
Radboud University Nijmegen

Faculty of Social Sciences

Marginalizing Flows

Thesis BSc Artificial Intelligence

Author:
Stijn de Boer
s1003731

Supervisor:
dr. Luca Ambrogioni

Second reader:
dr. Umut Güçlü

Abstract

We introduce marginalizing flows, an extension to normalizing flows which allow
for better density estimation by marginaliziation of auxiliary random variables.
We give an outline of the shortcomings of normalizing flows and motivate our
approach. We trained models with an architecture based on Real NVP by Dinh
et al.[5] on several datasets. For low-dimensional data we see that marginalizing
flows consistently predict higher likelihood than normalizing flows, but our results
do not generalize to higher-dimensional data like images.

July 30, 2020

Contents

1 Introduction 1
1.1 Normalizing Flows . 2

1.1.1 Definition . 2
1.1.2 Stochastic gradient descent on the negative log-likelihood 3
1.1.3 Historical overview . 4

1.2 Marginalizing flows . 4
1.2.1 Definition . 5
1.2.2 Related work . 6

1.3 Main questions . 6

2 Methods 6
2.1 Model architecture . 6

2.1.1 Actnorm layer . 7
2.1.2 Coupling layer . 7
2.1.3 Permutation layer . 9
2.1.4 R-block . 9

2.2 Data . 9
2.2.1 Gaussian synthetic data . 10
2.2.2 Half-moons data . 11
2.2.3 Image data . 11

2.3 Training parameters . 11

3 Results 11
3.1 Synthetic Gaussian data . 11
3.2 Half moons data . 13
3.3 Image Data . 14

4 Conclusion 19

5 Future Work 19

6 Appendices 20

1 Introduction

A main objective in statistics is to model the distribution of some continuous random
variables given observed data. Ideally, a model is able to represent the target distribution
well and makes it easy to perform inference, but it is not always easy or possible to find
a simple parametric model that fits both these criteria. Much of present-day research in
statistical modeling is devoted to finding methods for approximate density estimation,
and with today’s computational possibilities, the problem of density estimation is often
rephrased as an optimization problem. Using modern methods like Normalizing Flows, it
is possible to train a model to approximate a target distribution by performing gradient
descent on the negative log-likelihood. NFs are flexible enough to come arbitrarily
close to a target distribution, and offer a mapping to a domain in which inference is
easy, such as a Gaussian distribution. These two properties make them outstanding for
approximating arbitrary probability distributions. In the next section, we will discuss
the properties of Normalizing Flows in more detail.

1

1.1 Normalizing Flows

A normalizing flow is a bijective map with the key property that the probability density
in the mapped space corresponds to the probability density in the space that is mapped
to, given a correction for the compression that happens during the transformation. In
this section we will lay out the mathematical foundation of NFs and we will give an
overview of the history and current practice.

1.1.1 Definition

Let x and u be D-dimensional vectors with x ∼ px(x) and u ∼ pu(u). A normalizing
flow T is a transformation such that

x = T (u) (1)

A visualization of the transformation T can be seen in figure 1a. What characterizes
a normalizing flow is that it connects the densities pu and px in a way that allows
evaluation of x in terms of pu, notably, without evaluation of px(x):

px(x) = pu(u)|det JT (u)|−1 where u = T−1(x) (2)

Where JT (u) denotes the Jacobian of T with respect to u. The Jacobian is a matrix
JT of partial derivatives, such that JT (u)i,j = ∂Ti

∂uj
.

As an intuition, one can think of T as moving, warping, and compressing the u-space
until the density of u in u-space matches the density of T (u) in x-space. However, as
a result of stretching and squeezing, the volume around u is compressed with a certain
factor. The Jacobian determinant expresses exactly how much the compression has
been, so to eliminate the effect of the compression, the Jacobian determinant has to be
divided out. Two requirements for T follow from 2:

1. T is differentiable

2. T is invertible

The Jacobian of T is a D-dimensional partial derivative, making the first requirement
obvious. The invertibility requirement comes from the dependency on T−1(x). Dividing
by the Jacobian determinant as in equation 2 is only possible if the Jacobian determinant
is non-zero, so that has to be forced. Invertibility follows from the inverse function
theorem which states that a continuously differentiable transformation is invertible if
it has a non-zero Jacobian determinant. Methods for constructing flows that have a
tractable inverse and an easy Jacobian determinant are a topic of main interest in the
literature.

Corrolary to 2 since T is invertible, we also have:

pu(u) = px(x)|det JT−1(x)| where x = T (u)

It is not generally feasible to find a map that can transform x to u directly, which
is why we seek to increase the expressiveness of the flows without having to define
exotic types of parametric maps. Like a composition of simple maps can overcome the
limitations of parametric maps, flows gain expressive power when they are joined in a
composition. Suppose T is a composition of N flows: T = TN ◦ TN−1 ◦ ... ◦ T0, we can
use equation 2 in the same way where we have the Jacobian determinant of T be the

2

x u

T

T−1

(a)

x u

ε δM

M−1

(b)

Figure 1: 1a represents a forward and inverse transformation on x and u respectively. Sim-
ilarly, 1b represents the operations on x when it is concatenated with some ε. Note that the
representation of u and δ is not entirely truthful, since it suggests that the two are separable
by a discrete cut. In practice, the information of u and δ can be shared accross dimensions.

