
European Master in System Dynamics

VULNERABILITY DYNAMICS

A Model-Based Case Study about the Interactions between  
Pressure in Agile Secure Software Development, Software

Vulnerabilities, Adversarial Behaviour, and Attack Response:  
Trading Off Software Functionality and Software Security

Keywords: Vulnerability, Short-Term Business Risk, Long-Term Security Risk, Strategic Management,
	 	 Theory Building, Cyber Security, Agile Secure Software Development, Pressure, Firefighting,
	 	 Adversarial Behaviour, Complexity, Modelling, System Dynamics, Group Model Building

Author:		 Jonas Matheus 
	 	 S4838297
	 	 Student of the European Master in System Dynamics
	 	

Document:	 Master Thesis
	 	 Masterthesis in System Dynamics (MTHEMSD)

1st Supervisor:	 Dr. Vincent de Gooyert
	 	 Assistant Professor Radboud University Nijmegen
2nd Supervisor: Dr. David Wheat
	 	 Professor University of Bergen

Date:	 	 14 August 2017

European Master in System Dynamics

ABSTRACT
To improve performance, organisations inside and outside the ICT sector
buy, rent, borrow, and particularly develop own software solutions. At the
same time, growing numbers of software vulnerabilities make software
being the prime vector for malicious cyber attacks which disrupt business,
cause disproportionate costs, and threaten the survival of organisations. Re-
sources in software development are limited and organisations have to trade
off between software functionality to cope with “time to market” pressure and
software security to potentially fend off cyber attacks. Although it is known
that trade-offs and subsequent stress cause defects which lead to vulnera-
bilities, no research has been conducted on the interaction between pressure,
software vulnerabilities, external cyber attacks, and organisational attack
mitigation. Hence, having been conducted as a model-based case study in
a financial organisation in Europe, this research aimed to close this gap by
investigating and explaining the influence of the interaction between pressure
in software development, software vulnerabilities, external cyber attacks,
and organisational attack response on the trade-off between software func-
tionality and software security. In the end, this research led to the following se-
ven contributions. First, the study shed light on the interaction between pres-
sure, software vulnerabilities, cyber attacks, and attack mitigation. Second,
by explicitly connecting pressure, defects, and vulnerabilities this study
showed a potential pathway to successful cyber attacks. Third, this study
explained the dilemma between fixing vulnerabilities fast to avoid successful
exploitation and potential problems arising from firefighting due to fast pro-
blem solving. Fourth, the study described cyber adversaries as competitors
which causes the need to integrate business, ICT, and cyber security stra-
tegies. Fifth, addressing both vulnerabilities and attacks leads to the poten-
tial of a dual firefighting mechanism with two apparent performance optima
and one actual but lower one. Sixth, investigating the interactions described
above enhanced understanding about the trade-off between software func-
tionality and software security, and showed that initial short-term gains may
be lost due to long-term insecurity. Finally, having generalised the outcomes
of the research, this study provided testable propositions to take a first
step in building an explicit theory of the dynamics of vulnerabilities, going
beyond the case of secure software development and cyber security.

Jonas Matheus | jonasmatheus@web.de ! I I

http://web.de

European Master in System Dynamics

ACKNOWLEDGEMENTS
I would like to thank my four supervisors who have continuously supported,

taught, challenged, and inspired me at different stages of the process. I would like
to thank Dr. Guzay Pasaoglu for helping me to start this study and to aim high from
the very beginning. I would like to thank Dr. Vincent de Gooyert for accepting the
challenge to take over this work at a very late stage, for the tough inquiries that
made me question my work, for the productive recommendations that helped me to get
this study forward, and overall, for the enriching, fruitful, and enjoyable collaboration.
I would like to thank Prof. Dr. Etiënne Rouwette for functioning as temporary supervisor,
for introducing many valuable ideas, for paying attention to detail, and for helping me to
round off this study. Finally, I would like to thank Prof. Dr. David Wheat for his flexibility
and interest when being my second supervisor and examiner within the European
Master in System Dynamics. In short, it has been a pleasure to work with all of you.

Moreover, I would like to thank all involved persons from the European Financial
Organisation. I would like to thank the collaborating DevOps teams who provided
me with extremely valuable insights. Next, I would like to especially thank the colla-
borating cyber security department and the responsible team. Thank you for supporting
me in this project, for answering all my questions, and for treating me as your colleague.
In short, it was a pleasure to work with you, to learn from you, to add value to this or-
ganisation, and to be your colleague.

Additionally, I would like to thank all of my fellows from the European Master in
System Dynamics. I very much enjoyed working, learning, travelling, and living with
and from you. It has been a pleasure to become part of this colourful and global family.
Along the same line, I would like to thank all of my friends at home who have been
waiting for me to come back for more than four years now. Thank you for being patient,
for being there for me, and simply for being my friends over all these years. You have
always been with me when I was abroad, no matter where I was.

Furthermore, I would like to thank my family without whom I would have neither started
this endeavour, nor being able to carry it out. Thank you for inspiring me, for supporting
me, for visiting me at all these places, for encouraging me to go my way, and for the
never ending interest in what I do despite my difficulties in actually explaining it.

My final thank goes to my girlfriend. Thank you my love for having made this journey
with me. You have been my anchor, my guide, my sparring partner, my challenger,
my teacher, my beauty, my friend, my hope, and my home.  

Jonas Matheus | jonasmatheus@web.de ! I I I

http://web.de

European Master in System Dynamics

LIST OF CONTENTS
1. INTRODUCTION	 1

2. THEORETICAL BACKGROUND	 5

2.1 Software Development and Cyber Security	 5

2.1.1 Software Development	 6
2.1.2 Secure Software Development	 7

2.2 Pressure arising from Trade-Offs between Functionality and Security	 8

2.2.1 Capabilities in Information and Communication Technology	 9
2.2.2 Time to Market, Software Economics and Security	 10
2.2.3 Temporal Trade-Offs in Strategy	 11
2.2.4 Pressure in Software Development and Software Vulnerabilities	 12

3. METHODOLOGY AND DATA	 14

3.1 Model-Based Case Study for Theory Building in Complex Environments	 14

3.2 Case Selection	 16

3.3 Data Collection and Analysis	 17

3.4 Validity and Reliability	 21

3.5 Research Ethics	 22

4. RESULTS AND ANALYSIS	 22

4.1 Agile Software Development and Pressure	 23

4.2 Defects and Vulnerabilities	 30

4.3 Adversary Dynamics	 37

4.4 Organisational Attack Response	 42

5. DISCUSSION AND CONCLUSION	 48

5.1 Theoretical and Practical Implications in Software Security	 53

5.1.1 Implications regarding Pressure 	 53
5.1.2 Implications regarding Defects and Vulnerabilities	 54
5.1.3 Implications regarding the Trade-Off between Functionality and Security 	 55
5.1.4 Implications regarding Adversarial Dynamics	 56

5.2 A Theory on Vulnerability Dynamics	 56

5.3 Limitations and Future Research	 60

Jonas Matheus | jonasmatheus@web.de ! IV

http://web.de

European Master in System Dynamics

REFERENCES	 i

Scientific References, Books, Reports and Documentaries	 i

References from Newspapers, Webpages, or Blogs	 xiv

APPENDIX I - MODEL DOCUMENTATION	 xvi

I. A Causal Diagrams Group Model Building Session 1	 xvi

I. B Causal Diagrams Group Model Building Session 2	 xx

I. C Causal Diagrams Group Model Building Session 3	 xxvi

I. D Overarching Causal Diagram Group Model Building for Session 3	 xxviii

I. E Overarching Causal Diagram Group Model Building after Session 3	 xxx

I. F Overarching Causal Diagram Group Model Building after Validation	 xxxi

APPENDIX II - QUALITATIVE RESEARCH	 xxxvi

II. A Preparatory Scripts Group Model Building	 xxxvi

II. A. 1 Preparatory Script Group Model Building Session 1	 xxxvii
II. A. 2 Preparatory Script Group Model Building Session 2	 xlix
II. A. 3 Preparatory Script Group Model Building Session 3	 lx

II. B Qualitative Data Analysis	 lxx

II. C Documentation Group Model Building	 lxxiv

II. C. 1 Notes on Group Model Building Session 1, 16 March 2017	 lxxiv
II. C. 2 Notes on Group Model Building Session 2, 24 March 2017	 lxxx
II. C. 3 Notes on Group Model Building Session 3, 28 March 2017	 lxxxvii

II. D Documentation Interviews, Conversations, and Observations	 xcii

Jonas Matheus | jonasmatheus@web.de ! V

http://web.de

European Master in System Dynamics

II. D. 1 Unstructured Interview, 13 February 2017	 xcii
II. D. 2 Unstructured Interview, 13 February 2017	 xcviii
II. D. 3 Observation, 27 February 2017	 civ
II. D. 4 Unstructured Interview, 17 March 2017	 cv
II. D. 5 Conversation, 20 March 2017	 cvii
II. D. 6 Unstructured Interview & Validation 1, 3 April 2017	 cix
II. D. 7 Unstructured Interview, 6 April 2017	 cxxii
II. D. 8 Conversation, 6 April 2017	 cxxiv
II. D. 9 Observation with DevOps Team, 26 April 2017	 cxxvi
II. D. 10 Observation with DevOps Team, 8 May 2017	 cxxviii
II. D. 11 Observation with DevOps Team, 8 May 2017	 cxxx
II. D. 12 Observation with DevOps Team, 8 May 2017	 cxxxiii
II. D. 13 Conversation, 12 May 2017	 cxxxv
II. D. 14 Conversation, 18 May 2017	 cxxxv
II. D. 15 Unstructured Interview, 18 May 2017	 cxxxvii
II. D. 16 Conversation, 18 May 2017	 cxlii
II. D. 17 Unstructured Interview - Validation 2, 23 May 2017	 cxlv
II. D. 18 Conversation, 30 May 2017	 clii
II. D. 19 Unstructured Interview with DevOps Team, 2 June 2017	 cliv
II. D. 20 Unstructured Interview, 21 June 2017	 clix
II. D. 21 Unstructured Interview, 22 June 2017	 clxii
II. D. 22 Conversation, 22 June 2017	 clxiv
II. D. 23 Unstructured Interview & Validation 3, 22 June 2017	 clxv

II. E Structure Validation through Disconfirmatory Assessment Interviews	 clxxii

Jonas Matheus | jonasmatheus@web.de ! V I

http://web.de

European Master in System Dynamics

LIST OF FIGURES
Figure 1: Number of Breaches per Threat Action Category	 	 	 1

Figure 2: Cumulative Known and Unknown Vulnerabilities and Distribution	 2

Figure 3: Waterfall Software Process Model	 	 	 	 	 6

Figure 4: Agile Software Development Process		 	 	 	 7

Figure 5: Software Security Best Practice applied throughout the Lifecycle	 8

Figure 6: Example Shape of the Yerkes-Dodson Law	 	 	 	 12

Figure 7: Model-Based Case Study Research Process for Theory Building

	 with System Dynamics		 	 	 	 	 	 16

Figure 8: Causal Structure of Agile Software Development	 	 	 24

Figure 9: Causal Structure of Defects and Vulnerabilities	 	 	 30

Figure 10: Adaptation Trap		 	 	 	 	 	 	 36

Figure 11: Causal Structure of External Cyber Attacks and Adversary Dynamics 38

Figure 12: Causal Structure of Organisational Attack Response	 	 43

Figure 13: Suggested Behaviour in System with two apparent Performance Optima 47

Figure 14: Interaction between Business Organisations and Cyber Adversaries 51

Figure 15: Causal Diagram of a Theory on Vulnerability Dynamics	 	 58

LIST OF TABLES
Table 1: Summary of Data Collection and Analysis	 	 	 	 20

Table 2: Summary of Results in 4.1 Agile Software Development and Pressure 29

Table 3: Summary of Results in 4.2 Defects and Vulnerabilities	 	 36

Table 4: Summary of Results in 4.3 Adversary Dynamics	 	 	 42

Table 5: Summary of Results in 4.4 Organisational Attack Response	 48

Table 6: Summary of Conditions for Vulnerability Dynamics	 	 	 57

Table 7: Summary of Propositions for Vulnerability Dynamics		 	 59

Table 8: Summary of Contributions of the Study	 	 	 	 59

Jonas Matheus | jonasmatheus@web.de ! V I I

http://web.de

European Master in System Dynamics

1. INTRODUCTION  
Information and communication technology (ICT) increasingly represents the lifeline of

almost all parts of the public and private sector (DNI, 2012; Leopold, Bleier, Skopik, 2015).

Already since the 1980s, business organisations have recognised the opportunities of ICT

and consequently built and strengthened their capabilities in planning, developing and

operating it to sustain and enhance performance and competitive advantage to eventually

achieve long-term success (Amit, & Zott, 2001; Brynjolfsson, & Hitt, 2000; Henderson, & Venkatraman, 1

1993; Kettinger, Grover, Guha, & Segars, 1994; Porter, & Millar, 1985; Powell, & Dent-Micallef, 1997; Ravichan-

dran, & Lertwongsatien, 2005; Wade, & Hulland, 2004). Since software enables endusers to actually

employ ICT, next to renting or buying software applications from specialised vendors or

using open source solutions, many organisations inside and lately also outside of the

ICT sector develop and operate own software to improve their business (Wysopal, 2012).

As one of the first, the financial sector has made technology a major priority (Johnston, &

Carrico, 1988; Porter, & Millar, 1985) and financial organisations are on the way of becoming

“technology companies with a banking licence” (FinExtra, 2017). While the specific benefits

of ICT and software have been assessed very differently (e.g. Boehm, 1984; Kettinger et al.,

1994; Powell, & Dent-Micallef, 1997), it is undisputed that ICT and “software [have become]

ingrained in daily business activities” (Arora, Caulkins, & Telang, 2006, p. 465).

Next to the opportunities created by increasingly employing ICT and software, growing

numbers of successful cyber attacks (Figure 1) affect the performance of organisations

by evoking disproportionate costs (Anderson et al., 2013; Gillet, Hübner, & Plunus, 2010; Pone-

mon Institute, 2016; Telang, & Wattal, 2007) and even threaten their survival, as experienced by

the Dutch firm DigiNotar which filed for

bankruptcy as the consequence of a large

scale cyber attack in 2011 (Arthur, 2011;

Zetter, 2011). More generally, it was estima-

ted that global costs due to malicious

cyber activities ranged in 2013 between

300 billion to one trillion US-Dollars which

is equal to 0,4 to 1,4 percent of the

worldwide GDP (McAfee, 2013; Verizon, 2016).

 Porter “assume[s] that firm success is manifested in attaining a competitive position or series of competitive positions that lead to 1

superior and sustainable financial performance. Competitive position is measured […] relative to the world’s best rivals. […] A suc-
cessful firm may ‘spend’ some of the fruits of its competitive position on meeting social objectives or enjoying slack” (1991, p. 96).

Figure 1: Number of Breaches per Threat Action Category
(Verizon, 2016)

European Master in System Dynamics

For any kind of determined, strategically thinking, and malicious actor in the cyber

space, software applications are a “prime vector into an organization” (Ahmad, 2007, p. 76)

due to the growing number of known and unknown software vulnerabilities (Figure 2) as

documented by several well-known sources, including the Verizon Data Breach Report

(2016), the database on Common Vulnerabilities and Exposure (CVE) (CVE, 2017), the

software vendor McAfee (2014), or authors from the RAND Corporation (Ablon, & Bogart,

2017). Software vulnerabilities describe weak points in a piece of software which are

caused by defects in the underlying code or configuration. Such weaknesses are subject

to potential exploitation by external adversaries through malware (i.e., malicious soft2 -

ware) or hacking attacks (i.e., the unauthorised modification of software), potentially 3

causing business disruption, data compromise, and financial and reputational losses
(Anderson et al., 2013; Heitzenrater, Böhme, & Simpson, 2016; Landwehr, 2001; McGraw, 2006; Mo-
hammed, Niazi, Alshayeb, & Mahmood, 2017; Pfleeger, Pfleeger, & Margulies, 2015).

Known Vulnerabilities
• 33,3% solved (patch)
• 2,9% publicly shared
• 3,9% found by security researcher
• 10,1% refactored and thus con-
sidered here as known
Unknown Vulnerabilities
• 31,9% entirely unknown
• 6,3% not solved anymore and
thus considered here as unknown
•11,6% uncertain and thus con-
sidered here as unknown

Within the scope of common cyber security defence measures, secure software 4

development aims to avoid software vulnerabilities and consequently helps to prevent

successful cyber attacks throughout the entire lifecycle of a software solution. A software

lifecycle describes the five phases of initiation, development/acquisition, implementation/

assessment, operations/maintenance, and disposal (Kissel et al., 2008). Secure software

development (also called secure software engineering) differs from functionality-oriented

software in the sense that considerable extra effort is directed towards creating systems

and applications that are as little vulnerable as possible through adjusted and more re-

 Next to external adversaries, particularly insider threats play an important role (e.g., Martinez-Moyano, Rich, Conrad, Ander2 -
sen, & Stewart, 2008). However, due to their different nature and functioning insider threats are excluded here.
 Note, however, that the terms of hacking and hackers are not automatically meant in a pejorative sense. Instead, von Krogh, 3

Rossi-Lamastra, and Haefliger (2012) connect the beginning of open source software with the hacker culture from the 1970s.
 Next to cyber security the terms information security, data security and computer security exist and have slightly different meanings 4

(von Solms & van Niekerk, 2013). For the purpose of simplicity this research will always use the term cyber security except in citations
or when another term is more applicable. For further information on typical cyber security measures see e.g. NIST, 2014.

Jonas Matheus | jonasmatheus@web.de ! 2

49,8 % 50,2 %

Figure 2: Cumulative Known and Unknown Vulnerabilities and Distribution. While the CVE Database only
provides the amount of publicly known vulnerabilities, the researchers from the RAND Corporation found out the
distribution of vulnerabilities. Combining the insights from the CVE and the RAND corporation leads to the con-
clusion that only 50 percent of the global software vulnerabilities are known to the public. Hence, there may be
up to the double amount of total vulnerabilities worldwide (Developed by experts within the collaborating case
study organisation and based on Ablon & Bogart, 2017, p. 28ff.; CVE, 2017).

http://web.de

European Master in System Dynamics

source consuming practices. In this context, for instance, functionality aspects are tested

regarding their intended use, whereas secure software engineering must focus on the

almost infinite possibilities of misusing an application (e.g., Anderson, 2001; McGraw, 2006, 2012).

Next to the obviously technological elements of secure software development, particularly

behavioural and organisational aspects are important in explaining the phenomenon of

software vulnerabilities because the reasons range from technical challenges and inno-

vations, through lack of security awareness, poor practice in software development and

managerial decision making, to purely economic reasons of accepting software vulnerabi-

lities (Arora et al., 2006; Gordon, & Loeb, 2002; Heitzenrater et al., 2016; McGraw, 2006, 2012; Mohammed

et al., 2017; Piessens, 2002; Rahmandad & Repenning, 2016; Shumba, Walden, Ludi, Taylor, & Wang 2006).

In his seminal work on software engineering economics, Barry Boehm pointed out that

“we deal with limited resources. There is never enough time or money to cover all the

good features we would like to put into our software products” (1984, p. 4). Hence, although

aiming for both, organisations are forced to trade off between short-term gains through

functionality and long-term stability through security, both impacting performance and

success (Becker, 2014; Heitzenrater et al., 2016; Neumann, 2012). While functionality creates certain

immediate value by supporting business, the benefits from security “do not come from

‘making something happen’ by enabling a strategy or enhancing an operation, but from

the prevention and/or reduction of potential losses caused by security breaches” (Huang,

Hu, & Behara, 2008, p. 794). Hence, decision makers need to simultaneously address the

short-term business risk arising from market pressure due to competition (e.g., Rahmandad,

2012) and the potential long-term security risk of attack pressure from malicious cyber

adversaries (e.g., Becker, 2014; Neumann, 2012). Interestingly, literature has not provided clarity

to reduce this tension. Instead, it provides evidence for both, limited investments in cyber

security due to market pressure and constraints for defence on the one hand (Arora et al.,

2006; Böhme, & Moore, 2009; Gordon, & Loeb, 2002), and comprehensive focus on security to fend

off attacks, and also to improve overall performance, enhance software quality and lower

costs on the other hand (Becker, 2014; Heitzenrater et al., 2016; McGraw, 2006; Neumann, 2012). While

Neumann emphasises that “a well-reasoned understanding of the trade-offs is essential

before potentially sacrificing possible future opportunities in an effort to satisfy short-term

goals” (2012, p. 26), the business-driven perspective makes functionality of software solutions

still constituting the heart of software development and deems security as an afterthought

which can be sacrificed during in competition (Becker, 2014; McGraw, 2006, 2012; Neumann, 2012).
Jonas Matheus | jonasmatheus@web.de ! 3

http://web.de

European Master in System Dynamics

Such trade-offs between the short term (i.e., here functionality) and the long term

(i.e., here security) have been widely discussed in the organisational theory and strategy

literature (e.g. Laverty, 1996), and examples include inter alia exploitation and exploration

(Levinthal, & March, 1993), or defect correction and process improvement (Repenning, & Sterman,

2002). Research has emphasised that balancing the short and long-term performance

is crucial to the success and survival of an organisation (Levinthal, & March, 1993).

Although the tension between software functionality and software security blends in

with the other examples of temporal trade-offs, to the best of the author’s knowledge,

there has been no investigation of this topic in the organisational theory and strategy

literature. Considering that trade-offs and subsequent pressure cause errors which lead 5

to vulnerabilities (e.g., Austin, 2001; McGraw, 2006; Oliva, & Sterman, 2001; Rahmandad, 2005; Rah-

mandad, & Repenning, 2016; Repenning, & Sterman, 2002; Rudolph, & Repenning, 2002), it is surprising

that previous research has addressed market pressure in software development (e.g., Arora

et al., 2006), optimal investment in cyber security (e.g., Böhme, & Moore, 2009; Gordon, & Loeb, 2002),

and the complexities of software engineering (see for a a very broad overview Cao, Ramesh, & Abdel-

Hamid, 2010, p. 4), but not the interaction between pressure, software vulnerabilities, cyber

attacks, and an organisation’s response. Hence, this study aims to close this gap by

investigating and explaining the dynamics of secure software development, software vul-

nerabilities, the malicious interference by cyber attacks of an external adversary, and or-

ganisational attack mitigation. Thus, this study addresses the following research question:

How does the interaction between pressure in software development, soft-
ware vulnerabilities, external cyber attacks against an organisation, and the
organisation’s attempt to mitigate those attacks influence the trade-off
between software functionality and software security?

Starting with the phenomena of increasing software vulnerabilities and successful cyber

attacks (Ablon & Bogart, 2017; CVE, 2017; von Kogh et al., 2012), this research is conducted as

a model-based case study in a financial organisation in Europe (Perlow, & Repenning, 2009;

Rahmandad, & Repenning, 2016). As usual in phenomenon-based and case study research,

the phenomena and the broader literature are used to guide the data collection and

analysis when seeking to answer the research question (von Kogh et al., 2012; Yin, 2014).

 For instance, a search in all fields for the terms “cyber security, “information security”, and “secure software development” 5

within high impact journals of organisational theory and strategy has revealed how little the topic is actually covered within this
field. Academy of Management Journal shows zero, zero and zero results, Academy of Strategic Management Journal one,
five and zero, Administrative Science Quarterly zero, one and three, Journal of Management zero, zero and zero, Management
Science two, sixteen and zero, Organization Science zero, four and zero, and Strategic Management Journal zero, nine and zero.

Jonas Matheus | jonasmatheus@web.de ! 4

http://web.de

European Master in System Dynamics

Connecting the insights from integrating the different strands of literature across various

fields with the empirical findings, the study sheds light on the dynamic interaction bet6 -

ween pressure, software vulnerabilities, cyber attacks, and organisational response which

has the potential to causes several modes of persistent firefighting, wrong adaptation to the

future, and escalatory patterns in adversarial behaviour. Considering this interplay enhances

understanding about the trade-off between software functionality and software security.

In so doing, the research presents practical implications for managers interested in secure

software development and cyber security. Generalising the outcomes of the research (Yin,

2014), this study provides testable propositions to take a first step in building a theory of vul-

nerability dynamics, exceeding the case of secure software development and cyber security.

The remainder of this study is organised as follows: The research begins by giving an

overview of relevant software development and security practices (2.1). Thereafter, it con-

nects the different strands of literature to guide the case study research (2.2). Next, the

study provides an overview of the methodology to make the process of theory building

explicit (3.1), to describe and explain the data collection and analysis (3.2), and to present

ethical considerations of this research (3.3). Afterwards, this study draws on the empirical

findings from the research in the financial organisation to describe and explain the dy-

namic interactions in secure software development, software vulnerabilities, external

cyber attacks, and organisational response (4). After answering the research question

based on the findings (5.1), the study discusses practices for improving software deve-

lopment and security, thereby providing practical implications to managers in the field

(5.2). Generalising the findings, this study presents testable propositions and necessa-

ry conditions to take a first step in building theory of vulnerability dynamics, unfolding

beyond the fields of software engineering and cyber security (5.3). Based on this theory,

theoretical implications are outlined (5.4). This study closes with summing up the insights

and discussing rival theories, limitations and opportunities for future research (6).

2. THEORETICAL BACKGROUND  
2.1 Software Development and Cyber Security

“Computer software continues to be the single most important technology on the

world stage [… and has] become an indispensable technology for business, science,

 The different fields include organisational theory, organisational science, strategy, strategic management, system dynamics, 6

management of information and communication technology, management of information systems, cyber security, information
security, information risk management, security economics, (secure) software development, and (secure) software engineering.

Jonas Matheus | jonasmatheus@web.de ! 5

http://web.de

European Master in System Dynamics

and engineering” (Pressman, 2010, p. 2). Moreover, software enables the creation, change,

and improvement of other technology (including software), and it is embedded in basically

all forms of ICT. Research has shown that next to specialised software vendors, organi-

sations from many other sectors, such as the financial industry, develop their own soft-

ware solutions, resulting in more than 70 percent of internally developed software which

was not purchased or rented from a software vendor (Wysopal, 2012). While, software has

left the niche of the ICT sector, and has become elemental for any kind of organisation, it

also has become a crucial vulnerability of an organisation’s ICT (Ahmad, 2007). This subsection

first outlines software development and then turns towards relevant security practices.

2.1.1 Software Development

Software evolved more than sixty years ago and has gone through many changes,

including its way of development. Broadly speaking, software engineering describes the

activity of planning, developing, operating, and maintaining software through its entire

lifecycle, and, since the late 1960s, is guided by so called software process models

(MacCormack, Kemerer, Cusumano, & Crandall, 2003; Pressman, 2010). “Such process models are

one of the most fundamental aspects of software development, governing the inclusion,

frequency, timing and scope of development activities” (Heitzenrater et al., 2016, p. 2). While the

framing of the various activities differs, they generally include the steps of requirements

analysis, planning, design, development (i.e., writing the code), testing, deployment, ope-

ration, and decommission (Boehm, 1988; Heitzenrater et al., 2016; MacCormack et al., 2003; Pressman,

2010). Standard process models are spread out over a large continuum of different me-

thods and range from rather plan-driven, sequential approaches, such as waterfall (Fi-

gure 3), at the one extreme, to flexible lightweight methods,

such as agile development (Figure 4), at the other extreme

(Boehm, 1988; Boehm, & Turner, 2005; MacCormack et al., 2003;

Pressman, 2010). The waterfall model emphasises objectives,

planning, control, and discipline, making it a rigorous and

sound, but rather slow process. While widely believed that

the probability of defects in software is lower when follo-

wing such plan- and control-driven methods, MacCor-

mack et al. (2003) provide evidence that more flexible ap-

proaches compensate for problems of rigour by obtaining

Jonas Matheus | jonasmatheus@web.de ! 6

Figure 3: Waterfall
Software Process

Model (Boehm, 1988)

http://web.de

European Master in System Dynamics

fast customer feedback. In the same 7

vein, the slowness of the waterfall model

makes it less able to account for the

“software industry’s increasing needs for

rapid development and [for coping] with

continuous change” (Boehm, & Turner, 2005,

p. 30) than flexible approaches, such as

agile development (Boehm, & Turner, 2005; Cao et al., 2016). “In general, agile methods are

lightweight processes that employ short iterative cycles, actively involve users to esta-

blish, prioritize, and verify requirements, and rely on team’s tacit knowledge as opposed

to [the lengthy] documentation” (Boehm, & Turner, 2005, p. 32) of other methods such as wa-

terfall. As such, agile teams are self-organised which allows them to adjust their work

to current demand and resource availabilities, generally aiming to match the customers

expectations and avoid high work pressure. Agile teams employ fast release cycles of

less than a month, also known as a sprint, in which they deliver small but full pieces of

software with a complete subset of functionalities (Boehm, & Turner, 2005; MacCormack et

al., 2003; Pressman, 2010). Next to creating immediate business value, the fast feedback

cycles also enable to, firstly, decrease time to market, and thereby improve competitive

advantage (Arora et al., 2006), and secondly, discover mismatching customer demands,

and thereby reduce costs which, as shown by Boehm (1984) or Stecklein and colle-

agues (2004), escalate exponentially throughout the software lifecycle. To this end, it is 8

the ability to react on rapidly changing environments and customer demands, and to

create immediate business value due to fast releases that caused agile approaches to

succeed over sequential methods in software development. 9

2.1.2 Secure Software Development
“Software security is the idea of engineering software so that it continues to function

correctly under malicious attack” (McGraw, 2012, p. 662). Cyber adversaries commonly

conduct their attacks by attempting to exploit software vulnerabilities through malware

and hacking attacks, such as in the recent cases of WannaCry and NotPetya that affected

 Note that Cormack et al. (2003) emphasise that any process model is only successful if it is applied consistently and 7

not in a “cherry-picking-piecemeal” fashion. They emphasise that “to the degree that such a process relies on a coherent
system of practices, a piecemeal approach is likely to lead to disappointment” (2003, p. 84).
 The costs of changes after the requirements phase increase according to Stecklein and colleagues (2004) as follows: 8

Design = 5x - 7x, Develop = 10x - 26x, Test = 50x - 177x, and Operations = 100x - 1000x.
 To the interested reader, particularly Pressman’s (2010) work covering many aspects of software development is recommended. 9

Jonas Matheus | jonasmatheus@web.de ! 7

Figure 4: Agile Software Development Process
(Boehm, & Turner, 2005, p. 33)

http://web.de

European Master in System Dynamics

hundreds of thousands of computers worldwide (Fox-Brewster, 2017). Next to technical

innovation which inevitably opens new paths of exploitation (Ahmad, 2007), “humans play

a central role in security measures” (Proctor, & Chen, 2015, p. 721) and are often considered

as the weakest link (i.e., the least protected point) in cyber security (Bulgurcu, Cavusoglu, &

Benbasat, 2010; Lineberry, 2007). In this context, some of the biggest problems in software

security are the lacking security awareness of developers and operators (DevOps), limited

development skills and knowledge in the field of security, or missing compliance to cyber

security rules (McGraw, 2012). To address human weaknesses in software engineering,

secure software development relies on training and applying a broad range of technical

tools (e.g., Metasploit), specific practice recommendations (e.g., OWASP Top 10), and

security process models which are combined with the process models described above
(Ahmad, 2007; Heitzenrater et al., 2016; de Win, Scandariato, Buyens, Grégoire, & Joosen, 2008). 10

To this end, all of the security

process models underline that

“security is not a feature that can

be added to software […]. Secu-

rity is an emergent property of a

system” (McGraw, 2006, p. 213) that

evolves throughout the entire

lifecycle (Figure 5). It is commonplace that reducing the introduction of vulnerabilities

prior to the release of software has several major benefits: First, it is a major step in impro-

ving overall cyber security as many forms of attacks rely on exploiting this type of weak-

nesses. Second, software security is part of general software quality. In contrast to gene-

ral quality assurance though, security testing demands to think and act like a malicious

attacker. Hence, increasing quality may help to improve security, but enhancing security

always results in higher quality. Finally, building security in is much more cost effective than

any security measure taken after deployment (Heitzenrater et al., 2016; McGraw, 2006, 2012). 11

2.2 Pressure arising from Trade-Offs between Functionality and Security

Despite these documented benefits of accounting for security from early on and

throughout the entire software development lifecycle, the overall security level of ICT

 Common security practices and process models include Adobe SPLC (2016), Microsoft SDL (2017a, 2017b), OWASP Top10 and 10

OWASP Clasp/SAMM (2013, 2016, 2017), or McGraw’s SSDL Touchpoints (2006, 2012; also McGraw, Migues, & West, 2016).
 To the interested reader, particularly McGraw’s (2006) work concerning secure software development is recommended. 11

Jonas Matheus | jonasmatheus@web.de ! 8

Figure 5: Software Security Best Practice applied throughout the
Lifecycle. Although the stages appear to be sequential like in the
Waterfall-Model, generally organisations follow an iterative ap-
proach, such as agile development, and thus, apply these prac-
tices over and over again. (McGraw, 2012, p. 663)

http://web.de

European Master in System Dynamics

and software has never been considerably increased, and instead, the number of soft-

ware vulnerabilities, and subsequently successful cyber attacks, has been continuously

growing (Bojanc, & Jerman-Blazič, 2008; McGraw, 2006, 2012; Verizon, 2016). Accordingly, “the

overall question arises, why software vendors do not make their products more secure

[in] the first place. The answer lies in economics” (Bojanc, & Jerman-Blazič, 2008, p. 415).

