
age 18 0.083

studytime 2-5 hours -0.192
failures 3 -1.695

absences 10 0.129
activities yes 0.099

G1 5 -0.472
Medu 5th to 9th grade -0.232
Fedu primary education -0.565

Table 4: SHAP values corresponding to Figure 4

To again demonstrate how the SHAP values and the force-plot can be interpreted,
look at Figure 4 and Table 4. In the Figure we see that the log-odds of a student
passing an exam are -2.06, thus the student is more likely to fail rather than pass the
exam (probability of passing = 0.113). The negative SHAP values (that are denoted by
the blue arrows in the Figure) indicate the characteristics that made the classifier more
inclined to predict that the student fails. Thus, in this case, the past number of failures
and the education level of the student’s father are highly impacting. The pink arrows in
the force-plot represent the positive SHAP values, and thus the student’s characteristics
that made the model more inclined to predict “pass”. Here we see that the student’s
sex had some positive impact, however, this effect is rather small.

5.2.2 German Credit problem

The SHAP explanations were not only generated for the Portuguese Class -, but also
for the German Credit classification problem. In Figure 5 the SHAP values for a loan
applicant receiving a loan are visualized, while Figure 6 shows the SHAP values for a
declined applicant. The figures can be interpreted as described in the previous section.

Figure 5: SHAP explanation where prediction = credit

Figure 6: SHAP explanation where prediction = no credit

5.3 GIRP

In this section, we will present the results of the GIRP implementation, by showing the
generated tree for the Portuguese Class- and German Credit problems. All trees were
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visualized using the python package pydotplus; implementation can again be found
on Github.

5.3.1 Portuguese Class problem

The best tree for the Portuguese Class problem was obtained for a maximum depth of
7 and a minimum number of samples of 6. It is visualized in Figure 7.

Figure 7: Result of the GIRP implementation for the Portuguese Class problem

5.3.2 German Credit problem

The best tree for the German Credit problem was obtained for a maximum depth of 6
and a minimum number of samples. Since the resulting tree is only part of it is visualized
in Figure 8. The complete tree can be found in the Appendix (A).

Figure 8: Result of the GIRP implementation for the German Credit problem

6 Experimentation on Explanations Usability

After the explanations of the algorithms were extracted, a usability study was set-up to
test their comprehensibility.
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6.1 Study Set-up

To answer our first research question, the goal of the usability study was to compare
users’ comprehension of different AI explanations. The users’ comprehension was meas-
ured in a three-fold way:

RQ1.1 User’s comprehension of the AI model as facilitated by the explanations
RQ1.2 Users’ self-rated satisfaction with explanations
RQ1.3 Users’ ability to choose between biased and non-biased classifiers using the

explanations

To determine the effects of explanation types, the study was set up as a between-
subject design. According to the group the participants were allocated to, participants
were presented with SHAP, GIRP or both explanations.

In the first part of the study, the aim was to answer RQ 1.1 and RQ 1.2. For this
purpose, the participants were presented with explanations generated for the Portuguese
Class problem. Before being shown the explanations, participants were first introduced
to classification tasks and the different features that were used by the classifier. Ad-
ditionally, a description was given on how to interpret the provided explanation. The
descriptive texts about SHAP and GIRP explanations, as well as the introductory text
about the classification problem, can be found in the Appendix (B). Note, that parti-
cipants in the SHAP condition were presented with force plots explaining the decision
processes for two different inputs. In the GIRP condition one decision tree was presen-
ted, while in the SHAP+GIRP condition this same decision tree and along with the two
force plots were shown.

To answer RQ 1.1 a total of four questions were designed to which only one right
answer could be given. The questions were the same for all explanation conditions to
make sure that their nature did not have any impact on the results of the study. The
questions that were asked are displayed in Table 5

(Q1) Engaging in external activities has a
big impact on the prediction of whether
a student passes or fails the course

(Q3) Which of the following characteristics
seems to be most influential for the
system’s prediction?

a) True a) The time spent studying for an exam
b) False b) The student’s grade for the past exam

c) The number of times a student was ab-
sent

(Q2) If a student already failed the course
before, the system is more likely to predict
that the student will fail the course

(Q4) If the student’s past grade was at
least a 7, does the number of past failures
still impact the system’s prediction?

a) True a) Yes
b) False b) No

Table 5: Comprehension Questions Portuguese Class

In these four questions three aspects of participant’s comprehension are measured.
Q1 and Q2 both test participant’s understanding of the effect of a single variable on the
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classifier’s prediction. Q3 is a bit more complex, since it asks to compare the effect of
multiple variables. Question Q4 is most difficult of all since it requires participants to
think about the interaction of multiple variables. Because of the differing nature of the
four questions, the aim of the usability study was not only to find out how participant’s
score overall on the comprehension questions, but also how they score on each of them
individually.

The first part of the study was not only about measuring participant’s comprehension
of the explanations but also about finding out how satisfied they were with them. For
this purpose, they were asked to indicate their agreement with different statements
on a 7 point Likert scale (with answers ranging between Strongly Agree and Strongly
Disagree). The Likert scale consisted of different qualities related to the usability of
explanations, that were already identified as important by previous studies:

L1 The system explanations were easy to understand
L2 The system explanations were unnecessarily complex
L3 It would be worth looking at the explanations to understand how the system

is behaving
L4 I am able to understand the explanations in a reasonable amount of time
L5 Overall I am satisfied with the system explanations

The items L1 and L3 were taken from [14], who also conducted a usability study
on AI explanations. Items L2 and L5 were inspired by a questionnaire used by [47]
and L4 was taken from the System Usability Scale developed by [5]. In addition to the
Likert scale questions, we assessed users’ self-rated satisfaction with the explanations
through an open question. Here they were asked to shortly explain their answers to the
Likert scale. The answers given here could be used in the results-analysis to support
the findings on the quantitative questions.

Once the responses were taken for the first part of the study, participants could move
to the second part where the German Credit classification problem was introduced. In
this text, it was stated that participants would be looking at explanations of two AI
systems. It was not told, that one of the systems was based on a different biased dataset.
In this dataset, loan applicants who did not have a telephone number registered in their
bank were more likely to receive a credit loan. The other AI system was based on a
regular, non-biased dataset. It was assumed that if the explanations of the two systems
were comprehensible for participants, they should be able to detect the bias in one of
the systems and reject this AI system in favour for the other one.

Before participants were asked to choose between the classifiers, they were asked
to indicate for both AI systems which variable in each system had the biggest effect.
These questions were included to encourage participants to think a bit more about the
explanations before choosing their preferred AI system. Moreover, the answers to these
questions could be used to further investigate RQ 1.1. After participants answered the
comprehension questions and decided which AI system was the better one, they were
again asked to indicate their agreement on the Likert scale, by answering the questions
also used in the first part of the survey.

After the second part of the user study, participants were asked to provide some
demographic information. This included their gender, age, nationality, English language
proficiency and educational background. This information was gathered to control for
these factors, in case they proved to be of impact on any of the other measurements.
Finally, the overall response time for each participant to fill out the survey was measured,
to also include this as a control variable later on.

For an overview of the different parts of the usability study, refer to Figure 9.
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Figure 9: Flow of usability test

6.2 Pilot Study

The study set-up as described in Section 6.1 was tested through a pilot study. For
each explanation condition, two participants were asked to fill in the survey. They were
allowed to ask questions or give remarks throughout the process. After completion, they
were asked some general questions on the clarity of the tasks and the presentation of the
explanations. In this section, we will discuss the changes we made to the survey after
the pilot was conducted.

Adding context Some of the participants complained that they could not identify
enough with the classification problems described in the survey. To illustrate, look at
the text below that was initially used to portray the idea behind the Portuguese Class
problem.

The first AI system we are going to look at is a system that predicts
whether a student passes or fails an exam. In order to do so, the AI
system has learned from a number of student profiles how different
characteristics of a student (like their age, gender or past school per-
formance) relate to them passing or failing the exam in question.

Some participants suggested adding a bit more context to this description, to highlight
why it might be interesting to work on a task like this. For this reason, the introductory
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texts for the classification problems were changed to appeal more to the participants’
imagination. In the case of the Portuguese Class problem, they were e.g. asked to
imagine that they are researchers trying to find out what factors influence a student’s
performance in school. The full text can be found in the appendix.

Shortening the explanation descriptions Another improvement point that came
out of the pilot study, concerned the descriptions on how to read the explanation figures.
Many participants found these descriptions unnecessarily long. This especially was said
to be the case for the second part of the survey (German Credit task). Since participants
already gained sufficient understanding of how to interpret the explanation figures, they
suggested shortening the descriptions in this part of the questionnaire.

The proposed changes were validated on another pilot-study. Based on its results no
additional changes had to be made and the usability study could be conducted.

6.3 Participants

The participants for the usability study were largely drawn from a university popula-
tion. Quality control was conducted over their data to see whether they spent sufficient
amount of time on the survey and whether their English proficiency was satisfactory.
Based on this, it was decided to delete survey responses of a total of 4 participants: each
of their response time was shorter than 5 minutes, which was deemed as a too short
time to give genuine answers to the survey questions. After their exclusion, the final
sample consisted of 113 participants. Out of these, the sample for the SHAP condition
contained 38 participants (Nfemale = 25, μage = 23.8), the sample of the GIRP condi-
tion 39 participants (Nfemale = 26, μage = 23.2) and the sample of the SHAP+GIRP
condition 36 participants (Nfemale = 24, μage = 22.1).

6.4 Results

Before the results of the usability study were analysed, the answer to the demographical
question Please fill in your background (education/most recent field of study/most recent
field of work) was manually translated into a binary variable technical background. Thus,
for each participant it was noted whether judging by their work/field of study, they had
considerable experience with AI or Computer Science. This variable was later included
as a control variable in the statistical tests.

In this section, we will discuss the results of these statistical tests.

6.4.1 Research Question 1.1

Portuguese Class problem To answer research question 1.1 for the Portuguese Class
problem, it was noted for each of the test-questions whether the participant answered
the question correctly or incorrectly. It was then tested whether the total amount of
correct answers was significantly different for the three explanation conditions.

For this purpose, an ordinal logistic regression test was set up with number of correct
answers as a dependent variable and explanation condition as an independent variable.
Moreover, gender, age, english proficiency, technical background and response time were
added as independent control variables, to account for their possible effect on the de-
pendent variable. It was decided not to add nationality as control variable, since the
majority of the participants were Dutch.

