

ARTIFICIAL INTELLIGENCE

Adapting and Employing Smart City

Sensor Data for Strategic Planning

A thesis for the degree of Bachelor of Science in Artificial Intelligence

Author: Internal supervisor:

Domantas GIRŽADAS Pim HASELAGER, PhD

(s1008829) (Radboud University, Donders Institute)

 External supervisors:

 Mariska BAARTMAN

 Sjoerd DIKKERBOOM, MSc

 Paul GEURTS, B

 Jasper MEEKES, MSc

 Arjen VERHULST, BA

 (City Council of Nijmegen)

JULY 2020

2

Abstract

Today, more and more cities are adopting the ‘smart city’ trend by deploying new smart

devices, trackers and sensors in public spaces. They gather data about the city life dynamics in

order to make city planning and maintenance more efficient and effective. However, currently,

most smart systems are heavily data-driven and require vast amounts of information for training

before they can deliver any useful insights. The focus of this study is one of the straight-forward

applications for pedestrian traffic data – building a prediction model (by using pedestrian traffic

data from the city of Nijmegen (the Netherlands)). The aim is to explore different prediction

methods: multi-layer perceptron, Gaussian process and support vector regression models,

compared to an averaging-based baseline model and find one that performs the best with only

a year or less of training data. Then, attempt to improve the applicability of that model further

with the conversion of single value prediction to a prediction range as well as applying spatial

interpolation to gain insight about unobserved areas in the city. The results show that a simple

averaging-based model performs the best, given a low complexity version of the problem (only

168 possible value combinations for the input variables), which highlights the importance of

problem analysis, while a described attempt of radial basis function interpolation of spatially

sparse observations (predictions), resulting in only very high-level insights, shows how

impactful problem representation is for the results of the system.

3

Table of contents

Abstract .. 2

Table of contents .. 3

Introduction .. 5

Problem description ... 6

Literature review .. 7

Description of the data ... 8

Behavior zones ... 9

Approaches and methods ... 10

Data pre-processing ... 12

Pedestrian count prediction models ... 14

Spatial interpolation model .. 18

Outcomes and results ... 19

Pedestrian count prediction model ... 19

Spatial interpolation model .. 21

Discussion .. 24

Applications ... 26

Conclusion ... 28

Project repository ... 29

References .. 29

Appendix .. 32

Appendix A: Data .. 32

Appendix B: Model performance .. 33

Appendix C: Map Overlay ... 33

4

5

Introduction

The concept of ‘smart city’ is growing more and more popular. Cities are implementing vast

numbers of different sensors and devices: from induction loops (for traffic light control) and

electronic terminals (e.g. parking meters) to complex systems, such as pedestrian-tracking

smart cameras. They help to utilise the power of the Internet of Things and fuel a data-driven

approach to city planning.

The task of choosing which devices to use, however, is not trivial. There are many factors to

evaluate and balance between. Today, one of the most concerning trade-off problems for smart

systems is sacrificing user privacy for improved performance and/or personalised experience

[1], [2]. Unsurprisingly, this problem becomes even more concerning when it comes to

monitoring public spaces (e.g. tracking/counting pedestrians on city streets or inside shops).

Some of the commercially available devices built for this task, have not been designed with

privacy as the first priority. These devices perform with high accuracy at the cost of privacy of

tracked subjects (e.g. Wi-Fi tracking systems that track and store subjects’ unique Wi-Fi MAC

addresses [3], which has direct links to identifying individuals in public). That is why it is very

important to evaluate each device option carefully.

The city of Nijmegen has recently expanded their toolkit with 21 computer vision-based smart

sensors by Numina [4] and deployed them around the downtown area. This company has been

chosen because of their “Intelligence without surveillance” philosophy [5]. Their sensor is

capable of anonymously discriminating between pedestrians, cyclists, cars, trucks and busses

in the field of view, while still doing it with high accuracy. This metric is measured separately

for different observation sites, but as stated by Ilan Goodman (CTO of Numina), “<…> zone

counts are usually accurate to within less than 5% [error rate].”. The anonymity is ensured by

converting the obtained images into object data by using edge processing-based classification

algorithm onboard the sensor itself and deleting the images immediately after they are

processed. An example of ‘object data’ and more details can be found in the Numina Privacy

Policy [5]. By using these sensors, the City Council of Nijmegen seeks to gain insight into the

change in numbers of the previously mentioned traffic participants throughout any specific

period. This kind of insight can aid the strategic planning of the city (e.g. highlighting

overcrowded areas to induce better crowd distribution methods) or provide potential client

estimations for the businesses of the city to help them with planning and scheduling.

6

Problem description

At the moment, the most popular methods, used for generating forecasts or gaining deeper-

level understanding (e.g. finding patterns/trends in the data or extracting relations between

observed variables), are based on machine learning or other heavily data-driven algorithms,

which require vast amounts of training data to deliver any useful insights. However, since the

‘smart city’ trend is relatively young – a lot of cities are still only considering the possible smart

device integrations – in a lot of cases, there are not much data to work with. Also, investing in

gathering data for multiple years before getting any value back from it, is a risk not many local

governments are willing to take. So, it is important to look into applications for relatively low

amounts of data and evaluate their possibilities.