2.2.1 Capabilities in Information and Communication Technology

Generally speaking, organisations employ ICT and buy, internally develop and operate

software to enhance performance and achieve competitive advantage. While earlier

studies indicated a direct and positive link between ICT and performance, later research

described contingent effects of technology (Wade & Hulland, 2004). In this sense, several

authors described ICT as a strategic necessity to avoid suffering from competitive di-

sadvantage compared to other organisations (Powell, & Dent-Micallef, 1997; Ravichandran, & Lert-

wongsatien, 2005). Similarly, studies emphasised that not merely possessing but fully inte-

grating an organisation’s core activities with ICT improves performance, creates busi-

ness value, causes competitive advantage, and finally enables sustained success (Bha-

radwaj, 2000; Brynjolfsson, & Hitt, 2000; Henderson, & Venkatraman, 1993; Kettinger et al., 1994).

Throughout the strategy literature, success was initially associated with strategies ad-

dressing an organisation’s external environment (e.g., Porter, 1991). However, unstable and

rapidly changing external environments caused a shift towards an organisation’s internal

resources and capabilities. According to Winter (2003), capabilities describe learned and

continuously practiced activities that allow an organisation to improve the pursuit of their

core tasks and objectives to achieve competitive advantage and success. In this con-

text, literature has distinguished between operational capabilities which are “those that

permit a firm to ‘make a living’ in the short term” and dynamic capabilities that “operate to

extend, modify or create ordinary capabilities” (Winter, 2003, p. 991) in order to achieve suc-

cess in the long-term (Collis, 1994; Eisenhardt, & Martin, 2000; Rahmandad, 2012; Teece, Pisano, & Shuen,

1997). While the distinction between operational and dynamic capabilities depends on the

specificity of the issue and the core task of an organisation, for companies outside of 12

the ICT sector, planning, developing, integrating, securing and operating ICT rather de-

scribes a dynamic capability because it is done to extend, modify and create the way of

how they make a living (Brynjolfsson, & Hitt, 2000; Henderson, & Venkatraman; Wade, & Hulland, 2004).

 Operational and dynamic capabilities are locally defined (Winter, 2003). Product development (including software development) is a 12

dynamic capability (Rahmandad, 2012), but for a firm that develops software to make a living, this could be an operational capability.

Jonas Matheus | jonasmatheus@web.de ! 9

http://web.de

European Master in System Dynamics

In recent years, particularly financial organisations, such as Citigroup or the Norwegian

bank DNB, have invested in building and strengthening their ICT related capabilities,

including software development and operations, to fend off the attacks from technology

start-ups that offer financial services (Dapp, 2014; FinExtra, 2017; Gandel, 2016). This deve-

lopment of “matching a firm’s resources and capabilities to the opportunities that arise

in the external environment” (Grant, 2010, p. 122) is the core of strategy and has been par-

ticularly dominant in the interaction of ICT with environments that are governed by rapid

change and competitive pressure, such as the airline industry and the financial sector

(Johnston, & Corrico, 1988; Porter, & Millar, 1985; Rivard, Raymond, & Verreault, 2006). Since ICT related

capabilities take significant time to change and provide benefits with very different time

delays (Brynjolfsson, & Hitt, 2000; Rahmandad, & Repenning, 2016; Ravichandran, & Lertwongsatien,

2005), “allocating a limited investment flow among them leads to inter temporal trade-

offs, which are at the heart of executives’ challenges” (Rahmandad, 2012, p. 138).

2.2.2 Time to Market, Software Economics and Security
Financial organisations develop software to modify and extent the core task of providing

financial services and to improve their overall business activities. Taking a more nuanced

view, capabilities in software development may be distinguished between creating soft-

ware functionality and ensuring software security. These two development capabilities

have very different temporal and financial implications. On the one hand, allocating

resources to develop functionality of software leads to immediate benefits to customers

and creates value for the organisation. Hence, developing software functionality within

short sprints permits a financial organisation to directly address market pressure, and

thus, pays off with very short time delays (Arora et al., 2006; Boehm, & Turner, 2005; Pressman,

2010). On the other hand, the effects of software security are much more uncertain.

Focusing on software security implies considerable additional development effort to

potentially prevent unknown future cyber attacks (Huang et al., 2008). Next, the absence of

known attacks does not automatically mean that an organisation is secure and no at-

tacks have occurred, but potentially also that attacks have not been detected and yet

taken place. Mistakenly perceiving a low cyber security risk because of few detected

attacks, organisations think themselves safe and decrease future cyber security invest-

ments, thereby reinforcing the erroneous sense of security (Martinez-Moyano, Conrad, & An-

dersen, 2011). Finally, even if organisations know that security measures have prevented

Jonas Matheus | jonasmatheus@web.de ! 10

http://web.de

European Master in System Dynamics

and/or reduced potential losses, it is often unknown which security measure has proven

to be effective, meaning that the overall value of security measures is difficult to quantify
(for some approaches to the economics of cyber security see e.g., Anderson et al. 2013, Gordon, &

Loeb, 2002; Heitzenrater et al., 2016). In the end, decision makers need to simultaneously

address the short-term business risk of market pressure from competitors through

enhancing software functionality (Arora et al., 2008) and the potential long-term security

risk of attack pressure from malicious cyber adversaries through software security (Be-

cker, 2014; McGraw, 2006, 2012; Neumann, 2012). Too much focus on security impairs per-

formance and success, whereas too little focus on security may cause software vul-

nerabilities and subsequent successful cyber attacks (Broderick, 2001; McGraw, 2006). Despite

the acknowledged need for a balance between software functionality and software

security, companies rather sell their software first and fix it later. In this sense, it is common

to trade-off the long-term quality, robustness, and security of software against the short-

term gain from releasing functionalities (Arora et al. 2008; Becker, 2014; Neumann, 2012).

2.2.3 Temporal Trade-Offs in Strategy

The topic of temporal trade-offs between the short term and the long term received

particular attention in the organisational theory and strategy literature (e.g. Laverty, 1996).

Next to investments in operational and dynamic capabilities (Rahmandad, 2012; Rahmandad,

Henderson, Repenning, 2016; Winter, 2003), examples included the previously mentioned ex-

ploitation and exploration (Levinthal, & March, 1993; Walrave, van Oorschot, & Romme., 2011), as well

as defect correction and process improvement (Repenning, & Sterman, 2002). Additionally,

studies covered the topics of direct and supporting activities (Porter, 1991), production

and protection (Goh, Love, Brown, & Spickett, 2012), reactive and preventive maintenance

(Sterman, 2000), or performance and robustness (Rahmandad, & Repenning, 2016). In practice,

strategy and decision making have appeared to favour “short-termism” (Laverty, 1996, p. 825)

which may be explained by an organisation’s struggle for survival (Rahmandad, 2012), a

favourable balance between operational and dynamic capabilities that allow reaping the

rewards (Rahmandad et al., 2016), stock market pressure and discounting of the future

(Laverty, 1996), managerial myopia (i.e., “the tendency to overlook distant times, distant

places, and failures” (Levinthal, & March, 1993, p. 95)), humans’ difficulty in understanding

dynamic complex systems and disruptive events (Rudolph, & Repenning, 2002; Sterman, 1994,

2000, 2006), mutual attribution errors in an environment governed by time delays (Repen-

Jonas Matheus | jonasmatheus@web.de ! 11

http://web.de

European Master in System Dynamics

ning, & Sterman, 2002), or the fast search for an optimal allocation of fungible resources in a

slowly adjusting system (Rahmandad, & Repenning, 2016). In the end, both, the short term

and the long term, are equally important as “an organization cannot survive in the long

run unless it survives in each of the short runs along the way, and strategies that permit

short-run survival tend to increase long-run vulnerability” (Levinthal, & March, 1993, p. 110).

Since resources in software development are limited (Boehm, 1984; Ethiraj, Kale, Krishnan,

& Singh, 2004), trading off short-term benefits from functionality to address market pressure

and long-term robustness from security to cope with cyber attacks results in pressure

resting on DevOps and software engineers. As described by Austin (2001) and Rahmandad

and Repenning (2016), pressure is a major reason for errors in software development.

Since errors may turn into vulnerabilities once the software is released, pressure should be

a major security concern. Interestingly though, research has not investigated the con-

nection between pressure, software defects, software vulnerabilities, and cyber attacks.

2.2.4 Pressure in Software Development and Software Vulnerabilities
Several recent studies indicated the mixed impact of pressure on performance and

errors in production and service (see for example Goh et al., 2012; Oliva, & Sterman, 2001; Perlow, Ok-

huysen, & Repenning, 2002; Rahmandad, & Repenning, 2016; Repenning, & Sterman, 2002; Rudolph,

Morrison, & Carroll, 2009; Rudolph, & Repenning, 2002). Of

particular interest in this context has been the

Yerkes-Dodson Law (1908) which describes an

inverted u-shaped relationship between pressure

and performance (Figure 6). While having been

controversial for a long time due to its potential

lack of applicability in other contexts than electros-

hocked mice (see for a short discussion and applicable

contexts for instance, Rudolph, & Repenning, 2002, p. 9),

recent research provided strong evidence, supporting the claims of the inverted u-shaped

relationship between pressure and performance (Lupien, Maheu, Tu, Fiocco, & Schramek, 2007).

Particularly studies investigating the relationship between pressure and performance

regarding the dynamic complexity within a production or service system relied on the

Yerkes-Dodson Law (see e.g., Rudolph, & Repenning, 2002; Rahmandad, & Repenning, 2016; or

Sterman, 2000). Sterman (2000, 2006) described dynamic complexity as the frequently

counterintuitive behaviour of complex systems that arises from the interaction of its
Jonas Matheus | jonasmatheus@web.de ! 12

Pe
rfo

rm
an

ce

Pressure
Figure 6: Example Shape of the Yerkes-Dodson Law
(created by the Researcher, based on Rudolph, &
Repenning, 2002; Rahmandad, & Repenning, 2016).

http://web.de

European Master in System Dynamics

elements over time. Being in a constant state of change, any kind of dynamic complex

system evolves unpredictably and adapts to new situations, no matter whether those are

desirable or not. Most importantly, the effects of actions taken in such a system are gene-

rally subject to systemic (nonlinear and delayed) feedback (Forrester, 1971; Meadows, 2009;

Sterman, 2000, 2002, 2006). Simply put, feedback is “a process in which action and infor-

mation in turn affect each other“ (Vennix, 1996, p. 31). In light of these system characteristics,

understanding dynamic complexity constitutes a major challenge for humans and

learning in such an environment is hampered by several barriers (Sterman, 1994). Combined

with biases and heuristics, discrepancies in mental theories, and humans’ bounded ratio-

nality decision making in dynamic complex systems is error-prone (Braun, 2002; Eisenhardt, &

Zbaracki, 1992; Simon, 1985; Sterman, 2000, 2006; Tversky, & Kahneman, 1974, 1986; Vennix, 1996).
While not explicitly relying on the Yerkes-Dodson Law, Burchill and Fine (1997) investi-

gated the effects of pressure on the quality of and errors within a development project.

The authors found that market-oriented development leads to high quality products and

little rework, whereas following “time to market” pressure results in a vicious circle of

creating more pressure despite attempting to resolve it. Along the same line, Repenning

and Sterman’s theory of capability traps described challenges among the implementati-

on of process improvement programmes which are “rooted in the ongoing interactions

among the physical, economic, social, and psychological structures” (2002, p. 292) of the

internal and external environment of an organisation. Similar to Burchill and Fine, mana-

gers’ attempts to resolve pressure by increasing throughput eventually exacerbates the

situation due to capability erosion caused by a lack of process improvement activities.

Likewise, Rahmandad and Repenning (2016) investigated capability erosion arising from

demand pressure and mistaken attempts of adapting to future workload, aiming for a fast

and optimal allocation of fungible resources in a slowly adjusting system. Being based

on the Yerkes-Dodson Law, this study advanced the concept by adding a real and a be-

lieved pressure-performance relationship, making it even more likely for an organisation to

collapse. Slightly different, Goh and colleagues (2012) investigated organisational accidents

caused by decreasing risk perception and increasing production pressure. In the end, all

of the four studies recommended to decrease pressure by stepping back from the situati-

on to learn about it and accepting short-term difficulties in order to achieve long-term

success. In contrast, the results of Rudolph and Repenning’s (2002) study on disasters

arising from external pressure caused by interruptions exogenous to an organisation
Jonas Matheus | jonasmatheus@web.de ! 13

http://web.de

European Master in System Dynamics

provided evidence that there are situations in which learning actually exacerbates the

undesired development. The study, also based on the Yerkes-Dodson Law, showed ins-

tead that immediate response is necessary in order to prevent organisational collapse.

In summary, all of the studies described the endogenous connection between pressure

and performance problems. The studies differ in the sense that some illustrated pressure

through the application of the Yerkes-Dodson Law (Rahmandad, & Repenning, 2016; Rudolph,

& Repenning, 2002), others took pressure for granted and rather focused on the mispercep-

tion of feedback when taking decisions (Goh et al., 2012; Repenning, & Sterman, 2002), and

others treated the decision of choosing pressure explicitly (Burchill, & Fine, 1997). Additionally,

the studies offered different solutions to addressing pressure: Most explained the exacer-

bating effect of attempted problem solving in the short-term, such as increasing workload,

whereas one study explicitly pointed out the need to immediately solve the issue in order

to survive the situation (Rudolph, & Repenning, 2002). Interestingly, while all of the described

studies investigated the endogenous creation or facilitation of organisational collapse,

none of the studies included the escalating relationship between an organisation and a

malicious actor from the organisation’s external environment who aims to exploit the

problems created within the organisation. Considering research on adversarial dynamics in

the field of terrorism and security (Martinez-Moyano, Oliva, Morrison, & Sallach, 2015), escalatory

patterns of behaviour are, however, common in the interaction between defenders and

attackers. To the best of the author’s knowledge, there have been no studies which

connect organisational collapse caused by the relationship between pressure and perfor-

mance with the interference of an external malicious actor. Hence, this study builds on the

previously mentioned research, and investigates the exploitation of endogenously created

performance issues and weaknesses within an organisation by a malicious external

adversary which eventually results in an escalatory attacker-defender-interaction.

3. METHODOLOGY AND DATA  
3.1 Model-Based Case Study for Theory Building in Complex Environments

This study considered the tension between software functionality and software security

by investigating the interaction between work pressure, software vulnerabilities, cyber

attacks, and organisational response to afterwards generalise its findings for making a first

step in building an explicit theory of vulnerability dynamics. According to Kopainsky and

Luna-Reyes, “theory can be understood as a coherent description, explanation and repre-
Jonas Matheus | jonasmatheus@web.de ! 14

http://web.de

European Master in System Dynamics

sentation of observed or experienced phenomena […] and theory building, in turn, is the

ongoing process of producing, confirming, applying, and adapting theory” (2008, p. 472f.).

Generally speaking, literature suggested several ways to contribute to theory, such as

grounding theory in data, building theory from theory, testing previously developed theore-

tical concepts, or expanding the extant theory by combining building and testing (Colquitt,

& Zapata-Phelan, 2007; Davis, Eisenhardt, Bingham, 2007; Strauss, & Corbin, 1994; Vaughan, 1992; Yin, 2014).

More specifically, as pointed out by Rudolph and colleagues (2009), it is common in system

dynamics to rely on all of the previous possibilities and to build, test and advance theoretical

concepts based on empirical insights, previously developed theory, or a combination of both
(see for example Black, Carlile, & Repenning, 2004; Burchill, & Fine, 1997; Goh et al., 2012; Oliva, & Sterman,
2001; Perlow et al., 2002; Perlow, & Repenning, 2009; Rahmandad, 2012; Rahmandad, & Repenning,
2016; Repenning, & Sterman, 2002; Rudolph et al., 2009; Rudolph, & Repenning, 2002; Sastry, 1997).

System dynamics is a scientific approach for understanding, analysing, modelling and

simulating dynamic complex physical and social systems to deliver policy options, support

decision making, or contribute to theory (e.g., Forrester, 1958, 1961; Kopainsky, & Luna-Reyes,

2008; Sterman, 2000). While the larger part of theory-oriented studies in system dynamics

were based on quantitative approaches, a number of qualitative studies built theory by

combining system dynamics with grounded theory or case study research (Azoulay, Re-

penning, & Zuckerman, 2010; Burchill, & Fine, 1997; Goh et al., 2012; Martinez-Moyano, McCaffrey, &
Oliva, 2014; van Oorschot, Akkermans, Sengupta, & Wassenhove, 2013; Perlow, Okhuysen, & Repen-

ning, 2002; and Repenning, & Sterman, 2002). Grounded theory and case study research are

particularly useful in supporting system dynamics because they provide rigorous ways to

identify emerging patterns, describe causal relationships and explain complex phenomena

(Forrester, 1992; Kopainsky, & Luna-Reyes, 2008; Yin, 2014). Case studies provide the additional be-

nefit of “increasing the generic nature of a system dynamics model” (Kopainsky, & Luna-Reyes,

2008, p. 478) through theoretical/analytical generalisation (i.e., building theory by continuously

and iteratively comparing the emerging generic structure about the phenomenon to be

explained with literature or data in a process of (dis-) confirmation).

Hence, this study takes the phenomenon of growing numbers of software vulnerabili-

ties and cyber attacks as a starting point to investigate vulnerability dynamics. Following

the examples of qualitative theory building in system dynamics, this research integrates

system dynamics, case study research and phenomenon-based research. The study

describes an iterative process of continuously comparing empirical insights and

knowledge from literature which fosters the process of generalising findings and thereby
Jonas Matheus | jonasmatheus@web.de ! 15

http://web.de

European Master in System Dynamics

building a dynamic theory to explain the observed phenomena (Figure 7) (Burchill, & Fine,

1997; von Kogh et al., 2012; Kopainsky, & Luna-Reyes, 2008; Sutton, & Staw, 1995; Yin, 2014). Con-

sidering the dynamic complexity of an organisation’s software engineering process and

its interaction with external adversaries, integra-

ting system dynamics, case study research and

phenomenon-based research is particularly use-

ful. Firstly, there is a growing appreciation in

case study research for studying complex issues

(Anderson, Crabtree, Steele, & McDaniel Jr. 2005), and

secondly, all of the three methods are powerful

in addressing multifaceted, interrelated, and dy-

namic complex phenomena (von Kogh et al., 2012;

Kopainsky, & Luna-Reyes, 2008; Sterman, 2000; Yin, 2014).

3.2 Case Selection
Having conducted the case study in a financial organisation in Europe had several

benefits for the investigation at hand: First, financial organisations are subject to particu-

larly high cyber risk (De Nederlandsche Bank, 2015, 2016; Deloitte, 2016; National Cyber Security Centre,

2016). Second, they have to bear the highest costs of cyber attacks throughout all in-

dustries (Ponemon Institute, 2016). Third, financial organisations increasingly rely on ICT

due to financial gains and develop their own software solutions (Bauer, & van Eeten, 2011;

Johnston, & Carrico; Porter, & Millar, 1985). Finally, they are amongst others considered as

part of critical infrastructure (Cabinet Office, 2010a, 2010b). Hence, having studied their 13

case in secure software engineering and the interferences from external cyber attacks

provided particularly valuable insights for understanding the interaction between work

pressure, software vulnerabilities, cyber attacks, and organisational attack mitigation.

Next to financial organisations being generally appropriate for the investigation at

hand, having conducted the case study in the collaborating European financial organi-

sation was particularly suitable: Due to the rapid business environment of the financial

sector, the organisation generally develops software following an agile approach, and

also other, non-technical teams conduct their work according to the agile methodology

 The UK Cabinet Office defined critical infrastructure as “those infrastructure assets (physical or electronic) that are vital 13

to the continued delivery and integrity of the essential services upon which [a country] relies, the loss or compromise of
which would lead to severe economic or social consequences or to life loss” (2010a, p. 8). For information on cyber se-
curity in critical infrastructure see e.g. Miller & Rowe, 2012.

Jonas Matheus | jonasmatheus@web.de ! 16

Figure 7: Model-Based Case Study Research Process
for Theory Building with System Dynamics (based on
Luna-Reyes & Andersen, 2003 typical steps in sys-
tem dynamics research; Kopainsky, & Luna-Reyes,
2008 integrating system dynamics and case studies;
and Yin, 2014 practices in case study research).

http://web.de

European Master in System Dynamics

in order to flexibly address the internal and external environment. The organisation uses

external software from third parties, such as commercial off-the-shelf software (bought),

software as a service (rented), and open source software (borrowed), and has a strong

focus on internal software development and operations. Within the organisation, mainly

DevOps take care of third party and internally developed software throughout the entire

lifecycle. They collaborate on this task with more specialised software engineers, system

architects, the security community, and internal and external customers. Finally, they are

part of development, operations, and emergency response activities in case of an attack.

This ability to flexibly switch tasks is particularly interesting in cases of pressure as pointed

out by Rahmandad and Repenning (2016). Since agile approaches were implemented

within the organisation several years ago, most of the teams are rather mature in soft-

ware engineering, and there is a growing commitment to address security concerns.

Throughout the case study, the author spent on average three days a week on site

over the course of six months. The outcomes of the study will be used within the fi-

nancial organisation for operational use and strategic decision making. Consequently,

the researcher was considered as a team member within the organisation and recei-

ved full support for his work during the period of the collaboration. 14

3.3 Data Collection and Analysis
Data within the financial organisation was mainly collected through the application of

group model building, a participatory approach of system dynamics involving stakehol-

ders into the modelling process for improving problem structuring, knowledge elicitation,

consensus building, analysis, and decision support (Vennix, 1996). Conducting group model

building workshops as a data gathering method similar to focus groups (e.g., Gill, Stewart,

Treasure, & Chadwick, 2008; Kopainsky, & Luna-Reyes, 2008; Morecroft, 1992; Morecroft, Lane, & Viita, 1991)

has clear advantages over traditional interviews and was thus employed in the project.

In contrast to individual interviews, the qualitative case data gathered from group model

building is richer and more accurate because it is discussed systematically between the

participants. Inaccuracies which are the uninvited companion of any abstraction, are more

likely to be discovered throughout the workshops because of the precise nature of a system

dynamics model. Creating a model serves as a group memory and means translating the

mental database of the participants into the model for discussing and analysing it from a

 While the case study organisation covered the travelling expenses of the researcher, partly organised meetings and data, 14

and provided a laptop with necessary software and further material, the author was not paid by the organisation. The contri-
bution of the researcher to the organisation goes beyond this study but is not displayed here due to necessary confidentiality.

Jonas Matheus | jonasmatheus@web.de ! 17

http://web.de

European Master in System Dynamics

systemic perspective. In the end, mutually agreeing on the specific variables and links in

the model leaves little room for later misinterpretation or wrong analysis of the qualitative

case data and serves thereby as a first step for increasing the case study’s internal validity
(Forrester, 1992; Scott, Cavana, & Cameron, 2015; Vennix, 1996; Vennix, Andersen, Richardson, Rohr-

baugh, 1992; Zagonel, 2002). Interestingly, group model building represents an approach

which combines data collection and data analysis. First, throughout the workshops the

knowledge from participants is collected and translated into a causal diagram. Accor-

ding to Merriam (2009), linking ideas, concepts, or categories in a meaningful way, for

instance in such a model, represents the highest and most abstract level of data analy-

sis. While also the links in a model obviously require further investigation, group model

building yet describes a unique approach of data collection and analysis.

Over the course of one month, three participatory system dynamics workshops of

three hours each took place on site and initially involved seven and in the second and

third session five experts from different departments within the financial organisation. 15

The participants were chosen on the basis of their knowledge about the organisation’s

secure software development and cyber security system and were invited by the colla-

borating cyber security department and the researcher. As common practice, the work-

shops included a wide range of activities, the overall topic was split into several smaller 16

pieces (submodels), the workshops were based on scripts commonly employed in 17

group model building (Andersen, & Richardson, 1997; Luna-Reyes et al., 2006), and the actual 18

modelling exercises were always started with a preliminary model created by the rese-

archer (Vennix, 1996). These preliminary models were based on the insights from literature

and preparatory discussions with the gatekeeper and relied as much as possible on

structures typical in system dynamics to increase the model’s robustness, accuracy and

ease of interpretation. The models created with the participants during the workshops 19

 The participants covered the areas of ethical hacking, fraud, penetration testing, responsible disclosure, software development, 15

system architecture, and vulnerability scanning. The number of participants changed because not all participants could take part in
all sessions. The gatekeeper and a colleague of the author, both experienced in system dynamics and group model building, sup-
ported the researcher in the sessions. The colleague functioned as assistant and recorder within the sessions (see Appendix II. A)

 Overall, the workshops included the following activities: presenting the problem, explaining the methodology, addres16 -
sing the topic by building the submodels, reviewing the previous sessions, discussing possibilities for measuring impro-
vements, and at the end, reviewing the entire model created in the workshops in order to check and examine the con-
nections between the different submodels, and discussing potential policy options.

 The submodels covered the topics of software development, third party software, DevOps, training and awareness, 17

vulnerabilities, responsible disclosure, and adversary behaviour and attacks.
 The scripts employed throughout the three workshops were partly used with or without adjustments and include the 18

following: Scheduling the day; logistics and room set up; creating a shared vision of a modelling project (only description
elements used); nominal group technique; variable elicitation; causal mapping with seed structure; concept model; ratio
exercise; model review; next steps and closing; initiating and elaborating a causal loop diagram; reflector feedback.

 Studies included Rahmandad & Repenning (2016) about software development, errors and wrong managerial adaptation; 19

Oliva & Sterman (2001) and Rudolph & Repenning, (2002) about overtime, fatigue, corner cutting, and errors; Gonçalves,
Hines, & Sterman (2005) about lean manufacturing; Repenning, & Sterman, (2002) about process improvement; Martinez-
Moyano et al., (2015) about adversarial dynamics in terrorism, Rahmandad, & Hu (2010) about different formulations of the
rework cycle; and Sterman (2000) for further standard approaches such as diffusion models or ageing chains and co-flows.

Jonas Matheus | jonasmatheus@web.de ! 18

http://web.de

European Master in System Dynamics

were cleaned and translated to the computer by the researcher immediately after the

sessions. Decisions about how to understand, improve and explain the model were

guided by the analytic technique of explanation building common in case study research

(Yin, 2014) and best practice in system dynamics (e.g., parsimony). Hence, next to the

notes taken during and the memories about the workshop, particularly the initial literature

review served as a comparison to the empirical findings. The researcher presented and

explained the refined models in the next sessions to the participants, requested them to

deliberately challenge the model, discussed the implications with them, and adjusted

the model according to the participants’ comments, thereby increasing the models

accuracy and the study’s internal validity (Andersen et al., 2012; Vennix, 1996; Yin, 2014). As

common in qualitative system dynamics research (see e.g., Repenning, & Sterman, 2002), the

group model building sessions were later followed by further communication via e-mail,

chat, phone calls, corridor conversations and also unstructured interviews.

Such further communication was deemed to be particularly useful because of the

massive data constraints in the areas of cyber security and agile software development,

arising from their respective nature: Security strives to overcome insecurity and uncertainty,

and thus, there are limited data; agile software development (which is used in the organi-

sation) is governed by flexible approaches with little documentation, and thus, leaves few

reliable data behind. Consequently, next to group model building, the author had several

informal conversations and eleven unstructured interviews, explicitly observed four times

two DevOps teams, conducted further informal observations while being on side, and ex-

amined documents and archival data (Yin, 2014). The researcher took notes about all activities 20

as tape recording was not possible due to the security environment of the study and coded

the data according to common practice in qualitative research (Merriam, 2009; see Appendix II,

in the following only indicated by the number). The two DevOps team were observed during two

short (around 20 minutes) and two longer (around 60 minutes) organisational meetings.

The interviews were conducted according to the organisation’s internal culture, meaning

that they were scheduled and took place as usual work meetings. Due to the busy work

environment, most of the participants were not asked to double check the researcher’s

notes. While this adaptation to the business environment reduced the validity of the fin-

dings, insights were anonymously discussed with different experts to offset that issue.

 Additionally, since internal documents are confidential they can neither be cited and referred to, nor made available to 20

anybody outside the organisation. The researcher assures, however, that all documents and archival data were investiga-
ted by following academic standards.

Jonas Matheus | jonasmatheus@web.de ! 19

http://web.de

European Master in System Dynamics

More generally speaking, the collected data was continuously compared to the previous

insights from literature and group model building, as common in qualitative research.

Since the outcomes of the study will be employed within the organisation, the process of

scrutinising the collected data and analysing it in the right context was strongly encouraged

and supported by the manager of the responsible team. Consequently, all of the insights

were constantly discussed with the gatekeeper, the responsible for software development

and other experts to double check the accuracy of information and to examine alternative

explanations. As such, contrasting empirical findings from single case studies with theory

helps to increase the external validity by looking for generalisability. Discussions and

analysis were once more guided by the aim of explaining the interaction between pressure

in software development, software vulnerabilities, cyber attacks, and attack mitigation

through the integration and comparison of literature and empirical insights (Merriam, 2009; Yin,

2014). Since phenomenon-based research and research in software engineering aim to be

relevant for management practice (von Kogh et al. 2012; Sjøberg, Dybå, Anda, & Hannay, 2008),

the outcomes were summarised in a comprehensive model. Discovered and discussed

policy options for improvement were added as well. Finally, the findings were generali-

sed and abstracted even further beyond the field of software development and cyber

security to make a first step in building a dynamic theory of vulnerabilities. Overall, having

triangulated the findings and employed a broad range of qualitative methods for data

collection and data analysis increased the study’s construct and internal validity (Thurmond,

2001; Yin, 2014). To further increase the internal validity, the qualitative models arising from the

research were subject to explicit structure validation (e.g. Barlas, 1996; Forrester, & Senge, 1980)

through disconfirmatory interviews with a specialised system architect, the responsible

team, and the main responsible expert for secure software development (Andersen et al.,

2012; see also II. E for further details). The approaches of data collection, the number of con-

ducted activities, and the data analysis techniques were summarised in Table 1.

Table 1: Summary of Data Collection and Analysis
Data Collection Number Data Analysis

Group Model Building  
(GMB)

3 Group model building, iterative model building with explanation building
and continuous comparison, discussions and disconfirmation

Notes about GMB 3 Coding, categorising, continuous comparison, explanation building
Unstructured Interviews 11 Coding, categorising, continuous comparison, explanation

building, disconfirmation
Conversations 7 Coding, categorising, continuous comparison, explanation building
Observations 5 Coding, categorising, continuous comparison, explanation building
Documents, Archival Data - Informal review and discussion, confidential

Jonas Matheus | jonasmatheus@web.de ! 20

http://web.de

European Master in System Dynamics

3.4 Validity and Reliability
In system dynamics research and case study research validation is understood as a

gradual, prolonged, and important process of iteratively and incrementally building con-

fidence in the research and a model with each new insight, method, or test (Barlas, 1996;

Forrester, & Senge, 1980; Yin, 2014). Although mentioned previously throughout the study, this

subsection summarises the different approaches to ensure the model-based case study’s

validity and reliability. The case study ensured its construct validity (i.e., using the correct

operational measures for the issue) by relying on multiple sources of evidence and data

collection methods (I. B; II. C, D) and triangulating the insights (II. B). While notes about the

data collection were not reviewed by the participants due to the business environment,

all insights and the state of the research were continuously discussed with experts from

the collaborating financial organisation. Finally, the gatekeeper and the main responsible

for software security reviewed this study. Next, two approaches ensured the study’s in-

ternal validity (i.e., establishing causal relationships): First, the empirical data was analy-

sed through the technique of explanation building and causal diagrams were used as

models (Yin, 2014). Second, the causal diagrams created throughout the workshops and

later by the researcher and also the insights from the study as a whole were subject to

critical assessment through three disconfirmatory interviews which aimed at refuting the

findings as much as possible (see II. E for further details on disconfirmatory interviews). Furthermore,

the study ensured external validity (i.e., assessing the generalisability of the findings)

through constantly comparing the empirical insights with theory, and by explicitly gene-

ralising the findings in a first step of building a theory of the dynamics of vulnerabilities (5.2).