Before the statistical test was run, its assumptions were checked. Firstly, it was con-
trolled that there was no multi-collinearity between the independent variable of interest
(i.e. explanation condition) and the control variables. To test this the Variance Inflation
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Factors (VIFs) for each control variable to the variable of interest were tested. Since
all VIFs < 3, the assumptions for multi-collinearity were not violated. In addition, the
assumption regarding proportional odds needed to be checked. A test of parallel lines
yielded a non-significant p-value (p=.091), thus none of the assumptions for the ordinal
logistic regression were violated.

With the statistical test it was found that the overall model fit to predict number of
correct answers from explanation condition and the five control variables was significant
(χ2(13) = 23.400, p = .037). For the individual predictors significant effects were found
for explanation condition and the control variable technical background. It was found
that participants who were provided with GIRP-explanations had 6.557 times higher
odds of scoring more correct answers than participants provided with SHAP explana-
tions (p<.001, 95% CI 2.43 to 19.01). In regards to technical background it was found
that participants with a technical background had 2.684 times higher odds of scoring
more correct answers than participants without a technical background (p = .04, 95%
CI 0.8683 to 9.09). In Figure 10 the distribution of correct answers is visualized for
splitting either on explanation condition or technical background. Since both variables
had significant effects, it was tested in the logistic regression test whether together they
had any significant interaction effects. This was, however, not found to be the case.

While the difference for SHAP and GIRP explanations, was the only significant
one, there appeared to be trends in the differences for the other explanation conditions
as well. It appeared that GIRP explanations scored higher on objectively measured
understanding than SHAP+GIRP explanations, while these, in turn, appeared to score
higher than SHAP explanations. The odds-ratios as well as the p-values for the tests
are highlighted in Table 6 and will be further discussed in Section 6.5
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Figure 10: Distribution of the number of correct answers for the Portuguese Class
problem when split on explanation condition and technical background

Since the explanation condition had some effects on the number of correct answers,
significance tests for each of the comprehension questions (as displayed in table 5) were
run separately. With this, we wanted to find which aspect of comprehension was mostly
affected by the explanation type. In Figure 11 the percentage of correct answers for
each group and each comprehension question is plotted.
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For each of the four test questions a binomial logistic regression test with the de-
pendent variable correct answer and the independent variable explanation condition was
run. Furthermore, gender, age, english proficiency, technical background and response
time were again added as control variables. Here it was found that only for the question
interaction effect the predictors could account for a significant amount of variance in
the outcome of that variable (p=.036, χ2(13)=23.5). Individually, only the predictor
variables explanation condition had any significant effects on whether a correct answer
was given or not. The odds for participants of the GIRP condition giving the right
answer was 8.229 times higher than for participants of the SHAP condition (p<.001,
95% CI 2.49 to 27.19). The difference between GIRP and SHAP+GIRP was not found
to be significant for the scores on this question, however the same trend as in the pre-
vious statistical test were found: firstly there is an indication that GIRP scores better
than SHAP+GIRP and secondly, there is a trend for SHAP+GIRP to score better than
SHAP. The p-values and odds-ratios are presented in Table 6.

95% CI
dep. var predictor p-value odds lower upper

#correct ans

Explanation Condition
GIRP vs. SHAP <.001 6.557 2.429 19.010
GIRP vs. SHAP + GIRP .066 2.565 0.889 7.780
SHAP+GIRP vs. SHAP .057 2.557 0.938 7.180
Technical Background
Yes vs. No .044 2.684 0.868 9.090

interaction

Explanation Condition
GIRP vs. SHAP <.001 8.229 2.4901 27.190
GIRP vs. SHAP + GIRP .067 3.223 0.919 11.300
SHAP+GIRP vs. SHAP .076 2.553 0.908 7.180
Technical Background
Yes vs. No .856 0.892 0.261 3.060

Table 6

German Credit problem In the usability study, participants were not only asked
comprehension-questions about the explanations for the Portuguese Class problem, but

27



also for the German Credit problem. Thus research question 1.1 needed to be answered
for this part of the questionnaire as well.

For the German Credit task, only two comprehension questions were asked. Again,
the total number of correct answers was calculated for each participant and then used as
a dependent variable in an ordinal logistic regression test. Just like before, explanation
condition was set as an independent variable, along with the control variables gender,
age, english proficiency, technical background and response time.

After checking the assumptions, it was found that the fit for this ordinal logistic
regression model was significant (p=.031, χ2(13)=24.0). From the individual predict-
ors, only the effect of technical background was found to be significant. Participants
with a technical background had 5.861 times higher odds to give more correct answers
than participants without a technical background (p=.002, 95% CI 1.477 to 33.23). No
significant effects for the variable of interest (explanation condition) were found.

The distribution of the total amount of correct answers when splitting on explanation
condition and technical background are plotted in Figure 12.

(a) Explanation Condition (b) Technical Background

Figure 12: Distribution of the number of correct answers for the German Credit problem
when split on explanation condition and technical background

Since explanation condition was not found to have any significant effect on the
total amount of correct answers, no further tests were conducted for the individual
comprehension-questions of the German Credit problem.

6.4.2 Research Question 1.2

With research question 1.2 we tried to find whether the self-rated satisfaction of par-
ticipants was different for the three explanation conditions. Thus, we needed to test
whether the answers on the Likert scale questions in the usability study (see Section
6.1), were significantly different for the three explanation conditions. Again this was
done separately for the two parts of the survey (Portuguese Class and German Credit).
For each item of the Likert scale an ordinal logistic regression test was set up where
easy to understand, complex, reasonable time, worthy, and overall were set as the cor-
responding dependent variable. Again, explanation condition was set as the independent
variable, along with the control variables gender, age, english proficiency technical back-
ground and response time. For the ordinal logistic regression tests, the assumption of
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proportional odds needed to be checked. A test of parallel lines yielded for both the
first and second part of the survey non-significant p-values. The assumption regarding
multi-linearity did not have to be checked anymore since this was already tested for RQ
1.1, where the same independent variables as here were used.

Portuguese Class problem From the five ordinal logistic regression tests that were
run for the first part of the survey, significant effects were only found for the item
worthy. Here all predictors could account for a significant amount of variance in the
answers given to this Likert scale question (χ2(13) = 23.0, p=.041).

Individually, only the predictor explanation condition had effects on the outcome
of this variable. Participants in the SHAP condition had 3.890 times higher odds to
give a higher rating to this question than participants of the GIRP condition (p=.004,
95% CI 1.53 to 10.31). In addition, SHAP participants had 5.09 times higher odds
of giving a higher rating to the Likert scale item than participants who were shown
SHAP+GIRP explanations (p<.001, 95% CI 1.92 to 14.11). No significant differences
for the answers to this Likert scale item were found for the explanation conditions GIRP
and SHAP+GIRP (p=.547). The distribution of answers given to the Likert scale item
is visualized in Figure 13
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Figure 13: Answers given to the Likert scale question: “It would be worth looking at the
explanations to understand how the system is behaving” in the first part of the survey

The answers that were given to the other items of the Likert scale are visualized
in Figure 14. Note here, that the colour coding for the question “The system explan-
ations are unnecessarily complex” is different than for the rest, such that blue colour
tones denote disagreement with the statement (and hence a positive evaluation of the
explanations) and red colour tones denote agreement with the statement (and hence a
negative evaluation of the explanations).

29



17/02/2020 Page 1

1/1

I am able to understand the explanations in a reasonable
amount of time

0% 20% 40% 60% 80% 100%

GIRP

SHAP

SHAP+GIRP

10.53%

13.89%

53.85%

50.00%

50.00%

25.64%

23.68%

16.67%

10.53%

10.26%

11.11%

Strongly agree Agree Somewhat … Neither a… Somewh… Disagree Strongly …

The system explanations are easy to understand

0% 20% 40% 60% 80% 100%

GIRP

SHAP

SHAP+GIRP

10.53%

43.59%

28.95%

38.89%

33.33%

31.58%

27.78% 8.33%

18.42%

16.67%

Strongly agree Agree Somewhat … Neither a… Somewh… Disagree Strongly …

The system explanations are unnecessarily complex

0% 20% 40% 60% 80% 100%

GIRP

SHAP

SHAP+GIRP

7.89%

8.33%

33.33%

28.95%

25.00%

20.51%

23.68%

22.22%

23.08%

13.16%

16.67%

10.53%

13.89%

12.82%

15.79%

13.89%

Strongly disagree Disagree Somewhat disa… Neither agre… Somewhat a… Agree

Overall I am satisfied with the system explanations

0% 20% 40% 60% 80% 100%

GIRP

SHAP

SHAP+GIRP

10.53%

35.90%

42.11%

52.78%

30.77%

21.05%

16.67% 16.67%

12.82%

13.16%

11.11%

10.26%

7.89%

Strongly agree Agree Somewhat … Neither a… Somewh… Disagree Strongly …

Portuguese Class Explanations - Self-rated Satisfaction

Figure 14: Answers given to the other items of the Likert scale for the first part of the
survey

German Credit problem From the five statistical tests that were run significant
effects were only observed for the item worthy. The answers given to this item of the
Likert scale are visualized in Figure 15. The overall fit for the logistic model was found
to be significant with χ2(13)=24.8 and p=.025. In the model the individual predictors
technical background and explanation condition had significant effects on the outcome
variable. For technical background it was found that participants with a technical back-
ground had 4.84 times higher odds to give a higher rating for the Likert scale item
(p<.001, 95% CI 1.729 to 14.43). For explanation condition, in turn, it was found that
participants with SHAP explanations had 2.727 times higher odds to give higher ratings
than participants with GIRP explanations (p=.024, 95% CI 1.132 to 6.710). Looking at
Figure 15 there appears to be a trend for participants in the SHAP condition, to give
higher ratings than participants of the SHAP+GIRP condition. The p-value here was
however not found to be significant (p=.081). Lastly, no significant interaction effects
were found between technical background and explanation condition. Just as for the Por-
tuguese Class problem, the differences in responses to the other Likert scale questions
were not significant. The responses are visualized in Figure 16.
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Figure 15: Answers given to the Likert scale question: “It would be worth looking at
the explanations to understand how the system is behaving” in the second part of the
survey
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Figure 16: Answers given to the other items of the Likert scale for the second part of
the survey

6.4.3 Research Question 1.3

The last research question was about assessing whether explanations can help users
in choosing between AI models. This question only concerned the second part of the
usability study, where participants where shown explanations for two classifiers for the
German Credit dataset; a biased one and another non-biased one.

In a binomial logistic regression test, it was investigated whether the explanations
that were provided affected the users’ ability to correctly choose the non-biased classifier.
In this test correct answer was set as the dependent variable, while explanation condition
was set as the independent one. Furthermore, the same five control variables as before
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were added to the test. Before the test was conducted, it was made sure that no
assumptions were violated.