The problem mentioned above gave rise to the first research question of this thesis:

1. Given a low amount of available data, what is the best approach for modelling

pedestrian traffic trends? What is the performance of this model and what are its

possible applications?

Many of these previously mentioned smart devices and trackers also have a very small

functional range (e.g. narrow field of view on smart cameras) and as a result, provide a limited

amount of insight. In the specific case of Numina sensors in Nijmegen, these data are presented

as separate traffic participant count graphs, which depict the change of these numbers at the

location of each sensor. While this knowledge is quite useful for specific locations, it does not

provide any general insight about the traffic dynamics of the city, which would be very useful

for strategic planning. A straightforward way of tackling this problem is increasing the sensor

density by installing more of them. However, if software solutions are overlooked, the available

tools are not utilised maximally, which means that the resources invested into their production

and integration are not spent efficiently. That is why it is necessary to consider, test and

evaluate a range of possible methods that would help us gain more insight from the same data.

So, the second research question of this work is as follows:

2. How to interpolate spatially sparse pedestrian count (prediction or observed) data to

get estimations for unobserved locations and visualise spatial trends of city traffic?

7

Literature review

There are numerous different approaches in the field of traffic modelling and prediction. Most

of the work seems to be focussed on short-term traffic forecasting [6]–[8] or look directly into

higher-level effects, such as travel time [9], [10]. Siddiquee and Hoque [11] have used an

Artificial Neural Network (ANN) to capture hourly traffic data patterns with promising results

(Mean Absolute Error (MAE) of 12.67%). This approach seems to have some potential in this

work as well. However, the lack of available training data might strongly affect the results of

this kind of model.

Since the values, that are to be modelled, are simple (integers, representing the number of

pedestrians in a certain time period), possible model choices are not limited to any specific

field of research. For example, predicting the amount of bus riders is a very similar problem to

pedestrian count prediction, as both values of interest are of the same format (single number,

representing the count) and are usually mostly dependent on the ‘time’ or ‘date’ variables.

Bhattacharya et al. [12] found that using a Gaussian Process Regression model works well for

predicting bus ridership, based on time variables. So, this type of model might also work in

certain cases of pedestrian traffic prediction. The types of models mentioned above (ANN,

GPR) as well as a Support Vector Regression (SVR) model (one of the most popular machine

learning algorithms) will be applied for the pedestrian count prediction problem and their

performance will be compared to a baseline – an average count model. The hypothesis is that

the results strongly depend on the complexity of the problem version – the number of input

variables, the amount of possible values for these inputs and the complexity of the trends in the

data. Because of the previously mentioned lack of available training data, the problem will

possibly need to be simplified to a point where the complex machine learning models would

not show much better performance than the baseline.

Regarding the interpolation of spatially sparse data, this problem is the most prominent in the

field of Geographic Information Systems (GIS). Here, a wide range of interpolation methods

is used to estimate both physical and socioeconomic phenomena [13]: elevations, climatic

phenomena, soil pH [14], population densities, etc. Narrowing the scope down to spatial

interpolation for traffic estimation, there is noticeably more attention towards graphical

approaches (nodes and edges representing the street network – example from the City Council

of Enschede [15] in Figure 1), such as the approach by Liebig et al. [16]. However, in this

work, only Radial Basis Function interpolation (example in Figure 2) will be discussed, as it

8

was found to perform well by Zandi et al. [14], and the results of this kind of approach for

pedestrian count estimation will be evaluated. The hypothesis for this part of the thesis is that

the chosen methods (e.g. the representation complexity of the interpolation space) will have

high impact on the results. The more detailed the input – the more precise and realistic the

output.

Description of the data

As mentioned before, data from Numina sensors [4] for both the prediction and the spatial

interpolation will be used for model training and testing. The format of these data is simple –

the Numina API [17] allows the user to make a request for the number of any type of traffic

participants (out of the five available categories: pedestrians, cyclists, cars, vans and busses),

that were detected within any time period by a certain sensor. So, these numbers are just

integers, representing the number of traffic participants within some period of time. More

details about the data used for this thesis specifically can be found in the ‘Data pre-processing’

section.

The smart sensors have not been installed in Nijmegen simultaneously. The first one started

operating early January of 2019, after which, new ones have been installed within different

time intervals. This means that the amount of available data (after data clean-up and filtering

described in ‘Data pre-processing’ section) differs for each location in the city, as seen in

Appendix A: Data. One thing that might seem unexpected in this graph is the number of

observed locations – 42, whereas it was mentioned that there are only 21 active sensors in the

city so far. This is made possible with a feature in Numina API called ‘behavior zones’.

Figure 1: Example of a graphical

representation. Source: [15]

Figure 2: Example of RBF interpolation. Source:

https://rbf.readthedocs.io/en/latest/

https://rbf.readthedocs.io/en/latest/

9

Behavior zones

Computer vision-based smart systems are state-of-the-art. They grant computers the ability to

gain a high-level understanding of images and videos. Recently, this field of research has

gained a substantial amount of attention. However, the performance of these systems is not

perfect and Numina sensors are not an exception. J. Ding [18] explains that there is quite a bit

of room for improvement in terms of accurate pedestrian tracking. There are multiple steps in

the process where problems may arise – errors in detection, classification, as well as tracking,

may lead to poor performance of the device. One of the highlighted problems is a ‘Track Break

Error’ where the track of an object moving through the field of view is mistakenly broken

(Figure 3; see the gap in the green line on the right).