Finally, the study’s reliability (i.e., the study can be repeated) was ensured with a clear

documentation of the entire case study, such as several versions of the causal diagrams

(I. B), scripts of the group model building sessions (II. A), or coded interviews (II. D.; see for

the entire documentation I and II). In addition, the study applied explicit techniques for model

validation common in system dynamics research. Since the model developed for the

purpose of this study is qualitative in nature, no quantitative validation (i.e., structure-

behaviour-tests and behaviour tests) was applied. Instead the study relied on common

techniques of structure validation in system dynamics research, namely structure verifica-

tion, conceptual parameter verification, the discussion of extreme conditions with experts

from the financial organisation, boundary adequacy, and unit consistency (i.e., in the built

but not used quantitative model units are consistent) (Barlas, 1996; Forrester, & Senge, 1980).
Jonas Matheus | jonasmatheus@web.de ! 21

http://web.de

European Master in System Dynamics

3.5 Research Ethics
This study was conducted in collaboration with the cyber security department of a

financial organisation in Europe. The collaboration inter alia provided the organisation with

decision support to improve defence against cyber crime and malicious attacks. Thus,

all participants in the research collaborated voluntarily. As this research was conducted in

collaboration, the researcher had access to confidential information. To cause no damage to

the collaborating organisation and its aims, the researcher handled all information with

outmost care. Due to the security environment of the research, no meetings were tape

recorded, and internal documents and archival data were not made publicly available but

remained within the organisation as it is part of the agreement between Radboud University

Nijmegen and the financial organisation. As part of the agreement, all confidential informa-

tion that were supposed to be made public were double checked by employees of the

cyber security department. The obligation to protect confidential information continues

after the research has been terminated. Fully acknowledging the need to protect confi-

dential data, the outcomes of the research are yet the intellectual property of the researcher.

The researcher followed other studies conducted at the intersection of software de-

velopment, cyber security, organisational theory, strategy, and system dynamics. To this

end, the researcher adhered to scientific standards and only applied suitable methods

that he was able to conduct. The researcher gave credit to all sources, theories, ideas,

and concepts used throughout this research. At the same time, the researcher refined

the findings from literature, conducted own data collection and analysis, and by having

combined the insights developed own concepts, answers, solutions, recommendations,

and theories. Last but not least, the researcher declares that he has done all of the work

independently and only used the declared and quoted sources. Passages in the text of

this research which resemble other studies literally or in a general meaning were explicitly

indicated as such through references and/or citation.

4. RESULTS AND ANALYSIS 
Resources in software development are limited which forces DevOps to trade off

between software functionality to address market pressure and software security to

cope with malicious cyber attacks. Being subject to such tension causes pressure

which is known to lead to mistakes (Austin, 2001; Rahmandad, & Repenning, 2016; Repenning, &

Sterman, 2002; Rudolph, & Repenning, 2002). Since defects in software development become

Jonas Matheus | jonasmatheus@web.de ! 22

http://web.de

European Master in System Dynamics

vulnerabilities upon release, an external malicious adversary may attempt to exploit such

weaknesses created inside of an organisation. This results in even more pressure because

the already limited time and resources have to be devoted to respond to an attack

(Ahmad, Maynard, & Park, 2014; McGraw, 2006, 2012). Despite these dynamics, to the best of

the researcher’s knowledge, the described interplay has not been scrutinised in literature.

Consequently, this study followed the objective to investigate and explain the dynamics

of secure software development, software vulnerabilities, external cyber attacks, and

organisational responses. Thus, the study addressed the following research question:

How does the interaction between pressure in software development, soft-
ware vulnerabilities, external cyber attacks against an organisation, and the
organisation’s attempt to mitigate those attacks influence the trade-off
between software functionality and software security?

To approach the research question, this section presents, explains, and analyses a

causal diagram which was developed by the researcher and derived from the empirical

findings within the European financial organisation and the continuous comparison with

the broader literature. The model unfolds in four steps, each representing one part of

the investigated interaction between pressure in software development (4.1), software

vulnerabilities (4.2), cyber attacks (4.3), and organisational attack mitigation (4.4). This 21

research follows the example of other studies in system dynamics (e.g., Repenning, & Sterman,

2002; Rudolph, & Repenning, 2002) by combining the presentation of findings from the model-

based case study with explanations and analysis of the results. This approach provides

the necessary context and relevance to understand the dynamic complexity governing

the issue at hand. At the end of each step the major insights and their respective rele-

vance are summarised in a table. Combined, the results provide the necessary conditions

for answering the research question in the Discussion Section below (5.1).

4.1 Agile Software Development and Pressure
The first step was concerned with the interactions of planning and developing

software and the possible occurrence of pressure, shown in the causal diagram of Figure

8. Parts of the diagram were well known and very similar to Rahmandad and Re22 -

penning’s description of software development (2016, p. 655-660). Other parts illustrated

 I. & II. show the iterative process of model building (Homer, 1996) and document the model, data collection and analysis. 21

 Causal diagrams (in system dynamics generally called causal loop diagrams) do not aim to provide mathematical descriptions of 22

relationships to conduct simulation experiments as common in system dynamics research. Initially, the researcher had built such a
mathematical model, but later not continued along that path. Next to severe data and time constraints, particularly the discovery of
an anomaly in Rahmandad and Repenning’s (2016) model which would have served as a starting point discouraged this endeavour.

Jonas Matheus | jonasmatheus@web.de ! 23

http://web.de

European Master in System Dynamics

the agile process of flexibly adjusting the workload which has not been modelled pre-

viously in software development but only in industrial push and pull production systems

(Gonçalves, Hines, & Sterman, 2005).

In contrast to sequential approaches in software development, theory on agile methods

prescribes that external demand does not control the work of DevOps teams. Instead,

the teams define the tasks set on the Sprint Backlog in collaboration with a representative

from the business side, namely the so called product owner (Beck, et al, 2001; Pressman,

2010; Schwaber, 2004). The Sprint Backlog lays out the work that a team plans to con23 -

duct per development cycle. The team selects the tasks from the product backlog and

aims to deliver functional software at the end of the sprint. The product backlog, in Figure

8 simply called Backlog, describes the overall work regarding software throughout the

entire lifecycle for all teams within the organisation (Pressman, 2010; Schwaber, 2004). Based

on the Sprint Backlog, new features are introduced or existing features are brought

back to development in an effort of continuous improvement, and together these build

up in the stock of Features under Development. Stocks represent accumulations in a

system and are changed through flows. As explained by Rudolph and colleagues,

“stocks have a key role in creating dynamics: they create delays, give systems inertia,

and provide systems with memory” (2009, p. 738). Although not displayed in detail here

for the sake of clarity, the stock of Features under Development includes several phases

of the lifecycle, namely, requirements, planning, design, development, testing, and pre-

 The names of variables that are shown in the model are italicised the first time they are introduced here. 23

Jonas Matheus | jonasmatheus@web.de ! 24

Features
under

Development
Features in

Usefeatures releasefeatures
introduction

DevOps
Workload

DevOps
Work Effort
+

+

features
decomission

B1

Get Work Done

DevOps
at Work

Backlog
+

backlog change +

Sprint
Backlog

+

+

-

features iterated
back to development

Recent Features
Release

Remaining
unfinished
Features

+

+

-

+

+

B2

Get Backlog
DoneB3

Agile Pull

R1

Agile Push

R2

Keep the
Level

+

-

Figure 8: Causal Struc-
ture of Agile Software
Development (based
on empirical research
and Rahmandad, &
Repenning (2016) and
Gonçalves, Hines and
Sterman (2005). The
small box above serves
as a legend for the
symbols used.

Stock
flow

C up D down

A up B up
+

-

B

Balancing
Feedback Loop

R

Reinforcing
Feedback Loop

http://web.de

European Master in System Dynamics

paring for release. Once features are released they become part of the Software in Use

within the organisation until they are decommissioned at the end of their lifecycle.

Based on the activities throughout development, release, and operations of software,

DevOps teams plan the previously mentioned Sprint Backlog and select future tasks. In

this context, the agile methodology borrowed several ideas from the lean approach in

production to improve scheduling of tasks, empower employees, reduce unnecessary

work, achieve fast delivery, understand value from the customer perspective, and optimise

the overall product (Pressman, 2010; Widman, Hua, & Ross, 2010). The group model building

workshops as well as observations of and interviews with two DevOps teams confirmed

the similarities between agile software development and lean production. Amongst

others, the empirical findings revealed that the planning of the Sprint Backlog follows

the lean approach in the sense that it relies on the interplay of push, pull and anchoring

mechanisms in production (Gonçalves et al., 2005). In practice, observations showed that the

DevOps teams within the financial organisation arrange their future work based on what

there is to do in total (Backlog), what they are used to do (Recent Features Release),

and what they still have to do from the previous sprint (Remaining Unfinished Features)

(II.D.12). Combined, these three techniques describe a dynamic interaction of push, ancho-

ring, and pull mechanisms for determining the Sprint Backlog and play out as follows:

First, the Backlog functions as a push mechanism because DevOps feel urged to al-

ways handle it. The Backlog is increased by new ideas based on innovations in the

market (not shown here for simplicity), and the overall number of Features in Use because

these have to be maintained, operated, improved, or decommissioned. Hence, if the

number of Features in Use is growing the overall work is rising. Assuming that the

teams are able to fulfil the self-assigned tasks, the higher the Sprint Backlog, the more

Features under Development, and eventually, the more Features in Use, leading to more

work and closing the reinforcing feedback loop R1 Agile Push. Since a large part of the

Features under Development is not introduced entirely new but iterated back from the

existing features in an effort of continuous improvement, the overall number of features is

only gradually increasing through this feedback loop. While R1 Agile Push increases the

Backlog, the release of features decreases it, forming the balancing feedback loop B2

Get Backlog Done which counteracts the Backlog growth. Together, these two feedback

loops determine the strength of the push-mechanism when planning the Sprint Backlog.

Jonas Matheus | jonasmatheus@web.de ! 25

http://web.de

European Master in System Dynamics

Second, the empirical data clearly showed that DevOps teams are oriented to their

performance from the previous sprint which they implicitly use as an anchor for upcom-

ing cycles. In this sense, the more features a team releases, the higher is the number of

Recent Features Release, and thus, the higher the upcoming Sprint Backlog. Once

more assuming that the teams are able to fulfil the assigned tasks, the higher the Sprint

Backlog, the more Features under Development, and eventually, the more Features Re-

lease, closing the reinforcing feedback loop R2 Keep the Level. It is noteworthy that this

feedback loop describes the mechanism of a floating goal (i.e., the desired state of a sys-

tem is based on the current state of the system) as the DevOps teams anchor their future

tasks on previous work. While this has the potential to drive performance, it can also lead

to the erosion of goals if the team anchors on a constantly declining target (Sterman, 2000).

Finally, and potentially most importantly, the previous push and anchor mechanisms

represented by the loops R1 Agile Push, B2 Get Backlog Done, and R2 Keep the Level

are governed by unfinished work. Stated differently, the DevOps account for work in the

stock of Features under Development which is still left from the previous sprint and only

pull as many new features into the stock as can actually be developed and subsequently

released within a sprint. According to the participants from the workshops, it is particularly

the mechanism described by the balancing loop B3 Agile Pull that enables the DevOps to

delay items on the Backlog and thereby prevent pressure occurring in agile approaches.

When confronted with the notion of stress and requested to comment on that, several

participants in the workshops indignantly emphasised that there is no such thing as pres-

sure in agile software development approaches. They added that within the organisation

DevOps teams are fully self-organised and make use of the balancing pull mechanism of

B3 Agile Pull, and thus, the teams are not subject to external pressure and stress from the

product owner or higher management. One of participants commented:

1. The agile approach clearly says that there is no pressure! (II.C.1 32) 24

In contrast to such claims, many conversations and observations within the six months

on site created a more nuanced picture, underlining that pressure is indeed an present.

According to a security expert for the topic of vulnerabilities, for instance, pressure is

commonplace in software development because of the business perspective:

 The quotes are counted to refer back to them. Quotes are abbreviated with Q. The citation at the end of the quotation re24 -
fers to the respective section and line in the Appendix.

Jonas Matheus | jonasmatheus@web.de ! 26

http://web.de

European Master in System Dynamics

2. The product owner from the business side looks first at functionality becau-
se that creates income, then at security because that costs money. We have
enforceable standards in place, so people need to consider both, functionality
and security. When there are deadlines this puts them under stress. (II.D.4 75ff.)

Along the same line, release pressure was clearly visible among the observed DevOps

teams. Having visited them at the very beginning of a sprint showed relaxed and calm

people who had time for chats and who enjoyed joking around, whereas attending

meetings with the very same employees at the second half of a sprint revealed higher

stress levels within some of the teams, for instance, visible by people eating at their

workspace, starting and finishing meetings exactly on time, admitting quite a high

workload with a grim smile, or being curt and brief (II.D.9-12, 19). Similarly, one of the Dev-

Ops admitted previous very high workloads which he hopes to not get back to. Additio-

nally, one of the managers in the security field strongly emphasised within a conversation

that the organisation is slim and efficient, and that people are working to capacity:

3. We are a business, we have no unnecessary slack in this organisation
and people are not just sitting around and waiting to do something! (II.D.3 5ff.)

In short, the empirical data confirmed theory that teams are actually self-organised and

plan their work in collaboration with the business side. However, the insights gained within

the financial organisation also contradicted theory in the sense that also agile software de-

velopment approaches are subject to considerable pressure. In this context, the Features

under Development indicate the amount of tasks that DevOps at Work need to address,

and combined, these two describe the DevOps Workload which effectively represents

the pressure resting on the DevOps teams. Generally speaking, there are four options

available to an organisation to address growing pressure: First, decrease the tasks on

the Sprint Backlog, second, increase the number of DevOps at Work, third, increase the

workweek, and fourth, decrease the time per feature (Sterman, 2000). Since market pressure

is high in the software business, cutting on demand or delaying release is seldom con-

sidered as an option in many businesses because of the high short-term costs, even

though such a postponement may save money in the long-term (Arora et al., 2006; Rahmandad,

& Repenning, 2016). However, in contrast to software vendors, financial organisations do

not conduct software engineering as their core activity. Customers appear to appreciate

new features in software, but there is no evidence that they would prefer new features

over properly functioning software. One of the security experts explained this situation:

Jonas Matheus | jonasmatheus@web.de ! 27

http://web.de

European Master in System Dynamics

4. Since we are a financial organisation time to market pressure is less of a
problem for us. We are not an app developer. We do not lose market share if
we release something later. We also do not have to address all customer
demands, but instead make sure that the software that customers use actually
functions in a proper way. (II.D.21 23ff.)

At the same time, several other experts emphasised the business impact of using

the possibility of delaying tasks on the Backlog too long.
5. The workload of a DevOps team should always stay stable. The problem is
when it actually stays stable and you do not develop anymore because of all the
other work you have to do. Then you delay the stuff on your backlog. (II.D.6 335ff.)
6. Agile is fine with delaying work and that is a good thing to prevent pressure.
But if you do that for too long, you create a strategic delay which may cost
you, depending on the industry, several percent of your revenues. (II.D.7 71ff.)

Hence, decreasing or halting the Sprint Backlog by pulling less features is a common

option to decrease pressure. At the same time, continuously relying on it may create

pressure from another angle as revenue losses start to occur in the long-term. Additio-

nally, employees indicated the concern that people may become so used to delaying

tasks that they implicitly account for it from the very beginning when planning future

work. In other words, delaying tasks may not be an option in case of pressure because

it is already used on a daily basis. Regarding the second option to adjust the overall

workload, changing the number of DevOps is often not helpful in decreasing pressure

as found out at IBM because “the greater costs of coordinating among more develo-

pers may outweigh any gain in efficiency” (Arora et al., 2006, p. 465, referring to the study of

Brooks, 1995). To account for this difficulty, teams within the financial organisation are ad-

justed differently, as explained within the workshops and illustrated by one employee:
7. If we want to increase the people working on something, we do not increase
the team size, but add new teams. Let’s say we have a team of eight people.
We then split the team in two teams with four people each and add four new
DevOps to each team, and if necessary, we just continue like this. (II.D.22 26ff.)

According to employees within the organisation this mechanism is not used for minor

issues because of the costs involved but mainly when stress is very high and “you want to

cut the pressure loop” (II.D.23 148). Additionally, an organisation need to have enough Dev-

Ops to rely on this approach. At the same time, since the last financial crisis starting in 2007,

many financial organisations have been restructuring their staff which effectively means

they have been laying off employees because of financial constraints and the growing

importance of ICT (Crowe, 2016; Lopez, 2013; Rankin, 2013), also underlined by one employee:
Jonas Matheus | jonasmatheus@web.de ! 28

http://web.de

European Master in System Dynamics

8. Instead of hiring more DevOps for actually doing more work, they hired
somebody basically holding a whip for making the DevOps work faster and
to increase the pressure to deliver. (II.D.18 39ff.)

Hence, to address pressure in the short-run, financial organisations often prefer to make

their employees working harder by increasing the workweek and decrease the time spent

per features, summed up in Figure 8 above as DevOps Work Effort (Oliva, & Sterman, 2001;

Sterman, 2000). Increasing the work effort of DevOps boosts the release of features and

consequently decreases the Features under Development which effectively reduces the

workload of a sprint. In sum, these causal links represent the balancing feedback loop B1

Get Work Done which basically describes the work effort of DevOps to process all tasks

selected for the Sprint Backlog, if necessary by working more or spending less time per

task. As pointed out by Rahmandad and Repenning, “this loop gives a team a signifi-

cant measure of flexibility in managing the inevitable variations in its workload” (2016, p. 657).

Table 2: Summary of Results in 4.1 Agile Software Development and Pressure
Findings Empirical

Evidence*
Relevance

DevOps in agile software devel-
opment select their tasks for the
sprint backlog based on push,
anchor and pull mechanisms
known from lean production.

Q 1  
II.D.12

Anchoring in agile methods may function as a floating
goal, enabling high performance or eroding goals. The
pull mechanism is the safeguard against pressure.

Despite the self-organised nature
of planning, DevOps in agile
approaches are under significant
pressure.

GMB;  
Q 1, 2, 3;  
II. D. 9, 19

Theory about agile software development approaches
clearly emphasises that no pressure should arise. Since
it is known that pressure decreases the quality of the
product, agile methods may not be able to hold the
promise of quality and customer orientation.

Financial organisations become
“technology companies with a
banking licence”. Yet they are not
subject to the same market
pressure as software vendors.

Q 4 For financial (and other non ICT-) organisations,
customers are customers because of the product and
less because of the time to the next feature release.

To overcome pressure, tasks
may be delayed which potentially
causes a strategic delay, leading
to heavy cuts in revenues.

GMB 
Q 5, 6

A potential downside of agile approaches is the ease of
delaying tasks which decreases pressure in the short
term but may heavily increase it in the long-term.

To overcome pressure, DevOps
teams may be split and filled up
with new DevOps to avoid the
coordination problems of man-
aging large teams.

Q 7 Splitting the DevOps teams and the tasks enables an
organisation to address pressure by shifting DevOps.
While an organisation needs to have enough DevOps at
hand, this approach may serve as a powerful
mechanism to “cut” pressure loops.

Most commonly, to counter pres-
sure, work effort is increased.

GMB 
Q 8

DevOps work either overtime or spend less time per
task.

* Empirical evidences may refer to the appendix (e.g., to broader observations, such as II.D.12), to group
model building workshops (abbreviated with GMB) or to quotations from the text presented above (ab-
breviated Q). As previously mentioned, the term appendix is not written in sources but just the respective
section and subsection is given (i.e., I.A, B, C, D, E, F; II. A, B, C, D, E) In addition, sometimes refer-
ence to other studies is given, such as in Table 3 below, referring to Rahmandad & Repenning, 2016.

Jonas Matheus | jonasmatheus@web.de ! 29

http://web.de

European Master in System Dynamics

4.2 Defects and Vulnerabilities
Having said that, Oliva and Sterman (2011) found out that employees within banks are

less likely to increase their workweek, but instead take shortcuts to meet demand be-

cause they do not want to work longer. Decreasing the time per task opens a path to

sacrificing quality against meeting pressure though, because the needed discipline and

steps within the software development lifecycle are omitted (MacCormack et al., 2003; Rahman-

dad, & Repenning, 2016; Pressman, 2010). Hence, next to the inevitable number of defects that

simply occur in software development, the higher the work effort of DevOps, the more

additional defects are introduced into a software (Figure 9). While literature distinguishes

between many different classifications of defects, this study only differed between unk25 -

nown and known defects. Additionally, the causal diagram in Figure 9 combines both

kinds of defects, functionality and security, to decrease the complexity of the diagram.

Increasing DevOps Work Effort causes a growing stock of Unknown Defects. Since it is

assumed that DevOps do not introduce defects intentionally, defects are obviously 26

 McGraw (2006), for instance, distinguishes flaws (i.e., defects in design) and bugs (i.e., defects in implementation). 25

 As previously mentioned, this study does not account for insider threats. See for this topic e.g. Martinez-Moyano et al., 2008.26

Jonas Matheus | jonasmatheus@web.de ! 30

Features
under

Development
Features in

Usefeatures releasefeatures
introduction

DevOps
Workload

DevOps
Work Effort

+

+

features
decomission

B1

Get Work Done

B4

Get Defects
Fixed

R4

Haste makes
Waste

R5

Workload from
Defects

DevOps
at Work

Backlog
+

backlog increase
+

Sprint
Backlog

+

+

-

features iterated
back to development

Recent Features
Release

Remaining
unfinished
Features

+

+

-

+

+

Known
Vulnerabilities

Unknown
Vulnerabilities

Known
Defects

Unknown
Defects unknown defects turn

into known
vulnerabilities

B2

Get Backlog
DoneB3

Agile Pull

R1

Agile Push

R2

Keep the
Level

defect
detection

defect
fix

defect
introduction+

known defects turn
into known

vulnerabilities

+
-

Defects turn into
Vulnerabilities

+

+

+Fixing
Defects +

+

+ vulnerability
fix

Fixing
Vulnerabilities

+

+

+

B5

Get
Vulnerabilities

Fixed

vulnereability
detection

R6

Firefighting
Vulnerabilities

-

Figure 9: Causal Structure of
Defects and Vulnerabilities,
added to the causal structure
from Figure 8 (Based on the
broader literature incl. Rah-
mandad, & Repenning, 2016;
Repenning, 2001; Sterman,
2000, and secure software
development literature, and
empirical findings within the
organisation). While previous
research on software devel-
 opment (or broader
product development) and
defects illustrated similar
structure, the connection
from defects to vulnerabilities
has not been investigated
previously.

http://web.de

European Master in System Dynamics

unknown and need to be detected through testing. While testing used to be modelled

explicitly in the system dynamics literature (see e.g., Rahmandad, 2005), nowadays organi-

sation commonly rely to a very large extent on automated solutions which increase the

effectiveness of tests and drastically decrease the required work for DevOps. One of the

observed and interviewed DevOps teams emphasised and discussed this benefit:

9. One of us used to spend his entire time on testing the developed soft-
ware. Now with automation, we have much more time for developing and
operating. Of course, we still do manual testing but by far not as much as
we used to. (II.D.19 77ff.)

Consequently, DevOps are still spending some time on testing but this is limited en-

ough that it is not considered anymore in the aggregated model depicted in Figure 9,

but just understood as part of the overall development work. It is noteworthy though

that automation leads to the discovery of all defects. In contrast, an external experts re-

ferred to the growing number of defects in the world:

10. The global errors in software are piling up. This is potentially not reco-
gnised but the overall number is, in my opinion, by far larger than actually
reported. (II.D.14 13ff.)

Additionally, there is a misperception about what automation can actually do. In a team

meeting, two experts explained the rest of the team and the leading manager the limits

of this technology as it was perceived that more than mere testing should be possible:

11. Automation is simply for testing. Yes, there are a few other things we
can do with it, but for now this is limited. It saves us lots of time with tes-
ting and gives better findings than many manual tests, but we still need to
fix it ourselves. (II.D.17 46ff.)

In a private conversation, an employee within the financial organisation made his

view of the problem of the current way of employing automation clear.

12. Finance basically says ‘you get automation, but how many people do we
save by that?’ The problem there is, even with automation we do not get
better. It is true that we detect more but since we have fewer people, we can’t
benefit from our increased knowledge because we can’t fix it. (II.D.18 22ff.)

In short, automation helps to decrease the workload for testing and to increase the

defect detection but it does not improve the workload when addressing defects.

Once defects are detected, they accumulate in the stock of Known Defects. Since

theoretically these defects are not supposed to be in a software upon release, they

lower the release rate which unintentionally increases the stock of Features under Deve-
Jonas Matheus | jonasmatheus@web.de ! 31

http://web.de

European Master in System Dynamics

lopment, causing more pressure, eventually leading to more defects, thereby building the

reinforcing feedback loop R4 Haste makes Waste. Additionally, Fixing Defects prior to

release decreases the number of Known Defects (B4 Get Defects Fixed) but immediately

increases the DevOps Workload because DevOps have to flexibly allocate their time to

resolve the defects. Since this causes even more pressure which results in more defects,

there is the potential that DevOps get caught in the reinforcing feedback loop R5

Workload from Defects. Consistent with the Yerkes-Dodson Law and previous studies
(e.g., Burchill, & Fine, 1997; Rahmandad, & Repenning, 2016; Repenning, & Sterman, 2002; Rudolph, &

Repenning, 2002), high pressure creates more work and results in a vicious circle, while

lower pressure means introducing fewer defects which results in a virtuous circle. As poin-

ted out by Rahmandad and Repenning (2016), the vicious circle may become that strong

that the benefits of increased work effort do not compensate for the defects anymore,

but cause software development and operations capabilities to erode. While the poten-

tial of this capability erosion due to reinforcing defect pressure has been confirmed by

the responsible security expert for software development within the financial organisation

when confronted with the u-shaped curve of the Yerkes-Dodson Law, the expert also

pointed out that Fixing Defects prior to release is common in agile software development

and does not necessarily constitute a clear sign of problems and stress (II.D.23).

Additionally, organisations may simply decrease pressure by recognising problems

and fixing them later after release, commonly described as the mentality of “sell first, fix

later” (Arora et al., 2006, p. 465). While market pressure initially caused stress, the decision to

release first and fix later actually decreases the immediate stress to solve defects prior to

release and allows organisations to address them later when time and resources are

available. In other words, DevOps teams have the opportunity to decide whether and when

to fix defects, thereby decreasing stress from rework and reducing future defects due to

pressure. Although the observed and interviewed DevOps teams in the financial organisa-

tion clarified amongst each other that software is not released as long as Known Defects

are present (II.D.10), it is common practice in many industries, that both kinds of defects,

functionality and security, are frequently not solved before release. Having said that, primari-

ly security issues remain in software upon release due to the business-driven perspective

of software development, as pointed out by several employees within the organisation:

13. Particularly in agile, software is developed for functionality because of the
customer-oriented approach and security is then seen as an add-on. (II.C.1 35ff.)

Jonas Matheus | jonasmatheus@web.de ! 32

http://web.de

European Master in System Dynamics

14. The desired software behaviour for people from operations and business
is not security. They do not care because security doesn’t give money and
if nothing happens nobody even recognises the success of security becau-
se you don’t know why nothing happened. (II.D.2 20ff.)
15. DevOps often lose the fight against the product owner who prefers
functionality over security. (II.D.15 90f.)

16. When developing functionality, we know the use cases. Security is more dif-
ficult because we must think of abuse cases. When we need to decide, often the
certain use cases come first, and then the uncertain abuse cases. (II.D.20 81ff.)
17. Functionality brings the team more prestige here within the organisation. No-
body sees security. So, they go for functionality and for the prestige. (II.D.20 70ff.)
18. Long-term benefits from security are sacrificed for short-term gains
from functionality because people think it is so unlikely that something
happens. (II.D.23 104ff.)
19. If there is high business pressure, you go for functionality because you
need to survive business. You should not do that for too long though but
most of the time you would. (II.D.21 58ff.)

Particularly the last comment underlined the common habit in software development

to trade off security for functionality due to continuously high pressure from the business

side. While potentially less dramatic than with commercial software vendors or mobile

app developers due to less “time to market” pressure in the financial industry (Q 4), the

empirical data indicated that the business-driven perspective and pressure from com-

petition in the financial industry do still invite to cut corners, causing defects which exa-

cerbate stress, reduce quality and security, and possibly introducing a vicious circle of

developing fast, releasing fast, and fixing a lot.

These interactions alone may not be problematic because developing fast and Fixing

Defects is common practice in agile approaches as described by the expert above.

However, three issues arrive from this practice: First, the later software defects are fixed,

the more expensive they are (e.g., Boehm, 1984). It is cheaper to not introduce a defect at

all, than fixing it within the same sprint, or three sprints later, and so on. Second, the ol-

der a defect becomes and the more features are based on flawed previous work, the

more difficult it is to resolve, a problem referred to as “technical debt”. To avoid this pro-

blem, agile approaches employ an activity called refactoring to “reduce software comple-

xity by incrementally improving internal software quality” (Cao et al., 2010, p. 5). A security

expert who used to work as a DevOps elaborated on the theory and practice of refactoring:

Jonas Matheus | jonasmatheus@web.de ! 33

http://web.de

European Master in System Dynamics

20. Refactoring should be done on a regular basis as part of the normal
development process. Sadly, in so many companies it is never done. (II.D.15 122ff.)

Interestingly, the obvious need to regularly conduct refactoring is not shared by all

involved parties in the development process, as for instance indicated by the repre-

sentative from business in one of the DevOps teams:

21. Why should we take the time for refactoring? It is obviously done enough
because otherwise it would be a priority on our Sprint Backlog. (II.D.19 102ff.)

This argument is noteworthy because it underlines the sacrifice of the long-term quality

and security for short-term gains from the fast release of software, and because it shows

that the judgment of DevOps teams may be biased. Since the risks for quality and security

from complex software are difficult to imagine, DevOps may underestimate the potential

future problems arising from it, a mechanism commonly referred to as the availability heu-

ristic discussed by Tversky and Kahneman (1974). Third, and in the context of this study

most important, the practice of developing fast and Fixing Defects, leading to the reinfor-

cing feedback loop R5 Workload from Defects, has severe security implications. Once

released, Defects turn into Vulnerabilities as shown in Figure 9 above. Obviously, Unk-

nown Defects and Known Defects accumulate in the stocks of Unknown Vulnerabilities

and Known Vulnerabilities respectively. Considering Figure 2, it is noteworthy that up to

fifty percent of vulnerabilities are unknown. While DevOps are not involved in vulnerability

detection, particularly the activity of Fixing Vulnerabilities has the potential to heavily dis-

rupt their regular work. Following the same mechanism as described above for defects,

DevOps allocate their time to fix vulnerabilities (B5 Get Vulnerabilities Fixed) which simulta-

neously leads to more workload. While defects are common in software development,

empirical data indicates that DevOps teams do not expect their products to be vulnerable:

22. We would know whether the features are vulnerable because pentest would
tell us. Since that has not been the case, there are no vulnerabilities. (II.D.19 122ff.)

While it is true that penetration testing is a powerful detection mechanism (Arkin,

Stender, & McGraw, 2005), findings from other detection techniques within the organisation

indicate that software vulnerabilities do occur despite having been subject to penetrati-

on testing. Underestimating the probability of vulnerabilities (Tversky, & Kahneman, 1974),

DevOps may become subject to unexpected pressure when vulnerabilities are detected

and the activity of Fixing Vulnerabilities disrupts their planned work in a sprint. Such a

disturbance decreases the Features Release, leading to more Features under Develop-

Jonas Matheus | jonasmatheus@web.de ! 34

http://web.de

European Master in System Dynamics

ment which, in turn, increases the DevOps Workload even further. This results in more

defects and subsequent vulnerabilities which have to be fixed as well, causing even

more work. As a consequence, DevOps teams may fall into the vicious circle R6 Fire-

fighting Vulnerabilities, in which they mainly focus on fixing vulnerabilities instead of

releasing software. This mechanism, particularly investigated by Repenning, describes a

dangerous downward spiral process “whereby lack of attention to the early phases of

the development process results in serious problems when projects reach their down-

stream phases” (Repenning, 2003, p. 305). Since time and software complexity play a

significant role in determining the ease of fixing a defect or vulnerability, the lack of at-

tention to upstream activities (e.g., design or misuse cases) creates problems and pres-

sure once it comes to the downstream activity of Fixing Vulnerabilities. Along the same

line with studies from Repenning and his colleagues (see e.g., Rahmandad, & Repenning,

2016; Repenning, 2001, 2003; Repenning, Gonçalves, and Black, 2001; Repenning, & Sterman, 2002),

such a focus on downstream activities may trap the DevOps in a downward spiral of

firefighting activities, constantly eroding performance. The responsible security expert

for software development emphasised the difference between pressure from defect

fixing and the pressure from firefighting vulnerabilities:
23. Both are plausible, both may lead to problems, but while the first is nor-
mal in agile methods, the latter should not occur. (II.D.23 125ff.)