The predictors together accounted for a significant amount of variance in the outcome
variable (χ2(13)=22.9, p=.043). Of all individual predictors, explanation condition was
the only one with significant effects. Firstly, it was found that participants in the GIRP
condition had 4.330 times higher odds to give the right answer than participants in the
SHAP condition (p=.035, 95% CI 1.107 to 17.420). Secondly, the participants in the
SHAP+GIRP condition had 5.027 times higher odds of providing the right answer than
the participants in the SHAP condition (p=.022, 95% CI 1.256 to 20.110).

No significant differences were found between participants given GIRP and parti-
cipants given SHAP+GIRP explanations (p=.860). The percentage of correct answers
given by each explanation group is visualized in Figure 17.
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Figure 17: Percentage of correct answers in the choice of classifiers

6.5 Discussion

As AI algorithms have become increasingly complex and opaque, the main goal of this
research was to find out which way of explaining those algorithms is most useful to non-
computer experts. There are two different ways in which AI-algorithms can be explained:
local explanations, that describe how an algorithm made a decision for one particular
instance and global explanations, that give a holistic overview of how an algorithm
derives decisions. From a usability perspective, it has neither been established how the
two explanation techniques compare to each other, nor how a combination of them could
facilitate users’ understanding of AI algorithms. It was therefore the goal of this study
to close this knowledge-gap and contribute to the growing body of research in this field.

The “understanding” of AI explanations is a rather broad term, thus it was measured
through three separate sub-questions. The first relates to users’ objectively measured
understanding of explanations, the second to users’ self-rated satisfaction of the explan-
ations and the third to users’ ability to use the explanations to find bias in AI models.
In Section 6.5.1 we will discuss the findings for each sub-question individually. We will
then attempt to combine the answers of each individual question, to give answer to the
main research question in Section 6.5.2. What follows is a discussion of the limitations
of the study as well as suggestions so further research in Section 6.5.3.
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6.5.1 Sub-questions

RQ 1.1: How is users’ ability to answer comprehension questions about models affected
by the presentation of SHAP explanations, compared to GIRP explanations or a com-
bination of both?

The results of the usability study indicate that being presented with GIRP rather than
SHAP explanations slightly increase users ability to answer comprehension questions
about AI models. However, this appears to be only the case for comprehension ques-
tions, relating to the interaction of variables: in case of the Portuguese Class problem,
this question is the only one, where significant differences between the explanation con-
ditions were found. This, in turn, explains why no differences between explanation
conditions were found for the questions asked about the German Credit problem. These
questions only asked participants to identify the most important features for the de-
cision process and did not test their comprehension of interaction effects. Intuitively,
it makes sense that GIRP explanations facilitate users’ understanding of interaction
effects. Though it is possible to reason about the interaction of features using SHAP,
this is less straightforward than looking at a decision tree and seeing how the value
of one feature changes the decision path for the value of another feature. Moreover,
participants of the SHAP condition only got to see two local explanations. It remains
unknown how they would have performed on the interaction comprehension question if
they would have been presented with more SHAP explanations.

Differently than expected, providing SHAP and GIRP explanations did not have any
significant positive effects on users comprehension of AI models. Looking at Figure 11
and at Table 6 it even appears that there is a trend for people provided with GIRP
explanations to give more correct answers than people provided with a combination of
the explanation techniques. A reason for this finding might be that the combination of
the explanation types causes an information overload. In the psychological literature,
it has been established that being presented with too much information can decrease
people’s capacity to process that information, which in turn, can affect their ability to
make accurate decisions about it [19]. This phenomenon might very well have occurred
in this usability study, which can explain the results. Relating to this psychological
phenomenon it would be interesting to see how users’ performance would be affected by
presenting the information more concisely. Presenting the SHAP and GIRP explanations
on separate pages, rather than all on one page, might already be helpful. Another
measure could be to “force” the participants to take some time between looking at
the explanations and answering the comprehension questions. A study by Fukukura et
al. has namely suggested that this way of psychologically distancing people from their
decisions, can diminish the effects of information overload [13].

If information overload indeed affected participants understanding of the explana-
tions, it is important to look at the ecological validity of this research: the reason why
participants might have felt overwhelmed by the explanations is that their intrinsic mo-
tivation to understand them was not very high, to begin with. After all, the participants
were mostly taken out of a university population and their interest in xAI might have
been quite limited. As studies suggest that the higher a person’s personal motivation
to process information, the less prone they are to the effects of information overload
[21, 37], it would be interesting to see how people who are affected by xAI in their
personal life would have performed on the usability test. These could e.g. include em-
ployees at a company who are responsible for deciding whether an AI model is fair or
not. The fact that there appears to be a trend for people in the SHAP+GIRP condition
to give more right answers then people in the SHAP condition (see Table 6 and Figure
11), supports the idea that the combination of the local and global explanations can be
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more beneficial than suggested by the initial results.
One final finding in answering research question 1.1 is that the technical background

of participants significantly affected their number of correct responses for the compre-
hension questions. This finding is not very surprising, but further demonstrates the
importance of including non-computer experts in the design of explanations. The fact
that no significant interaction effects are found for the variables explanation condition
and technical background shows that the previously described effects of the different
explanation types occur regardless of the computer expertise of users.

RQ 1.2: How does users’ self-rated satisfaction of SHAP explanations, compares to
their self-rated satisfaction of GIRP explanations or a combination of both explanations?

For both the Portuguese Class- and German Credit classification problems, signific-
ant differences in self-rated satisfaction of explanations were only found for the Likert
scale item “It would be worth looking at the explanations to understand how the system
is behaving”. Firstly, it appears here that in both parts of the survey, providing SHAP
explanations rather than GIRP explanations increases users perception of the worth of
the explanations. A reason for why this is found may be that SHAP values, falling
in the category of local explanations, provide a good indication of how an AI model
work for a person individually. Studies have shown that this example-based method of
learning is preferred more than methods like GIRP, where a more abstract and holistic
overview of a process is provided [4]. The fact that no further significant differences
between SHAP and GIRP were found for users’ self-rated satisfaction, however, indic-
ates that this effect is not very big. Still, looking at the answers to the previous research
question, it might seem somewhat contradicting that SHAP explanations score higher
on self-rated satisfaction even though GIRP explanations are better to increase users’
objectively measured understanding. This finding will further be discussed in Section
6.5.2 were the overall research question will be examined.

Another conclusion we can draw for RQ 1.2 is that in the first part of the survey,
participants in the SHAP condition gave a significantly higher rating for the Likert scale
item worthy than participants in the SHAP+GIRP condition. The observed effect ap-
peared to be less strong in the second part of the survey, where no significant differences
were found. The reason for why SHAP explanations scored higher than SHAP+GIRP
explanations in the first part of the survey might be again that participants experienced
information overload. This could also be an explanation, for why no significant differ-
ences for the worth of SHAP and SHAP+GIRP were found in the second part of the
usability study. As already explained, the motivation of a person to solve a task can
affect how much a person is negatively affected by information overload [21]. In the
second part of the study, there was a clear purpose to understand the explanations,
namely to use them to choose the better, non-biased AI model. Being confronted with
an explanation where a clear bias of a model is presented, might highlight the relevance
of xAI. With this increased task relevance, the motivation to understand the explana-
tions might have been higher as well. This, in turn, could have reduced the effects of
information overload and let participants rate the worth of SHAP+GIRP explanations
higher than in the first part of the study.

Looking at the scores for the other items of the Likert scale (for both the first and
the second part of the survey) it appears somewhat surprising that no more significant
differences were found. To recall, the other items of the Likert scale were the following:

L1 The system explanations were easy to understand
L2 The system explanations were unnecessarily complex
L3 I am able to understand the explanations in a reasonable amount of time
L4 Overall I am satisfied with the system explanations
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Intuitively, it could be expected that especially L1, L2 and L3 would have lower
scores for the SHAP+GIRP condition, if participants experienced an information over-
load for this condition. However, judging from Figure 14 and Figure 16 there does not
even appear to be a trend for people in this explanation condition to give worse ratings
for these items. A reason for this could be connected to their exact wording. Though
terms like “easy to understand” or “unnecessarily complex” have an indirect connec-
tion to the perception of information overload, a more straightforward Likert scale item
like “The system explanations made me feel overwhelmed” might have yielded differ-
ent results. A look at the qualitative data gathered in the first part of the usability
study, reveals that this indeed might be the case. The statements below were given by
participants in the SHAP+GIRP condition, to illustrate their impression of the given
explanations.

“It was quite easy explained but sometimes I got a little confused. I had to
look at the pictures and the text often again, cause I got lost in it”

“There was a lot of repetition and lots of graphs. Maybe a paragraph that
summarized everything about the system, would prevent me from getting lost
and losing focus.”

After a glance at this qualitative data a more detailed posthoc analysis was conduc-
ted, to inspect whether the notion of “getting lost” in information or feeling overwhelmed
by it, was more prevalent in the open-ended responses for the SHAP+GIRP than for the
other conditions. This was indeed found to be the case: out of the 38 participants who
were presented with SHAP explanations, only 5 gave indications of feeling overloaded
by information (∼13.16% of the participants). This was the case for 7 out of 39 GIRP-
participants (∼17.95%) and for a total of 12 out of the 36 SHAP+GIRP participants
(∼33.33%).

If these findings are correctly interpreted, the previously proposed ways to reduce
information overload might also be effective for increasing users’ self-rated satisfaction
with SHAP+GIRP explanations. Making the combination of the explanations more
concise could be helpful, as well as increasing users’ intrinsic motivation to understand
the explanations. The fact that no significant differences are found between the GIRP
and SHAP+GIRP explanation conditions is encouraging for the idea that the effects of
information overload are not so big that they cannot be easily reduced.

One final aspect that should be noted for RQ 1.2, is that again significant differences
in self-rated satisfaction were found between participants with and without a technical
background. Just like for RQ 1.1, this emphasizes the importance of always including
non-computer experts in usability studies.

RQ 1.3: How is users’ ability to detect bias in models affected by the presentation
of SHAP explanations, compared to GIRP explanations or a combination of both?

From the second part of the usability study, we can conclude that providing GIRP
explanations facilitates users’ ability to detect bias in models, compared to providing
SHAP explanations. Looking at the answer to RQ 1.1 this finding is not very surpris-
ing: the ability to find bias in models relies on users’ objective understanding of AI
explanations, which already was shown to be facilitated by GIRP- rather than SHAP
explanations.