product of the Jacobian determinants of its component flows, i.e.:

|det JT (u)| =
N∏
n=0

|det JTn(un)| where un = (Tn ◦ . . . ◦ T0)(u)

|det J−1T (x)| =
0∏

n=N

|det JT−1
n

(xn)| where xn = (T−1n ◦ . . . ◦ T−1N)(x) (3)

Where we applied the lemma that the Jacobian of a composite function is the product
of the Jacobians of the components1. We can force all detJTn to be non-zero, and since
det(AB) = det(A) det(B), we can invoke the inverse function theorem again and find
that the composite T meets the requirements of differentiability and invertibility. From
here on, we will no longer distinguish between flows and composite flows.

1.1.2 Stochastic gradient descent on the negative log-likelihood

A machine learning model like an NF is trained by minimizing the loss function by per-
forming gradient descent on the parameters. For many variational inference problems,
a natural candidate for the loss function is the KL-divergence, since it expresses exactly
the quantity that we want to minimize: the deviation from one distribution to another
distribution. The KL divergence between D-dimensional continuous distributions p and
q is:

DKL(p||q) =

∫
RD

p(x) log
(p(x)

q(x)

)
dx

Suppose Tφ is a flow with parameters φ. To compute the KL divergence between the
target distribution px and our flow model pTφ , we substitute and find:

DKL(px(.)||pTx (.;φ)) =

∫
RD

px(x) log
(px(x)

pTx (x;φ)

)
dx

= −
∫
RD

px(x) log(pTx (x;φ))dx+ C (4)

= −Epx log(pTx (x;φ)) + C

= −Epx

[
log
(
pu(T−1(x;φ))

)
+ log

(
|det JT−1(x;φ)|

)]
+ C (5)

1The chain rule

3

Where 4 is allowed because
∫
RD px(x) log(p(x))dx does not depend on φ. The con-

stant term introduced at 4 does not depend on φ, thus we can ignore it during optimiza-
tion. Equation 5 is obtained by substituting 2 and by observing that

|det JT (u)|−1 = |det JT−1(x)| whenever x = T (u)

Intuitively, what follows from 5 is that minimizing the KL-divergence is equivalent to
fitting the model parameters to the data by maximum likelihood estimation. Since
the KL-divergence expresses a goodness-of-fit, we can use this as a loss function, and
optimize parameters φ by stochastic gradient descent. Suppose we have observed N
data points {x1, ...,xN}, we can get an estimate of the KL-divergence (and negative
log-likelihood) by:

L(φ) = − 1

N

N∑
n=1

Epx

[
log
(
pu(T−1(xn;φ))

)
+ log

(
|det JT−1(xn;φ)|

)]
(6)

A consequence of equation 3 in the context of the loss equation 6, is that the log-product
rule allows us to sum the logs of the Jacobian determinants of all the components.

1.1.3 Historical overview

Before normalizing flows appeared, a number of popular frameworks for density esti-
mation existed. The approach of kernel smoothing techniques [15] (often mentioned in
concurrence with MCMC) is to convolute the data - or a histogram - with a parameter-
ized kernel, for example a Gaussian with variance W . The problem of this approach is
picking a good W , which is often non-trivial. Another approach to density estimation is
Gaussian mixture models [11](with the EM-algorithm on the frontline). This method is
similar to kernel smoothing in the sense that it superimposes (Gaussian) kernels over the
data, but opposed to kernel smoothing, the number of kernels is fixed, and in practice[12]
an iterative method is used to converge the kernels to the optimal configuration in terms
of means and covariances.

The inspiration for NFs came from Tabak et al., who introduced the idea of finding
an approximate map from an observed distribution to an isotropic Gaussian by gradient
ascent on the log-likelihood in[18], and coined the term normalizing flow in[17]. Notably,
Tabak provides proofs for the convergence of compositions of flows. Rezende et al.[16]
first considered normalizing flows as an inference model in the context of variational
inference[1, 2]. Since then, a lot of novel implementations have been investigated in the
literature [4, 5, 6, 8, 14]. An excellent overview of the current methods and techniques
is provided in [13].

1.2 Marginalizing flows

We have seen that NFs are in theory capable to express any mapping between distribu-
tions, but in practice it is not always possible to find a suiting parametric transforma-
tion. It has been shown that stacking multiple flows in a pipeline fashion improves the
performance of the system as a whole[16], which makes more complex transformations
possible. However, there is no real investigation into the effect of widening an NF as
opposed to lengthening it. The motivation for widening is twofold.

Firstly, not all transformations are bijections, some information can be lost during
the transformation. For instance, if u is sampled from a normal distribution, i.e. u ∼
N (0, 1), we can transform u by squaring it: x = f(u) = u2, such that x ∼ N (0, 1)2.
This transformation is non-invertible, and thus it is not possible to perfectly model this

4

transformation with an NF, since this would require the model to be non-invertible as
well, which is not allowed. The best we can do is an approximation. Suppose now we
can capture the lost information in an auxiliary variable, ε, which models the sign of
u: ε = sgn(u), such that f(u) = 〈x, ε〉. Now, an inversion is possible: f−1(u) = ε

√
x.

