
Fault tolerance of cooperative and competitive

coordination strategies in distributed information

processing systems

Gajus Richard Dirkzwager
gdirkzwager@gmail.com

Radboud University Nijmegen

Supervisors: dr. Ida Sprinkhuizen-Kuyper and dr. Paul Kamsteeg

June 20, 2012

Abstract

In this study we employ cellular programming to design both cooper-
ative and competitive mechanisms that coordinate social interactions be-
tween computational units in distributed information processing systems.
Through a series of experiments based upon computer simulations, it is
argued that units supplied with a healthy amount of competitive attitude
towards one another are beneficial for the robustness of the system as a
whole. Moreover, we argue cooperative coordination mechanisms are only
stable when we can rely on the structural integrity of all computational
units in the system.

Keywords: Evolution of Cooperation, Iterated Prisoners Dilemma, Multi-
Agent Systems, Cellular Programming, Cellular Automata, Genetic Algorithms,
Parallel Computation.

1

Contents

1 Introduction 4

2 Methods 5
2.1 The Cellular Automata (CA) Model 5

2.1.1 Cellular Programming (CP) 9
2.1.2 Evolutionary Design . 11

2.2 Conditions . 14
2.3 Experiment . 15

2.3.1 Initial Conditions . 15
2.3.2 Training . 16
2.3.3 Testing . 19

3 Results 19

4 Discussion 21
4.1 Conclusion . 21
4.2 Future Research . 22

5 References 23

2

List of Figures

1 Conway’s Game of Life. Green: Gun. Yellow: Glider. Red:
Spaceship. Violet: Reflector. Blue: Eaters. 6

2 CA 5-Cell neighbourhood . 7
3 NESW555 after a simulation of 200 epochs 8
4 CP 5-Cell neighbourhood . 10
5 Typical Subjects. On the left hand side a competitive system

where defecting cells occupy most of the space, on the right
hand side cooperating cells dominate. Light Green: Operational-
Cooperate. Dark Green: Vacant-Cooperate. Light Red: Operational-
Defect. Dark Red: Vacant-Defect. 16

6 Simulation console. On the left hand side a graphic visualisation
of a system. On the right hand side the system monitor which
allows to observe different variables. 17

7 Example of two consecutive points in time. Left t=x where the
central cell is surrounded by two cooperating cells and two de-
fecting cells. Right, t=x+1 where the central cell is surrounded
by one defecting cell and three cooperative cells. 18

8 Subject group A: Competitive system. On the horizontal axis the
time or number of generations that have elapsed. On the vertical
axis the degree of coordination which is measured in the group
at that particular point in time. 20

9 Subject group B: Cooperative system. On the horizontal axis the
time or number of generations that have elapsed. On the vertical
axis the degree of coordination which is measured in the group
at that particular point in time. 20

3

1 Introduction

Many modern day computing systems and information environments are dis-
tributed. For example, connected to the Internet, a computer has access to an al-
most unimaginable playground of information and resources scattered through-
out the world. In fact, “distributed computation has become the dominant
computational paradigm today” (Weiß, 1999).

Compared to centralised computing systems, distributed computing systems
have a number of advantages. For example, as the number of computational
elements which combine forces increase, so does the capacity to process infor-
mation. In addition, distributed systems are also renown for their ability to
perform in an acceptable manner while operating under faulty conditions (Sip-
per, 1997). Also, the development and maintenance of the increasingly complex
computer systems and their applications can be constrained by breaking up
systems into manageable parts.

It is also obvious that the lack of a central authority considerably compli-
cates matters on a number of important issues. For example, it is not all that
clear how to express computational tasks to a distributed collection of infor-
mation processors. In many cases, decomposing problems into convenient parts
requires at least some broad knowledge of the problem. This disagrees with the
very nature of these systems as no computational unit has complete knowledge
of the problem. A similar complication arises during assembly of an overall
solution from sub-problems solved by individual computing elements. Between
decomposing a problem and finding its solution lies yet a third challenge: how
to coordinate the problem solving activities of individual processors in an ef-
ficient manner. According to Weiß(1999), “Two basic contrasting patterns of
coordination are cooperation and competition. Cooperation involves working
together by sharing knowledge and resources in order to achieve a common
goal. In contrast, competition involves rivals in pursuit of a common goal. Co-
operating computational elements try to accomplish as a team what individuals
cannot, and so fail or succeed together. Competitive computational elements
try to maximise their own benefit at the expense of others, and so the success
of one implies the failure of others”.

So what does this failure of others imply when in the future, computing sys-
tems may contain many computational elements. For systems containing such
a large number of components, the issue of resilience can no longer be ignored
since failure will be likely to occur with high probability (Sipper, 1997). Be-
cause computing elements which apply cooperative mechanisms to coordinate
their activity depend on others, failure is likely to cause less harm in systems
where computing elements apply competitive mechanisms to coordinate their
activity. In short, our study is motivated by the following question:

Is fault tolerance of distributed processing systems which coordinate interactions
amongst computational elements through competitive mechanisms better, com-
pared to fault tolerance in distributed processing systems in which interactions
between computational elements are coordinated by cooperative mechanisms?