Figure 3: Track Break Error. Source: [18]

This can be caused by false-negative classifications or simply by objects moving behind

obstructions (e.g. a person walking behind a billboard). The classification is completely

anonymous – classified objects are only represented as a box with a label. So, if there is a

noticeable gap in the tracked path, an algorithm that parses paths from detected points,

struggles to combine the broken track, which results in two separate paths (which counts as

two separate objects) being parsed. This means that if a Track Break Error happens within the

sensor’s field of view, one object is counted multiple times, which results in overcounting.

To tackle this problem, the developers of Numina recommended to use the ‘behavior zone’

feature of their API. This feature allows the user to make custom tracking zones within the

10

sensor’s field of view. By reducing the size of this area, the chance of a broken track is reduced

to a minimum and a better count accuracy is achieved. In addition, this feature allows to

separate the sensor’s field of view into multiple observation zones (e.g. if a sensor is observing

an intersection, it is possible to get separate observations for each path/road going in/out of the

said intersection, as illustrated by an example in Figure 4).

Figure 4: Effect of behavior zones. Source: Adapted from Numina API.

Approaches and methods

In order to make use of the data at hand, some initial analyses and pre-processing steps are

necessary. A visual analysis of the data provides general insight about the trends present in the

dataset. One important observation to make, while investigating the graphs of observations

(Figure 5), is that individual locations have unique patterns of change. This means that every

location will need a separate model to capture these unique trends.

11

Figure 5: Example of the available data

As mentioned before, different locations do not have the same amount of valid observations in

the present dataset (Appendix A: Data). This has a high impact on the choices for the pedestrian

count prediction models:

1. Since by far not all locations contain data from all of the months, including a ‘month’

independent variable in the model is not a valid option. This would leave big gaps in

the training sets, which would result in poor model performance.

2. Because of the previous point, using an independent variable ‘day’, becomes sub-

optimal as well. The ‘day’ variable alone would only be able to capture monthly trends.

However, as commonly known, traffic (pedestrian or not) usually does not follow

monthly trends at all, but rather daily, weekly and yearly ones instead.

Because of these reasons, the prediction models will be trained on two independent variables:

• Day of the week (i.e. Monday - Sunday) – the model captures weekly trends, based on

this variable;

• Hour of the day (i.e. 0-23) – the model captures daily trends, based on this variable.

These variables are not affected by the low amount of available training data anymore, as there

is a low number of possible value combinations for these variables (7 ∗ 24 = 168), even a low

amount of data can fill all of the input combinations up with many observed values for the

output.

12

Data pre-processing

Structured and clean data is important for achieving good results with a machine learning

model. First step to obtaining it was to pull the data from the Numina API in a structured way.

As explained in the previous section, ‘day of the week’ and ‘hour’ variables have been chosen

for prediction. This meant that it was necessary to gather observations that come from

timeframes that are at most one hour long. Otherwise, it would not be possible to directly match

observations with the input variables. So, the observations, pulled from the Numina API, were

aggregations of detected pedestrians within a time frame of one hour (e.g. Number of

pedestrians in location 0 between 10:00:00 and 11:00:00 – example in Figure 6).

Figure 6: Example data

Again, different locations had different amounts of available data. This meant that when all of

the data was pulled from the same interval (January 2019 – January 2020), certain locations

had a lot of invalid observations with value ‘0’ from the time points when the sensors that track

these locations were not installed yet (e.g. location 17 - Figure 7). To tackle this problem, any

observations that had the value ‘0’ continuously for 12 hours or longer were discarded from

the dataset. An example of the results can be seen in Figure 8.

Figure 7: Unfiltered data from location 17

13

Figure 8: Filtered data from location 17

Another important step is outlier detection and removal. This step is crucial for reducing the

influence of unobserved variables on the data. In this case, there was one obvious outlier in the

pedestrian traffic data – the event of Four Days Marches (high peak in Figure 9). To avoid

negative influence of this outlier on the prediction models, the interval where this obvious peak

is present, has been removed from the dataset (result in Figure 10).

Figure 9: Four Days Marches unfiltered

Figure 10: Four Days Marches filtered

14

Pedestrian count prediction models

As suggested and explained in the ‘Literature review’ section, in this work, the following

machine learning models were built and trained for pedestrian count prediction (Table 1):

1. Multi-Layer Perceptron model (an artificial neural network), inspired by Siddiquee and

Hoque [11]. Three different model architectures have been tested:

• MLP1 has one hidden layer with 24 nodes – directly inspired by the model used

by Siddiquee and Hoque [11].

• MLP2 has one hidden layer with 168 nodes – inspired by the total number of

possible value combinations for the input variables of the model.

• MLP3 has two hidden layers with 168 nodes each – similar inspiration as for

MLP2, but with a possible multi-layer effect in mind.

2. Gaussian Process Regression model, inspired by Bhattacharya et al. [12];

• The kernel chosen for this model has been inspired by the kernel used in the

example code, for the scikit-learn library [19].