Different to the findings of RQ 1.1, it was found that the provision of SHAP+GIRP
explanations was more beneficial for users’ ability to find bias in AI models than the
presentation of SHAP explanations. In RQ 1.1 it has been hypothesized that participants
of the SHAP+GIRP condition did not perform significantly better than participants of
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the SHAP condition because they experienced information overload. This effect might
have been diminished for RQ 1.3 because of the motivational aspect, described in the
previous paragraph. The task of detecting bias in AI models has high societal relevance,
which might have increased participants’ motivation to perform well on the task. This,
in turn, could have reduced the effects of information overload and therefore increased
the positive effects of providing a combination of SHAP and GIRP explanations.

6.5.2 Overall Research Question

RQ 1: How is users’ understanding of a model affected by the presentation of SHAP
explanations, compared to GIRP explanations or a combination of both?

Differently than expected, there does not appear to be a single, straightforward an-
swer to the overall research question. Firstly, it is found that in terms of objective
understanding GIRP explanations are superior to SHAP explanations while in terms of
self-rated satisfaction participants prefer SHAP explanations. This suggests that there
is a gap between subjective and objective understanding of AI-explanations: the fact
that persons “like” explanations, does not guarantee that they can adequately use them,
or that they are enough to gain a full understanding of an AI model. This phenomenon
has already been observed in different contexts and is called the Dunning-Kruger effect
[10]. It refers to a cognitive bias, in which people overestimate their knowledge or ex-
pertise in an area. The effect appeared before in the context of information processing
[30], and highlights the importance of never fully relying on people’s subjectively rated
understanding of a topic. In the case of our study, the effect is most observable in par-
ticipants of the SHAP condition, who rated the provided explanations as more valuable
than participants of the GIRP condition, even though they were less capable in using
the explanations to accurately derive conclusions about AI models.

Though it can be argued that objectively measured comprehension is more important
than subjectively measured one, it is not advisable to simply ignore any subjective
measurements. After all, there are studies which indicate that subjective comprehension
is important for users to be willing to use their knowledge [23]. Concerning xAI, this
means that even though SHAP explanations might not facilitate users ability to derive
conclusions about AI models, they still might motivate users to check the explanations
in case they are needed.

Understanding the difference between subjectively- and objectively measured com-
prehension and how both are affected by the presentation SHAP and GIRP explanations,
it becomes interesting to look at the second finding for the overall research question:
presenting a combination of the explanation techniques is at no times more beneficial
than only presenting SHAP or only presenting GIRP explanations. In the case of sub-
jectively measured understanding, SHAP is preferred over SHAP+GIRP, while there
also appears to be a trend for GIRP to be favoured over SHAP+GIRP in terms of
objectively measured understanding. Looking at the previous results, this may appear
somewhat surprising. One might have expected that combining the local- and global
explanation technique would bring out “the best of both worlds”, such that users could
increase their subjective understanding by looking at the SHAP plots and refer to the
GIRP decision trees to improve their objective understanding. Moreover, it might be ex-
pected that both explanation techniques would complement each other and boost users’
overall understanding of the AI model. The fact that this was not observed, is ascribed
to users experiencing an information overload when looking at both explanations. The
evidence for this theory has partly been found in the qualitative data of the study.
Besides, the responses to the second part of the survey were further confirmation for
our theory. Here no significant differences between the combination of the explanation
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techniques were found to the separate explanation conditions. In fact, the presentation
of both explanation techniques was shown to be more useful for detecting bias in AI
models in comparison to the presentation of SHAP explanations. We suggest that this
could be the case, because the societal relevance of the second task was higher, which
increased users’ motivation and, in turn, diminished the effects of information overload.

One final finding in regards to the overall research question is that the technical
background of a person influences both objective and subjective understanding of ex-
planations. Since this is not very surprising and it was not the goal of our study to
investigate this relationship, not much further attention was paid to this phenomenon.
Still, it illustrates that we should not underestimate the importance of taking non-
computer experts into account when designing and testing explanations. An overall
model of how SHAP and GIRP, and a combination of both explanation techniques is
given in Figure 18.

SHAP GIRP SHAP + GIRP

Self-rated
Satisfaction

Objective
Understanding

Information OverloadMotivation

Task Relevance

Technical
Background

Figure 18: Proposed model of how the different explanation conditions affect users’
subjective and objective understanding of AI models

In this model, green arrows indicate a positive effect from the outgoing node to the
incoming one while red ones indicate a negative effect. Thus SHAP explanations are
indicated to have a more positive effect on subjective ratings of the explanations, while
the opposite is true for the objectively measured understanding of them. According to
the plot, combining SHAP and GIRP has a positive effect on both aspects of under-
standing, which is, however, inhibited by the experience of information overload. This
experience can be reduced by an increased motivation on the user’s side.

6.5.3 Limitations & Further Research

In Section 6.5.1 we already discussed some limitations regarding the conclusions of each
sub-question. To summarize, these related to the number of SHAP explanations that
were presented, the phrasing of the Likert scale items and the motivation of the parti-
cipants to understand the explanations.

However, apart from these listed limitations, there also several other shortcomings
to the overall usability study that still need to be discussed. The probably most import-
ant one is connected to the general usability of the presented explanations. Both the
SHAP and GIRP explanations were put in the survey, without assessing their usability
beforehand. Thus any differences in the results, might not have been due to the nature
of the explanations but instead due to how they were presented. Looking at some of
the answers given to the open survey questions, there indeed appears to be some points
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in which the general usability of the explanations could be improved. For the SHAP
explanations, it was e.g. mentioned that the colour coding in the force plots was not
clear or that the numbers in the plot were confusing.

“It helps that the explanations have different colours but on the other hand
I was confused that pink meant that a student passed. Pink is close to red
which I associate with negative outcomes.”

“The numbers on the axes are quite arbitrary and seem not logic (why is the
axis negative?)”

In addition, there were some remarks on the general usability of GIRP trees. Some
participants found the notation of probabilities in the leaves of the tree confusing. Others
were puzzled by the use of ’greater-than’- or ’less-than’ signs and would have preferred
the use of written words:

“Not everyone is familiar with the probability indicators (p= 1.0, 0.86 etc)
(did this long time ago in high school).”

“The decision tree was a little complicated/confusing, because of the ‘<’ and
‘>’ symbols. It would be easier to understand if there was written ‘less than’
or ‘more than’.”

Looking at these comments, it seems advisable for future work to pay more effort into
making the explanations as usable as possible before comparing them to each other in a
usability study. This also holds for how GIRP- and SHAP explanations are combined.
As mentioned in the previous section, the fact that no significant improvement in users’
comprehension for this explanation condition was found, might have been due to how
they were presented together. It might be worthwhile to conduct a usability study
of more qualitative nature to search for more adequate ways in which the different
explanations can complement each other. Presenting the explanations on separate pages,
changing the order in which they are presented, or adjusting the introductory texts about
how to interpret the explanation figures, could be ways to increase the potential of the
combination of both explanations.

Another shortcoming of the usability study is that the presented explanations were
made for classification problems that were quite intuitive. The classification problems
for the Portuguese Class- and the German Credit dataset are not based on a very high
number of features and the features are not very complex. It would be interesting to see
how the found results would be affected if explanations were made for more complex AI
models. Another related concern is connected to the type of data the explanations were
generated for. SHAP values and GIRP trees are data agnostic explanation techniques,
meaning that they can explain classification decisions for tabular-, textual-, and visual
data. In this study, it was only tested how the explanations are understood for textual
data. Different results might be found if their usability for textual- or visual data is
assessed.

7 Experimentation on Explanations’ Fidelity

The results of the usability study alone, do not provide a complete picture of how suitable
SHAP, GIRP or the combination of both are as explanation techniques. As discussed
in Section 2.3.2 an important criterion for the quality of explanations is their fidelity,
i.e. the extent to which the explanations reflect the inner-workings of the model they
originate from. In this section, we will demonstrate how the fidelity of SHAP and GIRP
was assessed and how satisfactory the results are. With this section research questions
2 and 3 will be answered.
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7.1 SHAP - Impact Score

7.1.1 Implementation

The fidelity of SHAP can be estimated using the Impact Score as proposed by Lin et
al. [27]. The intuition behind this quantity is that if the features that are indicated as
important by SHAP are absent, the output of the model for the new input should be
different than before. This change in output is either reflected by a different prediction
altogether or a considerably lower confidence in the prediction.

The authors formally define this idea as followed. Say we have a model N that
outputs for input x the prediction y and the confidence in prediction z:

{y, z} = N(x) (5)

We then can have a local explanation function M , that defines for an input x in the
model N a number of critical features c:

c = M(x,N) (6)

where c ∈ x. If we then define the input x in absence of c as x′ = x− c and the output
of N for x′ as {y′, z′} = N(x′), we can calculate the Impact Score I across a set of n
inputs X = {x1, x2, ..., xn} as:

I =
1

n

n∑
i=1

((y′i 6= yi) ∨ (z′i ≤ τzi)) (7)

In this formula, τ indicates the amount of confidence lost in the prediction when the
critical feature is absent in the decision process. In our case, τ was set to 0.5. Further-
more, we defined critical features by their ranked feature importance values. Intuitively,
one would expect that (if the feature importance values are faithful to their original
model) leaving out a feature with a high importance value should yield a higher Impact
Score than leaving out a feature with a lower importance value. By testing whether
I for nth critical feature is in all times higher than I for the n + 1th critical feature,
one can check whether this intuition is met. Moreover, we can compute the normalized
SHAP value of each critical feature and see how this value compares to the magnitude
of the Impact Score. More specifically, we would expect here that the higher a normal-
ized SHAP value is, the more important it is for a decision process and the higher the
Impact Score should be. In other words, the Impact Score for a critical feature should
be somewhat proportional to the normalized SHAP value of that feature.

7.1.2 Results

The figure below shows the Impact Score for the top 5 critical features of the Portuguese
Class problem. Next to it, the average normalized SHAP values for each critical feature
are visualized. Both measurements were obtained by calculating them for the test sets
of 10 different train-test-splits and then averaging them. In figure 20 the same plots are
shown for the top 6 critical features of the German Credit classification task.
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Figure 19: (a) SHAP’s fidelity as measured through the Impact score for Portuguese
Class problem (b) The normalized SHAP values corresponding to the critical features
of the Portuguese Class classification task
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Figure 20: (a) SHAP’s fidelity as measured through the Impact score for German Credit
problem (b) The normalized SHAP values corresponding to the critical features of the
German Credit classification task

7.1.3 Discussion

Looking at the Impact Scores of the Portuguese Class SHAP values we see that the
Impact Score of the nth critical feature is, as expected, at most times larger than the
n+1th feature. The only exception is the Impact Score for the fifth critical feature, which
is slightly larger than the one of the fourth critical feature. However, this difference is
quite small and does therefore not fundamentally decrease our faith in the SHAP values.