4

To be able to investigate this question, we need two different types of dis-
tributed information processing systems which we can subject to various degrees
of damage: one system in which coordination of interactions between individual
computational units is accomplished through competition, the other in which
coordination of interactions between individual computational units is accom-
plished through cooperation. By causing damage to the systems and then mea-
suring which mechanism is more successful in coordinating interactions between
processor units we can determine which type of system maintains its identity
better under faulty conditions.

In the following sections, we will outline the methodology being used in this
study. Next, the discussion will focus on the experimental setup. Finally the
results and conclusion are discussed.

2 Methods

To be able to test our hypothesis, we need to decide upon a number of impor-
tant issues. First we need to choose a computational model to represent the
class of distributed information processing systems. Second we need to decide
upon how to model cooperative and competitive behaviour. Third, we need to
define the type of damage we afflict on the systems. Finally, we need a measure
of how well (or poor) units in a system are able to coordinate their interactions
with other units.

2.1 The Cellular Automata (CA) Model

A number of distributed information processing models qualify as suitable rep-
resentatives. The most obvious candidates are the connectionist networks (CN),
for example the interactive activation and competition model. To model coop-
eration for example, we could use excitatory connections between (groups of)
neurons. Competition could then be modelled using inhibitory connections be-
tween (groups of) neurons. CN also display graceful degradation of performance
when confronted with noisy input or erroneous operation of neurons. A major
drawback of using this method is that it is difficult to determine precisely when a
neuron is cooperative and when it is competitive as these values are measured on
a continuous scale. We wish to use discrete representations of cooperative and
competitive behaviour. Another drawback is that it seems reasonable from the
human psychological perspective to understand cooperation as excitation and
competition as inhibition, just like humans associate loud sounds with height,
in nature this need not necessarily be true. In addition neurons that release
neurotransmitters can have excitatory effects on some neurons and inhibitory
effects on others. For this reason CN are less suitable.

An alternative candidate model for distributed information processing is grid
computing. The best known example of grid computing is the Search for Extra

5

Terrestrial Intelligence or SETI project which uses computational resources from
computers all over the world to search for intelligent radio signals from outer
space. The problem with grid computing is however, that generally speaking
grids still need a central authority to divide a problem into pieces and allocate
different computational resources. Each resource is provided with a piece of
the problem so that interaction between resources is minimised. So, although
each computational resource is autonomous when it comes down to solving its
own piece of the problem, the central authority is responsible for coordinating
interactions amongst computational units. This makes these systems highly
vulnerable to damage.

Cellular Automata (CA) represent a third general class of computational
models in which distributed information processing occurs in parallel amongst
autonomous processors. CA represent a viable model for a number of different
reasons. First, CA provide a highly abstract discrete and simplified representa-
tion of reality, this allows us to simulate and visualise various systems and their
components with very limited means. Second, CA support universal computa-
tion, this makes our model extremely powerful. For these reasons we intend to
use CA as representative for the class of distributed information processors.

The earliest study of CA can be traced back to John von Neumann and his
work on self replicating machines during the 1940s. The details were published
after his death in the book Theory of Self-Reproducing Automata edited in
1966 by Arthur Burks (von Neumann and Burks, 1966). CA gained widespread
popularity amongst the general public through a column by Martin Gardner
(1980) in Scientific American who reported on the work of the Mathematician
John Conway and his Game of Life.

Figure 1: Conway’s Game of Life. Green: Gun. Yellow: Glider. Red: Spaceship.
Violet: Reflector. Blue: Eaters. 1

It is difficult to captivate the true beauty of this automaton in one single

1http://en.wikipedia.org/wiki/File:Color coded racetrack large channel.gif

6

image. Figure 1 does however give a good impression of how we can imagine a
CA. Traditionally processors are referred to as cells. Cells are usually aligned
on a one or two dimensional array, but any finite number of dimensions are
possible. At any point in time, each cell can be in one of a finite number of
different states. In the Game of Life, there are two states, “alive”, white or
“dead”, black (the different colours in the image simply identify the different
“alive” forms). The state of a cell at t + 1 is determined by the current states
of the other surrounding cells, and possibly its own.

Often, the function that maps states from one point in time to the next is
referred to as the neighbourhood transition function or neighbourhood function.

N
W E 7→ C’

S

Figure 2: CA 5-Cell neighbourhood

Figure 2 shows a neighbourhood of five cells. The central cell and four other
cells to the north, east, south and west. In the Game of Life for example the
neighbourhood function can be characterised as follows:

• Each live cell with two or three live neighbours stays alive, otherwise it
dies.

• Each dead cell comes to life with exactly three live neighbours.

Figure 3 shows an example of a CA which we will refer to as NESW555.
The first part of its name comes from its four cell neighbourhood. The second
part refers to the decimal representation of its binary rule: 0000001000101011,
see Table 1 below. Depending on the states of cells to the north, east, south
and west, each central cell can be in one of two states. Like the Game of Life,
in NESW555 in Figure 3 each cell contains the same rule, or put differently,
applies the same neighbourhood function. This situation is called a uniform
CA. When cells contain different rules we refer to the CA as non-uniform.