3. Support Vector Regression model.

• The values for hyperparameters 𝐶 and 𝜀 have been computed by using formulas,

suggested by Cherkassky and Ma [20].

• The optimal value for 𝛾 has been found by scanning through a range of values

and evaluating the mean absolute error as well as the prediction curves

themselves. The MAE values can be seen in Figure 11. However, even though

the error values were better for 𝛾 > 0.05, with these 𝛾 values, the prediction

curves ended up not reaching the minimum value (0) as accurately, as lower

values of 𝛾 (Figure 12 and Figure 13). This results in value overestimation for

around half of the possible input combinations. As stated by my supervisors at

the City Council of Nijmegen, value underestimation is preferred to

overestimation. So, the value of 𝛾 was left at 0.05

15

Figure 11: MAE/Gamma values for the SVR model

Figure 12: Gamma = 0.05.

Figure 13: Gamma = 0.3.

Table 1: Prediction model hyperparameters

Model type Chosen hyperparameters

Multi-Layer

Perceptron

MLP1 Layers: 1 Hidden layer – 24 nodes
All other

parameters set
MLP2 Layers: 1 Hidden layer – 168 nodes

MLP3 Layers: 2 Hidden layers – 168 nodes each.

16

Gaussian Process

Regression

Kernel: C(1.0, (1e-3, 1e3)) * RBF(10.0, (1e-3, 1e3))

(inspired by the example [19]),

Optimiser restarts: 5

to ‘scikit-learn’

default values.

Support Vector

Regression

Kernel: Radial Basis Function,

𝑪 = max(|�̅� + 3𝜎𝑦|, |�̅� − 3𝜎𝑦|),

where �̅� and 𝜎𝑦 are the mean and the standard deviation of

the y values of training data [20].

𝜺 = 3𝜎√
ln 𝑛

𝑛
 ,

where 𝜎 and 𝑛 are the standard deviation and the amount

of y values in the training data [20].

𝜸 = 0.05.

The implementation of these models has been made easy by the ‘scikit-learn’ library for python

[21]. This library contains classes for all three model types as well as methods for their

evaluation (Mean Absolute Error and R2 metric calculations).

In order to appropriately evaluate the performance of these models, a baseline model is

necessary. Since the machine learning models are trained on ‘day of the week’ and ‘hour’

variables as input, a good baseline model would be one that aggregates data for each value of

these variables and gives the mean as the result (e.g. a prediction for ‘Wednesday, 11:00’ is the

mean value of all data points that come from Wednesday, 11:00 in the whole data set of each

location).

After the best-performing model has been chosen (details in the ‘Outcomes and results’

section), it has been upgraded further with incorporation of an estimated yearly trend into the

prediction process and prediction value conversion into prediction intervals:

1. The yearly trend scaling has been applied, as the original predictions are only based on

‘day of the week’ and ‘hour’ variables. This means that a prediction for a Wednesday,

10:00 in January is the same as a prediction for Wednesday, 10:00 in July. This is quite

unrealistic. So, the predictions were scaled on a yearly trend, which has been estimated

as follows:

a. As there is not enough available data for individual location trend estimation

(many locations do not have any data from multiple months), monthly averages

17

(over all locations) for hourly counts, have been collected. This way, a yearly

trend that is general to the whole city is still extracted.

b. Scaling estimates, based on discrete monthly values is not a good option, as

scaling predictions based on the month value would mean that there would be

drastic value jumps between estimations of different months. For example, a

prediction for January 31st would be quite different from the prediction for

February 1st, as the ‘January’ scaling factor is applied to January 31st and

‘February’ one to February 1st - see the difference in bar heights for ‘Jan’ and

‘Feb’ in Figure 14. That is why a smoothened trend curve is needed. It was

computed by using Radial Basis Function interpolation (implementation from

‘SciPy’ library for python [22]), applied on normalised (divided by the overall

mean) monthly values (Figure 14).

c. By using this RBF trend estimation, a unique scaling factor was extracted for

every day of the year (orange line in Figure 14).

Figure 14: Smoothened RBF monthly trend.

2. Pedestrian traffic counts are very dependent on a lot of different factors (weather, local

events, etc.), so a static model (a model which does not change the predictions, based

on recent observations) would most likely struggle to capture these fluctuant values. To

tackle this problem, a single value prediction can be converted into a prediction range.

For the prediction interval of the estimation, each prediction is extended by one

standard deviation of the data (specific to the day of the week and hour of the

prediction), in both directions. This results in the following confidence interval for the

prediction:

18

𝑃𝐼 = [𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑤𝑑,ℎ − 𝑆𝐷𝑤𝑑,ℎ, 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑤𝑑,ℎ + 𝑆𝐷𝑤𝑑,ℎ],

where: wd – day of the week,

h – hour of the day.

This interval, together with the initial prediction is presented as the result of the model

after applying this method. This means that the predictions are presented in a different

format (i.e. [min, pred, max] array), which requires a different error evaluation

method:

• When evaluating the predictions of this model, if the correct value is between

the predicted min and max values, the error of the prediction is considered to

be 0

• If the correct value is outside of the predicted interval, the error is considered

to be the absolute error between the actual value and the predicted (pred)

value.