Consistent with the empirical findings of this study, Rahmandad and Repenning (2016)

explain a similar mechanism in software development which focuses on current enginee-

ring in the case of a software vendor. Current engineering describes the activity of fixing

significant defects at the customer side once those errors are detected after release (Rah-

mandad, & Repenning, 2016). As explained by the authors, the “well-intentioned efforts by

managers to search locally for the optimal workload balance lead them to systematically

overload their organization and, thereby, cause capabilities to erode” (Rahmandad, & Repenning,

2016, p. 649). Due to the time delay between releasing the software and detecting the de-

fect, the organisation allocates resources to development activities and does not expect

to need the very same resources for future defect fixing. As a consequence, “in the short

run, the system will behave as though it has more capacity than is actually available” (Fi-

gure 10) (Rahmandad, & Repenning, 2016, p. 661). As suggested by the authors, their theory

called the Adaptation Trap is applicable in other settings as well, such as the one descri-

bed in this study: Despite applying agile software development approaches and relying on

Jonas Matheus | jonasmatheus@web.de ! 35

http://web.de

European Master in System Dynamics

new technological possibilities, such as automated

testing, pressure causes DevOps to increase their

work effort which boosts the release of features

but also results in defects. While it is never possi-

ble to detect and fix all errors in a software and

particularly pressure prevents DevOps from ad-

dressing all Known Defects, the business-driven

perspective results in neglecting security defects.

Hence, vulnerabilities arise upon release. While

teams can plan their sprint with Known Vulnerabili-

ties, Unknown Vulnerabilities are detected with an

average delay of about month (Ablon, & Bogart, 2017). Depending on the number of newly de-

tected vulnerabilities after release, DevOps may not have enough capacity to actually cover

their Sprint Backlog and the newly arisen vulnerabilities. Eventually, this wrong adaptation

may lead to high pressure and continuous firefighting, constantly eroding the capability to

develop and operate software, causing harm to an organisation’s performance and success.

Table 3: Summary of Results in 4.2 Defects and Vulnerabilities
Findings Empirical

Evidence
Relevance

Automated testing improves the effi-
ciency and effectiveness of defect
detection but does not help to fix the
found defects.

Q 9, 10, 11,
12, 22

To reap the benefits of automated testing,
enough DevOps have to be available for fixing
the detected defects. Else, the investment in
automation is likely to have little positive effect.

In agile approaches, fixing defects
prior to release is not necessarily a
sign for pressure or bad quality.

II. D. 23 The acknowledged effects of R4 and R5 in
literature also exist in in agile approaches but
may be much less problematic.

The “sell first, fix later” mentality
functions as a mechanism to de-
crease pressure.

Arora et al.,
2006

While the decreased pressure reduces the number
of future defects, “sell first, fix later” also allows vul-
nerabilities to arise, probably creating new pressure.

Due to the business-driven per-
spective and pressure resting on the
DevOps, long-term benefits from
security are regularly sacrificed for
short-term gains from functionality.

GMB 
Q 13, 14, 15,
16, 17, 18, 19

In contrast to common practice, business risks
must be valued against security risks, and only
thereafter, should a decision be taken about
sacrificing long-term robustness and quality.

DevOps teams are subject to
availability heuristics.

Q 21, 22 Due to the difficulty of imagining complex
software problems in the future or successful
cyber attacks, the problem of vulnerabilities is
unintentionally played down.

Fixing vulnerabilities may catch
DevOps in a persistent firefighting
mechanism, particularly if large
amounts of unexpected work arise.

GMB 
Q 23;  

Rahmandad &
Repenning,

2016

Wrongly adapting to the actual workload in the
future by not accounting for the need to fix
vulnerabilities may lead to permanent capabi-
lity erosion.

Jonas Matheus | jonasmatheus@web.de ! 36

Figure 10: Adaptation Trap (Rahmandad, &
Repenning, 2016, p. 661). The blue line indic-
ates the apparent, the red line the real relation-
ship between pressure (name of x-axes adjus-
ted to DevOps Workload, in original “Resource
Ratio”) and performance (Features Release).

http://web.de

European Master in System Dynamics

4.3 Adversary Dynamics
Rahmandad and Repenning (2016) indicated as one of the major safeguards against

wrong adaptation a dedicated learning approach in which teams would take time to learn

from past errors. While acknowledged among the DevOps, this activity is often not done:

24. I’m new here, so I was really wondering… Why do we not grab the coder and
do the code review together. I mean, it’s a great learning opportunity, we should
really consider doing that, but I guess we don’t have the time, right? (II.D.11 52ff.)

More importantly, Rahmandad and Repenning (2016) suggested a fixed resource alloca-

tion to the activities of fixing unexpected and unknown work. More precisely, in their

investigated organisation ten percent of the developers were allocated to current enginee-

ring. If there was less to do the developers had no work, and if there was more to do

the work had to wait. Consistent with literature on solving dynamic problems, the authors

suggested an approach of stepping back, taking time, and reframing the situation in order

to address the issue. Similar to the insights gained from Rudolph and Repenning’s (2002)

study on disaster dynamics, in the case of software vulnerabilities this approach of wait,

learn, and see may be counterproductive as emphasised by several security experts:
25. Vulnerabilities can be exploited immediately, so you need to fix fast. (II.D.6 227f.)
26. We need to have a very short mean time to resolve to reduce the risk. (II.C.2 137)

Hence, the total number of Unknown Vulnerabilities and Known Vulnerabilities in-

creases the Probability of a Successful Cyber Attack as depicted in Figure 11.

The Probability of a Successful Cyber Attack is affected in several ways: First, since

attackers employ the same tools as an organisation when searching for defects and

vulnerabilities, vulnerabilities known to an organisation are often easy to find for external

attackers as well and may be exploited fast. Second, Unknown Vulnerabilities have to

be detected prior to an exploitation which takes on average one month, indicated by

the double line crossing a link in the diagram above. Depending on the vulnerability, new

techniques for conducting the attack have to be created which takes a further three

weeks on average (Ablon, & Bogart, 2017). While it takes time for an attacker to address

Unknown Vulnerabilities, these so called Zero Day Exploits are very powerful as organi-

sations have no defence mechanisms in place to protect themselves. Third, the danger 27

arising from the total number of vulnerabilities accumulated in both, the stocks of un-

known and known vulnerabilities, is moderated by their criticality, namely low, medium,

 More formally, “Zero-day vulnerabilities are vulnerabilities for which no patch or fix has been publicly released. Thee term 27

zero- day refers to the number of days a software vendor has known about the vulnerability” (Ablon, & Bogart, 2017, p. iii).

Jonas Matheus | jonasmatheus@web.de ! 37

http://web.de

European Master in System Dynamics

high, and critical. According to security experts in the organisation (II.C.2; II.D.4,6,15), com-

panies across most sectors only fix critical vulnerabilities immediately. Other vulnerabili-

ties are added as tasks to the Backlog in order to be fixed later to not disrupt the regu-

lar activities. A security expert pointed out the problem with this technique:

27. People often say ‘we do it later because now we really do not have the time’, but
then later it is simply not put on the Sprint Backlog and just not done. (II.D.15 129ff.)

Hence, critical vulnerabilities are generally addressed fast because of their great

danger for an organisation, whereas vulnerabilities of lower criticality are considered

much less, enhancing the Probability of a Successful Cyber Attack (see also II. D. 6). While it

makes perfect sense from a business perspective to only disrupt the process of develo-

Jonas Matheus | jonasmatheus@web.de ! 38

Fe
at

ur
es

un
de

r
De

ve
lo

pm
en

t
Fe

at
ur

es
 in

Us
e

fe
at

ur
es

 re
le

as
e

fe
at

ur
es

in
tro

du
ct

io
n

De
vO

ps
W

or
kl

oa
d

De
vO

ps
W

or
k

Eff
or

t

+

+

fe
at

ur
es

de
co

m
iss

io
n

B1

Ge
t W

or
k

Do
ne

B4

Ge
t D

ef
ec

ts
Fi

xe
d

R4

Ha
st

e
m

ak
es

W
as

te

R5

Fi
re

fig
ht

in
g

De
fe

ct
s

De
vO

ps
at

 W
or

k

Ba
ck

lo
g

+

ba
ck

lo
g

in
cr

ea
se

+

Sp
rin

t
Ba

ck
lo

g+

+

-

fe
at

ur
es

 it
er

at
ed

ba
ck

 to
 d

ev
el

op
m

en
t

Re
ce

nt
 F

ea
tu

re
s

Re
le

as
e

Re
m

ai
ni

ng
un

fin
ish

ed
Fe

at
ur

es

+

+ -

+

+

Kn
ow

n
Vu

ln
er

ab
ilit

ie
s

Un
kn

ow
n

Vu
ln

er
ab

ilit
ie

s

Kn
ow

n
De

fe
ct

s

Un
kn

ow
n

De
fe

ct
s

un
kn

ow
n

de
fe

ct
s t

ur
n

in
to

 k
no

wn
vu

ln
er

ab
ilit

ie
s

B2

Ge
t B

ac
kl

og
Do

ne
B3

Ag
ile

 P
ul

l

R1

Ag
ile

 P
us

h

R2

Ke
ep

 th
e

Le
ve

l

de
fe

ct
de

te
ct

io
n

de
fe

ct
fix

de
fe

ct
in

tro
du

ct
io

n
+

kn
ow

n
de

fe
ct

s t
ur

n
in

to
 k

no
wn

vu
ln

er
ab

ilit
ie

s

+
-

De
fe

ct
s t

ur
n

in
to

Vu
ln

er
ab

ilit
ie

s

+

+

+
Fi

xin
g

De
fe

ct
s

+

+

+
vu

ln
er

ab
ilit

y
fix

Fi
xin

g
Vu

ln
er

ab
ilit

ie
s+

+

+

B5 Ge
t

Vu
ln

er
ab

ilit
ie

s
Fi

xe
d

vu
ln

er
ea

bi
lit

y
de

te
ct

io
n

R6

Fi
re

fig
ht

in
g

Vu
ln

er
ab

ilit
ie

s

Pr
ob

ab
ilit

y o
f

a
Su

cc
es

sf
ul

At
ta

ck
Ze

ro
 D

ay
Ex

pl
oi

t

At
ta

ck
un

su
cc

es
sf

ul
 a

tta
ck

su
cc

es
sf

ul
 a

tta
ck

st
ar

t a
n

at
ta

ck

-
+

+

+

+

Ad
ve

rs
ar

y
Ca

pa
bi

lit
y

Ad
ve

rs
ar

y
M

ot
iva

tio
n

+
+

-
+

+

+
R7

a

Le
ar

ni
ng

 fr
om

Su
cc

es
s

R7
b

Le
ar

ni
ng

 fr
om

Fa
ilu

re

R8

M
ot

iva
tin

g

B6

De
m

ot
iva

tin
g

-

Figure 11: Causal Structure of External Cyber
Attacks and Adversary Dynamics, added to the
causal structure from Figure 9 (Based on the
broader literature incl. Rahmandad, & Repen-
ning, 2016; Repenning, 2001; Sterman, 2000,
Martinez-Moyano et al., 2015 and secure soft-
ware development literature, and empirical find-
ings within the organisation). While previous re-
search on software development (or broader
product development) and defects illustrated
similar structure, the connection from defects to
vulnerabilities, the connection from vulnerabilities
to adversarial dynamics, and the way how to
depict adversarial dynamics has not been invest-
igated previously.

http://web.de

European Master in System Dynamics

ping and operating software for critical vulnerabilities to optimise value, the aspect of

quantity is of high relevance in this context. The same security expert further elaborated:

28. Vulnerabilities are not only critical because of their level, but also because of
the underlying mathematics. The numbers count because many low and me-
dium vulnerabilities may be as dangerous as one or two critical ones. (II.D.15 41ff.)

Consequently, the Probability of a Successful Cyber Attack is influenced by the

quantity, the criticality, and the state of the vulnerability, namely whether it is known or

unknown. Omitting one of these characteristics (as often done with lower criticalities and

the quantity of those) unintentionally increases the Probability of a Successful Cyber Attack.

The higher this probability, the more successful attacks and the less unsuccessful attacks.

According to Martinez-Moyano and colleagues (2015), attacks may generally be dis-

played as projects under development. Along the same line, the participants from the

group model workshops (II.C.2) and two experts from within the financial organisation,

one an ethical hacker, the other a software security expert (II.D.1, 2), described how hacking

attacks evolve in three distinct steps: First, adversaries search for information and scan all

external facing ICT of an organisation and may also target employees to receive information.

Next, the gained insights are used to search for vulnerabilities. Finally, in case of detected

vulnerabilities the adversary searches for a way to exploit them. If such a utilisation of an

organisation’s weaknesses is possible, a successful attack takes place. If the exploitation

is not possible, the adversary may continue the search or end the project, leading to an

unsuccessful attack. While displayed in detail within the group model building workshops

(I. B), Figure 11 simply incorporates all these activities within the stock of Attack. Next

to hacking attacks, also malware exploits software vulnerabilities, such as in the recent

cases of WannaCry and NotPetya (Fox-Brewster, 2017). While very different regarding the dis-

tinct steps and often by far not as sophisticated as hacking attacks, also malware-ba-

sed attacks follow the logic of a project under development because malware needs to

be developed for a certain purpose, pass different levels of security layers within an

organisation, reach its intended destination, and finally execute its purpose. 28

Next to the Probability of a Successful Attack, mainly the Adversary Capability and

the Adversary Motivation determine the initiation and later the outcome of an attack (II.C.2,

3; II. D). While the causal diagram above only links Adversary Capability and Adversary

Motivation to start an attack for simplicity reasons, of course, their intensity defines the

 Prior to this study, the author and two colleagues have led workshops in the same financial organisation on malware-based attacks.28

Jonas Matheus | jonasmatheus@web.de ! 39

http://web.de

European Master in System Dynamics

actual strength of an attack. Simply speaking, the more effective and the more motiva-

ted an attacker, the higher the chances of successfully exploiting a software vulnerability

and having a successful attack. Adversary Capability sums up the effectiveness of an at-

tacker, and describes the routinely employed skills of an adversary to use the available

resources. Interestingly, participants in the workshops and further security experts poin-

ted towards the similarity between cyber adversaries and business organisations.

29. Attackers are not different from companies, they have objectives, teams, ma-
turity, tools, and so on. They are just using different, and illegal methods. (II.C.2 161ff.)

30. An attacker has a business case, like we have one too. (II.D.6 396)

Hence, also cyber adversaries form an objective and develop strategies, acquire

resources, and strengthen capabilities to increase performance and achieve success. In

the context of an adversary, resources may describe money, ICT, people or anything else

that is necessary for an attack. Skills include the ability to develop malware or to conduct

a hacking attack. In contrast to physical attacks, such as in terrorism (Martinez-Moyano et al.,

2015), cyber attacks may be successful despite very limited resources or skills. Adversaries

can buy cheap exploitation tools, malware, relevant information or even attack services

on the black market (Libicki, Ablon, & Webb, 2015), and often malware attacks are sent ran-

domly to many targets. Success in the latter case does not need a sophisticated attack

but rather a defender not being aware of cyber security. According to the participants,

adversaries increase their capabilities from both unsuccessful and successful attacks. In

most cases, resources are not negatively affected by conducting an attack (i.e., malwa-

re is not depleted like ammunition after use), and successful attacks may lead to new 29

information or actual monetary value. Since cyber adversaries are generally strategically

thinking and creative actors, skills generally increase by any outcome of an attack be-

cause both, successful and unsuccessful attacks, offer learning opportunities (e.g., Libi-

cki, Ablon, & Webb, 2015; McGraw, 2006). Hence, growing numbers of conducted Attacks

offer more learning opportunities which increase the Adversary Capability, thereby crea-

ting the two reinforcing feedback loops R7a Learning from Success and R7b Learning

from Failure. Depending on the insights gained from an attack, an adversary may repeat

the very same attack or displace the criminal activities (II.C.2), namely to another time (e.g.,

night, public holidays, or after publicly announced software release), place (e.g., web-

 For malware specifically developed for exploiting a zero day vulnerability (e.g., Stuxnet, see Miller & Rowe, 2012) this is not true. The 29

resource is lost because it derives its high value from being a possibility to exploit an Unknown Vulnerability which is known afterwards.

Jonas Matheus | jonasmatheus@web.de ! 40

http://web.de

European Master in System Dynamics

page or mobile app), method/tactic (e.g., malware or hacking), target (e.g., another

organisation), or offences (e.g., theft or blackmail). As described in the crime displacement

literature, these displacement techniques may occur simultaneously to improve Adversary

Capability and achieve the initial objective (Hesseling, 1994; Johnson, Guerette, & Bowers, 2014;

Telep, Weisburd, Gill, Vitter, & Teichman, 2014). Combined, the two reinforcing feedback loops

describe a potential pathway to escalation from learning and practice since an adversary

strengthens his/her own skills by any outcome of an attack. In practice, this escalati-

on mechanism is moderated by forgetting rates, limits to learning, the number of exploita-

ble software vulnerabilities, cyber security mechanisms, and particularly the Adversary

Motivation. In other words, no matter how extensive the skills and resources of an advers-

ary are, if there is no motivation to attack a specific target, no attack takes place (II.C.2).

Further to the previously described displacement decisions to improve Adversary Ca-

pability, the initial objective and motivation has a particular impact on the decision to

change or stay with a target, as explained by two security expert:

31. Generally, an attacker changes his target after an unsuccessful attack. If
the attacker has a specific objective and conducts a targeted attack against
an organisation, he will stay with that target because he has more informa-
tion about it and he has a reason to attack that target. (II.D.6 244ff.)
32. The escalation depends on the attacker and his target. (II.D.23 131f.)

Hence, adversaries stay with a target in case of a successful attack, increasing Adversary

Motivation, thereby forming the reinforcing feedback loop R8 Motivating. In combination

with the two previous capability loops, this loop further escalates the activities of an ad-

versary. If attacks are unsuccessful though, most adversaries would lose motivation and

change their target, thereby decreasing the numbers of attacks against the same organi-

sation, forming the balancing feedback loop B6 Demotivating. Since private organisations

are not allowed to chase adversaries, only governmental activities, such as arresting atta-

ckers, may have further demotivating effects. Overall, the behaviour of cyber adversaries

is driven by escalatory patterns and only unsuccessful attacks, government interaction,

or the deliberate choice of another target due to an adversary’s strategy decrease the

overall number of attacks against a particular organisation. As indicated above, the

strength of this balancing effect is further moderated by the particular goal of an ad-

versary. When an attacker is interested in a specific organisation because of its footprint

(e.g. the financial sector due to its negative reputation), the strength of the balancing loop

B6 Demotivating may be completely offset, giving way to escalatory attack patterns (II.C.2).
Jonas Matheus | jonasmatheus@web.de ! 41

http://web.de

European Master in System Dynamics

4.4 Organisational Attack Response
Since attacks may be understood as development projects, they require time to

process and pass all the necessary steps. Additionally, when attackers attempt to exploit

a vulnerability through malware or hacking, they do not only need to find this vulnerability

and know how to abuse it but they also have to pass an array of preventive defence

mechanisms and have to make sure that they stay undetected because otherwise the

attack would turn unsuccessful. Common prevention and detection mechanisms include

firewalls, blacklists, proxy servers, antimalware software, anomaly scanners or security

event monitoring (e.g., Ahmad et al., 2014). If an attack is stopped through prevention mecha-

nisms, no further action from the side of an organisation is required. However, if detec-

tion mechanisms show the intrusion of an external malicious actor into an organisation’s

ICT system, manual actions from the organisation’s Computer Emergency Response

Teams (CERT), further experts, and the DevOps team which is responsible for the atta-

cked area of the organisation’s ICT system are necessary, either to halt the attack, or to

pick up the pieces, learn from the incident, and improve the organisation’s future defence.

The number of DevOps needed for Attack Response depends on the specific case (Figure

12). Generally speaking, a large number of people is involved at the very beginning to

find the root cause of the problem. Once the underlying reasons are found, a smaller team

of experts works to fend off the attack. In both phases of the response, mainly the most

Table 4: Summary of Results in 4.3 Adversary Dynamics
Findings Empirical

Evidence
Relevance

Code review as one of the most ef-
fective mechanisms should be done
in pairs but the learning experience
is dropped due to time constraints.

Q 24;  
II.C.3

Along the same line of Rahmandad, & Repen-
ning learning from mistakes and code review
have been pointed out for improving security.
Yet, time constraints prohibit this activity.

Since vulnerabilities may be exploited
fast, stepping back, taking time, and
reframing the situation to address the
issue may be counterproductive.

GMB; 
Q 25, 26; 

II. C. 2, 3; II. D.
15

Similar to the findings from Rudolph, & Repen-
ning (2002), fast actions and a reduced mean
time to resolve are necessary to decrease the
number of exploitable vulnerabilities.

The probability of a successful attack
depends on the state, quantity, and
criticality of vulnerabilities. Lower cirit-
icalities are often not fixed and also the
larger quantities of those are often not
considered as dangerous.

GMB; 
Q 27, 28; 

II. D. 4, 6, 15

Next to fixing critical vulnerabilities, organisations
need to also fix vulnerabilities of lower criticalities
instead of merely adding those to the backlog. Since
quantity-focused attacks may be successful, fixing is
necessary.

Cyber adversaries are like private
organisations, employ similar meth-
ods, and follow a business case.

GMB; 
Q 29, 30

Understanding cyber adversaries as business organ-
isations may help to reframe knowledge in science
and practice when attempting to understand attackers.

Cyber adversaries build capabilities in
an escalatory pattern. Only demotivat-
ing leads to counter-acting this spiral.

GMB; 
Q 31, 32;
II. C. 2, 3

Since private organisations have only successful
defence as demotivating strategy, governments
need to step in to chase and arrest attackers.

Jonas Matheus | jonasmatheus@web.de ! 42

http://web.de

European Master in System Dynamics

experienced DevOps from the responsible team and further experts are occupied with

the tasks of mitigating the attack. No matter the overall number of DevOps needed for
Jonas Matheus | jonasmatheus@web.de ! 43

Fe
at

ur
es

un
de

r
D

ev
el

op
m

en
t

Fe
at

ur
es

 in
U

se
fe

at
ur

es
 re

le
as

e
fe

at
ur

es
in

tro
du

ct
io

n

D
ev

O
ps

W
or

kl
oa

d

D
ev

O
ps

W
or

k
Eff

or
t

+

+

fe
at

ur
es

de
co

m
is

si
on

B1

G
et

 W
or

k
D

on
e

B4

G
et

 D
ef

ec
ts

Fi
xe

d

R4

H
as

te
 m

ak
es

W
as

te

R5

Fi
re

fig
ht

in
g

D
ef

ec
ts

D
ev

O
ps

at
 W

or
k

-

Ba
ck

lo
g

+

ba
ck

lo
g

in
cr

ea
se

+

Sp
rin

t
Ba

ck
lo

g+

+

-

fe
at

ur
es

 it
er

at
ed

ba
ck

 to
 d

ev
el

op
m

en
t

Re
ce

nt
 F

ea
tu

re
s

Re
le

as
e

Re
m

ai
ni

ng
un

fin
is

he
d

Fe
at

ur
es

+

+ -

+

+

Kn
ow

n
Vu

ln
er

ab
ili

tie
s

U
nk

no
w

n
Vu

ln
er

ab
ili

tie
s

Kn
ow

n
D

ef
ec

ts

U
nk

no
w

n
D

ef
ec

ts
un

kn
ow

n
de

fe
ct

s
tu

rn
in

to
 k

no
w

n
vu

ln
er

ab
ili

tie
s

B2

G
et

 B
ac

kl
og

D
on

e
B3

Ag
ile

 P
ul

l

R1

Ag
ile

 P
us

h

R2

Ke
ep

 th
e

Le
ve

l

de
fe

ct
de

te
ct

io
n

de
fe

ct
fix

de
fe

ct
in

tro
du

ct
io

n
+

kn
ow

n
de

fe
ct

s
tu

rn
in

to
 k

no
w

n
vu

ln
er

ab
ili

tie
s

+
-

D
ef

ec
ts

 tu
rn

 in
to

Vu
ln

er
ab

ili
tie

s

+

+

+
Fi

xi
ng

D
ef

ec
ts

+

+

+
vu

ln
er

ab
ili

ty
fix

Fi
xi

ng
Vu

ln
er

ab
ili

tie
s

+

+

+

B5 G
et

Vu
ln

er
ab

ili
tie

s
Fi

xe
d

vu
ln

er
ea

bi
lit

y
de

te
ct

io
n

R6

Fi
re

fig
ht

in
g

Vu
ln

er
ab

ili
tie

s

Pr
ob

ab
ili

ty
 o

f
a

Su
cc

es
sf

ul
At

ta
ck

Ze
ro

 D
ay

Ex
pl

oi
t

At
ta

ck
un

su
cc

es
sf

ul
 a

tta
ck

su
cc

es
sf

ul
 a

tta
ck

st
ar

t a
n

at
ta

ck

-
+

+

+

+

Ad
ve

rs
ar

y
C

ap
ab

ili
ty

Ad
ve

rs
ar

y
M

ot
iv

at
io

n

+
+

-
+

+

+
R7

a

Le
ar

ni
ng

 fr
om

Su
cc

es
s

R7
b

Le
ar

ni
ng

 fr
om

Fa
ilu

re

R8

M
ot

iv
at

in
g

B6

D
em

ot
iv

at
in

g

D
ev

O
ps

 in
Re

sp
on

se

D
ev

O
ps

 A
tta

ck
M

iti
ga

tio
n+

-

+
-

de
vo

ps
 tu

rn
 to

re
sp

on
se

D
ev

O
ps

 N
ee

de
d

fo
r

At
ta

ck
 R

es
po

ns
e

+

+
B7

At
ta

ck
M

iti
ga

tio
n

R9

Fi
re

fig
ht

in
g

At
ta

ck
s

Figure 12: Causal Structure of Organisational Attack Response, added to the causal structure from Figure 11
(Based on the broader literature incl. Rahmandad, & Repenning, 2016; Repenning, 2001; Repenning, &
Sterman, 2002; Sterman, 2000, Martinez-Moyano et al., 2015 and secure software development literature,
and empirical findings within the organisation). While previous research on software development (or
broader product development) and defects illustrated similar structure, the connection from defects to vul-
nerabilities, the connection from vulnerabilities to adversarial dynamics, the way how to depict adversarial
dynamics, and the connection between work and reaction has not been investigated previously.

http://web.de

European Master in System Dynamics

Attack Response, the desired number of devops turns to response. Increasing numbers

in the stock of DevOps in Response improve the attack mitigation capabilities of an orga-

nisation, and thereby, decrease the Probability of a Successful Attack. Hence, DevOps At-

tack Mitigation leads to less successful and more unsuccessful attacks, thereby creating

the balancing feedback loop B7 Attack Mitigation. While the mechanism of this balancing

feedback loop appears to be a simple and reliable way to counteract the escalatory

attacker behaviour, the participants during the workshop emphasised its limitations:

33. When you respond to an attacker who is already in, often you are too late.
What you do is you try to reduce the impact, learn from it, and go on. (II.C.3 116 ff.)

In other words, responding to an attack is the last resort, and while trained and

prepared with CERT, DevOps, and further experts, on its own it does neither represent a

reliable, nor a desirable mechanism to address the security risk from cyber attacks.

Additionally, since devops turn to response in case of a detected cyber attack, fewer

DevOps are available to conduct the regular work of developing and operating software,

thereby further increasing the DevOps Workload in a situation which is already governed

by pressure. In an effort to keep up with the work, the teams strengthen their work effort.

While this may reduce the pressure arising from the Features under Development, it also

leads to more defects which later turn into vulnerabilities, both causing more, and potentially

unknown and not recognised work in the future. Similar to the firefighting mechanism

explained earlier, the lack of attention to upstream activities due to high pressure, such

as careful design, abuse cases or code review in pairs, causes the DevOps to firefight at

a last stronghold against the attempts of an external adversary to maliciously exploit the

previously introduced vulnerabilities. Since an attack is disproportionately costly (Anderson et

al., 2013), organisations attempt to avoid successful breaches by all means. Hence, while it

is common that organisations respond to an attack, the interactions between pressure,

software development, software vulnerabilities, and cyber attacks make it likely that

teams and organisations become trapped in a persistent mode of the reinforcing feed-

back loop R9 Firefighting Attacks. The pressure arising from this downward spiral is

reinforced by the lack of senior DevOps within the teams at work which decreases the

productivity of the regular development and operation tasks (not indicated in the diagram

for simplicity reasons). During a meeting with the collaborating security team, one of the

experts referred to an other organisation which recently had a similar, though planned case:

Jonas Matheus | jonasmatheus@web.de ! 44

http://web.de

European Master in System Dynamics

34. They had more than a thousand people in the warroom for an entire day.
This was a planned exercise for training but the business impact was still heavy.
I can really imagine that this has a strong effect on companies. (II.D.17 182ff.)

In the same and further meetings, it has been pointed out that this mechanism is real

and dangerous but it has also been emphasised that it represents a rather extreme case

because larger organisations have enough resources to buffer such attacks (e.g., II.D.23).

Several hints from the empirical insights and previous findings described in literature

modulate the probability of this mechanism: First, DevOps teams normally have a standby

agreement with other teams to cover each other in case of emergencies, in both busi-

ness and security. Some DevOps have indicated problems in this context:

35. They [another team] don’t do standby, so if there is an issue we have to
work quite hard. I think, we should escalate that to a higher level. (II.D.11 71ff.)

Hence, in case of an emergency, problems may arise from time delays in response,

pressure, or understaffing. Second, response activities may last for a day or two, but it

may also take several months in which the defender and attacker interact in a cat-and-

mouse game. One of the collaborating DevOps teams, for instance, described a business

incident (i.e., the DevOps were in response mode due to functionality problems and not

security issues) which lasted for several months and clearly emphasised that there is no

desire to come back to such a situation (II.D.11). Particularly in the case of long-lasting

response activities, the productivity of DevOps teams is severely affected and pressure

rises even further, potentially causing more defects and vulnerabilities which reinforce

the vicious circle. Third, smaller organisations are unlikely to have the necessary resources

to conduct a response lasting several months. An ethical hacker within the organisation

described another company which was not able to fend off the attacker alone:

36. Battles between hackers and defenders can go over several months. Often
you think the guy is out but then he was just stealthy or had a backdoor or
something else and is still inside. […] there was this case of a smaller company
where the people went back to work and the attacker was still inside becau-
se they could not afford it anymore to neglect their normal jobs (II.D.2 173ff.)

In the described case the business impact of not developing features anymore had

become more harming than the cyber attack itself. Eventually, the firm had solved the

problem with the expensive help of an external security provider who was hired as a last

resort (II.D.2). Fourth, a security expert speculated about the danger of targeted attacks.

While cyber criminals may have no interest of deliberately pushing an organisation into a
Jonas Matheus | jonasmatheus@web.de ! 45

http://web.de

European Master in System Dynamics

persistent mode of firefighting, state actors could aim to destabilise a country or region

by collapsing a private organisation in the course of cyber warfare (II.D.22). Fifth, several

heuristics, biases and misperceptions obscure causes and consequences of decisions

and actions. It was previously emphasised that employees may underestimate the real

danger of dynamic mechanisms in cyber security due to well known availability heuristics

(Tversky, & Kahneman, 1974). Similarly, Repenning and Sterman (2002) found out that managers

are subject to attribution errors, meaning that they ascribe the cause of problems in

production to employees’ inadequate work effort, and not to the dynamics of pressure

and firefighting. Interestingly, during the six months on site, several experts from the se-

curity field and managers have complained about lacking compliance by the DevOps.