7

Figure 3: NESW555 after a simulation of 200 epochs

We can also represent the neighbourhood function of CA NESW555 more
formally using a rule table.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Nt 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
Et 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0
St 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0
Wt 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

Ct+1 0 0 0 0 0 0 1 0 0 0 1 0 1 0 1 1

Table 1: Bottom row shows the rule NESW555. The top 5 rows showing the
binary and decimal representations of neighbourhood configurations that map
towards a particular bit in the rule.

Table 1 shows how the state of a cell at the next point in time, Ct+1, corre-
sponds to the configuration of the neighbouring states Nt, Et, St and Wt at this
point in time. So for example, Ct+1 will be 1, or “alive” only when Nt, Et, St

and Wt are either (1,0,0,1), (1,0,1,0), (1,1,0,0), (1,0,0,0) or (0,0,0,0). Periodic
boundaries are used such that cells at opposite ends of the grid are neighbours
of each other. This creates a toroidal grid, somewhat like a donut.

8

One of the main problems computer programmers run into when dealing with
distributed computation, is how to control the global behaviour of the system
with instruction sets that provide only local operators. A simple calculation

shows one can construct 2(2
4)

2500
different CA from a grid containing 50 ∗ 50

cells with a neighbourhood of 4 and each cell allowed to be in one of two possible
states. To program each cell individually is an impossible task for any human
programmer. To design global behaviour of a CA from the bottom up, we need a
different approach. For this reason we will take a look at Cellular Programming
which we will discuss in the next section.

2.1.1 Cellular Programming (CP)

According to Talia (2003), “it is better to design emergent systems by means of
paradigms that allow for expressing the behaviour of the single simple elements
and their interactions. The global behaviour of these systems then emerges from
the evolution and interaction of a massive number of elements; hence it does not
need to be explicitly coded”. With this in mind we shall apply the framework of
CP presented by Moche Sipper (Sipper, 1997) which involves designing parallel
cellular machines through the application of artificial evolution to solve global
computational problems.

When compared to the classic CA model, the extended model by Sipper has
a number of important differences. First and foremost: not all cells have to
be operational. Some cells my be vacant meaning they contain no rule table
and can be regarded as empty or inactive. This means that instead of one, we
need two bits to characterise a cell. One bit representing the state of a cell: 0
for defect, 1 for cooperate. The second bit representing the mode of a cell: 0
for vacant and 1 for operational. Although the term “alive” and “dead” might
suggest cells in the Game of Life may be either vacant or operational, there is
no concept of mode. In the Game of Life, “alive” and “dead” are simply labels
invented to describe different states.

Another important difference is that cells are not only able to change their
own state, but also the state of neighbouring cells. This means one cell can
force one of its neighbours to defect or cooperate the next point in time. A
third important difference is that different rules can spread throughout the CA
because operational cells are able to “wake up” or “bring to life” vacant cells
by copying their rule table into the vacant cell. This then changes the mode of
a cell from vacant to operational. Cells cannot change the mode of other cells
from operational to vacant.

To summarise, a cell maintains both a state and a mode. A state refers to
a cell’s disposition towards other cells. Defect as a negative disposition toward
working together with other cells, and cooperate as a positive disposition to-
ward working together with other cells. A mode refers to a cell’s operational
capability, vacant when a cell contains no rule table and as such has no direct
influence on the behaviour of other cells, operational when a cell does contain
a rule table which allows it to interact and directly influence the behaviour
of other cells. Compared to the classic CA model, cells can also be regarded

9

as more active because they can directly influence the state of other cells and
indirectly influence the mode of other cells.

N N’
W C E 7→ W’ C’ E’

S S’

Figure 4: CP 5-Cell neighbourhood

Figure 4 shows how the neighbourhood function of the CP model relates to
a state of a cell and that of the other cells surrounding it. The neighbourhood
function does not take into account the mode of other cells, of course it would
be interesting to extend the model of Sipper to study the effect this has. The
neighbourhood consists of a total of 25 = 32 different configurations which are
mapped upon a rule table containing between 1 and 32 different rules, each rule
gi containing a series of 5 ∗ 2 = 10 instructions: two bits for each cell in the
neighbourhood. A “state change” bit Sx which specifies the state the respective
cell becomes the next point in time, and a “copy rule” bit Cx which specifies if
the cell wants to copy its entire rule table into another cell (or itself of course).
In addition, cells may contain different rules which means the CP model is a
non-uniform CA.

To better understand how the neighbourhood function operates, we adopt
some notation from Sipper.

CNESW ⇒ ZCZNZEZSZW (1)

Where CNESW represents the neighbourhood configuration and Zx = (Sx, Cx), x ∈
{C,N,E, S,W}.

gi - rule i where i corresponds to the decimal representation of the binary
configuration of states in the neighbourhood in the order CNESW . Thus,
neighbourhood configuration 01111 corresponds to g15. In contrast to the
CA in Figure 3, each of the 25 = 32 different neighbourhood configurations
can map to a different rule. In total there are 2(5∗2) = 1024 different
rules that can be expressed by being associated to one of the 32 different
neighbourhood configurations. This means that besides each cell being
able to contain a different rule table, each of the 32 different configuration
of states in the neighbourhood can lead to the expression of a different
rule.