Spatial interpolation model

In order to make a model that makes estimations for unobserved locations on the map, the

following system has been built:

1. Generating a grid of custom resolution that will be used as a representation of the area

of interest. For example, a 50x50 grid over the downtown area of Nijmegen.

2. Determining which grid cells represent observed locations (mock-up in Figure 15).

3. Setting the values of those cells to the observed (or predicted) value.

4. Estimating the values of unobserved grid cells by using two-dimensional Radial Basis

Function (from the SciPy library [22]).

5. Overlaying the fully-estimated grid with an image that blocks non-street estimations.

• This approach was suggested by Paul Geurts (City Council of Nijmegen)

and showed better readability than overlaying the full interpolated grid over

a map background (example in Figure 16).

This type of system can be used to interpolate different types of spatially sparse numeric

observations, a few of them will be discussed in the sections ‘Outcomes and results’ and

‘Applications’.

19

Figure 15: Mock-up for representation of spatially sparse data.

Source: Adapted from https://www.openstreetmap.org/.

Figure 16: 'Interpolated grid on top of the map' example.

Outcomes and results

Once the models have been built and trained, they were tested on a validation set of the data –

randomly selected observations that the models were not trained on.

Pedestrian count prediction model

The Mean Absolute Error and R2 values for all of the models seem to lie within very close and

mostly overlapping intervals (Figure 17). Nevertheless, both the highest R2 value mean of

0.722 and the lowest MAE value mean of 45.854 (Table 2) belong to the predictions, made by

the baseline model.

https://www.openstreetmap.org/

20

Figure 17: Model performance results,

(“R2” – R2, “MAE” – Mean Absolute Error)

Upon further inspection, it has been found that this model struggles to capture pedestrian

counts during peak hours (around 12:00 – 16:00), which can be seen in Figure 19 (only

comparing the two lines). Apart from that, no noticeable flaws have been found in the

predictions of the averaging-based model.

Based on these results, the best model out of the tested ones is the baseline model. This

means that the further improvements (yearly trend scaling and prediction interval inclusion)

have been applied on this model. The additional upgrades have shown the following results

(Figure 18 and Table 3):

1. Yearly trend-based daily prediction scaling only showed slight statistical

improvements over the initial baseline model. The MAE has been decreased by only

1.67% and the R2 value stayed nearly the same with only a 0.55% increase.

2. Converting the prediction into an interval seemed to have a high impact on the results.

While the R2 value did not change, the Mean Absolute Error has decreased by

45.44%. The prediction intervals have different widths at different times of the day

and days of the week (as seen in Figure 19):

• The width of the interval is high during the times when there is high variability

in the pedestrian count (e.g. the number of people in the streets at 12:00-15:00

differs a lot, based on multiple unobserved factors, such as weather, holidays,

etc.)

0

20

40

60

80

100

120

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

MLP1 MLP2 MLP3 Gaussian
Process

Regression

Support
Vector

Regression

Baseline
model

Multi-Layer Perceptron

M
A

E
V

A
LU

ES

R
2

 V
A

LU
ES

Model performance
R2 MAE

21

• The width of the interval is smaller for the predictions at times when there is

not much variability (e.g. the number of people in the streets of Nijmegen at

night does not depend on as many unobserved factors as at day, hence the

precision of the prediction is higher).

Figure 18: Additional model upgrades

Figure 19: Prediction sample from location 7

Spatial interpolation model

For demonstration purposes, the interpolation grid resolution has been set to 1600x950, as it

matches the aspect ratio and size of the overlay map image (Figure 29).

The results of the simple (grid) representation approach highly depend on all of the variables

that the system contains: radial basis function parameters (ε, smoothing factor), grid resolution,

0

10

20

30

40

50

60

With daily scaling applied Daily scaling + Confidence interval

%
 IM

P
R

O
V

EM
EN

T
(I

N
C

R
EA

SE
 F

O
R

 R
2

 A
N

D
 D

EC
R

EA
SE

 F
O

R
 M

A
E)

Additional model upgrades
R2 MAE

22

number of observed cells as well as the locations of these cells. However, based on a qualitative

visual analysis (minimising the negative effects described below), the following RBF

parameters have been chosen.

ε = 3;

smoothing factor = 5.

These values have been chosen, as they do not seem to show the following problems:

1. If the ε value is too low, the interpolated values change rapidly from location to

location (one-dimensional example in Figure 21), which is rather unrealistic in most

cases.

2. If the ε value is too high, then the interpolation values do not represent the trends well

anymore (one-dimensional example in Figure 20).

3. It is also important to find the right smoothing factor. If the value is too low – the

interpolation values will have rapid changes and be prone to overestimation (Figure

23). Also, the highly location-specific nature of the data would cause problems with a

low smoothing factor. Namely, if two very close locations have drastically different

observations, that would cause large overestimations or underestimations. Whereas if

the smoothing factor is too high, interesting trends get lost (Figure 22).

23

By using the chosen values, the final images, showing the spatially interpolated values of the

predictions, were generated (example image of the pedestrian count prediction for 2019-05-

04, 13:00-14:00 shown in Figure 24).

Figure 21: ε value is too low.

Figure 20: ε value too high.

Figure 23: smoothing factor too low.

Figure 22: smoothing factor too high.

24

Figure 24: Spatially interpolated and overlaid prediction image.