So, while DevOps may underestimate the actual problems of software complexity,

shortcuts, defects, and vulnerabilities, managers may not recognise that declines in pro-

ductivity occur (at least partially) due to overwhelming pressure and firefighting activities

and not because of a lack of compliance from the side of the DevOps. Along the same

line, managers, security experts, and DevOps may state that an organisation applies agi-

le software development, whereas in practice, the organisation engages in dangerous

cherry picking. As pointed out by MacCormack and colleagues, “to the degree that such

a process relies on a coherent system of practices, a piecemeal approach is likely to

lead to disappointment” (MacCormack et al., 2003, p. 84). Confronted with this idea, the res-

ponsible expert for secure software development admitted the problem:
37. Among my colleagues throughout many industries, this is a big question.
Nobody knows whether we actually apply agile or whether we simply call it
like this and do instead something else. (II.D.23 207ff.)

Combined, availability heuristics, attribution errors for causes of problems, and uncon-

scious differences between what organisations state they do (i.e., conducting agile soft-

ware development) and what they actually do (i.e., taking some of the mechanisms of agile

methods and combine them with other approaches) may increase the likelihood of 30

pressure and firefighting. Last but not least and as explained above, Rahmandad and Re-

penning (2002) demonstrated the potential of capability erosion when attempting to op-

timise resource allocation in an uncertain environment. While the internal environment of

the software vendor in their study was already governed by uncertainty about the future,

actions from a malicious cyber adversary are likely to be even more uncertain.

 This is framed as espoused theory and theory in use (see e.g., Vennix, 1996 referring to Argyris, 1992; and Argyris, & Schön, 1978).30

Jonas Matheus | jonasmatheus@web.de ! 46

http://web.de

European Master in System Dynamics

In short, empirical evidence indicated that the occurrence of persistent firefighting

regarding vulnerabilities and attacks is not an inescapable route. Yet, the findings also

suggested that dismissing the potential of firefighting vulnerabilities and incidents entirely

is a dangerous and negligent fallacy. Like organisational accidents, cyber attacks build

up by many small pieces that eventually cause the attack to be successful (Goh et al.,

2014; Lacey, 2009). Governed by several counterproductive efforts of firefighting to solve

pressure and reinforced by the escalatory behaviour of adversaries, organisations may

be more vulnerable than they first

appear. Having built on Rahman-

dad and Repenning (2016), the

true capacity of developing and

operating software within an orga-

nisation may even be lower than

proposed by the authors in their

study, as shown in Figure 13. In

other words, this study points out

that an organisation subject to a

dual firefighting mechanism and

escalatory behaviour may have

two apparent and one true system which blurs the actual capacity. Hence, the interaction

of pressure in software development, software vulnerabilities, cyber attacks, and respon-

se has the potential to severely affect the trade-off between software functionality and

software security: While security is sacrificed for functionality in an effort to address the

short-term business risks, the overall risk in both security and subsequently business

rises due to the lacking focus on security. After an initial gain from the focus on functionality,

the growing number of vulnerabilities and subsequent attacks potentially force the Dev-

Ops into persistently firefighting vulnerabilities and probably even attacks which causes the

DevOps to drop their regular work, eventually disrupting business and harming the orga-

nisation’s performance. In the words of one of the security experts in software development:

38. If stress is high, quality and particularly security go down which costs a lot
in the long run. In fact, cheap is always expensive in the long term. Eventually,
you need security anyways so do it right from the beginning! When you do
it later, it costs more, it is harder, and it harms your business. (II.D.15 146ff.)

Jonas Matheus | jonasmatheus@web.de ! 47

Figure 13: Suggested Behaviour in a System with two apparent Performance
Optima. The system is governed by the underestimation of potential dangers,
several mechanisms of misperception, and the interaction between two
firefighting spirals and escalatory patterns (based on Rahmandad, & Repen-
ning, 2016 which only had one apparent and one true system). The blue
and red line describe the apparent, the black line the real relationship
between pressure (DevOps Workload) and performance (Features Release).

http://web.de

European Master in System Dynamics

In the light of the array of reinforcing mechanisms inside and outside an organisation,

pressure is likely as the possibilities for stress are abundant. Hence, it is necessary to take a

conscious and informed decision when trading off software functionality and software security

and manage the arising risk. An external executive underlined the importance of matching an

organisation’s internal approach with the external environment to be successful in business:

39. Business is about risk. If there is no risk, there is no business because
everybody would simply do it. Cyber attacks are just another kind of risk
we have to deal with. (II.D.13 8ff.)

5. DISCUSSION AND CONCLUSION
In the last decades public and private organisations have embraced ICT and particularly

software to improve their performance and achieve success (e.g., Wade, & Holland, 2004).

Nevertheless, software depicts a critical entry point for malicious cyber adversaries ex-

ternal to an organisation because of the abundant, and continuously rising number of

global software vulnerabilities which enable successful cyber attacks (Ablon, & Bogart, 2017;

Verizon, 2016). Software vulnerabilities are caused by defects in the coding or configuration of

a software. Such defects arise inter alia from taking shortcuts due to pressure when deve-

loping and operating software (McGraw, 2006, 2012; Oliva, & Sterman, 2001; Rahmandad, & Repenning,

2016). While agile approaches in software development are theoretically not supposed to

allow pressure, also DevOps teams following agile methods are subject to limited resources.

This forces them to prioritise activities and consequently trade off software functionality

to address short-term business risks from market pressure against software security to

Table 5: Summary of Results in 4.4 Organisational Attack Response
Findings Empirical

Evidence
Relevance

Responding to attacks is necessary but may
catch DevOps in a persistent firefighting
mechanism, particularly if pressure is already
high, the attacker is powerful, and large
amounts of unexpected work arise.

Q 33, 34 Despite the danger from firefighting mech-
anisms, it is vital to respond to attacks be-
cause of the disproportionate costs arising
from successful cyber attacks. Meanwhile,
production pressure must be reduced.

Combining the empirical hints from several
areas (deviations in security standards, poten-
tial time horizons of response, the size of an
organisation, targeted attacks, availability
heuristics, attribution errors, espoused theory
and theory in use, and adaptation traps)
sheds new light on the probability of firefight-
ing vulnerabilities and attacks.

Q 35, 36, 37
II.D.2, 19, 22; 

Rahmandad, &
Repenning,

2016;
Repenning &

Sterman, 2002

While described as possible but improb-
able, literature and empirical findings
suggest that firefighting vulnerabilities
and even attacks may be more likely
than initially assumed. Under these con-
ditions, capability erosion becomes
more likely as there are two apparent
systems that hide the real one.

Trading off security for functionality may feed
back later and turn out to increase both,
business and security risks, and swallow
earlier profits. Thus a conscious decision
about the true risks is necessary.

Q 38, 39 
McGraw, 2006,

2012

Along the same line as previous findings in
literature, “building security in” is cheaper
in the long-term. The firefighting and es-
calatory dynamics may lead to business
disruptions decreasing performance.

Jonas Matheus | jonasmatheus@web.de ! 48

http://web.de

European Master in System Dynamics

cope with long-term security risks from cyber attacks. Considering research from the

organisational theory and strategy literature (e.g., Levinthal, & March, 1993), such trade-offs

between the short-term and the long-term create pressure. Despite this contradiction to

theory in agile methods, there have been no studies which connected pressure in agile

software development, software vulnerabilities, cyber attacks, and organisational response

to better understand and explain the trade-off between software functionality and soft-

ware security. Hence, this research set out to answer the following research question by

conducting a model-based case study in collaboration with a European financial organisation:

How does the interaction between pressure in software development, soft-
ware vulnerabilities, external cyber attacks against an organisation, and the
organisation’s attempt to mitigate those attacks influence the trade-off
between software functionality and software security?

Overall, this study provides seven contributions and explains several theoretical and

practical implications for software security and cyber attacks. The first contribution of this

study is a rich description and explanation of the causes and consequences of the dynamic

interplay between pressure in agile software development, software vulnerabilities, cyber

attacks, and attack mitigation which is laid out below. While the description of this interac-

tion represents a contribution in itself as it has not been done before, there are four specific

points which are clearly named and emphasised in the text as individuals contributions.

Despite the self-organising nature of DevOps teams (Schwaber, 2004), the findings from

this study show that pressure also exists in agile software development. To address their

workload, DevOps particularly increase their work effort. While this enables teams to re-

lease more features and achieve fast value as aimed for in agile methods, increased work

effort also causes more defects. In contrast to previous findings (Repenning, 2001), fixing

these mistakes does not describe a firefighting mechanism as in product development but

is part of the nature of agile software development due to their short cycles. Consistent with

criticism raised in literature (e.g., Becker, 2014; Heitzenrater et al., 2016; McGraw, 2006, 2012; Neumann,

2012), it is, however, commonplace that long-term benefits from security are sacrificed for

short-term gains from functionality when fixing errors, meaning that particularly functionality-

related issues are addressed while security defects are neglected, leading to vulnerabilities

upon release. Hence, increased pressure causes more defects which in turn leads to higher

numbers of vulnerabilities. In this sense, the second contribution of this study is to explicitly

draw the connection between pressure, defects, and vulnerabilities in a systematic way. The

Jonas Matheus | jonasmatheus@web.de ! 49

http://web.de

European Master in System Dynamics

responsible for secure software in the financial organisation noted that he would not believe

that more pressure causes more vulnerabilities, but illustrating the connection from pressure

to defects to vulnerabilities is a simple, yet clear way of laying out this pathway to weakness.

In contrast to fixing defects, solving vulnerabilities has the potential to intensely disrupt the

regular activities because software vulnerabilities have to be fixed fast as they may be ex-

ploited by external attackers. While it is unlikely that a vulnerability is exploited immediately,

the need to solve weaknesses in a timely manner still reinforces the pressure resting on the

DevOps teams, potentially causing them to blunder into a mode of persistent firefighting or

even organisational collapse. Thus, solving the problem is urgent but once the issue is ad-

dressed, the solution also creates new problems. In this sense, this study confirms previous

findings that the usual approach to cope with complex problems (i.e., taking time, learning

about the issue, and addressing it later) has the strong potential to exacerbate the issue

instead of improving it when used in an environment of immediate danger (Repenning 2003;

Rudolph, & Repenning, 2002). At the same time, such necessary, but continuous firefighting may

lead to the permanent erosion of software development and operation capabilities due to the

wrong adaptation to future workloads (Rahmandad, & Repenning, 2016). In short, the third contri-

bution of this study is to explicitly link software vulnerabilities and the probability of a suc-

cessful cyber attack since this connection poses a dilemma to an organisation: It has to fix

the vulnerabilities fast as they may be exploited by an external adversary but by fixing them

rapidly, the organisation may get caught in persistent firefighting. Interestingly, previous re-

search has either looked at firefighting mechanisms (e.g., Rahmandad, & Repenning, 2016; Repen-

ning, 2001), or fast problem solving (e.g., Rudolph, & Repenning, 2002) but did not link those two

elements. Such a combination is reasonable though as it has been shown in this study that

issues may be simultaneously subject to severe time pressure and pressure from workload.

In contrast to previous research on the dynamics of firefighting, this study included an

external actor who aims to exploit potential weaknesses of an organisation. To this end,

cyber adversaries follow an objective, have a business case, acquire resources, and cul-

tivate capabilities like any private organisation as well. In this sense, they simply join the

ranks of competitors an organisation needs to address, with the small difference that

these new competitors play by different, illegal and unpredictable rules (Figure 14). Con-

sequently, organisations have to broaden their perspective on competition and integrate

business and security strategies to address the threats from malicious cyber adversaries.

Jonas Matheus | jonasmatheus@web.de ! 50

http://web.de

European Master in System Dynamics

Additionally, cyber adversaries are follow-

ing several escalatory patterns, similar to

those observed in terrorism research

(Martinez-Moyano et al., 2015), which reinforce

their activities, enhance their capabilities,

and increase their motivation, likely lead-

ing to more future attacks. Understanding

the interaction between cyber adversaries

driven by escalatory behaviour and an

organisation as a form of competition that

needs to be addressed by integrating business, ICT, and cyber security strategies depicts

the fourth contribution of this study. Research on competition in the fields of strategy and

organisational theory has applied terms commonly used in cyber security which provides a

further hint of the benefit of incorporating the different fields in an integrated idea of strategy.

In this sense, Porter for instance wrote that “awareness to these forces can help a company

stake out a position in its industry that is less vulnerable to attack” (Porter, 1979).

If not stopped by preventive measures, organisations have to respond to those attacks

to avert successful breaches which would lead to disproportionate costs (Anderson et al., 2013).

Even if an attack is successfully warded off, additional pressure arises because DevOps,

and particularly the seniors, interrupt the pursuit of their regular tasks, potentially fuelling

the downward spiral of firefighting software vulnerabilities and cyber attacks. The findings

of this study indicate that such dual firefighting mechanisms against both internal and

external problems exist and are more likely than expected. Next to organisational or attack

characteristics, particularly cognitive limitations and misperceptions lead to problems.

Paraphrasing Porter and Millar (1985, p. 152), technological solutions have changed organ-

isational and environmental opportunities and threats faster than employees and man-

agers can explore, analyse, and react on. Thus, misperceptions arising from availability

heuristics, attribution errors, and the difference between espoused theories and theories

in use increase the likelihood of the occurrence of a vicious circle because people often

only realise the existence of problems and firefighting mechanisms once it is too late

(Repenning, 2001; Repenning, & Sterman, 2002; Tversky, & Kahneman, 1974, 1986; Vennix, 1996).

Along the same line, the system’s physical and decision structure further complicates the

detection and confrontation of firefighting since it is characterised by two apparent per-
Jonas Matheus | jonasmatheus@web.de ! 51

Figure 14: Interaction between Business Organisations and
Cyber Adversaries. Business organisations threaten each other
through economic competition and are additionally threatened
from cyber adversaries. Organisational defence mechanisms
threaten the business case of cyber adversaries.

http://web.de

European Master in System Dynamics

formance optima (i.e., prior to the detection of vulnerabilities and prior to attacks) which

both represent a pathway to vicious circles as an organisation may adapt to underestim-

ated future workloads. Hence, adding an external actor to the system potentially increases

the effects of previously discovered traps in production and development (Rahmandad, &

Repenning, 2016; Repenning, 2001; Repenning, & Sterman, 2002; Rudolph, & Repenning, 2002).

Thus, it is the fifth contribution of this study to include an external adversary which leads to

the potential of a dual firefighting mechanism and two apparent performance optima which

blur the real capacity in the system. These findings strengthen the insights from previous

research in firefighting and capability erosion (Rahmandad, & Repenning, 2016; Repenning, 2001).

In short, the interaction of pressure in software development, software vulnerabilities,

cyber attacks, and organisational response plays out as follows: Pressure appears to

exist in agile software development. While it increases performance, it also causes defects,

leading to vulnerabilities which allow an external adversary to exploit an organisation.

Continuously fixing defects and vulnerabilities, and responding to attacks potentially leads

an organisation into a permanent downward spiral, causing the DevOps to drop their

regular work, particularly in the light of escalatory attack patterns described by adversaries.

The sixth contribution of this study is to connect the previously described interaction

with the trade-off between software functionality and software security, thereby answering

the initial research question. Favouring software functionality to address business risk over

software security to address the risk from cyber adversaries may only lead to a temporal

success. Initial gains from functionality may be offset by rising security problems that dis-

rupt the development and operation of software and thereby harm the organisation’s per-

formance. Stated differently, the interaction between pressure in software development,

software vulnerabilities, cyber attacks from an external adversary, and organisational at-

tempts of attack mitigation create a dynamic complex system in which the short-term

outcome is likely to be very different from the long-term state. Favouring software function-

ality enables an organisation to address threats from competition in business. Meanwhile,

this decision makes an organisation vulnerable to cyber attacks from an external ad-

versary. Even when not accounting for the enormous costs of successful cyber attacks,

the pressure from addressing security threats by fixing software vulnerabilities and mitigating

cyber attacks may trap the organisation in a persistent mode of firefighting. As a con-

sequence, less focus on functionality is possible as more and more DevOps are concerned

with security-related problems. Thus, the organisation shifts its focus from addressing
Jonas Matheus | jonasmatheus@web.de ! 52

http://web.de

European Master in System Dynamics

threats from business competition to threats from security. Hence, initial short-term gains

may very well be lost by the long-term consequences arising from the dynamic com-

plexity of the system. While neither the details of the trade-off, nor the strength of the pre-

viously described interplay are considered here as no quantitative analysis has been

conducted (Homer, & Oliva, 2001; Sterman, 2000), in the light of the explained interaction it is clear

that neglecting software security for short-term gains from software functionality represents

a better-before-worse scenario often addressed in the field of system dynamics (Braun,

2002; Senge, 1990; Sterman, 2000). In sum, the interaction between pressure in software devel-

opment, software vulnerabilities, cyber attacks from external malicious adversaries, and

organisational attack response affect the trade-off between software functionality and

software security in such a way that short-term benefits may turn into permanent long-

term losses as an organisation may get trapped in a dual firefighting mechanism while

the adversary escalates his/her attack patterns to benefit from the weakened organisation.

5.1 Theoretical and Practical Implications in Software Security
Since this research was conducted by combining practice-driven scientific approaches

and in collaboration with a European financial organisation which actively uses the results of

the research, this study provides both theoretical and practical implications for scientists and

practitioners in the field of agile software development and cyber security. The implications

are presented in four steps, discussing pressure, defects and vulnerabilities, the trade-

off between software functionality and software security, and adversarial dynamics.

5.1.1 Implications regarding Pressure
In contrast to theory (Beck et al., 2001; Pressman, 2010; Schwaber, 2004), agile software develop-

ment does not appear to be without pressure. Hence, productivity and outcomes may be

worse or at least different than expected as the success of development practices depends

on the consistent application of those (MacCormack et al., 2003). This study urges to scrutinise

whether organisations truly apply agile methods, or whether they simply state their intents

and simultaneously act in dangerous cherry picking (MacCormack et al., 2003). Indications for the

latter case are backroom politicking, exhausted staff, the separation of development and

operations, DevOps receiving managerial directives that inhibit the self-organising nature of

the team, or unfinished products at the end of a sprint (Schwaber, 2004). Since people or orga-

nisations generally do not recognise the difference in their stated and their actual behaviour

(Vennix, 1996), it may be challenging to investigate the extent to which the espoused theory
Jonas Matheus | jonasmatheus@web.de ! 53

http://web.de

European Master in System Dynamics

deviates from the theory in use. Moreover, it could even be difficult to recognise pressure in

the first place since habits or corporate culture could blur the inquiry. In this context, the

comment from one of the DevOps who had just recently joined the respective team is illumi-

nating because he pointed out the theoretical benefits but practical lack of pairwise code

reviews, a fact that others of the team seemed to had forgotten about (Quote 24; II.D.11).

Additionally, the common practice in agile approaches to delay tasks may further obscure

the true extent of pressure within an organisation since the work which creates pressure is

simply put on hold. In practice, a growing backlog across all teams could indicate such a

scenario. Next to blurring the true picture, findings from this research confirm the previously

described danger of constantly postponing tasks (van Oorschot et al., 2013), because this practice

eventually results in a costly strategic delay and future schedule pressure. While previous

research has indicated that such time pressure cannot be solved by increasing the number

of DevOps (Arora et al., 2006, referring to Brooks, 1995), this study described the practice in agile

software development of deliberately dropping less important projects to “cut the pressure

loop” by splitting tasks and teams and adding new DevOps to the project (II.D.23 148). Since

it is realistic to assume that the overall pressure has not been completely solved once it

comes to downstream activities in software development (Rahmandad, & Repenning, 2016), this

measure of “cutting the pressure loop” is highly relevant for practice in software develop-

ment as it fulfils the need to address problems fast and yet avoids firefighting mechanisms.

5.1.2 Implications regarding Defects and Vulnerabilities
While “there are always some bugs in the released software” (Rahmandad, & Repenning, 2016,

p. 654), in recent years, automated testing has increased the effectiveness and efficiency of

tests in software development, leaving fewer unknown defects behind. The findings of this

study indicate though that investments in automated testing are void if detected errors are

not fixed afterwards. While this sounds obvious, the trend in the financial industry to layoff

employees due to technical possibilities (Crowe, 2016; Lopez, 2013; Rankin, 2013) may impede

the actual impact of automated testing. At the same time, it is noteworthy that automated

testing leads to two further benefits: First, even if defects are not fixed after having been

detected, automated testing enables an organisation to have a better understanding of

the actual future amount of work to avoid wrong adaptation, thereby potentially preventing

firefighting mechanisms. Second, an external expert indicated the opportunity of employing

automated testing in real time while developing software, allowing DevOps to receive fast

Jonas Matheus | jonasmatheus@web.de ! 54

http://web.de

European Master in System Dynamics

feedback while coding (II.D.14). Particularly the second benefit would enable DevOps to

decrease the number of defects prior to release and subsequently reduce the amount of

software vulnerabilities. In line with previous research (Ablon, & Bogart, 2017; CVE, 2017; McAfee, 2014;

Verizon, 2016), this study points out the growing number of software vulnerabilities and empha-

sises the danger of only focusing on vulnerabilities with a critical or high severity. In practice

“the numbers count” (II.D.15 42), and thus even leaving vulnerabilities with a lower criticality

open may jeopardise an organisation’s success. In this context, experts within the financial

organisation have underscored the relevance of decreasing the mean time to resolve. This

request received particular weight through the two previously mentioned cases of WannaCry

and NotPetya that exploited a well known software vulnerability in Microsoft’s operation

systems. Although the software vendor had provided a security patch long before, many

organisations worldwide were still vulnerable at the time of the attacks (Fox-Brewster, 2017).

5.1.3 Implications regarding the Trade-Off between Functionality and Security
Throughout the last decades, Gary McGraw has relentlessly emphasised the need to

“build security in” (2006, 2012). Although further research showed that addressing defects

during the upstream phases of software development is much easier and cheaper (Boehm,

1994; Stecklein et al., 2004), practice has frequently not followed this request, supposedly

because of economic reasons (Bojanc, & Jerman-Blazič, 2008). Although this study has neither

conducted computer simulations of scenarios, nor financial analysis of software develop-

ment, the answer to the research question indicates that sacrificing software security for

short-term gains through software functionality eventually causes lower financial returns

due to the feedback effects arising from the dynamic complexity of the system. Building

on the theory of the adaptation trap (Rahmandad, & Repenning, 2016), this study showed that

the dual firefighting mechanism to cope with both software vulnerabilities and cyber attacks

increases the likelihood of trapping an organisation in a downward spiral, potentially causing

permanent capability erosion. Finally, since capabilities are learned and continuously prac-

ticed activities that take time to accumulate (Dierickx, & Cool, 1984; Rahmandad, 2012; Winter, 2003),

it may be questionable whether organisations that only focus on software functionality even

have the capability to include software security, fix software vulnerabilities, and respond to

cyber attacks. Considering previous research, it appears that “application developers usually

do not have expertise in security“ (Hamid, Gürgens, & Fuchs, 2015, p. 109), thus, software security

capabilities are scarce in organisations (McGraw, Migues, & West, 2016). Consequently, this

Jonas Matheus | jonasmatheus@web.de ! 55

http://web.de

European Master in System Dynamics

study renews the call to balance software functionality and software security from early on

and “build security in”. Insights from this study show that a first starting point to pursue this

aim is to increase the security awareness among managers, and to improve the maturity of

DevOps. Consistent with previous literature (Repenning, & Sterman, 2002), experts within the

financial organisation explained that such efforts of creating awareness and improving pro-

cesses would first decrease productivity due to the time spent in trainings to later improve

the overall performance (II.C.3). It is noteworthy that due to the misperceptions described

earlier, trainings may only lead to success if both managers and employees are considered.

5.1.4 Implications regarding Adversarial Dynamics
In line with previous research (Libicki, Ablon, & Webb, 2015), this study understands cyber

adversaries as strategically thinking actors. Moreover, this study proposes to recognise

cyber adversaries as another kind of competitor an organisation needs to be aware of.

While this recognition is not meant in a moral sense, on a strategic level an organisation

needs to integrate business, ICT and cyber security strategies to address the full range of

threats from market and security competition. As ICT does not created value without

being part of the overall business strategy of an organisation (Bharadwaj, 2000; Brynjolfsson,

& Hitt, 2000; Henderson, & Venkatraman, 1993; Johnston, & Carrico, 1988; Kettinger et al., 1994),

security has little effect if it is not integrated into the overall strategy. To this end, under-

standing security risks as equally important as business risks represents a first step forward.

Since it is difficult though to develop strategies that include the uncertain actions of cyber

adversaries and the interaction between attackers and defenders, models integrating the

dynamic complexity of the interplay inside and outside of an organisation may help to

inform decision makers (Cosenz, & Noto, 2016; Gary, Kunc, Morecroft, & Rockart, 2008; Porter, 1993).

5.2 A Theory on Vulnerability Dynamics
The findings described above indicate that trade-offs between different objectives (e.g.,

software functionality and software security) cause pressure, leading to errors and sub-

sequent vulnerabilities which may be exploited by an external actor. While organisations

may decide to stop regular processes and react on the incident to avoid an exploitation,

fixing vulnerabilities and mitigating attacks may trap them in a dual firefighting mechanism.

These findings do not only apply in the case of software development and cyber security,

but can also be generalised for a broader range of situations. Hence, based on the insights

gained within this research and on the broader literature from several different fields, in a

last step, this study applies Occam’s razor and generalises its findings to move from
Jonas Matheus | jonasmatheus@web.de ! 56

http://web.de

European Master in System Dynamics

case specific statements in the area of software development and cyber security to gene-

rally applicable explanations about the dynamics of pressure, vulnerabilities, firefighting,

and escalation. Thus, the study provides necessary conditions and testable propositions

for an explicit theory on vulnerability dynamics, thereby further increasing the external

validity of the study (Forrester, 1961; Kopainsky, & Luna-Reyes, 2008; Pidd, 2003; Yin, 2014).

In total, there are seven necessary conditions for the occurrence of vulnerability dynamics:

First, limited resources force an organisation to trade-off between at least two different

gaols. As described above, it is likely that goals for improving short-term performance are

favoured over long-term issues. Second, similar to Rahmandad and Repenning (2016), re-

sources are used to address all of the previously traded off goals (a concept called re-

source fungibility). The third and potentially most obvious conditions describes that if errors

do not make an organisation vulnerable, no vulnerability dynamics occur. Fourth, an orga-

nisation needs to have the possibility to address the vulnerabilities prior to potential at-

tempts of exploitation because this opportunity causes the previously described dilemma

between preventing successful attacks and firefighting. Fifth, from the perspective of the

organisation, there must be an external actor who is willing to take advantage of any

kind of weakness the organisation is subject to. Sixth, due to changes in motivation and

learning from the outcomes of activities, an external actor has the potential to follow an

escalatory behaviour of attempted and probably successful actions. Finally, the organisation

must be able to trade off between continuing with its regular activities and reacting on

attacks because this opportunity causes the dual firefighting mechanism described

above. Table 6 summarises the necessary conditions for vulnerability dynamics to occur.

To make the generalisability of the research’s findings explicit, the study presents a

simplified and generic causal diagram (Figure 15) about the dynamics of pressure, vulnerabi-

lities, firefighting, and escalation applied to the case of the French urban riots from 2005

(Chrisafis, 2015) which was chosen as all of the previously explained conditions are matched.

Table 6: Summary of Conditions for Vulnerability Dynamics
1 Resource constraints force to trade off between at least two different objectives.
2 Resource fungibility.
3 Errors make vulnerable.
4 Possibility of addressing the vulnerability before somebody can take advantage of it.
5 (Malicious) external actor who could prey the weakness.
6 Potential for escalatory behaviour from the external actor due to changes in motivation and capabilities.
7 Trade-off between continuing with regular activities or reacting on the actions of the external actor.

Jonas Matheus | jonasmatheus@web.de ! 57

http://web.de

European Master in System Dynamics

In 2005, France was subject to the most extreme demonstrations and riots in its entire

contemporary history. According to Mucchielli, “the scenario has been more or less the

same since the first ‘urban riots’ in 1990

and 1991 […] The riots were triggered by

the death (intentional or accidental) of local

youths connected (in various ways) with po-

lice intervention” (Mucchielli, 2009, p. 734). In the

case of the French riots from 2005, police

officers were chasing a few youths in the

neighbourhood of Clichy-sous-Bois, a

worker-class and so called ‘problem urban

area’. Coincidently, three other adolescents

appeared on the scene but became afraid

of the police officers and fled into a power

transformer. The three youths were seen

“by at least one police officer whose supe-

riors apparently felt that he and his colleagues had more important things to do than to

attend to the boys, although their lives were in danger” (Mucchielli, 2009, p. 736). As a conse-

quence of not helping the three youths but instead continuing the initial chase (B1), two

of the three youths died in the power transformer which caused outrage and riots in the

area (R1). Attempting to solve the problem and decrease the public pressure, the French

administration denied any responsibility for the fatal accident and even accused the

adolescents of having committed a crime which caused their deaths (B2), unintentionally

leading to more riots which started to spread over France. Trying to control the situati-

on, police forces turned against the protesters (B3). Since all of the efforts to keep the si-

tuation under control reinforced pressure (R2, R3), tension increased and eventually resul-

ted in a tear-gas grenade being thrown in front of a mosque in Clichy-sous-Bois. Thereaf-

ter, the simmering conflict between people from ‘problem urban areas’ and the French

state exploded and led to escalating riots in the entire country (R4) and extreme police in-

terventions (B4). The tension grew so high that the government used every mean to main-

tain public order (R5), for instance, when the Interior Minister Nicolas Sarkozy called for

a ‘Kärcher’ to clean neighbourhoods of ‘scum’ (Sciolino, 2007).

Jonas Matheus | jonasmatheus@web.de ! 58

Pressure Tasks

Effort to decrease
Pressure

Making
Mistakes

Being
Vulnerable

Likelihood of
Undesired

Event

Undesired
Event

Undesired Feelings,
Skills, and Resources

Reaction on
Undesired

Event

Possibility to
decrease
Pressure

-

-

+

-

+

+

+

+

+

+

+

React on
Mistake

React on
Vulnerability

+
-

-

-

Busy with
Fixing

Mistakes +

+

Busy with Reacting
on Vulnerabilities +

+

R4

B4

R2

B1

B2

B3

R5

Firefighting in
Response

React on und
esired Event

Escalation

Overcome
Pressure

React on
Mistakes

React before it's
too Late

Feeling
Stressed

+

Need to React
on Mistake

+

+

R1
Haste Makes

Waste

Need to React on
Vulnerability

+

+

R3

Firefighting
Vulnerabilities

Figure 15: Causal Diagram of a Theory on Vulnerability Dynam-
ics (Derived from the Generalisation of the Study’s findings).

http://web.de

European Master in System Dynamics

Despite obvious differences, such as that the riots eventually abated, the overall

course of the events in France was very similar to the case described above for secure

software development and cyber attacks: Under pressure, police officers took a shortcut

and did not help the three youths. This mistake caused further pressure. Although the

government engaged in various firefighting activities, such as large police operations,

the situation eventually escalated and the country fell into chaos, further strengthening

the downward spiral. While the roots of the demonstrations are likely to be based in an

economic, social, political and identity crisis of large parts of the French population (Muc-

chielli, 2009), the vulnerability dynamics laid out here propose that the actions of the

French government significantly reinforced the riots. Overall, the explained interplay

between pressure, mistakes, and becoming vulnerable, followed by undesired events

which need to be addressed describe a first step in building a theory of vulnerability dy-

namics. Table 7 summarises testable propositions based on the previous explanation.

Finally, next to the six previous contributions and the large range of theoretical and

practical implications for the field of secure software development and cyber security,

this study provides as seventh and last contribution a general theory on vulnerability dy-

namics. Due to its intended simplicity (Pidd, 2003) this theory does not aim to serve as only

explanation for complex phenomena, such as software vulnerabilities and cyber attacks

or social disadvantages and demonstrations, but rather to enrich the discussion about

those by a dynamic perspective. Table 8 summarises the seven contributions of this study.

Table 7: Summary of Propositions for Vulnerability Dynamics
1 Trading off different objectives in an environment characterised by resource constraints leads to pressure.
2 To overcome pressure, fast actions are chosen which initially decrease pressure but also increase the

number of mistakes, finally making oneself vulnerable in the eyes of an external actor.
3 Vulnerabilities increase the likelihood of undesired events as an external actor may use the weakness.
4 The exploitation of vulnerabilities describes and escalatory pattern as only demotivation may stop

an external actor from further undesired events.
5 Undesired events cause reactive actions in an effort to decrease the probability of future events.
6 Through addressing mistakes, vulnerabilities and reacting on undesired events, less time and fewer

resources are available for the actual tasks and objectives, reinforcing pressure.