Sx - state-change bit, where x ∈ {C,N,E, S,W} denotes one of the five neigh-
bours. This bit specifies the state change to be effected upon the appro-
priate neighbouring cell. For example, SE = 0 means “change the east
cell’s state to defect”. When SC = 1 the bit means “change the central
cell’s state to cooperate”. State changes can be effected by operational
cells on both operational and vacant cells.

10

Cx - copy-rule bit, where x ∈ {C,N,E, S,W} denotes one of the five neigh-
bours. This bit specifies whether or not an operational cell has to copy
its entire rule table into cell x. It is important to note the difference in
semantics compared to the Sx bit. Where the Sx bit has a direct influence
on the state of cell x, the Cx bit can only indirectly influence the mode
of vacant cells which changes to operational when a rule table has been
received. When a rule table is copied into an operational cell, this cell
remains operational.

Because the CP framework operates on a five cell neighbourhood function, it
becomes impractical to visualise the rule table in a manner similar to Table 1. In
practice, there are only two important differences. First, the rule table consists
of not 16 but 32 different configurations. Thus, there are 32 columns indexed by
the binary configuration of states CNESW , each column gi representing one
of the 1024 rules. Second, instead of the neighbourhood function mapping on a
one-bit action specified in the Ct+1 row of Table 1, the neighbourhood function
of the CP model maps towards a ten-bit action specifying ZCZNZEZSZW . This
gives us a rule table of 32 columns wide and 10 rows high where each column
specifies rule ZCZNZEZSZW .

There is the possibility for contention to occur when two or more cells try to
copy their state or rule table into a third cell. This situation is resolved by the
cell that is subject of the dispute by appointing randomly one of the contenders
(possibly itself).

2.1.2 Evolutionary Design

In an investigation into the social structure of territoriality by Axelrod, a CA
was constructed with help of experts in game theory from around the world
who submitted a computer program which plays the Iterated Prisoners Dilemma
(IPD) (Axelrod, 1984). Each program was assigned randomly to a number of
different cells. Each iteration, a program attains a success score measured by
the average payoff against its four neighbours. Then, if a program has one or
more successful neighbours, the program converts to a more successful program
occupying one of its neighbours. Because the programs are defined at the offset
of the simulation, and are not allowed to adapt to changing environmental
conditions over time, the approach of Axelrod is unrealistic in many real life
situations (Sipper, 1997).

We have already seen that CP provides cells with a mechanism to interact
with other cells in their environment. However, we still don’t have a mecha-
nism to form new rules and to design global behaviour. Put otherwise, we can
manually program the rule table of cells in a way similar to Axelrod. Like with
Axelrol, no new behaviour will ever emerge.

To deal with this problem we need to augment the computational process
with an additional step. Similar to Axelrod, we start by evaluating the be-
haviour of individual cells and assign a score to that behaviour. We then con-
struct new rules by selecting successful cells and combining their rules with the

11

rules of other successful cells in their neighbourhood. Success or fitness can
be measured in a number of different ways. Poli, Langdon, and McFee (2008)
suggest one of the following:

• The amount of error between its output and the desired output.

• The amount of time (fuel, money, etc.) required to bring a system to a
desired target state.

• The accuracy of the program in recognising patterns or classifying objects.

• The payoff that a game-playing program produces.

• The compliance of a structure with user-specified design criteria.

Because we focus on distributed system with no global operators and as such
have to evaluate performance of individual cells to obtain a desired behaviour of
the system on a global level, not all of the above mentioned measures are equally
suitable. If however, we interpret fitness in the context of a game playing situa-
tion we can build upon the prisoners dilemma that has been studied extensively
as a mechanism to design global cooperative behaviour. This means we can
also use the payoff mechanism of the prisoners dilemma as a fitness measure to
quantify how well a cell has done. Table 2 shows the payoff matrix we apply to
the interactions between cells:

Cooperate Defect
Cooperate 3 0
Defect 5 1

Table 2: Payoff matrix

In this matrix defect refers to a negative inclination towards working together
with other cells. Consider the following situation: (D,C), cell A defects and
cell B cooperates. We position cell A as the row player and cell B as the column
player. The payoff for cell A becomes 5. To determine the payoff for cell B, we
position cell B as the row player and cell A as the column player. The payoff for
cell B becomes 0, the sucker’s payoff. The total payoff for cells A and B is also
5 which is a suboptimal score. If both cells would be willing to risk the sucker’s
payoff and choose to cooperate, the total payoff would be 6. In a single round
prisoners dilemma, defection is the rational strategy because a cell is always
assured a minimal payoff of 1 when it defects. With a cooperative strategy a
cell can only assure itself of a minimal payoff of 0. For any cooperation to emerge
amongst rational players (which we assume our cells to be), the game must be
played more than once, to be more precisely infinitely. Then cells can build up
trust relations and take previous actions of their counterparts into account.