Discussion

The pedestrian count prediction performance results are quite interesting (Figure 17 and Table

2). Firstly, the performance of the baseline (averaging) model is very impressive. This model

has an average R2 value of 0.722, which means that it explains 72.2% of the variance in the

data by only taking ‘day of the week’ and ‘hour’ variables into account. Knowing that

pedestrian count data is directly linked to the highly variable crowd dynamics in the city, that

depend on a lot of different unobserved or even unobservable factors, an average MAE measure

lower than 50 is a very good result. It means that these models are, on average, only 50

pedestrians off from the real count. This error is almost negligible in most of the possible

applications for a predictive model of this type (discussed in Applications).

Meanwhile, other, complex models failed to perform better than this simple baseline model. At

first glance it might seem surprising, but the simplicity of the problem at hand (simple input

format, only 168 possible input combinations and rather basic input-output relations) explains

the poorer complex model performance, as overcomplicating problems may introduce errors

as a result of finding patterns where there are none as well as failing to converge on an

optimum, because of the large number of tuned parameters. These results highlight the fact that

machine learning is a very data-dependent field and explain the high academic, as well as

25

commercial interest in reducing the amount of data, necessary for model training. Most of the

people and companies that want to integrate machine learning into their pipelines are hoping

for quick and easy profit gain. However, they tend to underestimate the amount of training data

necessary for getting any benefit from these models. So, it is necessary to explore methods that

would reduce this amount and help machine learning gain more traction in commercial, as well

as public sector applications. At the same time, the result draws attention towards the

importance of in-depth analysis of the problem at hand before deciding on possible solutions,

especially in data-driven fields, where ‘machine learning’ and ‘AI’ are often being used as buzz

words and these models are often applied just for the sake of marketing. Of course, once the

problem grows larger and more complex (e.g. introducing weather measurements as

independent variables), the number of possible input combinations (possibly one of the most

important factors to take into account) grows at an exponential rate. Quickly, the simple

averaging model would become too difficult to manage and possibly perform worse, while

complex models would gain an edge in performance, as well as maintainability. However, the

specific details of this effect are not analysed in this work.

Regarding the additional model upgrades, in retrospect, the results were expectable. The fact

that applying an average yearly trend to these predictions did not show a significant impact is

most likely due to the uniqueness of these trends for each location. The crowdedness of some

locations is highly dependent on the time of year (e.g. locations near water or around ice cream

parlours gain a lot of popularity during summer), while others might not be affected by this

factor at all. Meanwhile, the significant error decrease after extending the prediction with a

confidence interval was to be expected as well, as the prediction range eliminates most of the

errors that are due to the variability in the data throughout the day/week. One important thing

to point out about the single value to range conversion is the “precision vs. error” trade-off. It

is possible to tweak the standard deviation multiplier of this conversion (the default is one

standard deviation). By increasing this value, one can improve the mean absolute error

performance of the model, as the prediction range would get wider. However, this means that

these predictions lose precision. Namely, one can increase the multiplier value by a lot and

reach a MAE value close or equal to 0, but at that point, the predictions are close to “0-3000”,

which does not provide any useful (precise) insight into the actual trends of traffic in the city

(example with a multiplier of 5 in Figure 25). So, it depends on the precision of predictions

that a specific application requires and a mean absolute error that this application is able to deal

with.

26

Figure 25: Predictions with 5 SD range.

With regards to the spatial interpolation model, as it heavily depends on a lot of factors that it

contains, it does not provide a very rigid tool for unobserved location estimation. The model

provides a very comprehensible colour-coded map, which visualises the general spatial trends

in the city (e.g. pedestrian traffic hotspots), but does not generate any detailed estimations with

acceptable accuracy. This is a result of the very simple problem representation (grid) that has

been chosen. With this representation, the model does not contain any information about the

street network, which means that the results are accurate only on a very high level. So, it is

recommended to use this RBF interpolation model as a visualisation tool for values in the

observed locations rather than as an estimation model for the unobserved ones. If a detailed

estimation model is required, it can be achieved by incorporating information about the street

network into the model, which can be done by making a custom kernel for the interpolation, or

simply by switching from a grid spatial representation to a graph, where edges represent the

streets (or sections of them).

Applications

The final models can be used for a wide range of applications. Only a few examples will be

given and discussed.

The pedestrian count prediction model can technically be used for any purpose that requires or

makes use of pedestrian counts and their forecasts. A basic use case would be simply predicting

the number of pedestrians in specific locations in order for businesses to estimate the number

of customers, which would provide useful information that helps with scheduling and

production planning. A more complex application for the prediction model is to use it as a

27

baseline when analysing the effect of any kind of event on the pedestrian traffic. For example,

it is possible to determine the impact of government restrictions, which started in March 2020

and were meant to combat the spread of the novel coronavirus (COVID-19) (Figure 26).

Figure 26: Coronavirus (COVID-19) restriction effects.

In the result of this analysis, we can see that the pedestrian count was already on the low end

at the start of February (possibly because of the news about the spread of the virus in certain

regions of China). We can also see that once the official government restrictions started, the

pedestrian traffic decreased rapidly (red line after 03-12 in Figure 26), dropped below the

predicted minimum and stayed around 42% (on average) below it throughout the restriction

period. These types of analyses allow the local government to evaluate the impact of certain

events as well as the effectiveness of introducing or lifting certain restrictions.