Aside from learning the distribution of x, we can now also learn the distribution of ε.
After learning the distribution of ε, we can marginalize ε out as follows:

p(x) =

∫
p(x, ε)dε =

∫
p(x|ε)p(ε)dε = Eεp(x|ε)

It is our hypothesis that adding an auxiliary dimension to the transformation will im-
prove the performance in terms of the likelihood of x.

The second motivation for widening flows is the Universal Approximation Theorem.
Leshno et al.[9] showed that an artificial neural network with one hidden layer containing
a finite number of neurons is capable of expressing any function, and since NFs are
commonly modeled by artificial neural networks, this result begs the question what the
effect would be of increasing the width of an NF.

1.2.1 Definition

Given a D-dimensional vector x ∼ px(x), a marginalizing flow (MF) model is a model
pMx such that pMx (x) = px(x). an MF has a number of auxiliary dimensions B, and an
underlying normalizing flow model pTy , where y ∈ RQ, Q = D +B. See figure 1b for an
illustration.

Essential to MFs is the idea of marginalization. Suppose a transformation M exists
from a Q-dimensional isotropic Gaussian to a space of which the lowest D dimensions
model some observed data, and the highest B dimensions capture the distribution of
information that was not captured in the lowest D dimensions. For example, we could
map samples from a 2-dimensional Gaussian to a space ψ where ψ0 ∼ N (01,B , I

2
B)2 and

ψ1 ∼ N (01,B , I
2
B).

We can then get a density estimate of some new observation x by

pMx (x) = pTy (x, ε) (7)

ε ∼ N (µ,Σ2)

µ = 01,B

Σ = IB

And we can acquire a Marginalized density estimate by importance sampling as follows

pMx (x) =
1

S

S∑
s=1

pTy (x, εs)

p(εs)
(8)

εs ∼ N (µ, σ2) s ∈ {1, . . . , S} (9)

µ = 01,B (10)

σ = IB (11)

Assuming that some information ε is lost during the transformation in equation 1, we
can fit the distribution of ε to the Gaussian in 8, enabling us to marginalize over ε.
Note that the choice for a Gaussian is arbitrary, we may choose to model ε by any other
distribution equivalently. The choice for the Gaussian distribution is made here because
it supports efficient sampling.

5

Fitting a marginalizing flow to data is not much different from fitting a Normalizing
flow 2. Given some observed data x ∈ RD, we concatenate it with some ε ∈ RB and train
a mapping to a D + B-dimensional known distribution. For fitting the marginalizing
flow it suffices to optimize with respect to equation 7, but it is important that every
observation x is concatenated with many different ε during training. By concatenating
every observation with many different ε and maximizing equation 7, maximization of
equation 8 is implicitly achieved.

1.2.2 Related work

Similar to marginalizing flows, Noisy Injective Flows by maaloe et al [10] introduce
marginalization over auxiliary variables to arrive at a density estimate. In contrast to
our approach, their approach is supervised in the sense that they use class labels as
auxiliary variables, wheres here we employ random auxiliary variables.

Gemici et al. [7] address the problem of density estimation on Riemannian manifolds
with non-euclidean geometry. Mappings from these manifolds to a euclidean space would
allow the use of methods like Normalizing flows, but these mappings are not generally
invertible. Gemici et al. introduce the Inverse Stereographic Transform which provide
an inverse operation from for instance a unit sphere S2 (embedded in R3) to a euclidean
space R2, allowing to apply normalizing flows on spheres by first mapping S2 to R2,
transforming the space R2 by a normalizing flow, and then mapping back to S2.

In an approach that bears some similarities to that of Gemici et al., Cunningham
et al. [3] (currently under review) provide auxiliary Deep Generative Models (ADGM),
establishing their point using a Normalizing Flow that works across dimensions. Un-
der the assumption that a low-dimensional manifold underlies higher-dimensional data,
their method first uses a bijective map from the low dimensional manifold to the high-
dimensional space, and then adds noise to the generated point. The inverse transforma-
tion that NFs require is provided by some means of marginalization, but in a different
sense than that of marginalizing flows. In MFs, the auxiliary dimensions are marginal-
ized out, whereas in ADGMs, the marginalization is done to eliminate noise as to project
an observed point on the embedded manifold.

1.3 Main questions

The main question that will be addressed here is whether MFs perform better than nor-
malizing flows. Secondly, it will be investigated whether there exists a relation between
the number of auxiliary dimensions B and the performance of the model.

2 Methods

We used the NVP architecture described by Dinh et al.[5] to model the NF underlying
the MF. We trained our models on synthetic datasets with varying characteristics, as
well as on MNIST and the half-moons dataset.

2.1 Model architecture

The NVP architecture is a repeating structure of three layers; a special type of batch
normalization called Actnorm, a coupling layer, and a permutation layer.

2This should come as no surprise, since an MF with B = 0 is an NF

6

2.1.1 Actnorm layer

In order to improve numerical stability to allow deeper models and smaller minibatches,
Dinh used a special type of batch normalization called actnorm. The actnorm layer takes

an input x and outputs u where ui = (xi−βi)
αi+γ

, with small γ > 0 to avoid division by zero.