A cell’s total fitness during one generation is computed as the sum of the
payoffs a cell receives after playing one game of the IPD with each its four
neighbours. Only operational cells play the game and build up payoff, the

12

opponent however does not need to be operational. When the total payoff of
all cells has been computed we can start with the process of natural selection.
First all operational cells with a fitter neighbour die. This leaves (clusters of)
cells having the same fitness. The offspring for the next generation is produced
by having the remaining operational cells mate with another operational cell in
their neighbourhood. By applying the genetic operators crossover and mutation
we obtain the new rule table for the cells’ offspring. To keep in line with the
Genetic Algorithms literature we shall refer to a rule table as the cells genome
which consists of 32 different genes instead of rules. In turn each gene can be
associated with one of 1024 different expressions. Crossover is then performed
by a cell by randomly selecting an operational neighbour and then copying
(part of) its neighbour’s genes into its own genome. If no other operational
cells are present in the neighbourhood, a cell has to mate with itself. In this
case crossover is useless. Otherwise the crossover point is determined by the
following equation:

f(i, j) + f(in, jn)

2 ∗ 4 ∗ (D,C)
(2)

Where f(i, j) denotes the total payoff of the first cell and f(in, jn) denotes the
total payoff of the second cell. Furthermore (D,C) denotes the maximum payoff
possible, that of defecting while the opponent cooperates. In this way the more
payoff cells receive, the more genetic material is copied during crossover. So, if
we think of the genome containing 32 columns and 10 rows, a crossover point
of 0.60 means the bits in the last 6 rows are copied from one genome to the
other. By slicing genes in half and copying rows, the pieces of genetic mate-
rial that are selected for crossover cover all neighbourhood configurations with
equal probability. If on the other hand columns (entire genes), are copied, the
probability that g31 is copied, would be considerably higher than the probability
g0 is copied. A second reason is that slicing genes also facilitates the assembly
of new genes by which new types of behaviour can emerge. Experiments show
however, that both row based and column based crossover behave quite similar,
ultimately leading to the same end result. Note that the crossover operator is
asymmetrical which is somewhat different compared to the classic Genetic Al-
gorithms approach. It is argued by Sipper that this slightly decreases coupling
between cells, thus enhancing locality and generality (Sipper, 1997).

Finally, the mutation operator is applied according to some fixed probability,
similar to Sipper we set the probability of the mutation operator being applied
to 1%. This means each bit in the entire genome has about 1% probability of
being flipped. In contrast to crossover, operational cells that have to mate with
themselves because no operational neighbours exist are subject to mutation. To
recapitulate the procedure for one generation of cells is:

1. In parallel: Let all operational cells execute a rule (gene expression) from
their rule table (genome) according to the configuration of states in their
neighbourhood. State changes are set according to the Sx bits in the rule.
Rule tables are copied where Cx bits are 1 and contentions are resolved.

13

2. In parallel: Make vacant cells that have received a new genome from one
of their neighbours operational.

3. In parallel: Let all operational cells calculate the value of their gene ex-
pression by playing one game of the prisoners dilemma with all of their
neighbours. Cells don’t play the game with them selves. When an oper-
ational cell plays the game its opponent does not have to be operational,
the operational cell is however the only one that receives payoff.

4. In parallel: Evaluate fitness of all cells which have previously played one
round of the IPD with each of their neighbours. Cells with fitter opera-
tional neighbours become vacant.

5. In parallel: First apply the crossover and then the mutation operator to
the genome of all remaining operational cells.

2.2 Conditions

Of course there are many ways in which a distributed system can be damaged
to the extent that normal operation becomes difficult. When only a few isolated
components are damaged, error occurs at local regions in space. Another pos-
sibility is that damage occurs uniformly amongst certain types of components,
producing errors throughout the system. Wires for example, are often much
more exposed and vulnerable when compared to resistors or a LED. Also, the
degree to which a damaged component produces errors can vary. In practice,
damage is most likely to occur in varying degrees at different physical places in
space. To avoid complicating matters, our conceptual understanding of damage
applies only to systems where damage occurs with the same probability amongst
all components that allow cells to communicate with other cells. For example,
imagine wires are soldered in some poor way. As a result, noise is added to each
bit transferred through the wire causing misinterpretations a certain amount of
time. To maintain the reciprocal dependency at each end of the wire, a cell takes
account not only for its own misinterpretations, but those of its counterpart too.
So, if for example cell A transmits a 0 and cell B transmits a 1, furthermore cell
B misinterprets cell A, the game becomes (1, 1) for both cells and they receive
payoff accordingly.

The different conditions are specified by various degrees to which bits trans-
ferred between cells are incorrectly perceived. The base condition specifies a zero
probability of component error in order to establish a measure of performance
while the system operates under normal conditions. The second condition spec-
ifies one percent probability that each bit transferred is perceived incorrectly.
The motivation for this value is based upon the work of Axelrod on the evolution
of cooperation (Axelrod, 1984). In his famous IPD computer tournaments each
player is assumed to have perfect knowledge about other players’ prior actions.
To explore the implications of misperception, he ran the first round of the tour-
nament again with the modification that the choice of every player had a one
percent chance of being misperceived by the other player. The results indicate

14

a great deal more defection but show the cooperative strategy TIT FOR TAT
was still the best (Axelrod, 1984).