Table 8: Summary of Contributions of this Study
1 Provide a rich description of the interaction between pressure in software development, software vul-

nerabilities, the malicious interference from external cyber attacks, and organisational attack mitigation.
2 Describe a pathway to exploitation by explicitly connecting pressure, defects, and vulnerabilities.
3 Explain the dilemma between fixing vulnerabilities fast to avoid successful exploitation and potential

problems arising from firefighting due to fast problem solving.
4 See cyber adversaries as regular competitors and integrate business, ICT, and cyber security strategies.
5 Explain a mechanism of dual firefighting when addressing both software vulnerabilities and cyber attacks.
6 Show that initial short-term gains from from functionality may be lost due to long-term insecurity.
7 Provide necessary conditions and testable propositions for a theory on vulnerability dynamics.

Jonas Matheus | jonasmatheus@web.de ! 59

http://web.de

European Master in System Dynamics

5.3 Limitations and Future Research
Paraphrasing Rahmandad and Repenning (2016), the findings of this research come

with the usual caveats of single case studies. There are three aspects that affect the

validity of this study in particular. First, there may be other, rival explanations (II.B, C, D)

for growing numbers of software vulnerabilities and successful cyber attacks, such as

the rising importance of technology (Goodman, 2016), and dependencies between

teams and software (II.C; II.D). Although technology and dependencies are plausible ex-

planations, they have been deliberately excluded from this study to keep the investiga-

tion focused. Future research could use the findings of this study as a starting point

for an integrated socio-technical investigation to deepen the understanding of soft-

ware vulnerabilities and successful cyber attacks. Second, relying on the qualitative

data from one organisation impedes the generalisability of the study’s findings and was

further impaired by not having being able to record workshops or interviews (Yin, 2014).

The study addressed these threats to validity by relying on several data sources to trian-

gulate the findings, by employing several data analysis techniques and employing

causal models to strengthen the analysis, by continuously discussing and deliberately

disconfirming the findings with expert in the European financial organisation, and by com-

paring the insights with theory from literature as common in case study research

(Thurmond, 2001; Yin, 2014). Additionally, previous research has discussed and proven

the value of qualitative case studies in system dynamics research (e.g., Burchill, & Fine,

1997; Coyle, 2000, 2001; Repenning, & Sterman, 2002). Yet, these limitations offer two oppor-

tunities for future research: On the one hand, further case studies could be done in

the same or in a different industry to validate, compare, and assess the findings from

this research. On the other hand, future studies could use a quantitative system dy-

namics model to assess the testable propositions of this study through scenario analy-

sis. Third, despite addressing the subject of benefits and risks, this study does not

explicitly consider financial or economic implications. Instead, this study was based

on the assumptions that ICT improves performance and that software vulnerabilities

will lead to disproportionate costs. While both assumptions are deeply grounded in

previous studies (e.g., Anderson et al., 2013; Wade, & Hulland, 2004),, future research could

take this as a starting point to investigate the trade-off between software functionality

and software security from a financial perspective through the lens of security econo-

mics and thereby provide clear and valuable decision support for practice.  
Jonas Matheus | jonasmatheus@web.de ! 60

http://web.de

European Master in System Dynamics

REFERENCES

Scientific References, Books, Reports and Documentaries

Ablon, L., & Bogart, A. (2017). Zero days, thousands of nights: The life time of zero-day

vulnerabilities and their exploits. Santa Monica, CA: RAND Corporation.

Ahmad, A., Maynard, S. B., & Park, S. (2014). Information security strategies: Towards an

organizational multi-strategy perspective. Journal of Intelligent Manufacturing, 25(1),

357-370.

Ahmad, D. (2007). The contemporary software security landscape. IEEE Security & Pri-

vacy, 5(3), 75-77.

Amit, R., & Zott, C. (2001). Value creation in e-business. Strategic Management Journal,

22, 493-520.

Andersen, D. F., & Richardson, G. P. (1997). Scripts for group model building. System

Dynamics Review, 13(2), 107-129.

Anderson, R., Barton, C., Böhme, R., Clayton, R., Van Eeten, M. J., Levi, M., & Savage,

S. (2013). Measuring the cost of cybercrime. In The economics of information secur-

ity and privacy (pp. 265-300). Berlin & Heidelberg, Germany: Springer.

Anderson, R. A., Crabtree, B. F., Steele, D. J., & McDaniel Jr., R. R. (2005). Case study

research: The view from complexity science. Qualitative Health Research, 15(5), 669-

685.

Argyris, C. (1992). On organizational learning. Cambridge, UK: Blackwell.

Argyris, C., & Schön, D. A. (1978). Organizational learning: A theory of action perspect-

ive. Reading, MA: Addison-Wesley.

Arkin, B., Stender, S., & McGraw, G. (2005). Software penetration testing. IEEE Security

& Privacy, 3(1), 84-87.

Arora, A., Caulkins, J. P., & Telang, R. (2006). Research Note - Sell first, fix later: Impact

of patching on software quality. Management Science, 52(3), 465-471.

Austin, R. D. (2001). The effects of time pressure on quality in software development:

An agency model. Information Systems Research, 12(2), 195-207.pdf

Azoulay, P., Repenning, N. P., & Zuckerman, E. W. (2010). Nasty, brutish, and short:

Embeddedness failure in the pharmaceutical industry. Administrative Quarterly Sci-

ence, 55(3), 472-507.

European Master in System Dynamics

Barlas, Y. (1996). Formal aspects of model validity and validation in system dynamics.

System Dynamics Review, 12(3), 183-210.

Bauer, J. M., & van Eeten, M. (2011). Introduction to the economics of cybersecurity.

Communications and Strategies, 81(1), 13-21.

Beck, K., Beedle, M., van Bennekum, A., Cockburn, A., Cunningham, W., Fowler, M.,

Grenning, J., Highsmith, J., Hunt, A., Jeffries, R., Kern, Marick, B., Martin, R. C., Mel-

lor, S., Schwaber, K., Sutherland, J., & Thomas, D., J., (2001). Agile Manifesto. Re-

trieved from http://agilemanifesto.org/

Becker, C. (2014). Sustainability and longevity: Two sides of the same quality? In Pro-
ceedings of the Third International Workshop on Requirements Engineering for sus-
tainable Systems at the 22nd IEEE International Requirements Engineering Confer-

ence. Karlskrona, Sweden.

van den Belt, M. (2004). Mediated modeling: A system dynamics approach to environ-

mental consensus building; Washington, DC: Island Press.

Bharadwaj, A. S. (2000). A resource-based perspective on information technology cap-

ability and firm performance: An empirical investigation. MIS Quarterly, 24(1),

169-196.

Black, L. (2002). Collaborating across boundaries: Theoretical, empirical, and simulated

explorations. PhD Dissertation. Cambridge, MA: Sloan School of Management, MIT.

Black, L., Carlile, P., & Repenning, N. P. (2004). A dynamic theory of expertise and oc-

cupational boundaries in new technology implementation: Building on Barley’s study

of CT scanning. Administrative Science Quarterly, 49, 572-607.

Boehm, B. (1988). A spiral model of software development and enhancement. Com-

puter, 21(5), 61-72.

Boehm, B. (1984). Software engineering economics. IEEE Transactions on Software

Engineering, 10(1), 4-21.

Boehm, B., & Turner, R. (2005). Management challenges to implementing agile pro-

cesses in traditional development organizations. IEEE software, 22(5), 30-39.

Böhme, R., & Moore, T. (2009). The iterated weakest link. In Workshop on the Econom-

ics of Information Security (WEIS) (pp. 25-53). London, UK.

Jonas Matheus | jonasmatheus@web.de ! i i

http://agilemanifesto.org/
http://web.de

European Master in System Dynamics

Bojanc, R., & Jerman-Blazič, B. (2008). An economic modelling approach to information

security risk management. International Journal of Information Management, 28,

413-422.

Braun, W. 2002. The system archetypes. Albany, NY: University at Albany. State Uni-

versity of New York. Retrieved from http://www.albany.edu/faculty/gpr/

PAD724/724WebArticles/sys_archetypes.pdf

Broderick, J. S. (2001). Information security risk management: When should it be man-

aged? Information Security Technical Report, 6(3), 12-18.

Brooks, F. R. (1990). The mythical man month (2nd Ed.). Boston, MA: Addison Wesley.

Brynjolfsson, E., & Hitt, L. M. (2000). Beyond computation: Information technology, or-

ganizational transformation and business performance. Journal of Economic Per-

spectives, 14(4), 23-48.

Burchill, G., & Fine, C. H. (1997). Time versus market orientation in product concept de-

velopment: Empirically-based theory generation. Management Science, 43(4),

465-478.

Cabinett Office (2010a). Strategic framework and policy statement on improving the re-

silience of critical infrastructure to disruption from natural hazards. London, UK.

Cabinett Office (2010b). Sector resilience plan for critical infrastructure 2010. London,

UK.

Cao, L., Ramesh, B., Abdel-Hamid, T. (2010). Modelling dynamics in agile software de-

velopment. ACM Transactions on Management Information Systems, 1(1), Article 5.

Collis, D. J. (1994). Research note: How valuable are organisational capabilities? Stra-

tegic Management Journal, Winter Special Issue 15(2), 143-152.

Colquitt, J. A., & Zapata-Phelan, C. P. (2007). Trends in theory building and theory test-

ing: A five-decade study of the Academy of Management Journal. Academy of Man-

agement Journal, 50(6), 1281-1303.

Cosenz, F., & Noto, G. (2016). Applying system dynamics modelling to strategic man-

agement: A literature review. Systems Research and Behavioral Science, 33,

703-741.

Coyle, G. (2001). Rejoinder to Homer and Oliva. System Dynamics Review, 17,

357-363.

Jonas Matheus | jonasmatheus@web.de ! i i i

http://web.de
http://www.albany.edu/faculty/gpr/PAD724/724WebArticles/sys_archetypes.pdf
http://www.albany.edu/faculty/gpr/PAD724/724WebArticles/sys_archetypes.pdf

European Master in System Dynamics

Coyle, G. (2000). Qualitative and quantitative modelling in System Dynamics: Some re-

search questions. System Dynamics Review, 16(3), 225-244.

Davis, J. P., Eisenhardt, K. M., & Bingham, C. B. (2007). Developing theory through

simulation methods. Academy of Management Review, 32(2), 480-499.

Dapp, T. F. (2014). Fintech: The digital (r)evolution in the financial sector. Deutsche Bank

Research. Frankfurt am Main, Germany. Retrieved from http://dbresearch.com/

PROD/DBR_INTERNET_DE-PROD/PROD0000000000345837/F intech+

%E2%80%93+The+digital+(r)evolution+in+the+financia.pdf

Deloitte (2016). Cyber Value at Risk in the Netherlands. Retrieved from https://www2.de-

loitte.com/content/dam/Deloitte/nl/Documents/financial-services/deloitte-nl-fsi-cyber-value-

at-risk.pdf

De Nederlandsche Bank (2016). Overview of financial stability: Spring 2016. Amster-

dam, the Netherlands.

De Nederlandsche Bank (2015). Overview of financial stability: Spring 2015. Amster-

dam, the Netherlands.

Dierickx, I., & Cool, K. (1989). Asset stock accumulation and sustainability of competit-

ive advantage. Management Science, 35(12), 1504-1511.

Diker, V. G. (2003). Toward a dynamic feedback theory of open online collaboration

communities. PhD Dissertation. Albany, NY: University at Albany, The State University

of New York.

DNI (2012). Global trends 2030: Alternative worlds. Washington D.C.: Office of the Dir-

ector of National Intelligence. Retrieved from https://www.dni.gov/files/documents/

GlobalTrends_2030.pdf

Dutta, A., & Roy, R. (2008). Dynamics of organizational information security. System Dy-

namics Review, 24, 349-375.

Eisenhardt, K. M., & Martin, J. A. (2000). Dynamic capabilities: What are they? Strategic

Management Journal, 21(10-11), 1105-1121.

Eisenhardt, K. M., & Zbaracki, M. J. (1992). Strategic decision making. Strategic Man-

agement Journal, 13, 17-37.

Ethiraj, S. K., Kale, P., Krishnan, M. S., & Singh, J. V. (2005). Where do capabilities

come from and how do they matter? A study in the software services industry. Stra-

tegic management journal, 26(1), 25-45.

Jonas Matheus | jonasmatheus@web.de ! i v

http://web.de
http://dbresearch.com/PROD/DBR_INTERNET_DE-PROD/PROD0000000000345837/Fintech+%E2%80%93+The+digital+(r)evolution+in+the+financia.pdf
http://dbresearch.com/PROD/DBR_INTERNET_DE-PROD/PROD0000000000345837/Fintech+%E2%80%93+The+digital+(r)evolution+in+the+financia.pdf
http://dbresearch.com/PROD/DBR_INTERNET_DE-PROD/PROD0000000000345837/Fintech+%E2%80%93+The+digital+(r)evolution+in+the+financia.pdf
https://www2.deloitte.com/content/dam/Deloitte/nl/Documents/financial-services/deloitte-nl-fsi-cyber-value-at-risk.pdf
https://www2.deloitte.com/content/dam/Deloitte/nl/Documents/financial-services/deloitte-nl-fsi-cyber-value-at-risk.pdf
https://www2.deloitte.com/content/dam/Deloitte/nl/Documents/financial-services/deloitte-nl-fsi-cyber-value-at-risk.pdf
https://www.dni.gov/files/documents/GlobalTrends_2030.pdf
https://www.dni.gov/files/documents/GlobalTrends_2030.pdf

European Master in System Dynamics

Forrester, J. W. (1992). Policies, decisions, and information sources for modeling. Eu-

ropean Journal of Operational Research, 59, 42-63.

Forrester, J. W. (1971). Counterintuitive behavior of social systems. Technology Review,

73(3), 52-68.

Forrester, J. W. (1961). Industrial dynamics. Cambridge, MA: MIT Press.

Forrester, J. W. (1958). Industrial dynamics: a major breakthrough for decision making.

Harvard Business Review, 18(2), 243-267.

Forrester, J. W., & Senge, P. M. (1980). Tests for building confidence in system dynam-

ics. models. TIMS Studies in Management Sciences, 14, 209-228.

Furnell, S., & Thomson, K. L. (2009). Recognising and addressing ‘security fatigue’.

Computer Fraud and Security, 11, 7-11.

Gary, M. S., Kunc, M., Morecroft, J. D. W., Rockart, S. F. (2008). System dynamics and

strategy. System Dynamics Review, 24, 407-429.

Gill, P., Stewart, K., Treasure, E., & Chadwick, B. (2008). Methods of data collection in

qualitative research: Interviews and focus groups. British Dental Journal, 204,

291-295.

Gillet, R., Hübner, G., & Plunus, S. (2010). Operational risk and reputation in the financial

industry. Journal of Banking & Finance, 34, 224-235.

Goh, Y. M., Love, P. E. D., Brown, H., & Spickett, J. (2012). Organizational accidents: A

systemic model of production versus protection. Journal of Management Studies,

49(1), 52-76.

Gonçalves, P., Hines, J., Sterman, J. D. (2005). The impact of endogenous demand on

push-pull production systems. System Dynamics Review, 21, 187-216.

Goodman, M. (2016). Future crimes: Inside the digital underground and the battle for

our connected world. London, UK: Corgi Books.

Gordon, L. A., & Loeb, M. P. (2002). The economics of information security investment.

ACM Transactions on Information Security and System Security, 5(4), 438-457.

Grant, R. M. (2010). Contemporary strategy analysis (7th ed.). Chichester, UK: John

Wiley & Sons.

Hamid, B., Gürgens, S., & Fuchs, A. (2016). Security patterns modeling and formaliza-

tion for pattern-based development of secure software systems. Innovations in Sys-

tems and Software Engineering, 12, 109-140.

Jonas Matheus | jonasmatheus@web.de ! v

http://web.de

European Master in System Dynamics

Harrison, J . R., Lin, Z., Carroll, G. R., & Carley, K. M. (2007). Simulation modelling in

organizational and management research. Academy of Management Review, 32(4),

1229-1245.

Heitzenrater, C., Böhme, R., & Simpson, A. (2016). The days before Zero Day: Invest-

ment Models for Secure Software Engineering. WEIS 2016. Retrieved from http://

weis2016.econinfosec.org/wp-content/uploads/sites/2/2016/05/WEIS_2016_paper-

_21-2.pdf

Henderson, J. C., & Venkatraman, N. (1993). Strategic alignment: Leveraging informa-

tion technology for transforming organzisations. IBM Systems Journal, 32(1),

472-484.

Hesseling, R. (1994). Displacement: A review of the empirical literature. Crime preven-

tion studies, 3(1), 197-230.

Homer, J. (1996). Why we iterate: Scientific modeling in theory and practice. System

Dynamics Review, 12(1), 1-19.

Homer, J., & Oliva, R. (2001). Maps and models in System Dynamics: A response to

Coyle. System Dynamics Review, 17(4), 347-355.

Huang, C. D., Hu, Q., & Beharam R. S. (2008). An economic analysis of the optimal in-

formation security investment in the case of a risk-averse firm. International Journal of

Production Economics, 114, 793-804.

Johnson, S. D., Guerette, R. T., & Bowers, K. (2014). Crime displacement: what we

know, what we don’t know, and what it means for crime reduction. Journal of Exper-

imental Criminology, 10, 549-571.

Johnston, H. R., & Carrico, S. R. (1988). Developing capabilities to use information stra-

tegically. MIS Quarterly, 12(1), 37-48.

Kettinger, W. J., Grover, V., Guha, S., & Segars, A. H. (1994). Strategic information sys-

tems revisited: A study in sustainability and performance. MIS Quarterly, 18(1), 31-58.

Kissel, R., Stine, K., Scholl, M., Rossman, H., Fahlsing, J., & Gulick, J. (2008). Security

considerations in the system development lifecycle: Information security. NIST Spe-

cial Publications 800-64 Revision 2. Gaithersburg, MD: National Institute of Stand-

ards and Technology, U.S. Department of Commerce.

Jonas Matheus | jonasmatheus@web.de ! v i

http://weis2016.econinfosec.org/wp-content/uploads/sites/2/2016/05/WEIS_2016_paper_21-2.pdf
http://weis2016.econinfosec.org/wp-content/uploads/sites/2/2016/05/WEIS_2016_paper_21-2.pdf
http://weis2016.econinfosec.org/wp-content/uploads/sites/2/2016/05/WEIS_2016_paper_21-2.pdf
http://weis2016.econinfosec.org/wp-content/uploads/sites/2/2016/05/WEIS_2016_paper_21-2.pdf
http://web.de

European Master in System Dynamics

Von Kogh, G., Rossi-Lamastra, C., & Haefliger, S. (2012). Phenomenon-based research

in management and organisation science: When is it rigorous and does it matter?

Long Range Planning, 45, 277-298.

Kopainsky, B., & Luna-Reyes, L. F. (2008). Closing the loop: Promoting synergies with

other theory building approaches to improve system dynamics practice. Systems

Research and Behavioral Science, 25, 471-486.

Landwehr, C. E. (2001). Computer security. International Journal of Information Security,

1, 3-13.

Laverty, K. J. (1996). Economic “short-termism”: The debate, the unresolved issue, and

the implications for management practice and research. Academy of Management

Review, 21(3), 825-860.

Leopold, H., Bleier, T., & Skopik, F. (2015). Cyber Attack Information System: Erfahrungen

und Erkenntnisse aus der IKT-Sicherheitsforschung. Berlin, Heidelberg, Germany:

Springer.

Levinthal, D. A., & March, J. G. (1993). The myopia of learning. Strategic Management

Journal, Winter Special Issue 14, 95-112.

Libicki, M. C., Ablon, L., & Webb, T. (2015). The defender’s dilemma: Charting a course

toward cybersecurity. Santa Monica, CA: RAND Corporation.

Luna-Reyes, L. F. (2004). Collaboration, trust and knowledge sharing in information-

technology-intensive projects in the public sector. PhD Dissertation. Albany, NY: Uni-

versity at Albany, The State University of New York.

Luna-Reyes, L. F., & Andersen, D. L. (2003). Collecting and analyzing qualitative data for

system dynamics: methods and models. System Dynamics Review, 19, 271-296.

Luna-Reyes, L. F., Martinez-Moyano, I. J., Pardo, T. A., Cresswell, A. M., Andersen, D.

F., & Richardson, G. P. (2006). Anatomy of group-model building intervention: Building

dynamic theory from case study research. System Dynamics Review, 22, 291-320.

Lupien, S. J., Maheu, F., Tu, M., Fiocco, A., & Schramek, T. E. (2007). The effects of

stress and hormones on human cognition: Implications for the field of brain and cog-

nition. Brain and Cognition, 65, 209-237.

Martinez-Moyano, I. J., Conrad, S. H., & Andersen, D. F. (2011). Modeling behavioral

considerations related to information security. Computers and Security, 30, 397-409.

Jonas Matheus | jonasmatheus@web.de ! v i i

http://web.de

European Master in System Dynamics

Martinez-Moyano, I. J., McCaffrey, D. P., & Oliva, R. (2014). Drift and adjustment in or-

ganizational rule compliance: Explaining the regulatory pendulum in financial markets.

Organization Science, 25(2), 321-338.

Martinez-Moyano, I. J., Oliva, R., Morrison, D., & Sallach, D. (2015). Modeling ad-

versarial dynamics. In Proceedings of the 2015 Winter Simulation Conference (pp.

2412-2423). IEEE Press.

Martinez-Moyano, I. J., Rich, E., Conrad, S., Andersen, D. F., & Stewart, T. R. (2008). A

behavioral theory of insider-threat risks: A system dynamics approach. ACM Transac-

tions on Modeling and Computer Simulation, 18(2), 7.

MacCormack, A., Kemerer, C. F., Cusumano, M., & Crandall, B. (2003). Trade-offs

between productivity and quality in selecting software development practices. IEEE

Software, 20(5), 78-85.

McAfee (2014). Net losses: Estimating the global costs of cybercrime. Retrieved from

ht tps: / /www.mcafee.com/us/ resources/ repor ts/ rp-economic- impact-

cybercrime2.pdf

McAfee (2013). The economic impact of cybercrime and cyber espionage. Retrieved

from https://www.mcafee.com/uk/resources/reports/rp-economic-impact-cyber-

crime.pdf

McGraw, G. (2006). Software security: Building security in. Boston, MA: Addison-Wes-

ley.

McGraw, G., Migues, S., & West, J. (2016). BSIMM 7. Dulles, VA: Cigital.

Meadows, D. H. (2009). Thinking in systems: A primer. London, UK: Earthscan.

Miller B., & Rowe D. (2012). A survey SCADA of and critical infrastructure incidents. In:

RIIT, Proceedings of the 1st annual conference on research in information technology

(pp. 51-56). New York City, NY: ACM.

Mohammed, N. M., Niazi, M., Alshayeb, M., & Mahmood, S. (2017). Exploring software

security approaches in software development lifecycle: A systematic mapping study.

Computer Standards & Interfaces, 50, 107-115.

Morecroft, J. D. W. (1991). Executive knowledge, models, and learning. European

Journal of Operational Research, 59, 9-27.

Morecroft, J. D. W., Lane, D. C., & Viita, P. S. (1991). Modeling growth strategy in a bio-

technology startup firm. System Dynamics Review, 7(2), 93-116.

Jonas Matheus | jonasmatheus@web.de ! v i i i

http://web.de
https://www.mcafee.com/us/resources/reports/rp-economic-impact-cybercrime2.pdf
https://www.mcafee.com/us/resources/reports/rp-economic-impact-cybercrime2.pdf
https://www.mcafee.com/uk/resources/reports/rp-economic-impact-cybercrime.pdf
https://www.mcafee.com/uk/resources/reports/rp-economic-impact-cybercrime.pdf
https://www.mcafee.com/uk/resources/reports/rp-economic-impact-cybercrime.pdf

European Master in System Dynamics

Mucchielli, L. (2009). Autumn 2005: A review of the most important riot in the history of

French contemporary society. Journal of Ethnic and Migration Studies, 35(5),

731-735.

National Cyber Security Centre (2016). Cyber security assessment Netherlands: CSAN

2016. Den Haag, the Netherlands.

NIST (2014). Framework for improving critical infrastructure cybersecurity. Geithersburg,

MD: National Institute for Standards and Technology.

Neumann, P. G. (2012). Inside Risks: The foresight saga, redux: Short-term thinking is

the enemy of the long-term future. Communications of the ACM, 55(10), 26-29.

Nutt, P. C. (2002). Why decision fail: Avoiding the blunders and traps that lead to de-

bacles. San Francisco, CA: Barrett-Koehler.

Oliva, R., & Sterman, J. D. (2001). Cutting corners and working overtime: Quality

erosion in the service industry. Management Science 47(7), 894–914.

van Oorschot, K. E., Akkermans, H., Sengupta, K., van Wassenhove, L. N. (2013). Ana-

tomy of a decision trap in complex new product development projects. Academy of

Management Journal, 56(1), 285-307.

OWASP (2013). OWASP Top 10 2013: The ten most critical web application security

risks. Retrieved from https://storage.googleapis.com/google-code-archive-down-

loads/v2/code.google.com/owasptop10/OWASP%20Top%2010%20-%202013.pdf

Perlow, L. A., Okhuysen, G., & Repenning, N. P. (2002). The speed trap: Exploring the

relationship between decision making and temporal context. Academy of Manage-

ment Journal, 5, 931-955.

Perlow, L. A., & Repenning, N. P. (2009). The dynamics of silencing conflict. Research in

Organizational Behaviour, 29, 195-223.

Pidd, M. (2003). Tools for thinking: Modelling in management science (2nd ed.).

Chichester, UK: John Wiley and Sons.

Piessens, F. (2002). A taxonomy of causes of software vulnerabilities in internet soft-

ware. In Supplementary Proceedings of the 13th International Symposium on Soft-

ware Reliability Engineering (pp. 47-52). Los Alamitos, CA: IEEE Computer Society

Press.

Pfleeger, C. P., Pfleeger, S. L., & Margulies, J. (2015). Security in computing (5th ed.).

Upper Saddle River, NJ: Prentice Hall.

Jonas Matheus | jonasmatheus@web.de ! i x

http://web.de
https://storage.googleapis.com/google-code-archive-downloads/v2/code.google.com/owasptop10/OWASP%20Top%2010%20-%202013.pdf
https://storage.googleapis.com/google-code-archive-downloads/v2/code.google.com/owasptop10/OWASP%20Top%2010%20-%202013.pdf
https://storage.googleapis.com/google-code-archive-downloads/v2/code.google.com/owasptop10/OWASP%20Top%2010%20-%202013.pdf

European Master in System Dynamics

Ponemon Institute (2016). 2016 costs of cyber crime study and the risk of business in-

novat ion. Retr ieved f rom http://www.ponemon.org/ local /upload/fi le/

2016%20HPE%20CCC%20GLOBAL%20REPORT%20FINAL%203.pdf

Porter, M. E. (1991). Towards a dynamic theory of strategy. Strategic Management

Journal, Winter Special Issue,12(52), 95-117.

Porter, M. E. (1979). How competitive forces shape strategy. Harvard Business Review,

57(2), 137-145.

Porter, M. E., & Millar, V. E. (1985). How information gives you competitive advantage.

Harvard Business Review, 63(4), 149-160.

Powell, T. C., & Dent-Micallef, A. (1997). Information technology as competitive advant-

age: The role of human business, and technology resources. Strategic Management

Journal, 18(5), 375-405.

Pressman, R. S. (2010). Software engineering: A practitioners approach (7th ed.). Bo-

ston, MA: McGraw-Hill.

Rahmandad, H. (2012). Impact of growth opportunities and competition on firm-level

capability development trade-offs. Organization Science, 23(1), 138-154.

Rahmandad, H. (2005). Three essays on modeling dynamic organizational processes.

PhD Dissertation. Cambridge, MA: Sloan School of Management, MIT.

Rahmandad, H., Henderson, R., & Repenning, N. P., (2016). Making the numbers?

“Short Terminism” and the puzzle of occasional disaster. Management Science, 1-21.

Rahmandad, H. & Hu, K. (2010). Modelling the rework cycle: Capturing multiple defects

per task. System Dynamics Review, 26, 291-315.

Rahmandad, H., & Repenning, N. P. (2016). Capability erosion dynamics. Strategic

Management Journal, 37, 649-672.

Ravichandran, T. & Lertwongsatien, C. (2005). Effect of information systems resources

and capabilities on firm performance: A resource-based perspective. Journal of

Management Information Systems, 21(4), 237-276.

Repenning, N. P. (2003). Selling system dynamics to (other) social scientists. System

Dynamics Review, 19, 303-327.

Repenning, N. P. (2001). Understanding fire fighting in new product development. The

Journal of Product Innovation Management, 18(5), 285-300.

Jonas Matheus | jonasmatheus@web.de ! x

http://web.de
http://www.ponemon.org/local/upload/file/2016%20HPE%20CCC%20GLOBAL%20REPORT%20FINAL%203.pdf
http://www.ponemon.org/local/upload/file/2016%20HPE%20CCC%20GLOBAL%20REPORT%20FINAL%203.pdf
http://www.ponemon.org/local/upload/file/2016%20HPE%20CCC%20GLOBAL%20REPORT%20FINAL%203.pdf

European Master in System Dynamics

Repenning, N., Gonçalves, P., Black, L., (2001). Past the tipping point: The persistence

of fire fighting in product development. California Management Review 43(4): 44–63.

Repenning, N. P., & Sterman, J. D. (2002). Capability traps and self-confirming attribu-

tion errors in the dynamics of process improvement. Administrative Science

Quarterly, 47(2), 265-295.

Richardson, G. P. (2013). Concept models in group model building. System Dynamics

Review, 29(1), 42-55.

Rivard, S., Raymond, L., & Verreault, D. (2006). Resource-based view and competitive

strategy: An integrated model of the contribution of information technology to firm

performance. Journal of Strategic Information Systems, 15, 29-50.

Rouwette, E. A. J. A., & Franco, L. A. (Unpublished). Messy problems: Practical inter-

ventions for working through complexity, uncertainty and conflict.

Rudolph, J. W., Morrison, J. B., & Carroll, J. S. (2009). The dynamics of action-oriented

problem solving: Linking interpretation and choice. Academy of Management Review,

34(4), 733-756.

Rudolph, J. W. & Repenning, N. P. (2002). Disaster dynamics: Understanding the role of

quantity in organizational collapse. Administrative Science Quarterly, 47, 1-30.

Sastry, M. A. (1997). Problems and paradoxes in a model of punctuated organizational

change. Administrative Science Quarterly, 42, 237-275.

Schneider, C. L. (2011). Violence and State Repression. Swiss Political Science Review,

17(4), 480-484.

Schwaber, K. (2004). Agile project management with Scrum. Redmond, WA: Microsoft

Press. (EPUP 13 inch monitor)

Scott, R. J., Cavana, R. Y., & Cameron, D. (2015). Recent evidence on the effectiveness

of group model building. European Journal of Operational Research, 249, 908-918.

Shumba, R., Walden, J., Ludi, S., Taylor, C., An Wang, A. J. (2006). Teaching the secure

software development lifecycle: Challenges and experiences. In Proceedings of the

10th Colloquium for Information Systems Security Education (pp. 116-123). Adelphi,

MD: University of Maryland.

Simon, H. A. (1985). Human nature in politics: The dialogue of psychology with political

science. The American Political Science Review, 79(2), 293-304.

Jonas Matheus | jonasmatheus@web.de ! x i

http://web.de

European Master in System Dynamics

von Solms, R., & van Niekerk, J. (2013). From information security to cyber security.

Computers & Security, 38, 97-102.

Stecklein, J. M., Dabney, J., Dick, B., Haskins, B., Lovell, R., & Moroney, G. (2004). Er-

ror cost escalation through the project lifecycle. In 14th Annual International Sym-

posium of INCOSE.

Sterman, J. D. (2006). Learning from evidence in a complex world. American Journal of

Public Health, 96(3), 505-514.

Sterman, J. D. (2002). All models are wrong: Reflections on becoming a systems sci-

entist. System Dynamics Review, 18(4), 501-531.

Sterman, J. D. (2000). Business dynamics: System thinking and modelling for a com-

plex world. Boston, MA: McGraw-Hill.

Sterman, J. D. (1994). Learning in and about complex systems. System Dynamics Re-

view, 10(2-3), 291-330.

Strauss, A., & Corbin, J. (1994). Grounded theory methodology: An overview. In N. K.