The log Jacobian determinant is given by −
∑
i log(αi + γ), and the inverse operation is

simple, xi = (ui · (αi+γ)) +βi. It is important that every αi is positive, and in practice
we achieved this by modeling every αi by an exponential function: αi = exp(α′i). In
the first call to the actnorm transformation, the vectors α and β are initialized to the
dimension-wise standard deviation σ1 and mean µ1 of the first minibatch respectively.
This results in the aimed normalization, and causes the input to the following layer to
be numerically stable. Dinh et al. [5] also discuss improving the transformation by using
a moving average with decay η instead, where αt+1 = η ∗αt +(1−η)∗σt, and similarly
βt+1 = η ∗ βt + (1− η) ∗ µt. This is not implemented here, but it is worth to consider
as an extension to the current method.

2.1.2 Coupling layer

The coupling layer is the most important transformation in the NVP architecture, since
it supports complex non-linear interactions between variables. The coupling layer is an
autoregressive layer, which means to say that the transformation of xi to ui strictly
depends on xi and u<i. Autoregressive flows uses two types of functions, transformers
and conditioners. For every xi, the output ui is given by ci(xi, τi(u<i)), where τi is the
i’th transformer, and ci is the i’th conditioner. This transformation is invertible if the
conditioner is invertible, and the inverse can be computed in an incremental fashion:

x1 = c−11 (u1)

xi = c−1i (ui, τi(x<i)) i > 1

In other words, the transformation that is applied to the higher dimensions of x depends
on the result of the transformations on the lower dimensions of x. This simple restric-
tion makes the transformation invertible, and results in a diagonal Jacobian. MAF as
described by Papamakarios et al.[14] and NVP described by Dinh et al. represent the
two outer extremes of the spectrum of autoregressive flows. In MAF, every ui strictly
depends on xi and u<i, whereas in NVP, the lower half of the dimensions is not trans-
formed at all, and the transformations of the higher half of the dimensions depend on
all the lower dimensions, see figure 2. This means that if we transform N dimensions,
the first N/2 dimensions of u are given by the first N/2 dimensions of x, and the last
N dimensions of u are given by τi(xi, ci(u<N/2)) This results in a quick forward and
inverse operation, since both require a single application of the conditioner and a single
evaluation of the transformer(or its inverse). We use the NVP architecture, and we
model the transformer by a neural network, see figure 2. We define τi(xi, ci(u<N/2)) by
xi ∗ esi + mi where ci(u<N/2) = 〈si,mi〉. The Jacobian of this transformation is lower
triangular with only ones in the upper left diagonal, and all the esi on the lower right
diagonal. The log Jacobian determinant is thus simply the sum of all the si’s.

Neural Network As mentioned above, the transformer in the coupling layer is mod-
eled by a neural network. The structure of a coupling layer in an N -dimensional NF is
depicted in figure 2.

7

x<N/2 x≥N/2

bN2 c × 3bN2 c

ReLu

3bN2 c × 3bN2 c

ReLu

3bN2 c × 3bN2 c

ReLu

3bN2 c × 2dN2 e

sm

exp

+

×

u<N/2 u≥N/2

Figure 2: An NVP coupling layer with a simple neural network (within the red dotted box) as
the transformer. Loosely speaking, the operations within the green dotted box together make
up the conditioner. As should be clear from this diagram, the whole layer is invertible if the
conditioner is invertible.

8

2.1.3 Permutation layer

The coupling layer only transforms the first half of the dimensions, and the actnorm layer
does not allow interaction between dimensions. This implies that using only those two
layers, some dimensions would only be linearly transformed (by the actnorm layer). In
order to flexibly transform all the dimensions we need to permute the dimensions between
the coupling and actnorm layers. We implemented two types of permutation, one where
the dimensions are simply inverted, and one where the dimensions are randomly shuffled.
The specific random permutation is generated upon initialization, and is considered a
non-learned parameter. We alternated between the two types of permutation, starting
with the inverting type. This ensured that all the dimensions are transformed by one
coupling layer after two coupling layers, since all the dimensions that receive an identity
mapping in the first coupling layer are transformed by the conditioner in the second
coupling layer, and vice versa. The log determinant of every permutation layer is 0,
which should come as no surprise as permuting dimensions does not compress them.

2.1.4 R-block

In our models, the first layer is always an actnorm layer, followed by L − 1 composed
blocks of a fixed structure:

1. Coupling layer

2. Permutation layer (inversion)

3. Coupling layer

4. Permutation layer (random shuffle)

5. Actnorm layer

We will refer to this composition of five layers as an R-block. The last layer in our
models is also an R-block, but where the last two components have been omitted. We
can omit the last two layers because the actnorm and permutation layers are only used
to, respectively, ensure numerical stability in later coupling layers and to ensure that
dimensions which were not coupled in preceding coupling layers can be coupled in later
coupling layers. There are no more coupling layers after the last coupling layer in the
last R-block, so these properties are not needed.

An R-block guarantees that all dimensions are transformed by a coupling layer; a
coupling layer always non-linearly transforms the higher half of the dimensions, and the
two coupling layers are separated by a permutation layer of the kind that inverts the
order of the dimensions.