Interestingly, we see that the Impact Scores are quite low for all critical features
except for the first. As this pattern is reflected in Figure 19 b), where the difference
between the normalized SHAP value of the first and second/third most critical feature
is also quite high, this finding is not very surprising. Thus looking at the plots, there
does not appear to be a reason to doubt the fidelity of the SHAP values generated for
the Portuguese Class classifier.

40



The observations for the Impact scores of the German Credit SHAP values are
slightly different. Though the Impact Score of the most critical feature is higher than
the rest, the ranking of the second, third and fourth most critical features is slightly off.
We see that leaving out the third or fourth most critical variable has a higher impact
on the system’s predictions than leaving out the second most critical variable. Though
this decreases our faith in the SHAP values, the finding can to some degree be explained
by looking at Figure 20 b). The differences between the values of the differently ranked
features are here less pronounced than for the Portuguese Class problem. Furthermore,
the normalized SHAP values are here a lot higher for the second, third and fourth fea-
tures. Thus from this perspective, it is not completely surprising that leaving out e.g.
the third most critical variable can have a similarly big effect as leaving out the second
most critical variable in a decision process.

With these two observations, it becomes difficult to tell, to which extent we should
reduce our faith in the SHAP values. This, in general, appears to be a problem, when
using the Impact Score as a fidelity measure. Though intuitively the measure makes
sense, the authors do not provide a baseline of what a satisfactory Impact Score is.
Since it was beyond the scope of this study to implement different ways of calculating
feature importance values, we also cannot compare the fidelity of SHAP values to other
feature importance values, like given by LIME or DeepLift.

To summarize, there is no clear reason to doubt the fidelity of Portuguese Class
SHAP values, but there is an indication that the SHAP values for the German Credit
problem are not faithful. Even though the findings of this case study only give a very
limited answer to our second research question, they do open up new directions for
future research.

Firstly, as already mentioned, we need to compare the fidelity of SHAP values to the
fidelity of other local explanation methods. Only then is it for the long-term possible
to set up a baseline, of what it means for an explanation to be faithful. Concerning the
Impact Score specifically, we need a clear guideline on how high a satisfactory Impact
Score should be.

Secondly, to assess the overall potential of SHAP as an explanation method, we
need to establish whether the fidelity of SHAP is consistent for different classification
problems or whether results can vary considerably. If this proves to be the case, it needs
to be studied for which problems SHAP values are faithful and for which ones they are
not and if the same is the case for the fidelity of other feature importance values. One
aspect that may be taken into account here, is that the fidelity of explanations might
be connected to the accuracy of the models they originate from [20]. Our case study
gives further evidence for this suggestion, since both the accuracy of the German Credit
classifier (see Section 5) and the fidelity of the corresponding SHAP values is lower than
both measures for the Portuguese Class classifier. Investigating this further, might be
a good starting point to understand the circumstances under which explanations are
guaranteed to be faithful or not. Of course, it is here useful not to only investigate this
for SHAP values but also for any other local explanation methods.

7.2 GIRP - TopjSimilarity

7.2.1 Implementation

The objective of Research Question 3 was it to assess the fidelity of the GIRP explan-
ations. Traditionally the fidelity of surrogate models is measured by comparing the
output of the simplified model to the output of its original model for a set of inputs.
The Cohen’s Kappa score, denoted by k, can then be calculated to measure the agree-
ment between both models while controlling for the agreement that would be measured
by chance:
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k =
po − pe
1− pe

, (8)

where po indicates the observed chance that both models agree on their decision, while
pe quantifies the expected chance of agreement if both models where completely inde-
pendent.

Cohen’s Kappa alone indicates how similar the outputs of two models are, but a
high score does not guarantee that both models derive their outputs in a similar way.
Out of this reason, Messalas et al. propose the TopjSimilarity to measure this aspect of
a model’s fidelity. To obtain this score, it is first required to calculate the local feature
importance values for both the original model and the surrogate model for a set of input
instances X = x1, x2, ..., xn. We can then define the topj most important features of
the original model (origj) and the surrogate model (origj) and examine how many topj

features they have on average in common. By then dividing this result by j, we see
how much the two models agree on the topj most important features on average. For a
formalized version of this approach, refer to equation 9

TopjSimilarity =
1
n

∑
i origj(i) ∩ surj(i)

j
(9)

Just like the rest of the code, the implementation of Topj was written in Python and
can be found online. Since the shap tool package could not be used for the resulting
tree structures of the self-implemented GIRP trees, the code also includes an algorithm
to derive the SHAP values from scratch.

7.2.2 Results

To get an idea on the fidelity of the GIRP trees for both the German Credit and
Portuguese Class problems, both corresponding datasets were split into 10 different
train-validation-test-splits. For each split, the best tree was determined for the validation
set and then the Cohen’s Kappa, the Top1-, Top3- and Top5Similarity was calculated
for the test set. The averaged results are visualized in Table 7.

Cohen’s Kappa Top1Sim Top3Sim Top5Sim
Portuguese Class 0.8926 0.9461 0.6677 0.6806
German Credit 0.6964 0.6910 0.6903 0.8218

Table 7: Fidelity results of GIRP explanations

7.2.3 Discussion

Looking at Table 7, we see that the Cohen’s Kappa for the GIRP tree of the Portuguese
Class problem is quite high. In the paper, where Cohen’s Kappa was firstly introduced, it
was stated that a score between 0.81 and 1.00 indicates nearly perfect reliability between
two raters [52]. Thus looking at this measure only, the fidelity from the surrogate model
to its original one seems to be quite high. Looking at the Topj measures, this finding
is partly confirmed and partly contradicted. To begin, the Top1Similarity is very high,
showing that in 94.61% of all times the two models agree on the most important local
feature. However, the Top3- and Top5Similarity are a little less satisfactory. With a score
of 68.06% the Top5Similarity does not fulfil the suggested criterion, that the surrogate
and the original model should have an 80% agreement on the top 5 most important
features [33]. How much this finding reduces our faith in the produced GIRP trees is
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somewhat up for discussion. To gain a slightly larger perspective on this problem, it
may be beneficial to look at the results of the German Credit GIRP trees.

For the original and surrogate model of this classification problem, we observe a
Cohen’s Kappa score of 0.6964. This is lower than the score for the Portuguese Class
problem, but still indicates a “substantial” agreement between the output of the two
models [52]. Moreover, the Top1Similarity is considerably lower than for the first clas-
sification problem, but interestingly the opposite holds for the Top5Similarity, which
slightly exceeds the suggested baseline of 0.8.

Looking at the contrasting results of the two classification problems, it becomes clear
that there are different aspects to the fidelity of GIRP trees and that the importance
we ascribe to each aspect may depend on more than the TopjSimilarity and the Cohen’s
Kappa. To demonstrate, look again at the Top1- and Top5Similarity score of the German
Credit GIRP trees. The surrogate GIRP tree model and the original XGBoost classifier
do not have a very high agreement on the most important feature in a classification task.
Nevertheless, the high Top5Similarity score suggests that the most important feature for
one of the models may be the second to fifth most important feature for the other model.
Whether this is a problem for the fidelity of the results, depends on the difference in
importance contributed to that particular feature. If the feature importance values of
the five most important features from the original model are very close to each other, it
seems acceptable for the surrogate model to have a slightly different ordering of those
five most important features, as long as their actual importance values are still close
to each other. We can check whether this proposition is true, by looking at Figure 20
from the previous section. Here we see that the normalized SHAP values of the most
important features indeed lie close to each other, especially compared to those of the
Portuguese Class problem (Figure 19). With this knowledge in mind, our fidelity in
the GIRP trees does not necessarily get reduced when looking at the somewhat small
Top1Similarity score of the German Credit GIRP tree.

The measurements for the Portuguese Class trees supports the view that the
TopjSimilarity does not give a complete picture of the fidelity of the GIRP trees. The
fact that the Top1Similarity is so high and the Top5Similarity is rather low, may be
because the original model relied heavenly on the most important features and all other
features only had minor impacts on the decision. Again, this suspicion is confirmed
by looking at Figure 19, where the normalized importance value of the most important
features is much higher than any of the other variables. This, in turn, explains why the
surrogate model is less effective at highlighting the role of these less important features
and why the Top5Similarity score is on the lower side, but the Top1Similarity is so high.

Relating these findings to the third research question, there does not appear to be a
clear answer on how faithful GIRP explanations are to their original models. Neverthe-
less, our case study gives possible directions for future research. The most important
one may be, to further search for measures in which the fidelity of GIRP trees can be
understood. Especially the normalized SHAP values of the most important features can
be complementary to the already used measures. Another way to investigate the fidelity
of GIRP trees is to pay attention to the interaction of features, rather than at each fea-
ture separately. In the GIRP trees, it is very easily visualized on how the value of one
feature, can influence the impact of the value of another feature. It would be interesting
to see whether these proposed interaction effects are also present in the model the trees
originate from.

On top of that, we might need to give special treatment to potentially sensitive
variables in a black-box model. As mentioned in Section 2.1, one of the purposes of
xAI is to detect possible biases in algorithms. If a black-box model bases its output on
variables like “gender” or “nationality”, it is crucial that these are also the variables
highlighted by the surrogate model. Since the TopjSimilarity and Cohen’s Kappa score
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might still be high if these variables are not captured, it is important to find more
enhanced ways to treat these sensitive variables.

One final reason to search for alternatives for the TopjSimilarity measure is that
the calculation of the score relies on the same local feature importance values that the
generation of the GIRP tree was based on. If those feature importance values are not
faithful to begin with, the tree will be equally unfaithful, without, however, this being
reflected by the TopjSimilarity score. Thus, it would be advantageous to come up with
a fidelity measure that is not dependent on potentially inaccurate measures, like SHAP.

8 Experimentation on Explanations’ Stability

The final criterion the explanations were tested on, concerned their stability. This
criterion is also referred to as the robustness or sensitivity of explanations and is an
important quality to establish trust in them. In this section, we will discuss how the
stability of SHAP and GIRP explanations were measured and what the results imply
for the future of xAI.