To summarise, there are two conditions. One in which all communications
between cells function properly and a second in which communications between
cells fail to work properly 1% of the time.

2.3 Experiment

The experiment was set up using two groups of 50 randomly generated systems
each containing a total of 50 ∗ 50 cells, this amounts to a population size of
2500 individual cells in each system. The first group of 50 systems consists of
competitive systems, the second group of cooperative systems.

In the following sections, all stages that involve the experiment on one system
will be discussed. First, we will consider the initial setup configuration that we
use to kickstart the evolutionary process. Next we will discuss the training of
the system and how we measure the degree and type of coordination in a system.
In the final section we will discuss the second stage of the experiment in which
a system is subjected to both conditions.

2.3.1 Initial Conditions

At offset, the state of each cell was randomised to cooperate or defect with
about 50% probability. Also, the initial genetic makeup of each cell was selected
randomly from a pool of genes found to be common during pilot simulations
of both types of systems. In cooperative systems for example, gene expressions
occur in a number of different ways. If we take a closer look at the content
of g31 which is a nice example of a gene that is expressed often in cooperative
systems (neighbourhood configuration 11111), we see that g31 is associated with
a number of different gene expressions. Most commonly the expression 1023 that
written in binary (1111111111) contains only Sx and Cx bits that are 1. On
occasion one of the Cx bits may be 0. For example expression 831 (1110111111)
which sets all states in the neighbourhood to cooperate and copies its genome
to all cells in the neighbourhood with exception to its neighbour to the north.
Competitive systems however, tend to be composed of expressions associated
with g15 which corresponds to neighbourhood configuration 01111. An example
of one such expression is 597 or 1001010101. This expression causes cells to be
locked into a pattern of alternate defect because it changes the current cells state
to become cooperate, and the genome table to be copied into all neighboring
cells, with their state changed to defect. This is an interesting strategy in that
an operational cell ensures cooperation of the cell it occupies and then defects
to a neighboring cell (Sipper, 1997).

The number of vacant cells was set to 15%, this leaves a larger amount of
operational cells having to compete with each other. As such, the initial gene
population should contain a larger variety of genes.

15

2.3.2 Training

Each experiment consists of two separate stages. During the first stage we try
to evolve one of either systems. Sit back and let evolution take its course until a
sufficiently cooperative or competitive system has evolved. On average it takes
about 200 generations to evolve cooperative systems, competitive systems take
on average another 800 extra. The reason for this is that both cooperative as
competitive cells benefit from having cooperative neighbours. The resulting sys-
tems often offer nice surprises. For example, the right side of Figure 5 shows a
cooperative system with a few “pockets of resistance”. This is most representa-
tive for cooperative systems. It does however occur that all 2500 cells cooperate,
where after some time you see that due to genetic mutations competitive cells
slowly start to gain the upper hand. The right hand side of Figure 5 shows a
typical competitive system with only a few operational cooperating cells. This
is most likely caused by genetic mutations because when the mutation operator
is set to 0 a system of absolute alternate defection evolves in which only one
gene is likely to survive. Convergence towards cooperative systems does however
occur about five times more often compared to competitive systems. If after
3000 generations no sufficient coordination mechanism has evolved, the model
is discarded.

Figure 5: Typical Subjects. On the left hand side a competitive system where
defecting cells occupy most of the space, on the right hand side cooperating
cells dominate. Light Green: Operational-Cooperate. Dark Green: Vacant-
Cooperate. Light Red: Operational-Defect. Dark Red: Vacant-Defect.

Figure 5 above shows an impression of two system representatives. In order
to determine if a system is suitable to participate further in the experiment, we
first need to classify it in either cooperative or competitive. Second, we need
to be able to evaluate this global behaviour over time. To make the situation
more concrete, consider Figure 6.

16

Figure 6: Simulation console. On the left hand side a graphic visualisation of
a system. On the right hand side the system monitor which allows to observe
different variables.

Figure 6 shows a system where both cooperative and competitive strategies
have a considerable momentum. At this stage, the case is quite obviously (still)
undecided, it does however illustrate why we cannot simply count red and green
operational cells to classify a system. Competitive cells benefit only at the
expense of others and therefore competitive systems harbour less operational
cells, at most half of all cells at one point in time. In addition this method
would provide an indirect measure of how well cells coordinate their behaviour
with other cells. If for example all cells cooperate, we could infer cooperative
cells must have been quite successful. What we need is a measure that reflects
the degree to which cells succeed in their interactions with other cells.