2.2 Data

To address the main question - whether MFs are able to improve density estimates by
marginalizing over auxiliary random variables - we used two sources of synthetic data.
One type of synthetic data was generated by taking samples from a Gaussian and rais-
ing them to a specified power. This allowed us to control exactly the distribution and
invertibility of the target transformation, and to address our questions with regard to
those properties. For illustration, the question whether MFs do not impair the perfor-
mance of NFs can only be conclusively addressed in the case where the transformation
that is modeled does not cause information to be lost, e.g. when the transformation is
a bijection. In addition to the Gaussian synthetic case, we also tested on the slightly
more exotic half-moons3. This data is generated by taking a uniform partition of two
1-D line segments embedded in 2-D space and adding a specified amount of Gaussian

3See https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make moons.html

9

noise. To assess our model under a ’real-world’ example, we also trained and tested on
MNIST and CIFAR-10. These datasets are well known in the scientific community and
are commonly used to assess the performance of generative and probabilistic models.
They can both be freely accessed online.

In the next sections, we provide details on the datasets, the pre-processing, and how
we constructed the models in each case.

2.2.1 Gaussian synthetic data

The Gaussian synthetic data was generated by taking ns samples from a D-dimensional
isotropic unit Gaussian with mean zero and raising every dimension to the power ψ. The
resulting distributions were used as training data for MFs with a number of auxiliary
dimensions: B. We trained models with every combination of parameters from these
ranges:

ns = 2048

D = {2, 3, 4}
ψ = {1, 2, 3}
B = {0, 1, 2, 3, 4}
r = 5

A datapoint xD,ψ is distributed by xD,ψ ∼ N (0D, ID)ψ.
We trained five separate models for each combination of parameters, leading us to

train 3 × 3 × 5 × 5 = 225 models, with a total of 75 unique configurations of data
generation parameters and model hyperparameters.

Here we go into more detail on our choice of parameters.

Dimensionality (D) Firstly, the NVP architecture requires our data to be at least
2-dimensional, which is why we only generate data with dimensionality greater than
or equal to 2. Secondly, it would be interesting to see if the number of lost bits of
information, the number of auxiliary dimensions, and the performance of the model are
correlated. Squaring more dimensions means more bits of information are lost, so we
expect to see that a larger number of auxiliary dimensions is needed to account for the
bits that are lost by squaring a larger number of gaussian dimensions.

Exponent (ψ) If the transformation between the base and the target distribution is
invertible, we expect an NF to be capable of modeling it quite well. We expect that
in that case, using an MF, and increasing the number of auxiliary dimensions of that
MF does not have a significant effect on the performance of the model - especially
in the case where the transformation is an identity mapping. In order to test this,
we transformed samples from a Gaussian with three different transformations. One of
which the identity mapping ψ = 1, one a non-invertible transformation ψ = 2, and one
a non-linear invertible transformation ψ = 3.

Number of auxiliary dimensions (B) In case MFs provides an improvement on
NFs, it is a reasonable question to ask what is the best choice for B. We do not expect
to give a conclusive answer here, but as mentioned before, we might see a correlation
between the number of lost bits of information and the optimal choice for B.

10

Data |Train set| |Minibatch| Lr # Epochs Architecture |Grad|
Synth.
Gaussian

2048 256 1E − 3 1024 1 coupling, 4
R-blocks

None

Halfmoons 2048 64 1E − 3 1024 1 coupling, 4
R-blocks

None

MNIST 60000 32 5E − 4 10 1 coupling, 4
R-blocks

0.6

Fashion-
MNIST

60000 32 5E − 4 10 1 coupling, 4
R-blocks

0.6

K-MNIST 60000 32 5E − 4 10 1 coupling, 4
R-blocks

0.6

CIFAR-10 50000 32 5E − 4 16 1 coupling, 4
R-blocks

0.6

Table 1: Training parameters. The |Grad| parameter indicates the gradient clip norm that
was applied. A gradient θ is clipped to a norm η by θ′ = η θ

|θ| .

2.2.2 Half-moons data

The procedure by which the half-moons data is generated is simple and can be found
here. We used the same range for B as for the Gaussian synthetic data, and we trained
ten models for each configuration of data-generation parameters.

2.2.3 Image data

We trained and tested on MNIST, Fashion-MNIST, and KMNIST where we first applied
a normalization on the data and then added a uniform noise sampled from [− 3

10 ,
3
10].

For CIFAR10 we only normalized the data, and did not add noise.

2.3 Training parameters

We have summarized all our training parameters in table 1. We found that a smaller
batch size was required for multimodal distributions such as the image data. For simple
monomodal distributions - i.e. the synthetic Gaussians - a smaller batch size provided
no benefit so a larger batch size was used to speed up training. For all models a
Q-dimensional isotropic Gaussian was used as base distribution, and a B-dimensional
isotropic Gaussian was used for sampling ε.