8.1 SHAP - SensMax

8.1.1 Implementation

Local explanation techniques like SHAP can be called stable, if an insignificant change in
the input they need to explain, does not lead to a big change in the explanation itself. In
other words, we want the explanations for similar input instances, to be similar as well.
This intuition is captured in the SensMax score, as proposed by Yeh et al. [50]. The idea
here is to randomly add noise to an input instance x, such that the resulting instance
x′′ still lies within a given neighbourhood radius r. We can then use to explanatory
function Φ, that is meant to explain black-box model f , to generate explanations for
both x and x′′. In the case of SHAP, these explanations consist of importance values
for each feature and thus can be represented by 1-dimensional vectors. The distance
between the explanatory vectors for x and x′′ can then be calculated for all x of a test
set X. Yeh et al. propose to take the maximal brought change to an explanation, over
all instances x, as the final indicator for an explanations’ sensitivity. Thus this gives the
following equation:

SensMax(Φ, f, x, r) = max
||x′′−x||<r

||Φ(f, x′′)− Φ(f, x)|| (10)

We measured the stability of SHAP by calculating this score for the test sets of 10
different train-test-splits and then averaging this result. This was done for both the
Portuguese Class- and German Credit problem and different radius parameters. These
were set to range from 0.1 to 1.0 with increments of 0.1. This can give an idea of how
much perturbation is needed to bring bigger changes to the explanations.

8.1.2 Results

The figure below shows the SensMax value for the different radii parameters. The dark
grey line represents this score for the Portuguese Class explanations, while the light grey
line represents the stability of the German Credit explanations.
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Figure 21: The SensMax score calculated with different radii for the Portuguese Class
and German Credit explanations

Since this plot alone does not give a very clear indication of what a low or high
SensMax score implies, the figures below visualize two examples of the explanation of
an original input instance and a perturbed verison of it. Both explanations refer to the
German Credit classification problem. In figure we see the explanation for an input
instance before and after perturbation with a radius of 0.1. The distance between these
explanations, or in other words the sensitivity score, was here 0.069 and therefore quite
low. Figure 23 on the other hand shows the explanation of a heavily perturbed input
instance (radius = 1.0). Here the distance between the two explanations was observed
to be relatively high, namely 1.567.

(a) Original explanation before perturbation

(b) Explanation after perturbation

Figure 22: Explanations before and after perturbation with a low neighbourhood radius
(r = 0.1)
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(a) Original explanation before perturbation

(b) Explanation after perturbation

Figure 23: Explanations before and after perturbation with a high neighbourhood radius
(r = 1.0)

8.1.3 Discussion

Looking at Figure 21, we see that the SensMax score under different radii follows a
similar pattern for both classification problems of our study. Until a radius of 0.5,
the scores range between 0.05 and 0.25 and do not vary a lot between the different
radii. In the paper where the SensMax score originates from, only the most stable
explanatory techniques yielded this low scores [50]. Thus this is an indication that
the SHAP values for our classification problems fulfil the stability criterion. This idea
is further strengthened when looking at Figure 22. Here we see that an explanation
with a low SensMax score is indeed not affected by a small perturbation in the input it
explains. The explanations before and after perturbation of the input instance are close
to identical.

For all radii above 0.5, a drastic increase is observed in the measurement. Intuitively
this increase makes sense since some of the variables of both classification problems can
only take a very small range of values. In case of the Portuguese Class dataset, the
variable “failures” e.g. only ranges from 0 to 3, while for the German Credit dataset
the feature “Account Balance” also has a limited range from 1 to 4. Since it already
has become apparent that both variables are highly impacting for their corresponding
classification tasks, it makes sense that increasing/decreasing these feature by 0.5, can
drastically change the decision outcome and the explanation for those outcomes. Out of
this reason, it also makes sense that a higher increase for the SensMax score is observed for
the Portuguese Class explanations: in this classification problem, most of the variables
can only take a very small range of values, whereas some variables of the German
Credit task (e.g. “Credit Amount” or “Duration of Credit”) are less limited in scope
and therefore the explanations are less prone to perturbations in the data. A glance
at Figure 23 confirms the above suspicions. We see in Sub-figure 23a that the feature
value for “Account Balance” for the original input is equal to 2 (indicating that a loan
applicant had less than e0 on their account) and that this value negatively impacts the
decision to give the applicant a loan. However, in the perturbed input the “Account
Balance” takes a value of 2.746, which is much closer to the maximum value for that
feature. Here this value positively impacts the decision to give a loan. In fact, we
even see that the output of the perturbed input instance has changed. In 23a a log-
odds ratio of -0.62 was given as an output, corresponding to a probability of 0.349 of
a loan applicant receiving a loan. The output for the perturbed instance was 1.26,
indicating a substantially higher probability of 0.779 of handing out a loan. Thus, from
this perspective, it makes sense that the feature importance values change with a change
in output. Though the initial results of the stability analysis seem promising, there are
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some downsides of the used approach that need to be discussed. As might have already
been noticed by the given examples, perturbing the input instances can lead binary or
categorical variables to take on continuous values. This can make the interpretation of
the SensMax score a bit arbitrary since it is not clear what it means for a binary variable
to have a value of ’0.5’ or ’0.4’. Since the work where the SensMax score originates
from does not give any indication on how to handle these cases, they were for now not
given special attention in the analysis of the results. However, it might be worthwhile
to investigate how these cases can be handled more elegantly.

Another shortcoming of the SensMax score is that it only relies on the change in
explanation, that comes with a perturbation in the input. As already has been demon-
strated, adding noise to an input instance can in some cases change the classifier’s
prediction for that instance, indicating that the machine learning model itself is not
very stable. In those cases, it seems desirable for the explanations to reflect this in-
stability, and thus have a change in feature importance values as well [2]. To get a more
extensive view on the stability of local explanations, it would, therefore, be useful to
integrate this idea in the SensMax score.

If these issues are addressed in future work, more effort can be put in establishing
the general stability of SHAP values. Here the same recommendations hold that were
already given for assessing the fidelity of SHAP values: it needs to be investigated how
stable the results are for different classification problems, tackled by different machine
learning models. Moreover, it can be worthwhile to compare these results to the stability
of other local explanation methods, to then establish a baseline of what it means for an
explanation to be stable.

8.2 GIRP

8.2.1 Implementation

The notion of stability is slightly different for global than for local explanations. While
for local explanations it is checked how much explanations change for similar inputs, it
needs to be investigated how much global explanations depend on the data they have
been trained on. In the case of GIRP trees, this can be easily studied by comparing
trees trained on different samples of the dataset. Ideally, one would expect that if the
resulting trees are close to each other, their performances on the test set should be close
to each other as well [12]. To measure the stability of our GIRP trees were generated
them for the Portuguese Class and German Credit dataset of 10 train-test-splits. The
Cohen’s Kappa and Top5Similarity measure were taken as performance indicators. On
top of that, the number of nodes were calculated for each tree to get an idea of their
different sizes.

8.2.2 Results

In Figure 24 we visualized how Cohen’s Kappa and Top5Similarity vary for GIRP trees,
trained on different portions of the Portuguese Class and German Credit dataset. The
numbers on the data points correspond to the number of nodes in the tree.
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Figure 24: The performance measures of GIRP trees generated on training sets of 10
different train-test splits. The numbers on the datapoints correspond to the number of
nodes in the trees

To get a better idea on whether the performance measures say anything about the
nature of the trees, we visualized the tree corresponding to the lowest and highest
Top5Similarity. Figure 25 is the tree that yielded the lowest performance, with a Cohen’s
Kappa of 0.847 and a Top5Similarity of 0.572. Figure 26 on the other hand, represent
the tree with the highest Top5Similarity score of 0.76. The Cohen’s Kappa for this tree
was 0.90.

Figure 25: The GIRP tree for the Portuguese Class problem with the lowest performance
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Figure 26: The GIRP tree for the Portuguese Class problem with the highest perform-
ance

8.2.3 Discussion

Looking at Figure 24 we see that the Top5Similarity for the Portuguese Class problem
varies considerably between trees, while for the German Credit trees the Cohen’s Kappa
is quite unstable. In both cases, the worst and highest performance measure have a
difference of around 0.2. Though the Top5Similarity is more stable for the German
Credit trees and the Cohen’s Kappa is more stable for the Portuguese Class trees, both
measures can still vary up to 0.1 in the worst case. Not only the performance measures
appear to be unstable, but also the tree sizes. Depending on which sample of the dataset
the trees were based on, the biggest tree can have up to 20 more nodes than the smallest
tree. Unfortunately, there is no clear pattern on how the size of trees relates to their
performance. One might be inclined to think that bigger trees catch more details of a
decision process and therefore perform better. Another possibility might be that smaller
trees perform better because they are less over-fitted on the training data they originate
from. However, a look at Figure 24 does not confirm either of these suggestions. For the
Portuguese Class problem, the biggest tree yields one of the best performances, while
for the German Credit problem a middle-sized tree performs best. For both tasks, the
smaller trees sometimes perform quite bad, but sometimes perform above average: thus
the relationship between tree size and tree performance appears to be quite coincidental.

Altogether these results are quite alarming for the stability of GIRP trees. This is
even more so the case when looking at Figures 25 and 26. Already on the first glance, it
becomes apparent how much they differ, since one is a lot bigger than the other. But also
after a more detailed look, we see that not only their size varies but also the variables
that both trees contain. In 26 it appears that variables like “age” or “studytime” play a
substantial role in the decision process that the tree is meant to explain. Because of this,
our case study is a good demonstration of how important the stability of explanation
methods is. If users would be presented with both of the trees they would probably not
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know which one to rely on. Of course, it could be argued that one could simply present
the better performing tree to the users, but even in that case, one would not know for
sure whether the corresponding tree only performs well on the corresponding test set,
or whether it would also generalize well to other data.

With this being said there are several directions that future research about the
stability of global explanation methods can take. Given that the usability and fidelity
of GIRP explanations were quite satisfactory, it would be worthwhile to study how the
stability of this explanation method can be improved. Some ideas on how to accomplish
this have already been given by the authors who proposed GIRP [49]. They mention
that the process of determining the best splitting node while building the tree may be
arbitrary since no confidence in the split strengths (which are used to choose the next
splitting nodes) is established. By already making use of bootstrapping in the process of
building the tree, it would be possible to estimate whether the split strength of a node
is high by coincidence, or whether it is also high for other portions of the data. With
this knowledge, only nodes with high confidence in their split strength could be used to
build trees, which could result in more stable and possibly more faithful explanations
[49]. Another way of generating a more stable explanation is by averaging the trees
obtained by different train sets. Similar work has already been done for decision trees
in general, and could serve as an inspiration for this idea [39].