If we assume that the more the states of other cells in the neighbourhood
of one cell corresponds to the desires of that cell the previous point in time,
the better the cell was able to coordinate his interactions with other cells. To
get a global picture of how well cells following a particular strategy are able to
coordinate their interactions with other cells, we simply have to calculate the
average degree of coordination amongst cells following that particular strategy.
This can be viewed on the left hand side of the system monitor in Figure 6 which
shows coordination amongst competitive cells is about 0.43 and coordination
amongst cooperative cells is about 0.42. To understand how we compute the
degree of coordination, consider the following situation in Figure 7:

gi C N E S W SC CC SN CN SE CE SZ CZ SW CW

12 0 1 1 0 0 0 1 1 0 1 0 1 0 1 0

Table 3: Entry in the genome table of the central cell in Figure 7 showing
expression 426 (0110101010) that was associated with gene 12 (01100) at t=x.

Table 3 shows part of the genome table of the central cell of Figure 7, in

17

x 1 x
0 0 1
x 0 x

7→
x 1 x
0 0 1
x 1 x

Figure 7: Example of two consecutive points in time. Left t=x where the central
cell is surrounded by two cooperating cells and two defecting cells. Right, t=x+1
where the central cell is surrounded by one defecting cell and three cooperative
cells.

particular the expression 426 associated with gene 12. The central cell has
attempted to set the state of all cells in its neighbourhood except for itself
into “cooperate” and has succeeded in four out of five of its objectives, this
means its rate of success is 4

5 . To get a better picture of how we calculate the
degree of coordination in the entire system, lets assume that there are 2000
operational cells of which 1990 cells are in state cooperate and 10 cells are in
state defect. Furthermore, of the 5 cells in the neighbourhood of a cooperative
cell, an average of 4.98 cells have actually become what was specified by the
Sx bitsof that cell. The degree of cooperative coordination amongst operational

cells then becomes 0.991 =
1990∗ 4.98

5

2000 . Furthermore, if we assume that 4.8 out of
5 neighbours of a competitive cell actually have become what was specified by
the Sx bit of that cell, we can calculate the degree of competitive coordination

amongst operational cells as follows: 0.005 =
10∗ 4.8

5

2000 . We can summarise this
using the following equations:

C =

2499∑
x=0

(M(x) = 1 ∧ S(x) = 1) ∗
2499∑
x=0

4∑
r=0

G(x)[i][2∗r]∧S(N(x)[r])

5∑2499
x=0 M(x) = 1

(3)

D =

2499∑
x=0

(M(x) = 1 ∧ S(x) = 0) ∗
2499∑
x=0

4∑
r=0

G(x)[i][2∗r]∧S(N(x)[r])

5∑2499
x=0 M(x) = 1

(4)

To decide if a system is cooperative or competitive we use the threshold
θ >= 0.99. When C >= θ then the system can be classified as cooperative,
when D >= θ then the system can be classified as competitive.

To understand these equations a number of important issues should be dis-
cussed. First we use the logic conjunction operator to return 0 when the result
is false and 1 when the result is true. x is one of the 2500 cells, furthermore
M(x) is the mode operator returning 0 when a cell is vacant and 1 when a cell
is operational. Similar S(x) is the operator returning 0 if the state of a cell is
defect and 1 if the state of a cell is cooperate. N(x) is the operator that returns
the neighbourhood of cell x in the form of an array of cells indexed by r. The
first cell in this neighbourhood is the cell itself, then the cell to the north con-
tinuing clockwise until west. Finally, G is the operator returning the genome of

18

cell x indexed by i and r where i is the index to the most recent expressed gene
gi and r is the index used to refer to cells in the neighbourhood. Note we index
the Sx bit for a particular neighbour in the gene through 2 ∗ r because each Zx

bit corresponds to one neighbour and has both an Sx and Cx part.
Compared to counting the number of operational cells that follow a par-

ticular strategy, the measure of coordination outlined in this section is better
because it not only takes into account the number of operational cells and the
strategy they follow, but also depends heavily on the degree to which cells can
maintain the operational capacity of their preferred coordination strategy.

2.3.3 Testing

When either C >= θ or D >= θ the second stage of the experiment can
begin. It is during this stage that a system is subjected to the various tests. To
avoid interaction between the two different conditions, a replica of the system is
made prior to offset of the second stage. This allows us to test both conditions
in parallel starting from the same system state. In total, 5000 generations
are simulated. During the first 1000 generations, operation of the models are
simulated under normal conditions. This gives us a clear point of distruction at
t = 1000. The remaining 4000 generations are simulated under faulty conditions.
One more important issue to consider is that during the second stage of the
simulations the crossover and mutation operators remain active. By allowing
the systems to adapt to the damage that has been caused, we can measure if a
strategy is stable while confronted with changing environmental conditions.

3 Results

In order to obtain a typical picture of how each group behaves over time, the
results for each group are averaged over all 50 subjects. Note Figures 8 and 9
only depict the second stage of the experiment. It would be difficult to incor-
porate the results of the first stage as it takes a varying number of generations
to evolve a system.