3 Results

3.1 Synthetic Gaussian data

The results on the synthetic datasets are reported in table 2 and a visualization can be
seen in figure 3. We selected the best of ten models, and we set the marginalization
parameter S from equation 8 to 200. Some important observations can be made from
the data. Firstly, we see that for all D, if ψ = 1, adding auxiliary dimensions does
not improve nor deteriorate the performance of the model. This result is reflected by
the flat lines in figure 3a. According to this result we have to draw the conclusion that
MFs do not hamper the performance of NFs in the case where any information may be
lost4. Secondly, an arguably more interesting result can be observed for the cases where
ψ > 1. In those cases the likelihood increases significantly with higher B, which can be
regarded as being in line with the speculation that the auxiliary dimensions can account
for lost information. The effect is quite drastic; the greatest numerical improvement at

4Recall that an MF with B = 0 is equivalent to an NF

11

https://github.com/scikit-learn/scikit-learn/blob/fd237278e/sklearn/datasets/_samples_generator.py#L678

ψ = 3, D = 3, with the difference between B = 0 and B = 3 there being close to π.
Interestingly though, with all other parameters equal, increasing B to 4 results in a drop
of 1.21.

ψ D B = 0 B = 1 B = 2 B = 3 B = 4

1 2 -2.5 -2.51 -2.51 -2.5 -2.51
1 3 -3.77 -3.74 -3.75 -3.75 -3.75
1 4 -4.98 -5.02 -4.98 -4.99 -5.0

2 2 -0.05 -0.16 0.15 0.24 0.21
2 3 -0.7 -0.24 -0.09 -0.04 -0.03
2 4 -0.73 -0.97 -0.49 -0.41 -0.1

3 2 0.25 0.72 1.44 1.65 2.35
3 3 -0.92 0.03 1.47 2.22 1.01
3 4 -1.48 -1.1 -0.66 -0.26 0.74

Table 2: The log-likelihood of Gaussian synthetic data as predicted by marginalizing flows.
We display the prediction of the best of 10 models for each configuration of parameters.

The positi

(a) (b) (c)

Figure 3: The data in table 2 represented as a line. The positive correlation between B and
the log-likelihood is apparent.

Generated samples are plotted in figure 4. Here too, it seems like a larger B results
in a better approximation of the target distribution.

Figure 4: Samples generated from random noise by the best of 10 models for each combina-
tion of parameters. We see that for ψ > 1, the transformation visually becomes better with
increasing B.

12

(a) (b) (c)

Figure 5: The average log-likelihood of the synthetic Gaussian data as predicted by 10 models
plotted with a shaded 95% confidence interval. Figure 5a shows that MFs do not improve on
the easy case where the target distribution is identical to the base distribution. Figures 5b
and 5c show that for the more complex cases where ψ > 1, a higher B corresponds to better
performance in terms of log-likelihood.

3.2 Half moons data

We computed the negative log-likelihood of the half-moons dataset, see table 3 and
figure 6a. Out of ten models, we took the best performing one for each B, and we
set the marginalization parameter S from equation 8 to 200. We found that there
were some cases where a model trained with a number of auxiliary dimensions yielded
no predictably better results than models trained without auxiliary dimensions. As
becomes clear from the confidence intervals, the performance of the models at any B
are quite unpredictable. It is not clear that the predicted log-likelihood improves with
higher B, which is in contrast to the results on the synthetic data where ψ = 3. Both the
half-moons data, as well as that particular synthetic data could be perfectly generated
from an isotropic gaussian through a bijective map, keeping in mind that the mapping
required to produce the half-moons data is less trivial than the mapping required to
produce the synthetic data where ψ = 3, reason being the bimodality of the half-moons
data.

B 0 1 2 3 4

Log-likelihood -0.9 -0.95 -0.89 -0.92 -0.88

Table 3: The log-likelihood of half-moons data as predicted by marginalizing flows. We display
the prediction of the best of 10 models for each B.

(a) The data in table 2 repre-
sented as a line.

(b) The mean and 95% confi-
dence interval of 10 models.

13

However, there is one advantage that the models with higher B provide. Looking at
the three left panels of image 6, we can distinguish a line of increased density connecting
the two semicircles. In the cases where B = 3 and B = 4, we see that the two modes
of the distribution are disconnected, apart from some very faint noise. Figure 14 in the
appendices sheds more light on this. The images depict generations of the models in
order of their predicted log-likelihood, with the first row giving the highest prediction,
and the last row the lowest. Not only can we see that the models where B = 0 have
failed to converge to an accurate representation of the target distribution in many cases,
it is also apparent that the model with B = 4 shows much less connectivity between
the modes than for example models B = 1 and B = 3. Strikingly, models B = 2
show a much more pleasing reconstruction than models B = 3. Because the underlying
architecture has some even splits, this might be due to symmetric properties of the
model, but one wonders if the effect disappears with higher B, or if the effect would also
occur if a different architecture is used. This all together leads us to believe that the
convergence properties of MFs are subtle.

Figure 6: Samples generated from random noise by the best of 10 models for each B. We
see that all models have converged an approximation that is visually similar to the target
distribution. However, in the generations by models with B ≤ 2 we can distinguish a line of
increased density connecting the two semicircles. This effect is not seen for models with B = 3
and B = 4. More generations can be seen in figure 14

3.3 Image Data

The results on the image were not without ambiguity. See table 4 and figures 7 and
8. We selected the best of 10 models for each B to arrive at the results in table 4 and
figure 7, and we set the marginalization parameter S from equation 8 to 100.