If it proves to be impossible to increase the stability of GIRP trees, it may be worth-
while to look more deeply into the performance of other global explanation methods. It
might be the case that surrogate models like GIRP are inherently unstable. After all,
they are meant to capture as many details as possible from a very complex model in a
simple, small one. When two surrogate models, trained on different portions of a data-
set, differ greatly from each other it might be the case that one of them simply catches
different details of a black-box model than the other one. This, in turn, would make us
believe that the models are unstable. Other global explanation methods, like the use of
partial dependence plots (see Section 2.2.2), might suffer less from this disadvantage as
they are meant to only catch information of one variable at a time in a plot. It would be
interesting to further investigate whether this more specific-oriented way of explaining
models, is less prone to instability.

If this turns out to be the case, it would, of course, be important to study the fidelity
and usability of these methods as well.

9 Conclusion

The main goal of this study was to assess how users’ understanding of AI models is
affected by the presentation of SHAP, compared to GIRP explanations or a combination
of both. SHAP is a local explanation method, where for individual input instances
importance values are assigned to every feature of that input, indicating how influential
each feature is for a decision process. GIRP, on the other hand, is a global explanation
method that tries to capture the overall decision process of a black-model in one decision
tree.

Users’ understanding of these explanation techniques was measured in a three-fold
way; paying attention to users’ objectively measured understanding, their self-rated sat-
isfaction with explanations and their ability to utilize the explanations to find bias in AI
models. It was found that the first and last aspect of understanding was more facilitated
by the presentation of GIRP explanations rather than SHAP explanations. We hypo-
thesized that this was the case because global explanations provide a more extensive
overview of an AI model than local ones, which makes it easier to derive conclusions
about them. In terms of self-rated satisfaction, SHAP explanations scored highest, pos-
sibly because they are less abstract and easier to relate to. Though individually, the
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findings make sense it was somewhat surprising that SHAP explanations were rated as
more useful than GIRP, even though the “objective understanding” measures suggest
that the opposite is the case. We explained this somewhat contradicting finding with
the Dunning-Kruger effect: humans who perform poorly on a task are often inclined
to overestimate their abilities for solving that task, which may also lead them to rate
the material provided to solve the task (in this case the SHAP explanations) as more
useful. While this effect has been observed in the context of information processing,
it has not, in our best knowledge, before been found in the context of xAI. One of
the main contributions of our study is therefore to highlight the importance of measur-
ing user’s understanding in multiple ways and to not take for granted that subjective
understanding also implies objective one.

The second main contribution of our study relates to the potential of combining
local and global explanations to facilitate users’ understanding of AI models. Despite
the findings that SHAP and GIRP are beneficial for different aspects of users’ under-
standing, combining both explanation types in the usability study did not allow users
to get the best out of both. In the first part of our usability study, we found that
SHAP explanations were preferred over the explanation-combination, while in terms of
objective understanding we observed a trend that GIRP explanations were more bene-
ficial. We ascribed these results to the possibility that combining explanations caused
information overload in users. Instead of benefiting from the different aspects high-
lighted by the local and global methods, users might have felt overwhelmed by all the
material and did not know how to process it. Interestingly, the second part of the us-
ability study suggests that the phenomenon of information overload might be reduced
by increased task relevance or motivation for the given task. In this part of our study,
users were presented with explanations generated for two AI models, that could decide
whether loan applicants at a bank get a loan or not. Being instructed to choose the
better of both models, users might have better understood the purpose and relevance
of xAI and therefore experienced less negative consequences of being presented with
both local and global explanations. In terms of objective understanding, participants of
the SHAP+GIRP condition were equally good as participants of the GIRP condition in
choosing the better model. In terms of self-rated satisfaction, no significant differences
between the SHAP and SHAP+GIRP were observed anymore and participants gave
higher usability ratings than in the first part of the survey. Thus, despite some negative
consequences of presenting two explanation types, combining different explanation types
may still be beneficial under certain circumstances.

While the main objective of our study concerned the usability of explanations, we also
put some effort into measuring their fidelity and stability. Fidelity refers to the extent
to which explanations accurately reflect the inner-workings of their original models.
Stability, on the other hand, concerns the degree to which explanations change when
being based on similar input. Both criteria are crucial qualities of explanations, after
all, an explanation that is usable but not accurate or stable should not be trusted by
users. The extent to which both criteria were fulfilled, was measured for the GIRP and
SHAP explanations generated for two classification tasks.

We measured the fidelity of SHAP, by establishing the most important features
of different input instances, and seeing how the decision process for these instances
was affected when leaving out these features. For one of the classification problems,
leaving out features with higher importance values always resulted in bigger changes
in decision outcomes, than leaving out features with slightly lower importance values.
While this finding matched the intuition of how SHAP values should behave, it could not
be replicated for the explanations of the second AI model. Thus overall, it appears that
the fidelity of SHAP values is not guaranteed to be high at all times and that we should
either understand the circumstances under which the values are faithful, or we should
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look for an alternative local explanation method. The results for the stability analysis
of SHAP were more promising. We measured stability, by adding small perturbations
to input instances and observing whether these changes lead to substantial differences
in the explanations generated for them. As desired, only big perturbations were highly
impacting for the explanations.

Concerning GIRP, we made use of the Cohen’s Kappa and the TopjSimilarity score
to measure the explanations’ fidelity to their original models. The first quantifies the
similarity between outputs of the original model and the GIRP trees, while the latter
indicates how similar the most important local features are for the decision processes of
both models. For one of the classification problems, the Cohen’s Kappa was very high
and the original model and the GIRP tree nearly always agreed on the most important
feature. However, there were more disagreements on the importance of features with
slightly lower importance ranks. The opposite was found for the second classification
problem: here Cohen’s Kappa was a bit lower, and while the original and GIRP model
did not always agree on the most important feature, there was a higher agreement on
the second to fifth most important features. Looking at these results it was concluded,
that there are different aspects to the fidelity of GIRP trees and that the aspect we find
most important, may depend on the nature of the classification problem.

Lastly, we measured the stability of GIRP by generating the explanatory trees on
different training sets of 10 different train-test splits. By measuring the Cohen’s Kappa
and the TopjSimilarity on the corresponding test sets, we observed that the performance
of the varying trees varied considerably. By also looking at the different sizes of the trees
and visually inspecting some of the results, we saw that not only the performance but
also the nature of the trees was not consistent. Altogether, these findings were not
encouraging for the overall stability of GIRP, and we advise to put efforts into either
improving this explanation method or finding a better alternative.

9.1 Future Research

Though our study has brought some new knowledge to the growing research field of xAI,
some questions remain unanswered and should be investigated further. Concerning the
usability of explanations, it should be studied whether our proposed theory about the
presentation of local and global explanations is true. More specifically, we should find
out whether users indeed perceive information overload when being presented with two
explanation types and whether this effect can be diminished by increased task relevance
or increased users’ motivation. If this appears to be the case, it would be worthwhile to
see how the presentation of the explanation methods can be made more concise, such
that no information overload occurs.

Another suggestion directly connected to this is to further increase the general us-
ability of SHAP and GIRP explanations. As discussed in Section 6.5.3 there were some
complaints that the SHAP plots and GIRP trees by themselves were not easy to under-
stand. Thus trying to identify their flaws and trying to improve them, might help in
reducing the possible information overload that might be caused when both of them are
presented.

Another area of further research does not only concern the usability, but also the
fidelity and stability of explanations. In our study, we only generated explanations for
tabular data, which is already intuitive in nature. It would be interesting to see how the
explanations behave for image or textual data, and whether the use of this data would
affect the found results for the three quality-criteria. Since SHAP values and GIRP
trees were designed to be used for any kind of classification problem, it would certainly
be possible to pay more attention to this in the future.

Lastly, it should be noted that most of the new questions opened up by this research
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concern the fidelity and stability of the used explanations. For both criteria and both
explanation types it is firstly advised to set up a baseline of what it means for local and
global explanations to be faithful or stable. As mentioned in the corresponding sections,
it might also be worthwhile to look at different measures to evaluate these criteria, as
all of them had different limitations and shortcomings. Since the stability of GIRP trees
raised the highest concerns, it is advised to try to improve this quality. If this proves
impossible, it is advised to look for a more stable global explanation method.
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Start of Block: SURVEY INSTRUCTION 

 

Dear participant,   

    

This study is conducted as a part of a Master Thesis of the study programme 'Artificial 

Intelligence' at the Radboud University Nijmegen.   

    

The research is about testing the understandability of AI-systems. 

No worries: To participate you don't need any technical background, but we do ask you to stay 

focussed while filling in the survey. It should take around 15 minutes to complete it. 

     

Please note the following points:     

• The complete survey is in English and we kindly ask you to provide your answers in 

English as well   

• During the study you can in any moment of time quit participating, without you having to 

explain why you want to quit. Quitting during the study has no consequences 

whatsoever.   

• The information that we collect will be anonymously processed. This means that later on 

the results cannot be traced back to you. The consequence of this is that we cannot 

inform you about your personal results after the study has been completed. However, we 

could inform you about the results of the study as a whole. If you wish to be informed 

about the results of this study, then please let us know.      

 

Possible questions you have as a result of this information, you can ask by sending a mail to 

d.lenders@student.ru.nl 

     

 

 

 

Finally, it is important that you fill out the survey on a laptop, computer or tablet rather than your 

phone. Can you please confirm that you are not using a phone to fill out the survey? 

o No, I'm not using a phone  

 

 

 

 

End of Block: SURVEY INSTRUCTION 
 

B Usability Survey3

3This is the survey shown to participants in the ”SHAP+GIRP” condition. According to the condi-
tion other participants were allocated in, they only got presented one of both explanation techniques.
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Start of Block: Introduction Portuguese Class 

 

Imagine that you are a researcher and you want to know which factors affect students' 

performance in school.  You visit a high school to follow a group of students who are taking a 

Maths course. There you collect data of the students and set up student profiles. These profiles 

contain information about the student's age, their gender, their past study performances and 

more. In the box below you can see how a student-profile is set up.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

At the end of the course the students have to take an exam and for each student you note down 

whether they pass or fail it. You are interested to see whether the information on the student-

profiles can help in predicting the student's performance on the exam. 

Your friend wants to help you with this and develops a computer system. This system takes a 

student profile as an input and tries to use the information in there to predict whether the student 

passes or fails the exam. Apart from that, the system also provides an explanation of how its 

predictions were derived.   

In this survey you are going to look at the explanations of the system and judge their quality. 