Denzin, & Y. S. Lincoln (Eds.), Handbook of qualitative research (pp. 273-285). Thou-

sand Oaks, CA: Sage Publications.

Sutton, R. I., & Staw, B. M. (1995). What theory is not. Administrative Science Quarterly,

40(3), 371-384.

Teece, D. J., Pisano, G., & Shuen, A. (1997). Dynamic capabilities and strategic man-

agement. Strategic Management Journal, 18(7), 509-533.

Telang, R., & Wattal, S. (2007). An empirical analysis of the impact of software vulnerab-

ility announcements on firm stock price. IEEE Transactions on Software Engineering,

33(8), 544-557.

Teleb, C. W., Weisburd, D., Gill, C. E., Vitter, Z., & Teichman, D. (2014). Displacement of

crime and diffusion of crime control benefits in large-scale geographic areas: A sys-

tematic review. Journal of Experimental Criminology, 10, 515-548.

Thurmond, V. A. (2001). The point of triangulation. Journal of Nursing Scholarship,

33(3), 253-258.

Tversky, A., & Kahneman, D. (1986). Rational choice and the framing of decision.

Journal of Business, 59(4) pt 2, 251-278.

Tversky, A., & Kahneman, D. (1974). Judgement under uncertainty. Science, 185(4157),

1124-1131.

Jonas Matheus | jonasmatheus@web.de ! x i i

http://web.de

European Master in System Dynamics

Vaughan, D. (1992). Theory elaboration: The heuristics of case analysis. In H. Becker, &

C. Ragin (Eds.), What is a case? (pp. 173-202.) Cambridge, UK: Cambridge Uni-

versity Press.

Vennix, J. A. M. (1996). Group model building: Facilitating team learning using system

dynamics. Chichester, UK: John Wiley and Sons.

Vennix, J. A. M., Andersen, D. F., Richardson, G. P., & Rohrbaugh, J. (1992). Model-

building for group decision support: issues and alternatives in knowledge elicitation.

European Journal of Operational Research, 59, 28-41.

Verizon (2016). 2016 Data Breach Investigations Report. Basking Ridge, NY. Retrieved

from http://www.verizonenterprise.com/resources/reports/rp_DBIR_2016_Re-

port_en_xg.pdf

Videira, N., Antunes, P., & Santos, R. (2017). Engaging stakeholders in environmental

and sustainability decisions with Participatory System Dynamics Modeling. In S. Gray,

M. Paolisso, R. Jordan, & S. Gray (Eds.), Environmental Modeling with Stakeholders

(pp. 241- 268. Cham, Switzerland: Springer International Publishing.

Wade, M. & Hulland, J. (2004). Review: The resource-based view and information sys-

tems research: Review, extension, and suggestions for future research. MIS

Quarterly, 28(1), 107-142.

Walrave, B., van Oorschot, K. E., & Romme, A. G. L. (2011). Getting trapped in the

suppression of exploration: A simulation model. Journal of Management Studies,

48(8), 1727-1751.

Wheat, D. (2015). Model-based policy design that takes implementation seriously. In E.

Johnston (Eds.), Governance in the information era (pp. 101-118). New York City, NY:

Routledge.

Wheat, D. (2010). What can system dynamics learn from the public policy implementa-

tion literature? Systems Research and Behavioral Science, 27, 425-442.

Widman, J., Hua, S. Y., & Ross, S. C. (2010). Applying lean principles in software de-

velopment process: A case study. Issues in Information Systems, 9(1), 635-639.

De Win, B., Scandariato, R., Buyens, K., Grégoire, J., & Joosen, W. (2009). On the se-

cure software development process: CLASP, SDL, and touchpoints compared. In-

formation and Software Technology, 51, 1152-1171.

Jonas Matheus | jonasmatheus@web.de ! x i i i

http://www.verizonenterprise.com/resources/reports/rp_DBIR_2016_Report_en_xg.pdf
http://www.verizonenterprise.com/resources/reports/rp_DBIR_2016_Report_en_xg.pdf
http://www.verizonenterprise.com/resources/reports/rp_DBIR_2016_Report_en_xg.pdf
http://web.de

European Master in System Dynamics

Winter, S. G. (2003). Understanding dynamic capabilities. Strategic Management

Journal, 24(10), 991-995.

Wysopal, C. (2012). Software security varies greatly. Datenschutz und Sicherheit, 9,

645-652.

Yerkes, R. M., & Dodson, J. D. (1908). The relation of strength of stimulus to rapidity of

habit formation. Journal of Comparative Neurology and Psychology, 18, 459–482.

Yin, R. K. (2014). Case study research: Design and methods (5th ed.). Thousand Oaks,

CA: Sage Publications.

Zagonel, A. A. (2002). Model conceptualization in group model building: A review of the

literature exploring the tension between representing reality and negotiating a social

order. In Proceedings of the 2002 international conference of the system dynamics

society. Albany, NY: System Dynamics Society.

References from Newspapers, Webpages, or Blogs

Adobe (2016). Security in Engineering: Building Security into our products and services.

Retrieved from https://www.adobe.com/security/engineering.html

Arthur, C. (2011, September 5). DigiNotar SSL certificate hack amounts to cyberwar,

experts says. The Guardian. Retrieved from https://www.theguardian.com/techno-

logy/2011/sep/05/diginotar-certificate-hack-cyberwar

Chrisafis, A. (2015, October 22). Nothing’s changed: 10 years after French riots, ban-

lieues remain in crisis. The Guardian. Retrieved from https://www.theguardian.com/

world/2015/oct/22/nothings-changed-10-years-after-french-riots-banlieues-remain-

in-crisis

Crowe, P. (2016, March 30). CITI: The 'Uber moment' for banks is coming — and more

than a million people could lose their jobs. Business Insider. Retrieved from http://

w w w . b u s i n e s s i n s i d e r . c o m / b a n k - l a y o f f s - a r e - c o m i n g - 2 0 1 6 - 3 ?

international=true&r=US&IR=T

CVE (2017). Common vulnerabilities and exposures: The standard for information secur-

ity vulnerability names. Retrieved from: https://cve.mitre.org/

FinExtra (2017, March 9). DNB says its future is to become a “technology company with

a banking licence”. FinExtra. Retrieved from https://www.finextra.com/newsarticle/

Jonas Matheus | jonasmatheus@web.de ! x i v

https://www.adobe.com/security/engineering.html
https://www.theguardian.com/technology/2011/sep/05/diginotar-certificate-hack-cyberwar
https://www.theguardian.com/technology/2011/sep/05/diginotar-certificate-hack-cyberwar
https://www.theguardian.com/technology/2011/sep/05/diginotar-certificate-hack-cyberwar
https://www.theguardian.com/world/2015/oct/22/nothings-changed-10-years-after-french-riots-banlieues-remain-in-crisis
https://www.theguardian.com/world/2015/oct/22/nothings-changed-10-years-after-french-riots-banlieues-remain-in-crisis
https://www.theguardian.com/world/2015/oct/22/nothings-changed-10-years-after-french-riots-banlieues-remain-in-crisis
http://www.businessinsider.com/bank-layoffs-are-coming-2016-3?international=true&r=US&IR=T
http://www.businessinsider.com/bank-layoffs-are-coming-2016-3?international=true&r=US&IR=T
http://www.businessinsider.com/bank-layoffs-are-coming-2016-3?international=true&r=US&IR=T
https://cve.mitre.org/
https://www.finextra.com/newsarticle/30250/dnb-says-its-future-is-to-become-a-technology-company-with-a-banking-license
http://web.de

European Master in System Dynamics

30250/dnb-says-its-future-is-to-become-a-technology-company-with-a-banking-li-

cense

Fox-Brewster, T. (2017, June 27). Petya or NotPetya: Why the latest ransomware is

deadlier than WannaCry. Forbes. Retrieved from https://www.forbes.com/sites/

thomasbrewster/2017/06/27/petya-notpetya-ransomware-is-more-powerful-than-

wannacry/#36f7b4e2532e

Gandel, S. (2016, June 27). Here’s how Citigroup is embracing the ‘Fintech’ revolution.

Fortune. Retrieved from http://fortune.com/citigroup-fintech/

The Hague Security Delta (2017). The Hague Security Delta: Leading security cluster in

Europe. The Hague Security Delta. Retrieved from https://www.thehaguesecurity-

delta.com/

Lopez, L. (2013, February 27). Here’s why Wall Streeters are STILL getting axed. Busi-

ness Insider. Retrieved from http://www.businessinsider.com/why-wall-street-bank-

layoffs-wont-stop-2013-2?international=true&r=US&IR=T

Microsoft (2017a). Security Development Lifecycle. Retrieved from https://www.mi-

crosoft.com/en-us/SDL/process/training.aspx

Microsoft (2017b). SDL for Agile. Retrieved from https://www.microsoft.com/en-us/

SDL/Discover/sdlagile.aspx

OWASP (2017, July 4). OWASP SAMM Project. Retrieved from https://www.owasp.org/

index.php/OWASP_SAMM_Project

OWASP (2016, August 8). CLASP Concepts. OWASP. Retrieved from https://

www.owasp.org/index.php/CLASP_Concepts

Rankin, J. (2013, May 28). 'Big four' banks cut 189,000 jobs worldwide in five years.

The Guardian. Retrieved from https://www.theguardian.com/business/2013/may/28/

big-four-banks-cut-jobs

Sciolino, E. (2007, November 29). Sarkozy pledges crackdown on rioters. The New

York Times. Retrieved from http://www.nytimes.com/2007/11/29/world/europe/29-

france.html

Zetter, K. (2011, September 20). DigiNotar files for bankruptcy in wake of devastating

hack. Wired. Retrieved from https://www.wired.com/2011/09/diginotar-bankruptcy/

Jonas Matheus | jonasmatheus@web.de ! xv

http://web.de
https://www.finextra.com/newsarticle/30250/dnb-says-its-future-is-to-become-a-technology-company-with-a-banking-license
https://www.finextra.com/newsarticle/30250/dnb-says-its-future-is-to-become-a-technology-company-with-a-banking-license
https://www.forbes.com/sites/thomasbrewster/2017/06/27/petya-notpetya-ransomware-is-more-powerful-than-wannacry/#36f7b4e2532e
https://www.forbes.com/sites/thomasbrewster/2017/06/27/petya-notpetya-ransomware-is-more-powerful-than-wannacry/#36f7b4e2532e
https://www.forbes.com/sites/thomasbrewster/2017/06/27/petya-notpetya-ransomware-is-more-powerful-than-wannacry/#36f7b4e2532e
http://fortune.com/citigroup-fintech/
https://www.thehaguesecuritydelta.com/
https://www.thehaguesecuritydelta.com/
http://www.businessinsider.com/why-wall-street-bank-layoffs-wont-stop-2013-2?international=true&r=US&IR=T
http://www.businessinsider.com/why-wall-street-bank-layoffs-wont-stop-2013-2?international=true&r=US&IR=T
http://www.businessinsider.com/why-wall-street-bank-layoffs-wont-stop-2013-2?international=true&r=US&IR=T
https://www.microsoft.com/en-us/SDL/process/training.aspx
https://www.microsoft.com/en-us/SDL/process/training.aspx
https://www.microsoft.com/en-us/SDL/Discover/sdlagile.aspx
https://www.microsoft.com/en-us/SDL/Discover/sdlagile.aspx
https://www.owasp.org/index.php/OWASP_SAMM_Project
https://www.owasp.org/index.php/OWASP_SAMM_Project
https://www.owasp.org/index.php/CLASP_Concepts
https://www.owasp.org/index.php/CLASP_Concepts
https://www.theguardian.com/business/2013/may/28/big-four-banks-cut-jobs
https://www.theguardian.com/business/2013/may/28/big-four-banks-cut-jobs
http://www.nytimes.com/2007/11/29/world/europe/29france.html
http://www.nytimes.com/2007/11/29/world/europe/29france.html
https://www.wired.com/2011/09/diginotar-bankruptcy/

European Master in System Dynamics

APPENDIX I - MODEL DOCUMENTATION
While the Results and Analysis Section (4) above depicts a highly aggregated causal

diagram to address the research question, throughout the group model workshops se-

veral detailed models have been created, covering the areas of agile secure software

development, defects and vulnerabilities, the DevOps, training and awareness, third

party software, adversary behaviour, and responsible disclosure. Additionally, the sub-

models of those areas have been integrated to an overarching causal diagram.

This subsection portrays the iterative nature of creating a causal diagram. The dia-

grams generally indicate a final, an intermediate, and an initial version. Depending on

the complexity, Occam’s razor was applied to strip off all unnecessary details (Pidd, 2003).

In this way the causal diagrams could be summarised, so that they are understandable

to outsiders who did not take part in the workshops.

I. A Causal Diagrams Group Model Building Session 1

Jonas Matheus | jonasmatheus@web.de ! xv i

Figure I.A.1: Causal Diagram of Agile Secure Software Development, Defects, Backlog and Sprint Backlog,
Incidents, and Maturity. This diagram represents the final version of the model created in the first workshop.
The diagram was created by the researcher and validated by the participants.

http://web.de

European Master in System Dynamics

As common in the financial organisation as well as in group model building, the re-

sults of the workshop were sent to the participants as a summary shortly after the ses-

sion. In contrast to common practice in group model building (see e.g. Vennix, 1996), no

workbooks were used because of the busy schedule of the participants. Instead, a

short and comprehensive summary was created in powerpoint which is one of the ma-

jor methods of conveying insights within the organisation. The powerpoint presentation

simply depicted Figure I.A.1 above as final summarised version of the causal diagram of

the first workshop and added the explanatory bullet point list below. Each point descri-

bes the dynamics of a feedback loop discussed within the session.

• B1: Software is developed.

• B2: Errors are fixed.

• B3: Tests reveal errors, leading to less incidents.

• R1: More customer feedback causes more iterations.

• R2: Higher work speed increases productivity but also creates errors.

• R3: More errors cause more incidents which in turn leads to new errors.

• R4: More incidents lead to more tests, decreasing productivity, finally causing new errors.

• R5: Major errors disrupt the planning, causing stress and finally new errors.

• R6: Via retrospective, successfully conducting sprints increases maturity.

• R7: Via retrospective, successfully conducting sprints increases accuracy in planning.

• R8: More maturity causes better software development.

The participants were invited to comment on the summary via e-mail, phone call, or

in person prior to the second session. Additionally, the causal diagram shown in Figure

I.A.1 was unfolded loop by loop in the second workshop and explained by the research-

er. The participants were asked to correct and change the causal diagram according

to their own ideas. When presenting the model, the researcher continuously probed

the participants to disconfirm the causal diagram in order to increase its internal valid-

ity (Andersen et al., 2012; Yin, 2014). Despite the invitation to adjust the causal diagrams, the

participants did not object to it, but instead, were very satisfied with the results.

The two causal diagrams below in Figure I.A.2 and Figure I.A.3 describe the interme-

diate and initial version of the model created during the first group model workshop.

Jonas Matheus | jonasmatheus@web.de ! xv i i

http://web.de

European Master in System Dynamics

Jonas Matheus | jonasmatheus@web.de ! xv i i i

Figure I.A.2: Causal Diagram of Agile Secure Software Development, Defects, Backlog and Sprint Backlog,
Incidents, and Maturity. This diagram represents an intermediated version of the model created in the first
workshop. The diagram was created by the researcher, and discussed with a few participants who deemed it
to be too complicated for further use. Together, it was decided to simplify the causal diagram further.

http://web.de

European Master in System Dynamics

Jonas Matheus | jonasmatheus@web.de ! x i x

Figure I.A.3: Causal Diagram of Agile Secure Software Development, Defects, Backlog and Sprint Backlog,
Incidents, and Maturity. This diagram represents the initial version of the model created in the first workshop.
The diagram was created by the participants who drew it on paper. Afterwards, the researcher translated the
diagram onto the computer but kept everything as it was decided by the participants. Since the participants
were already laughing about the complexity of the diagram during the session, the researcher had decided to
simplify the model, as eventually done in the figures above.

http://web.de

European Master in System Dynamics

I. B Causal Diagrams Group Model Building Session 2

Jonas Matheus | jonasmatheus@web.de ! xx

Kn
ow

n
Vu

ln
er

ab
ilit

ie
s

Un
kn

ow
n

Vu
ln

er
ab

ilit
ie

s

de
te

ct
in

g
vu

ln
er

ab
ilit

ie
s

in
tro

du
cin

g
vu

ln
er

ab
ilit

ie
s

re
so

lvi
ng

vu
ln

er
ab

ilit
ie

s

Ze
ro

Da
y

De
te

ct
io

n

To
ta

l
Vu

ln
er

ab
ilit

ie
s

+

+

+

Ch
an

ce
 o

f a
su

cc
es

sf
ul

 A
tta

ck

+

+

+

Re
so

lve
Vu

ln
er

ab
ilit

ie
s +

+

De
vO

ps
Pr

od
uc

tiv
ity

+

Ch
an

ce
 o

f b
ei

ng
ta

rg
et

ed

+
M

itig
at

e
Im

pa
ct-

Ch
an

ge
Ta

rg
et

Su
cc

es
sf

u
l A

tta
ck

+
-

-

Fo
re

ns
ic

In
ve

st
ig

at
io

n
+

+

De
m

an
d

fo
r

De
vO

ps
 in

Re
sp

on
se-

Ad
ve

rs
ar

y:
En

try
 P

oi
nt

fo
un

d
ad

ve
rs

ar
y

us
in

g
en

try
po

in
t

+

Ef
fe

ct
ive

ne
ss

Ad
ve

rs
ar

y:
Ta

rg
et

In
fo

rm
at

io
n

Av
ai

la
bl

e

Ad
ve

rs
ar

y:
Vu

ln
er

ab
ilit

y
Fo

un
d

ad
ve

rs
ar

y
an

al
ys

in
g

vu
ln

er
ab

ilit
ie

s

ad
ve

rs
ar

y
fin

di
ng

vu
ln

er
ab

ilit
ie

s

ad
ve

rs
ar

y
ga

th
er

in
g

ta
rg

et
in

fo
rm

at
io

n

+
+

+
+

+

+

+

+

Er
ro

rs

+

Ad
ve

rs
ar

y
M

ot
iva

tio
n

+ +

+

+Ad
ve

rs
ar

y
M

at
ur

ity

+

Ad
ve

rs
ar

y
Bu

dg
et

+

In
fo

rm
at

io
n

on
Ad

ve
rs

ar
y

Ac
tiv

ity

+

In
fo

rm
at

io
n

on
 E

xe
cu

tio
n

of
 a

n
At

ta
ck

+

+

+

+

R1

St
ay

 w
ith

Ta
rg

et

R2

G
et

tin
g

K
no

w
n

R5
H

ac
ki

ng
C

yc
le

M
ot

iv
at

io
n

R4
H

ac
ki

ng
C

yc
le

Le
ar

ni
ng

R3
H

ac
ki

ng
C

yc
le

Ea
rn

in
g

B2

A
tta

ck
-d

er
iv

ed
R

es
po

ns
e

B3

Pr
ev

en
t

Ze
ro

 D
ay

s

B1
A

ct
iv

ity
-d

er
iv

ed
 R

es
po

ns
e

R6
Le

ar
ni

ng
fr

om
A

dv
er

sa
ry

Kn
ow

n
Th

ird
 P

ar
ty

Us
ed

 b
y

O
rg

an
isa

tio
n

+

B4
C

lo
si

ng
th

e
W

ho
le

s

Figure I.B.1: Causal Diagram of Vulnerabilities, External
Attacks, and Adversary Behaviour. This diagram rep -
resents the final version of the model created in the
second workshop. The diagram was created by the
researcher and validated by the participants.

http://web.de

European Master in System Dynamics

Like with the first group model building session, the results of the second workshop

were sent to the participants as a summary shortly after the session. Again, no work-

books were used because of the busy schedule of the participants. Instead, a short

and comprehensive summary was created in powerpoint. The powerpoint presentation

simply depicted Figure I.B.1 above and I.B.3 below as final summarised version of the

causal diagrams of the second workshop. Additionally, the explanatory bullet point list

below as well as the one following I.B.3 were added to the powerpoint presentation.

Each point describes the dynamics of a feedback loop discussed within the session.

• B1: Defence actions based on information about adversary activities.

• B2: Defence actions based on information about adversary attack.

• B3: Detecting unknown vulnerabilities prevents zero days.

• B4: Vulnerabilities are resolved.

• R1: The less a hacker changes his/her target, the better they get to know it.

• R2: The larger the footprint of a target, the higher the motivation to attack it.

• R3: Successful attacks result in more budget, leading to further attack cycles.

• R4: Successful attacks result in more maturity, leading to further attack cycles.

• R5: Successful attacks result in more motivation, leading to further attack cycles.

• R6: Although always lagging behind, more attacker actions reveal more vulnerabilities.

Once more, the participants were invited to comment on the summary via e-mail,

phone call, or in person prior to the third session. Like the second workshop, also the

third sessions started with unfolding and explaining the causal diagrams depicted in

the Figure I.B.1 and I.B.3 loop by loop. Again, the participants were requested to im-

prove and adjust the causal diagrams according to their own ideas. When presenting

the model, the researcher continuously probed the participants to disconfirm the

causal diagrams in order to increase its internal validity (Andersen et al., 2012; Yin, 2014).

Despite the invitation to adjust the causal diagrams, the participants did not object to

it, but instead, were very satisfied with the outcomes.

The three causal diagrams below in Figure I.B.2, Figure I.B.4, and Figure I.B.5 show

the intermediate and initial versions of the models created during the second group

model building workshop.  

Jonas Matheus | jonasmatheus@web.de ! xx i

http://web.de

European Master in System Dynamics

Jonas Matheus | jonasmatheus@web.de ! xx i i

Kn
ow

n
Vu

ln
er

ab
ilit

ie
s

Un
kn

ow
n

Vu
ln

er
ab

ilit
ie

s

de
te

ct
in

g
vu

ln
er

ab
ilit

ie
s

in
tro

du
cin

g
vu

ln
er

ab
ilit

ie
s

re
so

lvi
ng

vu
ln

er
ab

ilit
ie

s

Ze
ro

Da
y

De
te

ct
io

n

To
ta

l
Vu

ln
er

ab
ilit

ie
s

++

+

Ch
an

ce
 o

f a
su

cc
es

sf
ul

 A
tta

ck

++
+

Re
so

lve
Vu

ln
er

ab
ilit

ie
s +

+

De
vO

ps
Pr

od
uc

tiv
ity

+

Ch
an

ce
 o

f b
ei

ng
ta

rg
et

ed
+

M
itig

at
e

Im
pa

ct

-

Ch
an

ge
Ta

rg
et

Su
cc

es
sf

u
l A

tta
ck

+

-

-

Se
ve

rit
y

of
Vu

le
ra

bi
lity+

Fo
re

ns
ic

In
ve

st
ig

at
io

n

+
+

De
m

an
d

fo
r

De
vO

ps
 in

Re
sp

on
se

-

Ad
ve

rs
ar

y:
En

try
 P

oi
nt

fo
un

d
ad

ve
rs

ar
y

us
in

g
en

try
po

in
t

+

Ef
fe

ct
ive

ne
ss

Ad
ve

rs
ar

y:
 T

ar
ge

t
In

fo
rm

at
io

n
Av

ai
la

bl
e

Ad
ve

rs
ar

y:
Vu

ln
er

ab
ilit

y
Fo

un
d

ad
ve

rs
ar

y
an

al
ys

in
g

vu
ln

er
ab

ilit
ie

s

ad
ve

rs
ar

y
fin

di
ng

vu
ln

er
ab

ilit
ie

s
ad

ve
rs

ar
y

ga
th

er
in

g
ta

rg
et

in
fo

rm
at

io
n

+
+

+
+

+
+

+

Kn
ow

n
Th

ird
 P

ar
tie

s
us

ed
 b

y
th

e
Co

m
pa

ny

+

+

Sh
ar

in
g

Kn
ow

le
dg

e

+

+

Ef
fe

ct
ive

 S
pe

nd
in

g
of

Re
so

ur
ce

s
du

e
to

 s
ha

re
d

Kn
ow

le
dg

e

+

+

Er
ro

rs
+

Ad
ve

rs
ar

y
M

ot
iva

tio
n

+

+

+

+

Ad
ve

rs
ar

y
M

at
ur

ity

+

Ad
ve

rs
ar

y
Bu

dg
et

Ta
rg

et
Fo

ot
pr

in
t

+

In
fo

rm
at

io
n

on
Ad

ve
rs

ar
y

Ac
tiv

ity

+
In

fo
rm

at
io

n
on

 E
xe

cu
tio

n
of

 a
n

At
ta

ck
+

+

+

+

Figure I.B.2: Causal Diagram of Vul-
nerabilities, External Attacks, and Ad-
versary Behaviour. This diagram rep-
resents an intermediated version of
the model created in the second
workshop. The diagram was created
by the researcher, and discussed with
a few participants who deemed it to
be too complicated for further use.
Together, it was decided to simplify
the causal diagram further.

http://web.de

European Master in System Dynamics

As indicated above, each of the points below describes the dynamics of a feed-

back loop discussed within the session. While the causal diagram in Figure I.B.1

showed the interaction between software vulnerabilities, external cyber attacks, and

adversary dynamics, the diagram in Figure I.B.3 depicts the relationship between

software vulnerabilities and responsible disclosure. Despite its usefulness for the discus-

sion of practical implications (particularly regarding mean time to resolve), responsible

disclosure has been excluded from the actual analysis above because it describes a

potential but not necessary part of the investigated interaction.

• B1: Finding unknown, and known but unresolved vulnerabilities.

• B2: Finding only unknown vulnerabilities to pursue the aim of RD.

• B3: Vulnerabilities are resolved.

• B4: Mismatching payment expectations makes hackers turn away.

• R1: Satisfying hackers creates trust and attracts further hackers.

• R2: Matching payment expectations attracts hackers.

Jonas Matheus | jonasmatheus@web.de ! xx i i i

Known
Vulnerabilities

Unknown
Vulnerabilities

detecting
vulnerabilities

introducing
vulnerabilities

resolving
vulnerabilities

Detection

Total
Vulnerabilities

++

+

Errors

+

Resolve
Vulnerabilities

+

+DevOps
Productivity

-

Severity of
Vulerability

+
Found

Vulnerabilities
in RD

+

Actual detected
Vulnerabilities in

RD

+

+

White Hat Hackers
associated with

Organisation

White Hat Hackers
associated with

other
Organisations

Income for
RD

-

Satisfaction
with RD

+

+

Communication

Mean Time
Resolve

-

+

+

Status of
Organisation

+

Expected
Payment for RD

Gap between
Expected and Actual

Payment for RD

+

Time to get
Payed -

Legal
Issues

Trust in RD
from White Hat

Hackers

+
-

- B1

Finding
the Wrong

B2

Finding
the Right

B3

Solving Vulne
rabilities

B4
Getting Disa

ppointed

R1

Trust

R2

Fulfilling Ex
pectations

attracting white
hat hackers

+

+

-

+
hackers turn

away

Figure I.B.3: Causal Diagram of Vul-
nerabilities, and Responsible Disclos-
ure. This diagram represents the final
version of the model created in the
second workshop. The diagram was
created by the researcher and valid-
ated by the participants.

http://web.de

European Master in System Dynamics

• Communication, time to get paid and mean time to resolve are important lever-

ages for attracting hackers, while the severity of a vulnerability is important for de-

ciding on whether to resolve a vulnerability.  

Jonas Matheus | jonasmatheus@web.de ! xx i v

Known
Vulnerabilities

Unknown
Vulnerabilities

detecting
vulnerabilities

introducing
vulnerabilities

resolving
vulnerabilities

Detection
Total

Vulnerabilities

+ +

+

Errors
+

Resolve
Vulnerabilities

+ +

DevOps
Productivity

-

Severity of
Vulerability

+
Found

Vulnerabilities in
RD

+

Actual detected
Vulnerabilities in

RD

+

++

White Hat Hackers
associated with

Organisation

White Hat Hackers
associated with

other
Organisations

attracting white
hat hackers white hat hacker

turn away

Income for
RD

-

Satisfaction
with RD

+

+
Communication

Mean Time
Resolve

-

+

+

Status of
Organisation

+

Status of White Hat
Hacker within
Organisation

+

+

+

Expected
Payment for RD

Gap between
Expected and Actual

Payment for RD

+

+Time to get
Payed

-

Legal Issues: Law
suite against White

Hat Hacker

-

Trust in RD
from White Hat

Hackers

+

+
-

Figure I.B.4: Causal Diagram of Vulnerabilit-
ies, and Responsible Disclosure. This dia-
gram represents an intermediated version of
the model created in the second workshop.
The diagram was created by the researcher,
and discussed with a few participants who
deemed it to be too complicated for further
use. Together, it was decided to simplify the
causal diagram further.

http://web.de

European Master in System Dynamics

Jonas Matheus | jonasmatheus@web.de ! xxv

Kn
ow

n
Vu

ln
er

ab
ilit

ie
s

Un
kn

ow
n

Vu
ln

er
ab

ilit
ie

s

de
te

ct
in

g
vu

ln
er

ab
ilit

ie
s

in
tro

du
cin

g
vu

ln
er

ab
ilit

ie
s

re
so

lvi
ng

vu
ln

er
ab

ilit
ie

s

Ze
ro

 D
ay

De
te

ct
io

nTo
ta

l
Vu

ln
er

ab
ilit

ie
s

+

+

+

Ch
an

ce
 o

f a
su

cc
es

sf
ul

 A
tta

ck

+

+

+

Kn
ow

n
Er

ro
rs

Un
kn

ow
n

Er
ro

rs

Th
ird

 P
ar

ty
So

ftw
ar

e
Er

ro
rs

Th
ird

 P
ar

ty
 S

of
tw

ar
e

Un
kn

ow
n

Er
ro

rs

+ +
+

+

Re
so

lve
Vu

ln
er

ab
ilit

ie
s

++

De
vO

ps
Pr

od
uc

tiv
ity

+

In
fo

rm
at

io
n

on
 A

dv
er

sa
ry

Ac
tiv

ity
re

ce
ivi

ng
 in

fo
rm

at
io

n
on

 a
dv

er
ar

y
ac

tiv
ity

+

Ch
an

ce
 o

f b
ei

ng
ta

rg
et

ed

+

M
itig

at
e

Im
pa

ct -

Ch
an

ge
Ta

rg
et

Su
cc

es
sf

u
l A

tta
ck

Un
su

cc
es

sf
ul

At
ta

ck

+
-

--

Se
ve

rit
y

of
Vu

le
ra

bi
lity

+

Fo
re

ns
ic

In
ve

st
ig

at
io

n

+

+

De
m

an
d

fo
r

De
vO

ps
 in

Re
sp

on
se

+

-

In
fo

rm
at

io
n

on
 E

xe
cu

tio
n

of
 a

n
At

ta
ck re

ce
ivi

ng
in

fo
rm

at
io

n
on

at
ta

ck

+

Ad
ve

rs
ar

y:
En

try
 P

oi
nt

fo
un

d
ad

ve
rs

ar
y

us
in

g
en

try
 p

oi
nt

+
+

+

Co
nt

ac
t

Au
th

or
itie

s

+

Ef
fe

ct
ive

ne
ss

Ad
ve

rs
ar

y:
 T

ar
ge

t
In

fo
rm

at
io

n
Av

ai
la

bl
e

Ad
ve

rs
ar

y:
Vu

ln
er

ab
ilit

y
Fo

un
d

ad
ve

rs
ar

y
an

al
ys

in
g

vu
ln

er
ab

ilit
ie

s

ad
ve

rs
ar

y
fin

di
ng

vu
ln

er
ab

ilit
ie

s
ad

ve
rs

ar
y

ga
th

er
in

g
ta

rg
et

 in
fo

rm
at

io
n

+
+

+

+
+

+
+

Ad
ve

rs
ar

y
M

ot
iva

tio
n

Ad
ve

rs
ar

y
Bu

dg
et

Ad
ve

rs
ar

y
M

at
ur

ity

ad
ve

rs
ar

y
ga

in
in

g
m

on
ey ad

ve
rs

ar
y

le
ar

ni
ng

ad
ve

rs
ar

y
in

cr
ea

sin
g

m
ot

iva
tio

n

+
+

ad
ve

rs
ar

y
de

cr
ea

sin
g

m
ot

iva
tio

n

+
+

Se
co

nd
 T

ry

+

+

+

+

+

+

Kn
ow

n
Th

ird
 P

ar
tie

s
us

ed
 b

y
th

e
Co

m
pa

ny

+

Un
us

ua
l B

eh
av

io
ur

wi
th

in
 th

e
Sy

st
em

+
Ad

ve
rs

ar
y

ga
th

er
in

g
Ta

rg
et

In
fo

rm
at

io
n

fro
m

 w
ith

in
 th

e
Sy

st
em

+

+

Sh
ar

in
g

Kn
ow

le
dg

e

+

+

Ef
fe

ct
ive

 S
pe

nd
in

g
of

Re
so

ur
ce

s
du

e
to

 s
ha

re
d

Kn
ow

le
dg

e

+

+

Ta
rg

et
Fo

ot
pr

in
t

+

Ch
as

e
Ad

ve
rs

ar
y

+

+

Fo
un

d
Vu

ln
er

ab
ilit

ie
s

in
RD

+

Ac
tu

al
 d

et
ec

te
d

Vu
ln

er
ab

ilit
ie

s
in

RD

+

+
+

W
hi

te
 H

at
 H

ac
ke

rs
as

so
cia

te
d

wi
th

O
rg

an
isa

tio
n

W
hi

te
 H

at
 H

ac
ke

rs
as

so
cia

te
d

wi
th

ot
he

r
O

rg
an

isa
tio

ns

at
tra

ct
in

g
wh

ite
ha

t h
ac

ke
rs

wh
ite

 h
at

 h
ac

ke
r

tu
rn

 a
wa

y

In
co

m
e

fo
r

RD

-

Sa
tis

fa
ct

io
n

wi
th

 R
D

Tr
us

t i
n

RD
fro

m
 W

hi
te

Ha
t h

ac
ke

rs

+

tru
st

in
g

or
ga

ni
sa

tio
n

+

+
Co

m
m

un
ica

tio
n

M
ea

n
Ti

m
e

Re
so

lve

-

<M
ea

n
Ti

m
e

Re
so

lve
>

-

+
+

St
at

us
 o

f
O

rg
an

isa
tio

n

+

St
at

us
 o

f W
hi

te
 H

at
Ha

ck
er

 w
ith

in
O

rg
an

isa
tio

n

+

+

lo
os

in
g

tru
st

+

Ex
pe

ct
ed

Pa
ym

en
t f

or
 R

D

G
ap

 b
et

we
en

 E
xp

ec
te

d
an

d
Ac

tu
al

 P
ay

m
en

t f
or

RD

+

+

+

Ti
m

e
to

 g
et

Pa
ye

d -

+

Le
ga

l I
ss

ue
s:

 L
aw

su
ite

 a
ga

in
st

 W
hi

te
Ha

t H
ac

ke
r

-

Pu
bl

ica
tio

n
of

 W
hi

te
Ha

t H
ac

ke
r i

n
RD

Re
pu

ta
tio

n
of

O
rg

an
isa

tio
n

+

ch
an

ge
 in

re
pu

ta
tio

n

-

Figure I.B.5: Causal Diagram of Software Vulnerabilities, External Cyber Attacks, Adversary Behaviour, and
Responsible Disclosure. This diagram represents the initial version of the model created in the second work-
shop. The diagram was created by the participants who drew it on paper. Afterwards, the researcher trans-
lated the diagram onto the computer but kept everything as it was decided by the participants. Once more, to
reduce complexity, the researcher decided to simplify this diagram as done with the versions above.

http://web.de

European Master in System Dynamics

I. C Causal Diagrams Group Model Building Session 3

Like with the first and second session, also the results of the third workshop were

sent to the participants as a summary shortly after the meeting. Again, instead of work-

books a short and comprehensive summary was created in powerpoint. The presenta-

tion simply depicted Figure I.C.1 above and I.C.2 below as final summarised version of

the causal diagrams of the second workshop. Of course, the explanatory bullet point list

below as well as the one following I.C.2 were added to the powerpoint presentation.