B 0 1 2 4 8 16

CIFAR-10 8422.63 8513.6 8505.94 8502.32 8571.83 8635.47

MNIST 126.27 145.32 137.66 119.85 129.4 128.28

K-MNIST 33.26 33.63 28.07 27.93 28.82 35.09

F-MNIST 132.82 141.58 132.22 132.62 131.13 138.14

Table 4: Results in log-likelihood on image data.

14

(a) CIFAR10 (b) MNIST (c) KMNIST (d) Fashion-MNIST

Figure 7: With the exception being CIFAR10, no predictable improvement in the negative
log-likelihood is gained by increasing B on image data.

On the CIFAR10 data, the log-likelihood appears to increase predictably as B gets
larger. The average log-likelihood as well as the confidence intervals in 8a increase
steadily with B.

On KMNIST and Fashion-MNIST, the log-likelihood at B = 1 was significantly less
than the log-likelihood at B = 0, but at B = 2, both models recovered to a performance
that was on par with models with B = 0. For regular MNIST, almost the opposite effect
can be seen; at B = 1, the log-likelihood is higher than at B = 1, and it drops again at
B = 2. Furthermore, the wide confidence intervals, and their large lateral overlaps in
figures 8b,8c and 8c suggest that the predicted log-likelihood is subject to fluctuations
of such degree that these models cannot be analyzed in such a straightforward manner.

(a) CIFAR10 (b) MNIST (c) KMNIST (d) Fashion-MNIST

Figure 8: The average log-likelihood of the image data as predicted by 10 models plotted with
a shaded 95% confidence interval.

We hypothesized that this might be due to the fact that the manifold underlying
MNIST is of a too low dimensionality for adding auxiliary dimensions to have any
effect; the 784 dimensions that MNIST were believed to five the NF enough flexibility
to model the target transformation. In figure 9 it can be seen that the first 300 principal
components of MNIST capture more than 95% of the variance. However, this speculation
was proved incorrect when the PCA of the CIFAR10 models was superimposed. We see
that the distribution of variance in the principal components of CIFAR10 is even more
skewed towards the larger PCs than that of the MNIST data. Consequently to conclude
that the skewness of the distribution of variance is not a good indicator for the efficacy
of marginalizing Flows. As an aside, PCA is a linear transformation, and the MNIST
manifold is not likely to lay in a linear space, but it is enough to show that a lower
dimensionality than the actual dimensionality of MNIST-space is enough to capture
most of the variance in it. Perhaps a nonlinear principal component analysis could
provide more insight.

15

Figure 9: The variance explained by principal components of MNIST. The first 331 PCs
explain 95% of the variance, and the first 681 PCs explain 99.9% of the variance.

To show the degree of convergence our models achieved we have included a series of
images that we generated by transforming samples from an isotropic Gaussian in figures
10, 11, 12 and 13. The image samples were generated from random noise by MFs with
B = (0, 1, 2, 4, 8, 16) for the rows respectively. The last row shows samples from the
training set.

16

Figure 10: CIFAR10

The CIFAR models provide generations in which objects can be discerned - the
coloring and the shading seems coherent and in continuity - although it is hard to tell
to which class the images belong. Although the predicted likelihood indicates auxiliary
dimensions are beneficial, it is not clear from the generated samples whether the MF’s
with a higher B produce better images than the models with low B or even with B = 0.

Figure 11: MNIST

The generated MNIST digits are generally good, and the latent classes can easily
be distinguished. There is also some variability within the classes which suggests the
models have picked up the general structure of the manifold well. As with the CIFAR
models, the auxiliary dimensions do not seem to improve on the visual quality of the
images.

17

Figure 12: KMNIST

The Kuzushiji-MNIST is composed of ten classes of cursive Japanese characters, but
those classes seem to contain a lot more intravariability then MNIST (see figure 15)
making the dataset more challenging than MNIST. The models have picked up on the
general shape of characters, but the generated samples are unclear and ambiguous. For
someone with a very limited knowledge of the Japanese language it is already non-trivial
to classify the images in figure 15, but it remains unknown whether even a native reader
would be able to make sense of many of the generated samples in 12. On this dataset
as well, there is no striking qualitative difference between the images on the first row,
and the images on the second to last row.

Figure 13: Fashion-MNIST

Models trained on Fashion-MNIST are capable of producing images which would

18

entice those with a predilection for spending lavishly on attire. Classes can easily be
distinguished in many samples, although some images are ambiguous. Qualitatively, it
appears as though the images on the sixth row are more detailed, with the dress (fifth
from the left) having clear shading, and the shoe (third from the left) seemingly showing
a line detail on the sole. These kinds of details can not be seen on the images produced
by models with lower B.

Generally, there seems to be not much visual improvement in the samples generated
by the different models. The models with higher B seem to produce images of similar
quality than models with a lower B.

4 Conclusion

For the Gaussian synthetic datasets, in the cases where ψ > 1, we saw that a higher B
consistently yielded a higher predicted likelihood, as well as a visually better approxi-
mation of the target density. This indicates that MFs may provide improvements, even
in cases where the target transformation is a bijection; i.e. for φ = 3. We also observed
that when the target transformation is trivial (i.e. the case where ψ = 1), the likelihood
predicted by marginalizing flows and normalizing flows lay very close to one another,
indicating that marginalizing flows do not necessarily perform worse than normalizing
flows.