Figure 8 shows that at the start, the level of coordination amongst compet-
itive cells is about 0.99, this is visible from the red line: “0% Damage - Defect”
and blue line: “1% Damage - Defect”. On the other hand, coordination amongst
cooperative cells is only about 0.1%, this is visible from the green and purple
line: “0% Damage - Cooperate” and “1% Damage - Cooperate”. Slowly but
steadily cooperation evolves until a system is either damaged or not at t = 1000.
The coordination amongst competitive cells at this point in time has decreased
to around 0.65 whereas coordination amongst cooperative cells has increased
to about 0.20. This trend continues steadily when a system is left undamaged.
At t = 5000, coordination amongst competitive cells has slowly decreased to
about 0.20 whereas coordination amongst cooperative cells has slowly increased
towards about 0.70. When a system is damaged however, coordination amongst
competitive cells increases again towards 0.70. This is the blue line: “1% Dam-

19

Figure 8: Subject group A: Competitive system. On the horizontal axis the time
or number of generations that have elapsed. On the vertical axis the degree of
coordination which is measured in the group at that particular point in time.

age - Defect”. Coordination amongst cooperative cells decreases towards about
0.10. This is the purple line: “1% Damage - Cooperate”. This all takes place
in only a few generations, to be more precise between t = 1000 and t = 1100.

Figure 9: Subject group B: Cooperative system. On the horizontal axis the time
or number of generations that have elapsed. On the vertical axis the degree of
coordination which is measured in the group at that particular point in time.

Figure 9 tells a similar story. It is clearly visible that a cooperative system
is steadfast when structural integrity is preserved. But, as soon as damage was
caused at t = 1000 cooperative strategies get into more difficulty coordinating
their interactions with other cells. This is represented by the purple line: “1%
Damage - Cooperate”. On the other hand, defection does not succeed in gaining

20

any momentum under normal operating conditions, this can be observed when
looking at the red line: “0% Damage - Defect” which stays around 0.25. It
does however do a lot better when operating under difficult conditions which
we can see by looking at the blue line: “1% Damage - Defect” which increases
dramatically after the systems are damaged.

4 Discussion

In this study we have applied Cellular Programming combined with Genetic Al-
gorithms to investigate how coordination of interactions between autonomous
information processors influences the fault tolerance of distributed information
processing systems. Two types of coordination strategies were considered: co-
ordination through cooperation and coordination through competition. By de-
grading the means by which processors communicate with each other, we can
measure how well a coordination strategy performs under degraded conditions.

4.1 Conclusion

The experiments show that when the communication between processors in
a system is obstructed, cooperative systems fail to retain coordination com-
pared to operation under normal conditions. Moreover, competitive strategies
quickly gain advantage after only a few generations through genetic mutation.
In competitive systems however, the situation is somewhat the opposite. Un-
der normal conditions, defection is evolutionary unstable. Over time, mutant
strategies slowly gain advantage allowing cooperation to emerge over defection.
When structural integrity is disrupted, competitive systems are able to retain
existing coordination mechanisms. In other words, distributed systems using
competitive coordination mechanisms can actually benefit from a certain level
of corrupt and unreliable behaviour amongst computational units.

Considering all the evidence, let us take a step back and see what the con-
sequences are for our research question:

Is fault tolerance of distributed processing systems which coordinate interactions
amongst computational elements through competitive mechanisms better, com-
pared to fault tolerance in distributed processing systems in which interactions
between computational elements are coordinated by cooperative mechanisms?

The answer is yes. We can even say that certain levels of noise are beneficial
for competitive systems because competitive cells stand to loose less from errors
compared to cooperative cells. Extra care must be taken to minimise error in
cooperative systems. We can understand these results in terms of cooperating
units relying on trust relationships with other cells. They are therefore more
vulnerable to deceit.

21

4.2 Future Research

During our investigation, A number of questions have also arisen which would
be interesting topics for future research. Our conditions were based upon a
level of damage of 1% amongst components which are involved in communi-
cation between cells. This value is based upon the work of Axelrod (1984)
and from any practical point of view is highly unfounded. If for example one
considers a modern CPU which contains about 2.000.000.000 transistors upon
an integrated circuit, the probability that 1% of these transistors fails to work
properly is not very high. However, when units are loosely coupled and com-
municate through the Internet, the probability communication fails increases a
great deal. A different assumption we made was for damage to occur with the
same probability amongst all components that allow cells to communicate with
other cells. When computational units are located at different geographical lo-
cations, this assumption is not very strong. A more realistic situation would be
to repeat the experiment and causing damage to clusters of units. A final issue
we would like to address is the fact that our study has not determined which
levels of damage are acceptable. Clearly one percent is problematic so testing
levels of damage between 0% and 1% should provide more insight.

22

5 References

[1] von Neumann, J. Burks, A. Theory of Self-Reproducing Automata, University
of Illinois 1966.
[2] Gardner, M. Scientific American 223, 1970: 120-123.
[3] Axelrod, R. The Evolution of Cooperation, Basic Books 1984.
[4] Sipper, M. Evolution of Parallel Cellular Machines, Springer 1997.
[5] Weiß, G. Multiagent Systems: A modern approach to Artificial Intelligence,
MIT Press 1999.
[6] Poli, L. Langdon, W. McFee, N. A Field Guide to Genetic Programming,
Lulu Enterprises 2008.
[7] Talia, D. Parallel Cellular Programming for Developing Massively Parallel
Emergent Systems, 2003.

23