Using this model as a baseline is beneficial in terms of generalisation. One could use the data

from the previous year for this type of analysis, however, that is not always possible as that

long ago, the location of interest might not have been monitored yet. Even if the previous year

data are available, real observations are quite noisy and affected by a lot of factors, which are

not taken into account for the analyses, such as weather or local events (e.g. comparing data

from 2019 and 2020 might show a significant difference purely because the weather was

better/worse in 2019 than in 2020). By using a model that gives an average estimation, one can

reduce the impact of these unobserved variables on their analyses.

As mentioned before, the interpolation model can be used to estimate any kind of numeric

variable. For example, to find out which areas were affected by COVID-19 the most, it is

28

possible to interpolate the observed impact evaluations (the relative difference between the

average hourly count before and after the government restrictions) (Figure 27).

Figure 27: COVID-19 restriction effects mapped.

This result shows which areas had the most drastic decrease in pedestrian traffic in the city

(percentage on the scale show the percentage decrease during the restrictions). While this kind

of visualisation provides useful information for the local government about the areas that have

been affected the most or the locations that require additional effort to reduce the pedestrian

traffic, it has to be taken with a grain of salt. The relative differences are exactly what the name

suggests – relative. Even if the locations that were very crowded before the restrictions, show

a large relative decrease (e.g. the north-north-west side of the map labelled red in Figure 27) ,

it does not mean that the resulting pedestrian count is low enough for social distancing. While

areas that were already suitable for social distancing, might not show any relative decrease at

all, but actually will not require any additional effort to reduce the number of pedestrians any

more (e.g. grey area in the south side of the map in Figure 27) . So, it is important to treat this

type of result as a relative impact evaluation rather than an absolute location quality metric.

Conclusion

The aim of this thesis was to answer the following questions:

1. Given a low amount of available data, what is the best approach for modelling

pedestrian traffic trends? What is the performance of this model and what are its

possible applications?

29

2. How to interpolate spatially sparse pedestrian count (prediction or observed) data to

get estimations for unobserved locations and visualise spatial trends of city traffic?

After multi-layer perceptron, gaussian process regressor, support vector regressor models have

been build, trained, tested and compared to a baseline averaging model, it was found that it is

indeed possible to model pedestrian traffic with high accuracy (MAE lower than 50 – the

predictions are less than 50 pedestrians off on average), even without having a vast amount of

available data. However, the prediction model results highlight the importance of problem

analysis, as the simple baseline model showed better results than the more complex machine

learning models. This predictive model can be used for a wide range of applications that make

use of pedestrian count data, such as customer number prediction for business planning or

analysing the effect of certain events in the city.

In this work, radial basis function spatial (2D) interpolation has been tested. It provides a good

visualisation of very high-level spatial trends in the city, but does not have the necessary street

network knowledge to show detailed unobserved location estimates with acceptable precision.

This model can be used to visualise the general spatial distribution of any type of measurement

in the city. However, in order to accurately estimate values that are influenced by the city

environment (e.g. pedestrian traffic is limited by the street network, obstacles, etc.), more

complex models, which incorporate these variables into account (e.g. a graph representation of

the street network), are recommended.

Project repository

The final version of the complete pedestrian count prediction and interpolation system, built

for this thesis is available on GitHub: https://github.com/dgirzadas/Pulse-of-the-City [23]. It is

implemented in Python 3 and published under the MIT license.

References

[1] O. J. Postma and M. Brokke, “Personalisation in practice: The proven effects of

personalisation,” J. Database Mark. Cust. Strateg. Manag., vol. 9, no. 2, pp. 137–142,

2002.

[2] J. E. Phelps, G. D’Souza, and G. J. Nowak, “Antecedents and consequences of consumer

privacy concerns: An empirical investigation,” J. Interact. Mark., vol. 15, no. 4, pp. 2–

17, 2001.

[3] “Autoriteit Persoonsgegevens,” Dutch DPA investigates WiFi tracking in and around

https://github.com/dgirzadas/Pulse-of-the-City

30

shops, 2015. [Online]. Available: https://autoriteitpersoonsgegevens.nl/en/news/dutch-

dpa-investigates-wifi-tracking-and-around-shops. [Accessed: 08-May-2020].

[4] Numina, “Numina | Know Your Streets.” [Online]. Available: https://numina.co/.

[Accessed: 05-Mar-2020].

[5] Numina, “Numina.co,” Our Privacy Philosophy, 2019. [Online]. Available:

https://numina.co/our-privacy-principles/. [Accessed: 08-May-2020].

[6] W. Zheng, D.-H. Lee, and Q. Shi, “Short-term freeway traffic flow prediction: Bayesian

combined neural network approach,” J. Transp. Eng., vol. 132, no. 2, pp. 114–121, 2006.

[7] R. Fu, Z. Zhang, and L. Li, “Using LSTM and GRU neural network methods for traffic

flow prediction,” in 2016 31st Youth Academic Annual Conference of Chinese

Association of Automation (YAC), 2016, pp. 324–328.