On the half-moons data, a higher B did not predictably increase the likelihood, but
it did visually improve the approximation of the target density.

MFs do not predict a higher likelihood than normalizing flows on various versions of
MNIST data, which we believe might be due to the essential simplicity of MNIST. More
interesting results were found on data with a more complex structure; CIFAR10. There
we see that as the number of auxiliary dimensions is increased, the predicted likelihood
of CIFAR10 increases in a stable manner. Our results must all be seen in the light of
the choice of architecture; we have only used the NVP architecture here, but MFs with
a different architecture may yield different results.

All in all, our results seem to indicate that MFs outperform NFs on low-dimensional
data. However, the exact conditions under which MFs converge to a higher optimum
than NFs are subtle, and need more investigation.

5 Future Work

In our models we did not exploit the spatial properties of the image data as is done in
[5]. The convolutions and squeezing operations used there could be used as an extension
to the current method.

References

[1] David M. Blei and Michael I. Jordan. Variational inference for Dirichlet process
mixtures. International Society for Bayesian Analysis, (1):121—-143, 2006.

[2] David M. Blei, Alp Kucukelbir, and Jon D. McAuliffe. Variational Inference:
A Review for Statisticians. Journal of the American Statistical Association,
112(518):859–877, 2017.

[3] Edmond Cunningham, Renos Zabounidis, Abhinav Agrawal, Ina Fiterau, and
Daniel Sheldon. Normalizing Flows Across Dimensions. arXiv preprint
arXiv:2006.13070, 2020.

19

[4] Laurent Dinh, David Krueger, and Yoshua Bengio. NICE: Non-linear independent
components estimation. 3rd International Conference on Learning Representations,
ICLR 2015 - Workshop Track Proceedings, 1(2):1–13, 2015.

[5] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using
real NVP. 5th International Conference on Learning Representations, ICLR 2017
- Conference Track Proceedings, 2019.

[6] Conor Durkan, Artur Bekasov, Iain Murray, and George Papamakarios. Neural
Spline Flows. Advances in Neural Information Processing Systems, pages 7511–
7522, 2019.

[7] Mevlana C. Gemici, Danilo Rezende, and Shakir Mohamed. Normalizing Flows on
Riemannian Manifolds. arXiv preprint arXiv:1611.02304, pages 17–19, 2016.

[8] Diederik P. Kingma, Tim Salimans, Rafal Jozefowicz, Xi Chen, Ilya Sutskever,
and Max Welling. Improved variational inference with inverse autoregressive flow.
Advances in Neural Information Processing Systems, pages 4743–4751, 2016.

[9] Moshe Leshno, Vladimir Ya Lin, Allan Pinkus, and Shimon Schocken. Multilayer
feedforward networks with a nonpolynomial activation function can approximate
any function. Neural Networks, 6(6):861–867, 1993.

[10] Lars Maaløe, Casper Kaae Sønderby, Søren Kaae Sønderby, and Ole Winther. Aux-
iliary Deep Generative Models. arXiv preprint arXiv:1602.05473, 2016.

[11] Jean Michel Marin, Kerrie Mengersen, and Christian P. Robert. Bayesian Modelling
and Inference on Mixtures of Distributions. Handbook of Statistics, 25:459–507,
2005.

[12] Todd K. Moon. The Expectation Maximization Algorithm. IEEE Signal processing
magazine, 13(6):47–60, 1996.

[13] George Papamakarios, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed,
and Balaji Lakshminarayanan. Normalizing Flows for Probabilistic Modeling and
Inference. arXiv preprint arXiv:1912.02762, pages 1–60, 2019.

[14] George Papamakarios, Theo Pavlakou, and Iain Murray. Masked autoregressive
flow for density estimation. Advances in Neural Information Processing Systems,
pages 2339–2348, 2017.

[15] E Parzen. On the Estimation of Probability Density Functions and Mode. Annals
of Mathematical Statistics, 33:1065–1076, 1962.

[16] Danilo Jimenez Rezende and Shakir Mohamed. Variational inference with nor-
malizing flows. 32nd International Conference on Machine Learning, ICML 2015,
2:1530–1538, 2015.

[17] E. G. Tabak and Cristina V. Turner. A family of nonparametric density estimation
algorithms. Communications on Pure and Applied Mathematics, 66(2):145–164,
2013.

[18] Esteban G. Tabak and Eric Vanden-Eijnden. Density estimation by dual ascent of
the log-likelihood. Communications in Mathematical Sciences, 8(1):217–233, 2010.

6 Appendices

20

Figure 14: Generations produced by models trained on the halfmoons dataset, sorted from
best to worst performing from top to bottom.

Figure 15: The ten classes in the KMNIST dataset. The rows correspond to the classes, with
the leftmost character being the label.

21

	Introduction
	Normalizing Flows
	Definition
	Stochastic gradient descent on the negative log-likelihood
	Historical overview

	Marginalizing flows
	Definition
	Related work

	Main questions

	Methods
	Model architecture
	Actnorm layer
	Coupling layer
	Permutation layer
	R-block

	Data
	Gaussian synthetic data
	Half-moons data
	Image data

	Training parameters

	Results
	Synthetic Gaussian data
	Half moons data
	Image Data

	Conclusion
	Future Work
	Appendices