 

End of Block: Introduction Portuguese Class 
 
 
 

Start of Block: Portuguese Class - SHAP + GIRP 

We're now going to see how the system uses the provided student-profiles to make conclusions 

about whether students pass or fail an exam. If you are not sure about the different 

characteristics of a student profile, please refer to the box below:   

 

 

 

 

Gender—Describes the gender of the student (female/male) 

Age — Describes the age of the student (number between 15 and 22) 

Dad-edu—Describes the education level of the student’s father. It can have one of the following five values: 

None     Primary Education (4th grade)        5th to 9th grade        Secondary Education        Higher Education 

Mom-edu—Describes the education level of the student’s mother. It can have one of the following five values: 

None     Primary Education (4th grade)        5th to 9th grade        Secondary Education        Higher Education 

Past Grade — Describes the grade the student received for the first exam of the course (number between 0 and 10) 

Failures — Describes the number of times the student failed the class before (number between 0 and 4) 

Absences —Describes how many times the student was absent from school (number between 0 and 93) 

Studytime —Describes how many hours the student studied for the exam and can be one of the following values 

less than 2 hours  2 –5 hours  5 –10 hours     more than 10 hours 

External Activities — Denotes whether the external student engages in any activities outside school (yes/no) 
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The figure you see below is called a 'Decision Tree' and is meant to explain the AI-system's 

general behaviour. You can read the figure like a flowchart: you start at the top of the tree and 

go left and right according to the characteristics of the student profile. Once you have reached 

one of the blue boxes, you can see the probability of a student passing the exam.   

Please take some time to look at the tree and understand it.   

 

 

Gender—Describes the gender of the student (female/male) 

Age — Describes the age of the student (number between 15 and 22) 

Dad-edu—Describes the education level of the student’s father. It can have one of the following five values: 

None     Primary Education (4th grade)        5th to 9th grade        Secondary Education        Higher Education 

Mom-edu—Describes the education level of the student’s mother. It can have one of the following five values: 

None     Primary Education (4th grade)        5th to 9th grade        Secondary Education        Higher Education 

Past Grade — Describes the grade the student received for the first exam of the course (number between 0 and 10) 

Failures — Describes the number of times the student failed the class before (number between 0 and 4) 

Absences —Describes how many times the student was absent from school (number between 0 and 93) 

Studytime —Describes how many hours the student studied for the exam and can be one of the following values 

less than 2 hours  2 –5 hours  5 –10 hours     more than 10 hours 

External Activities — Denotes whether the external student engages in any activities outside school (yes/no) 
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Below you can see how the system reacts to two different students, Student A and Student B. 

The system predicts that Student A fails the exam, while Student B passes the exam. In the 

plots below the system's output, you can see how the system explains its decision process. For 

now you can ignore the numbers on the axis and just look at the pink and blue arrows. The blue 

arrows show which factors make the AI more inclined to say that a student fails the exam. The 

pink arrows on the other hand shows which factors make the AI more inclined to say that a 

student passes the exam. The size of the arrows shows how important these factors are for the 

final decision. 

Please take a look at the system's explanations and try to understand them. 

     

Remember: 

blue arrow - student fails exam 

pink arrow - student passes exam 

  

 

 

 
 

 

 

Based on the explanations you have seen above, you'll now be asked a number of questions to 

test your comprehension of the AI-system 
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Engaging in external activities has a big impact on the prediction of whether a student passes or 

fails the course 

o True  

o False  

 

 

If a student already failed the course before, the system is more likely to predict that the student 

will fail the course 

o True  

o False  

 

 

Which of the following characteristics seems to be most influential for the system's prediction? 

o The time spent studying for an exam  

o The student's grade for the past exam  

o The number of times a student was absent  

 

 

If the student's past grade was at least a 7, does the number of past failures still impact the 

system's prediction? 

o Yes  

o No  
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After having looked at the figures explaining the system's behaviour, please indicate how much 

you agree to the following statements 

  

 (Note: By "system explanations" we mean both the decision tree and the figures with the pink 

and blue arrows) 

 
Strongly 
agree 

Agree 
Somewhat 

agree 

Neither 
agree 
nor 

disagree 

Somewhat 
disagree 

Disagree 
Strongly 
disagree 

The system 
explanations 
were easy to 
understand  

o  o  o  o  o  o  o  

The system 
explanations 

were 
unnecessarily 

complex  

o  o  o  o  o  o  o  

It would be worth 
looking at the 

explanations to 
understand how 

the system is 
behaving  

o  o  o  o  o  o  o  

I am able to 
understand the 

explanations in a 
reasonable 

amount of time  

o  o  o  o  o  o  o  

Overall, I am 
satisfied with the 

system 
explanations  

o  o  o  o  o  o  o  
 
 

 

Can you shortly explain your answers to the previous questions? Why do you think that the 

explanations are/are not easy to understand? 

________________________________________________________________ 

________________________________________________________________ 

________________________________________________________________ 
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End of Block: Portugese Class - SHAP + GIRP 
 

Start of Block: Introduction German Credit Dataset 

 

For the remaining part of the questionnaire imagine that you work at a bank. A couple of clients 

at the bank want to apply for a loan, but the bank only wants to give a loan if they can be sure 

that the applicant will eventually pay it back. Two computer systems have been developed that 

can help you with a decision on whether a loan-applicant gets a loan or not. In order to make 

this decision the systems take characteristics about loan-applicants, like their age, current 

account balance, etc. into account.  In the box below you can see all the characteristics of a 

loan-applicant.   

 

 

 

 

 

 

 

 

 

 

 

   

    

 

 

Again, you will look at how the systems explain their decision process. Based on these 

explanations you are asked to rate which of the two computer systems should be deployed at 

your bank. 

 

End of Block: Introduction German Credit Dataset 
 

Start of Block: German Credit - SHAP + GIRP 

Age — Describes the age of the loan applicant (between 19 and 75 years) 

Credit Amount—Describes how much loan the applicant is looking for (between 250 and 18424 euro) 

Purpose—Describes for which purpose the applicant wants loan for. It can have one of the following values: 

Car   Home-related  Other 

Duration of Credit (Month) — Describes how long the applicant wants a loan for (between 4 and 72 months)  

Account Balance — Describes the current amount of money on the loan-applicants account. It can have one of the 

following values: 

No Account   Less than 0€  0-200€  More than 200€   

Credit History — Describes whether the applicant had problems before when paying off debts. It can have one of the 

following values: 

No Problems  Some Problems 

Guarantors— Describes whether the loan-applicant has a guarantor (someone who can pay of the loan, if the applicant will 

not pay it off in time) (yes/no) 

Telephone—Shows whether a telephone number is registered for the applicant (yes/no) 
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Below you can see how the two systems explain their behaviour. If you're unsure about the 

different characteristics of a loan-applicant profile, please refer to the box below:   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Remember that you can read the decision trees like a flow-chart: you start at the top of the tree 

and go left and right according to the characteristics of the loan-applicant.   

 

To understand the explanations for the different inputs, look at the pink and blue arrows. 

Pink arrows - Applicant gets a loan 

Blue arrows - Applicant doesn't get a loan   

    

System 1: 

Below you see the decision tree that explains the behaviour for System 1.   

  

  

    

 

Age — Describes the age of the loan applicant (between 19 and 75 years) 

Credit Amount—Describes how much loan the applicant is looking for (between 250 and 18424 euro) 

Purpose—Describes for which purpose the applicant wants loan for. It can have one of the following values: 

Car   Home-related  Other 

Duration of Credit (Month) — Describes how long the applicant wants a loan for (between 4 and 72 months)  

Account Balance — Describes the current amount of money on the loan-applicants account. It can have one of the 

following values: 

No Account   Less than 0€  0-200€  More than 200€   

Credit History — Describes whether the applicant had problems before when paying off debts. It can have one of the 

following values: 

No Problems  Some Problems 

Guarantors— Describes whether the loan-applicant has a guarantor (someone who can pay of the loan, if the applicant will 

not pay it off in time) (yes/no) 

Telephone—Shows whether a telephone number is registered for the applicant (yes/no) 
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Here you can see how System 1 behaves for two different applicants. 

 

 
 

 

Looking at the explanation of system 1, which of the following characteristics seems to be most 

influential for the system's decision? 

o The current account balance of the applicant  

o The duration of the credit  

o The registration of an applicant's phone number  
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System 2: 

Below you see the decision tree that explains the behaviour for System 2. 

 

 
 

 

Here you can see how System 2 behaves for two different applicants. 
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Looking at the explanation of system 2, which of the following characteristics seems to be most 

influential for the system's decision 

o The current account balance of the applicant  

o The duration of the credit  

o The registration of an applicant's phone number  

 

 

Look at the explanations of the two systems. Pay attention to the characteristics of an applicant 

they use to make their decisions. 

Which of the systems do you think has a more logical decision process and should be used by 

banks? 

o System 1  

o System 2  

o They are both equally good  

 

 

 

Can you explain your answer to the previous questions? Why do you think that one system is/is 

not better than the other? What aspects of a loan-applicant profile did you pay attention to? 

________________________________________________________________ 

________________________________________________________________ 

________________________________________________________________ 

________________________________________________________________ 

________________________________________________________________ 
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After having looked at the figures explaining the system's behaviour, please indicate how much 

you agree to the following statements 

 
Strongly 
agree 

Agree 
Somewhat 

agree 

Neither 
agree 
nor 

disagree 

Somewhat 
disagree 

Disagree 
Strongly 
disagree 

The system 
explanations 
were easy to 
understand  

o  o  o  o  o  o  o  

The system 
explanations 

were 
unnecessarily 

complex  

o  o  o  o  o  o  o  

It would be worth 
looking at the 

explanations to 
understand how 

the system is 
behaving  

o  o  o  o  o  o  o  

I am able to 
understand the 

explanations in a 
reasonable 

amount of time  

o  o  o  o  o  o  o  

Overall, I am 
satisfied with the 

system 
explanations  

o  o  o  o  o  o  o  
 

 

End of Block: German Credit - SHAP + GIRP 
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Start of Block: Demographics 

 

You've nearly made it to the end of the questionnaire! Before you're done, please answer these 

last questions 

 

What is your gender? 

o Male  

o Female  

o Other, please specify ________________________________________________ 

o I prefer not to say  

 

 

Please select your age 

o 0-15  

o 16-24  

o 25-34  

o 35-44  

o 45-54  

o 55-64  

o 65-74  

o 75+  

o I prefer not to say  

 

 

What is your nationality? 

________________________________________________________________ 
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How would you describe your English proficiency? 

o Basic proficiency  

o Intermediate proficiency  

o Advanced proficiency  

o Native/bilingual proficiency  

 

 

Please fill in your background (education/most recent field of study/most recent field of work) 

________________________________________________________________ 
 

End of Block: Demographics 
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