[8] M. Castro-Neto, Y.-S. Jeong, M.-K. Jeong, and L. D. Han, “Online-SVR for short-term

traffic flow prediction under typical and atypical traffic conditions,” Expert Syst. Appl.,

vol. 36, no. 3, Part 2, pp. 6164–6173, 2009.

[9] C.-H. Wu, J.-M. Ho, and D.-T. Lee, “Travel-time prediction with support vector

regression,” IEEE Trans. Intell. Transp. Syst., vol. 5, no. 4, pp. 276–281, 2004.

[10] J. Kwon, B. Coifman, and P. Bickel, “Day-to-day travel-time trends and travel-time

prediction from loop-detector data,” Transp. Res. Rec., vol. 1717, no. 1, pp. 120–129,

2000.

[11] M. S. A. Siddiquee and S. Hoque, “Predicting the daily traffic volume from hourly traffic

data using artificial neural network,” Neural Netw. World, vol. 27, no. 3, p. 283, 2017.

[12] S. Bhattacharya, S. Phithakkitnukoon, P. Nurmi, A. Klami, M. Veloso, and C. Bento,

“Gaussian process-based predictive modeling for bus ridership,” in Proceedings of the

2013 ACM conference on Pervasive and ubiquitous computing adjunct publication,

2013, pp. 1189–1198.

[13] L. Mitas and H. Mitasova, “Spatial interpolation,” Geogr. Inf. Syst. Princ. Tech. Manag.

Appl., vol. 1, no. 2, 1999.

[14] S. Zandi, A. Ghobakhlou, and P. Sallis, “Evaluation of spatial interpolation techniques

for mapping soil pH,” 2011.

[15] “Binnenstadsmonitor Enschede.” [Online]. Available:

https://www.binnenstadsmonitorenschede.nl/druktebeeld-straten. [Accessed: 04-Jun-

2020].

[16] T. Liebig, Z. Xu, M. May, and S. Wrobel, “Pedestrian quantity estimation with trajectory

patterns,” in Joint European Conference on Machine Learning and Knowledge

Discovery in Databases, 2012, pp. 629–643.

[17] Numina, “Numina | API.” [Online]. Available: https://numina.co/api/.

[18] J. Ding, “Defining Accuracy for Street-Level Mobility Data,” Defining Accuracy for

Street-Level Mobility Data, 2020. [Online]. Available:

https://medium.com/numina/defining-accuracy-for-street-level-mobility-data-

895c1da45986. [Accessed: 23-Apr-2020].

[19] “Gaussian Processes regression: basic introductory example.” [Online]. Available:

https://scikit-

learn.org/stable/auto_examples/gaussian_process/plot_gpr_noisy_targets.html#sphx-

glr-auto-examples-gaussian-process-plot-gpr-noisy-targets-py. [Accessed: 19-May-

31

2020].

[20] V. Cherkassky and Y. Ma, “Practical selection of SVM parameters and noise estimation

for SVM regression,” Neural networks, vol. 17, no. 1, pp. 113–126, 2004.

[21] F. Pedregosa et al., “Scikit-learn: Machine learning in Python,” J. Mach. Learn. Res.,

vol. 12, pp. 2825–2830, 2011.

[22] P. Virtanen et al., “SciPy 1.0: fundamental algorithms for scientific computing in

Python,” Nat. Methods, vol. 17, no. 3, pp. 261–272, 2020.

[23] D. Giržadas, “Pulse of the City,” 2020. [Online]. Available:

https://github.com/dgirzadas/Pulse-of-the-City. [Accessed: 01-Jul-2020].

32

 Appendix

Appendix A: Data

Figure 28: Amounts of available data after filtering

7920

8376

5004

2832

5736

2868

8220

2868

8508

2868

8376

8400

5184

2844

8376

2628

4176

2832

2832

8508

8508

8364

8376

2640

2628

2640

5064

8076

8064

4152

2832

2832

2832

2832

2832

2832

4980

4968

8376

8376

2832

2808

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Location 1

Location 2

Location 3

Location 4

Location 5

Location 6

Location 7

Location 8

Location 9

Location 10

Location 11

Location 12

Location 13

Location 14

Location 15

Location 16

Location 17

Location 18

Location 19

Location 20

Location 21

Location 22

Location 23

Location 24

Location 25

Location 26

Location 27

Location 28

Location 29

Location 30

Location 31

Location 32

Location 33

Location 34

Location 35

Location 36

Location 37

Location 38

Location 39

Location 40

Location 41

Location 42

Amounts of available data

from 2019-01-11 to 2020-01-11

after filtering

(in hours)

33

Appendix B: Model performance

Table 2:Model performance

Model Average R2 value Average MAE value

MLP1 0.561 75.975

MLP2 0.588 69.309

MLP3 0.624 59.993

Gaussian Process Regression 0.672 50.027

Support Vector Regression 0.669 53.149

Baseline model 0.722 45.854

Table 3: Additional model upgrades

Model type Average R2 increase (%) Average MAE decrease (%)

With daily scaling applied 0.55401662 1.674881145

Daily scaling + Confidence interval 0.55401662 45.43551271

Appendix C: Map Overlay

Figure 29: Map overlay. Source: Adapted from mapstyle.withgoogle.com

https://mapstyle.withgoogle.com/