Each point describes the dynamics of a feedback loop discussed within the session.

• B1: Unaware DevOps become aware due to aware DevOps.

• B2: Too much Training causes Security Fatigue, decreasing the effect of Training.

• B3: Overtraining of DevOps leads to more Security Staff and less DevOps.

Jonas Matheus | jonasmatheus@web.de ! xxv i

Sufficiently
trained DevOps

DevOps Maturity
gaining
maturity

losing maturity

Security Staff -

securitising

Sufficiently
trained DevOps 0

+

-

training in secure
software development

+

DevOps
Productivity

Cotact btw Aware &
Unaware DevOps

+

+

-

training decay in
secure software

development

Security
Fatigue

+

+

Overemphasise
of Security within

DevOps

+

-

+

+

+

Unaware DevOps
for Training in

Secure Software
Development

Aware DevOps
for Training in

Secure Software
Development

+

-

awareness
creation

+

+

+

+

Immediate
Results of

Tests

Desire to
Improve based
on found Errors

+

+

+

Intranet

+

+

-

awareness
decay

Loss Effectiveness of
Training due to Security

Fatigue

+

R1
Awareness

R2

Maturity and
Awareness

B2
Getting Tired

B3
SecuritisationB1

Unawareness

Insufficiently

Trained DevOps

Figure I.C.1: Causal Diagram of DevOps, Maturity, and Awareness. This diagram represents the final version
of the model created in the third workshop. In contrast to the previous diagram, this final version resembles
very much the model created in the workshop. Minor changes were made by the researcher when translating
the model from paper to the computer but those were only about the order and neatness of the model, not
about simplifications and parsimony. Although this diagram was finalised after the last session, it was valid-
ated by the participants via further communication.

http://web.de

European Master in System Dynamics

• R1: The more aware DevOps, the less unaware DevOps.

• R2: The more Maturity, the more Awareness. In turn, more Maturity due to more Training.

Particularly this time, the participants were invited to comment on the summary via

e-mail, phone call, or in person as there was no further session. Despite the invitation to

adjust the diagrams, the participants had not objected to it, but instead, had been

very satisfied with the

In contrast to the previous explanations, here the bullet points explain noteworthy

points about third party software because there was no focus on the feedback structure.

While the causal diagram in Figure I.C.1 showed the interaction between DevOps,

awareness, and maturity, this diagram treats third party software. Since it was indic-

ated by the participants during the session that this topic has little relevance for the

issue under investigation it was only addressed when necessary but elsewise left out.

• Third party software describes any external software used in the organisation.

Jonas Matheus | jonasmatheus@web.de ! xxv i i

Figure I.C.2: Causal Diagram of Third Party Software. This diagram represents the final version of the model
created in the third workshop. During the workshop it turned out that Third Party Software in the setting of
this study is less an issue of feedback loops but more one of options in decision making. Hence, the re-
searcher translated the paper model into this diagram to show the different options when dealing with Third
Party Software. Despite its different appearance, the diagram depicted here is quite similar to the one created
during the group model building workshop. Hence, this final version resembles very much the model created
in the workshop. Although this diagram was finalised after the last session, it was validated by the parti-
cipants via further communication methods.

http://web.de

European Master in System Dynamics

• Third party software is generally introduced when new solutions are needed or

former software was decommissioned.

• DevOps may work on third party software in the form of...

• ... searching and deciding on new options,

• ... customising,

• ... testing,

• ... analysing in case of problems and errors,

• ... communicating with contract partner.

• Work on third party software has generally no impact on DevOps Productivity

since it is accounted for in the sprint, except it is conducted excessively.

• Errors in third party software cause Vulnerabilities.

I. D Overarching Causal Diagram Group Model Building for Session 3
Notwithstanding the fact, that the causal diagrams depicted in the Figures I.C.1 and

I.C.2 had to be developed with the participants at the beginning of the third workshop,

the researcher had created an overarching model including all submodels covered

throughout the workshops (see also the script of the first session in which the submo-

dels are presented (II.A.1)) prior to the third session (Figure I.D.1). This model served as a

basis to conduct a “model walkthrough” to discuss the connections between the diffe-

rent submodels and to investigate the overarching dynamics with the participants in the

third session. Similar to the beginning of the second and third session, the researcher

presented the model by unfolding it loop per loop and requested the participants to

criticise, improve and adjust the causal diagram according to their own ideas. In other

words, the researcher continuously probed the participants to disconfirm the causal

diagram in order to increase its internal validity (Andersen et al., 2012; Yin, 2014). Despite the

invitation to adjust the causal diagrams, the participants did not object to it, but ins-

tead, were very satisfied with the outcomes. Of course, the diagram could not show

the insights gained within the third session as it was developed by the researcher pri-

or to the workshop. The insights from the third workshop were included into the vali-

dated diagram after the third session.

Jonas Matheus | jonasmatheus@web.de ! xxv i i i

http://web.de

European Master in System Dynamics

Jonas Matheus | jonasmatheus@web.de ! xx i x

Figure I.D.1: Causal Diagram of the
overarching interactions in Agile Se-
cure Software Development, Defects
and Vulnerabilities, External Cyber
Attacks, Adversary Behaviour, Organ-
isational Response, Responsible Dis-
closure, Third Party Software, and
DevOps Maturity and Awareness. The
diagram was created by the re-
searcher and validated by the parti-
cipants in the third session.

http://web.de

European Master in System Dynamics

I. E Overarching Causal Diagram Group Model Building after Session 3

Jonas Matheus | jonasmatheus@web.de ! xxx

Figure I.E.1: Causal Diagram of the
overarching interactions in Agile
Secure Software Development,
Defects and Vulnerabilities, Extern-
al Cyber Attacks, Adversary Beha-
viour, Organisational Response,
Responsible Disclosure, Third Party
Software, and DevOps Maturity
and Awareness. The diagram was
created by the researcher and
based on the validated causal dia-
gram from Figure I.B.11 as well as
the insights from the third session.
This diagram was used for explicit
structure validation through a dis-
confirmatory interview (II.D.6).

http://web.de

European Master in System Dynamics

I. F Overarching Causal Diagram Group Model Building after Validation
After the disconfirmatory interview with a system architect and security expert (II.D.6) a

final version of the causal diagram evolved. This model is depicted in Figure I.F.1. Like

with all the previous results from the workshops, this causal diagram was sent to the

participants and all others involved in the study as a summary shortly after the validation

session with the system architect. As previously done as well, all feedback loops or

other important aspects were explained through brief comments in the powerpoint pre-

sentation which served as the summary. Since the presentation unfolded the overar-

ching model step by step, the summary contained more than forty pages. The feedback

from the participants and the involved team from the security department was very

good and no changes were requested. Instead, the insights from the study were con-

firmed, for instance, in a later team meeting in which the researcher presented the

summary to the team (II.D.17). Below, all comments in the presentation are listed.

• B1: Developing Software within Sprint.

• R1: Based on Feedback new Items are added to the Backlog.

• B2, R2: Longer work hours and less time per item increase the productivity but

also the number of errors which need to be fixed.

• B3, R3: Tests reveal unknown errors. However, under extreme conditions, tests

would decrease productivity if conducted excessively.

• R4, R5, R6: Retrospective improves the next sprint. Additionally, over time ma-

turity increases, resulting in fewer errors.

• B6: Next to automated solutions, time per task and overtime, the number of Dev-

Ops determines the capacity to develop software.  

Insight: Hence, the number of DevOps is critical for the workload of a team.
• B4, R7, R8: Training increases maturity. To take part in trainings, DevOps need

to know that training possibilities are available. Training, however, also decreases

the productivity of a team while they are in training (not shown in the diagram).

• B5: While maturity is important for software quality, mature staff is also more

likely to change job.

• Next to internally developed software, third party software is in use. Such soft-

ware may be tested and can have flaws.

• B7, B8, R9: Testing increases security. Flaws in software cause work and de-

crease productivity.
Jonas Matheus | jonasmatheus@web.de ! xxx i

http://web.de

European Master in System Dynamics

• Known and unknown errors of internal and third party software cause vulnerabil-

ities which may be exploited.

• B9, B10: Critical vulnerabilities have to be fixed without undue delay. Other vul-

nerabilities are put on the backlog and fixed later.  
Insight: While fixing less critical vulnerabilities later decreases disruptions to the
sprint backlog, it causes strategic delays in the long term.

• R10a, R10b: Vulnerabilities cause future work that becomes known with a delay.  
Insight: Hence, not accounting for the future work of fixing vulnerabilities means
adapting to a wrong future workload.

• R16, R17, R18: Vulnerabilities enable successful attacks which in turn increase

the motivation, maturity and resources of hackers.

• Hackers search for information and vulnerabilities to execute an attack.

• B14, R14: Hackers may change target to exploit the same vulnerability else-

where or if unsuccessful. Hackers may stay with the same target to use the

gained insights or if that simply is part of the overall strategy.

• R15: The more known a target, the more likely an attack. Other attack vectors

may serve as entry point.

• B17: Adversary activities leave their marks, and help to detect unknown vulnerabilities.

• B14: Additionally, if detected adversary activities cause a response to mitigate

the attack or minimise the impact of it.

• B15: Further, if detected executed attacks cause a response as well. Together,

these information help to detect vulnerabilities and prevent zero days.

• B16: A common way to security is to first adjust the firewall and later resolve the

vulnerability. This is, however, not in all cases possible, thus the strength of this

mechanism is ambiguous.

• Next to best practice throughout the sector, successful attacks lead to new reg-

ulations (e.g. tests) to improve security.

• Using third party software provides an adversary with information and may in-

crease the likelihood of being a target.

• B11, B12: Within responsible disclosure, unknown vulnerabilities are to be found

by external ethical hackers.

• R12: Ethical hackers have the option to collaborate with the organisation or with other

companies. Trust due to past experience is what binds them to the organisation.
Jonas Matheus | jonasmatheus@web.de ! xxx i i

http://web.de

European Master in System Dynamics

• B13, R13: Additionally, matching their payment expectations, communicating

with them and solving vulnerabilities keeps them collaborative.

• R11: On the one hand, little errors from the beginning cause little work later and

keep the system in balance. On the other hand, many errors and vulnerabilities

make teams constantly lagging behind.  

Insight: This development may evolve in two directions: Either a virtuous circle of
less problems, or a vicious circle of continuous firefighting.

• B18, R19: Finally, for mitigating an attack, DevOps in response are needed. After

having mitigated, DevOps turn back to their normal work.  
Insight: Again, this may lead to a development evolving in two directions: Either a
virtuous circle of little responses and value creation, or a vicious circle of con-
tinuous mitigation and the erosion of business.

• Critical feedback interrelations of internal and external processes:

• B6
• B10
• R10a, R10b
• R11
• R19

• Possible Way to Measure Improvement proposed by the participants and sum-

marised and refined by the researcher:

• Maturity and Training.
• DevOps Workload and DevOps Productivity.
• Errors per Feature, Test Results, and “Technical Debt”.
• Detected Vulnerabilities or Known Vulnerabilities.
• Mean Time to Resolve Vulnerabilities.
• Attempted Attacks and Successful Attacks.
• Responsible Disclosure Reports of Unknown Vulnerabilities.

• Possible areas of improvement proposed by the participants and summarised

and refined by the researcher:

• Increase maturity (training, experience, dedication).
• Train staff and create culture of dedication.
• Keep mature staff.
• “Lead by example” and “train the trainers”.
• Create awareness culture.
• “Share success but also mistakes”.

Jonas Matheus | jonasmatheus@web.de ! xxx i i i

http://web.de

European Master in System Dynamics

• Follow Agile approach and collaborate with customer.
• Test early and test for defects with automated solutions.
• Improve capability to detect vulnerabilities, increase the information on

vulnerabilities, find zero days before adversary, and fix fast (decrease
mean time to resolve).

• Fast feedback for DevOps to have knowledge on quality without delay.
• Keeping productivity high while avoiding firefighting vulnerabilities.
• Get more white hat hackers (ethical hackers) associated with the organ-

isation to improve responsible disclosure.
• Specialised emergency teams.
• Display attacks in real time.  

Jonas Matheus | jonasmatheus@web.de ! xxx iv

http://web.de

European Master in System Dynamics

 

Jonas Matheus | jonasmatheus@web.de ! xxxv

De
vO

ps
 Pr

od
uc

tiv
ity

Re
so

lvin
g

Vu
lne

rab
iliti

es De
tec

tio
n o

f
Vu

lne
rab

ilit
ie

s

Fix
ing

Err
ors

Te
sts

 du
rin

g
Sp

rin
t

De
vO

ps
Wo

rks
pe

ed
 &

Ov
ert

im
e

Ma
tur

ity

Wo
rk

co
nd

uc
ted

wit
h T

PS

+

-

-

-

-

+

De
vO

ps
Wo

rkl
oa

d
+

De
vO

ps

Av
aila

ble
De

vO
ps

+

-

ne
t c

ha
ng

e o
f

de
vo

ps

+

To
tal

Un
kn

ow
n

Er
ror

s

TP
S w

ith
Err

ors

+

Un
kn

ow
n

Vu
lne

rab
iliti

es

Kn
ow

n
Vu

lne
rab

iliti
es de

tec
tin

g
vu

lne
rab

iliti
es

int
rod

uc
ing

vu
lne

rab
iliti

es

+

+

Un
kn

ow
n

Vu
lne

rab
ilit

ies
fou

nd
 in

 RD

+

-

To
tal

 Vu
lne

ra
bil

itie
s

+

Vu
lne

rab
iliti

es
fou

nd
 in

 RD

+

+

+

Inf
orm

ati
on

on
Vu

lne
rab

ilit
ies

+

Fo
ren

sic
Inv

es
tig

ati
on

Ch
an

ce
 of

su
cce

ssf
ul A

tta
ck

+

Mi
tig

ate
Att

ac
k

De
vO

ps
 ac

tiv
e i

n
Re

sp
on

se
Wo

rkl
oa

d

De
ma

nd
 fo

r
De

vO
ps

 ac
tiv

e i
n

Re
sp

on
se

+

+

+

-

+

Av
aila

ble
 De

vO
ps

for
 Re

sp
on

se

-

De
vO

ps
 in

Re
sp

on
se

tur
n t

o r
e

sp
on

se
+

Su
cce

ssf
u

l A
tta

ck

Eff
ec

tive
ne

ss

Ad
ve

rsa
ry:

En
try

 Po
int

Fo
un

d
ad

ve
rsa

ry
en

try
po

int
 us

ed

Ad
ve

rsa
ry

La
un

ch
of

Att
ac

k

+

+

+

Ad
ve

rsa
ry:

Vu
lne

rab
ility

Fo
un

d
Ad

ve
rsa

ry:
Ta

rge
t In

fo
Av

aila
ble

ad
ve

rsa
ry

ga
the

rin
g t

arg
et

inf
o+

ad
ve

rsa
ry

an
aly

sin
g

vu
lne

rab
ility

ad
ve

rsa
ry

fin
din

g
vu

lne
rab

iliti
es

Inf
o o

n
Ad

ve
rsa

ry
Ac

tivi
ty

+

+

+
+

+
+

+

Inf
o o

n A
tta

ck+

+ +

Fe
atu

res
 un

de
r

De
ve

lop
me

nt
Fe

atu
res

 in
 Us

e

+

de
ve

lop
ing

fea
tur

es

+

int
rod

uc
ing

fea
tur

es

fea
tur

es
 ba

ck
to

de
ve

lop
me

nt
+

Cu
sto

me
r

Fe
ed

ba
ck

+

Ba
ckl

og

Wo
rk

for
Sp

rin
t

+

+

Ac
cu

rac
y o

f
Sp

rin
t P

lan
nin

g ++

+

+

Kn
ow

n
Err

ors
Un

kn
ow

n
Err

ors
+

+

int
rod

uc
ing

err
ors

-

+

de
tec

tin
g

err
ors

+
+

De
ma

nd
 fo

r
ne

w D
ev

Op
s

+

+

+

Sp
rin

t
Re

tro
sp

ec
tive

Le
arn

ing
 an

d
Ad

jus
tm

en
t

+

+

+

fixe
d e

rro
rs+

Aw
are

De
vO

ps
 fo

r
SS

D

Un
aw

are
De

vO
ps

 fo
r

SS
D cre

ati
ng

aw
are

ne
ss

los
ing

aw
are

ne
ss

Co
nta

ct
btw

Aw
are

 an
d

Un
aw

are
 De

vO
ps

+ +

+

TP
S

wit
ho

ut
Err

ors

Ne
w T

PS

no
t te

ste
d

TP
S w

ith
err

ors

tes
t re

ve
als

err
ors

so
lvin

g e
rro

rs
of

TP
S

int
rod

uc
ing

 TP
S

no
t te

ste
d

TP
S w

ith
ou

t
err

ors

tes
t re

ve
als

 no
err

ors

Te
st

of
TP

S
du

rin
g S

pri
nt

+

+

+

Co
mm

un
ica

te
wit

h C
on

tra
ct

Pa
rtn

er

+

+

+

Se
arc

h f
or

ne
w T

PS

+

de
co

mi
ssi

on
ing

TP
S w

ith
 er

ror
s

de
co

mi
ssi

on
ing

TP
S w

ith
ou

t e
rro

rs

+

+

Wh
ite

 Ha
t H

ac
ke

rs
as

so
cia

ted
 wi

th
Or

ga
nis

ati
on

+

Wh
ite

 Ha
t H

ac
ke

rs
as

so
cia

ted
 wi

th
oth

er
Or

ga
nis

ati
on

s

Tru
st

fro
m

Wh
ite

Ha
t H

ac
ke

rs
in

RD

att
rac

tin
g w

hit
e

ha
t h

ac
ke

rs
+

Sa
tisf

ac
tio

n
wit

h R
D

+

+

Wh
ite

 Ha
t

Ha
cke

rs
Inc

om
e f

rom
RD

Ga
p b

tw
Ex

pe
cte

d a
nd

Ac
tua

l In
co

me
fro

m
RD

+

-

-
Ex

pe
cte

d
Inc

om
e

fro
m

RD

+

+

Kn
ow

n T
PS

 us
ed

by
 O

rga
nis

ati
on

+

+

so
lve

d
vu

lne
rab

iliti
es

+

ret
urn

 to
 wo

rk

-

Sta
tus

 of
Or

ga
nis

ati
on

+
Le

ga
l Is

su
es

in
RD

-
Co

mm
un

ica
tio

n
+

RD
Pa

ym
en

t
Tim

e
--

ha
cke

rs
tur

n
aw

ay

De
cis

ion
 to

im
pro

ve
Re

gu
lat

ion
s

+

<D
ec

isio
n t

o
im

pro
ve

Re
gu

lat
ion

s>
+

<D
ec

isio
n t

o i
mp

rov
e

Re
gu

lat
ion

s>

+

B1 Sp
rin

t

B2 Fix Er
ror

s
B3

Te
sti

ng
 fo

r
Se

cu
rity

R1

Ite
rat

ion
s

R2

Mi
sta

ke
s

R3
Ov

err
eg

ula
tio

n

R4

Ma
tur

ing

R5
Be

tte
r T

his
Tim

e R6 No
Mi

sta
ke

s

B4 Aw
are

R7

Un
aw

are

B6

De
vO

ps
Ad

jus
tm

en
t

B7

Te
sti

ng
 fo

r
Se

cu
rity

TP
S

R9

Ov
err

eg
ula

tio
n T

PS

B8 So
lve TP
S

B9

Fix
 Vu

lne
rab

ilit
ies

B1
1

Fin
din

g
the

 W
ron

g

B1
2

Fin
din

g
the

 Ri
gh

t

R1
2

Tru
st

B1
3

Fu
lfil

lin
g E

x
pe

cta
tio

ns

R1
3

Ge
ttin

g D
isa

pp
oin

ted

Me
an

 Ti
me

 to
Re

so
lve

- Se
ve

rity
 of

Vu
lne

rab
ility+

B1
4

Ac
tiv

ity
-de

riv
e

d R
es

po
ns

e

B1
5

At
tac

k-d
eri

ve
d

Re
sp

on
se

B1
7

Pr
ev

en
tin

g
Ze

ro
Da

ys

Ch
an

ge
Ta

rge
t

-
-

R1
4

Sta
y w

ith
Ta

rge
t

R1
7

At
tac

k
Cy

cle
Le

arn
ing

+

B1
8

Fo
cu

s o
n

Re
sp

on
s

e

R1
0a

Un
kn

ow
n

Vu
lne

rab
ilit

y

R1
1

Un
de

r
Co

ntr
ol

vs
.

Fir
efi

gh
tin

gR1
9

Cr
ea

tin
g V

alu
e v

s.
Ca

pa
bil

ity
 Lo

ss

+

Ad
ve

rsa
ry

Mo
tiva

tio
n

Ad
ve

rsa
ry

Ma
tur

ity

Ad
ve

rsa
ry

Re
so

urc
es

+

+

+

+

+

+
Ch

an
ce

 of
Be

ing
 Ta

rge
t

+

+

+

R1
5

Kn
ow

n T
arg

et

R1
8

At
tac

k
Cy

cle
Mo

tiv
ati

on

At
tac

k
Cy

cle
Ea

rni
ng

R1
6

+

B5

Ma
tur

e L
ea

ve

Su
ffic

ien
tly

Tra
ine

d
De

vO
ps

Ins
uffi

cie
ntl

y
Tra

ine
d

De
vO

ps

+

tra
inin

g i
n s

ec
ure

so
ftw

are
 de

ve
lop

me
nt

de
ca

y o
f e

ffe
ct

of
tra

inin
g i

n s
ec

ure
so

ftw
are

de
ve

lop
me

ntx

+

-

R8

Ma
tur

ity
 an

d
Aw

are
ne

ss

+

Le
av

e d
ue

 to
Ma

tur
ity

+

-

Ot
he

r A
tta

ck
Ve

cto
r

+

<W
ork

 fo
r

Sp
rin

t>
+

R1
0b

Kn
ow

n
Vu

lne
rab

ilit
y

Ex
plo

it O
the

rs
wit

h s
am

e
Vu

lne
rab

ility

+

-

B1
4

Ex
plo

it O
the

rs

Fir
ew

all
De

fen
ce

- Ad
jus

t
Fir

ew
all

+

+

B1
0

Vu
lne

rab
ilit

ie
s n

ex
t S

pri
nt

+

+

B1
6

Fir
ew

all
Mi

tig
ati

on

Figure I.F.1: Causal Diagram of
the overarching interactions in
Agile Secure Software Develop-
ment, Defects and Vulnerabilities,
External Cyber Attacks, Ad-
versary Behaviour, Organisational
Response, Responsible Disclos-
ure, Third Party Software, and
DevOps Maturity and Aware-
ness. This diagram represents
the final outcome of the group
model building workshops, was
created by the researcher, and
has been validated since then
several times.

http://web.de

European Master in System Dynamics

APPENDIX II - QUALITATIVE RESEARCH
II. A Preparatory Scripts Group Model Building

Throughout the last decades, researcher and practitioners have developed, applied,

and assessed several approaches of participatory system dynamics modelling, such as

the previously mentioned group model building (Andersen, & Richardson, 1997; Luna-Reyes et

al., 2006; Vennix, 1996), and other approaches like mediated modelling (van den Belt, 2004),

or participatory system dynamics modelling (Videira, Antunes, & Santons, 2017). While the

approaches differ in some details, all of them have relied on the use of so called

“scripts” which were first introduced by Andersen and Richardson (1997). Scripts describe

individual activities before, within, or after participatory modelling workshops (Andersen, &

Richardson, 1997; Luna-Reyes et al., 2006). Combining scripts, other practical guidelines, such

as Vennix’ seminal work on group model building (1996), and own experience enables a

facilitator (or a facilitation team) to plan, organise, prepare, conduct, and follow-up (a)

workshop(s). It is common practice that a facilitator (or a team) creates own “session-

scripts” for each individual workshop to improve the modelling process and the outcomes.

In other words, such clear, written planning serves as a guideline when preparing for the

sessions and conducting the workshop. Relying on best practice and a broad range of

scripts when developing session-scripts helps to reap the benefits of established

methods and avoid common pitfalls.

Additionally, written session-scripts serve as part of the documentation of the research

conducted during the case study, and thereby, increase the reliability of the outcomes

(Yin, 2014). Since intervention methods, such as group model building, “have been criti-

cised because it was unclear whether the facilitator or the method contributed most to

the results” (Rouwette, & Franco, Unpublished, p. 47), clearly documenting the steps taken in

a group model building workshop help to address this unclarity as this makes the re-

sults more independent of the researcher. At the same time, it is noteworthy that every

workshop is unique and potentially not entirely reproducible because of the social dy-

namics within groups and the necessary impact of a facilitator on the group (Vennix,

1996). Yet, session-scripts make the procedures transparent, give reason to why certain

steps have been taken, enable others to query the outcomes, build on the study, or re-

peat the research, and finally, minimise errors and biases in the case study.

The following parts below present the used session-scripts for the three group model

building workshops conducted within the financial organisation.
Jonas Matheus | jonasmatheus@web.de ! xxxv i

http://web.de

European Master in System Dynamics

II. A. 1 Preparatory Script Group Model Building Session 1

__

OVERVIEW:

Location: Conference Room within the Financial Organisation 31

Date:	 	 	 16.03.2017	

Topics: 	 Introduction, Software Development, Errors, DevOps Staff

Facilitator:	 	 Jonas Matheus  
Recorder: 	 	 Colleague 32

Participants:	 Seven with expertise in Ethical Hacking, Fraud, Penetration Testing,  
	 	 	 Responsible Disclosure, Software Development, System Architecture,  
	 	 	 and Vulnerability Scanning

Step Facilitator Assistant Time Min

Introduction Gatekeeper - - 13.00 - 13.05 5

Introduction Jonas Colleague 13.05 - 13.10 5

Major Challenges
• Nominal Group Technique
• Presentation & Comments

Jonas Colleague 13.10 - 13.20 10

GMB Workshop
• Conceptual Overview
• System Dynamics

Jonas
Colleague

Colleague
Jonas

13.20 - 13.35
13.20 - 13.25
13.25 - 13.35

15
5
10

Modelling: Software Development, Errors, DevOps I
• Software Development
• Errors
• DevOps (most likely not started)
• Third Party Software (most likely not started)

Jonas Colleague 13.35 - 14.30
13.35 - 14.15
14.15 - 14.30

55
40
15

Break 14.30 - 14.40 10

Modelling: Software Development, Errors, DevOps II
• Software Development (most likely finished)
• Errors
• DevOps (if little time available, if possible both)
• Third Party Software (if much time available, if

possible both)

Jonas Colleague 14.40 - 15.45
14.40 - 15.05
15.05 - 15.45
15.05 - 15.45

65
25
40

Conclusion Jonas Colleague 15.45 - 16.00 15

 The conference room is not indicated in further detail due to confidentiality. In the original session-script the room was given. 31

 Research has indicated that there are up to five roles in a team which conducts group model building workshops, namely the 32

facilitator, the modeller/recorder, content coach, process coach, and the gatekeeper (Andersen, & Richardson, 1997; Vennix,
1996). According to Rouwette, & Franco (Unpublished), the facilitator who guides the workshop and the modeller/recorder who
takes note about the session represent the two most important roles in group model building.

Jonas Matheus | jonasmatheus@web.de ! xxxv i i

http://web.de

European Master in System Dynamics

0. PREPARATION:

	 	 	 	 	 	 	 	 	 (420 min)
	 	 	 	 	 	 	 09.00 - 11.00 & 12.00 - 13.00 (180 min)

0.1 Script Preparation:
Time available for Task: 	 	 	 	 	 	 	 180 min
Primary Nature of Task:	 	 	 	 	 	 	 Offline
Facilitator: 	 	 	 	 	 	 	 	 Jonas

• Look up all scripts on Scriptapedia and check for applicability
• Based on previous (successful) project, prepare new session-scripts

0.2 Preliminary Model in Vensim:
Time available for Task: 	 	 	 	 	 	 	 120 min
Primary Nature of Task:	 	 	 	 	 	 	 Offline
Facilitator: 	 	 	 	 	 	 	 	 Jonas

• Focus on small models (Richardson, 2013; Vennix, 1996)
• Decide on “Concept Model” (quantified) or “Preliminary Model” (qualitative)
• Focus on software development, errors, DevOps staff, and third party software

0.3 Powerpoint Presentation:
Time available for Task: 	 	 	 	 	 	 	 60 min
Primary Nature of Task:	 	 	 	 	 	 	 Offline
Facilitator: 	 	 	 	 	 	 	 	 Jonas

• Powerpoint presentation for guiding the participants through the workshop and
presenting the conceptual model, system dynamics, and the preliminary models

• Based on previous (successful) project, prepare new presentation

Description
Roles Facilitator: Jonas

Assistant: Colleague
Aim • Preparation of the session

• Clarification among the facilitators
• Preparation of the location

Steps 0.1 Script preparation
0.2 Preliminary model preparation in Vensim
0.3 Powerpoint presentation
0.4 Preliminary model preparation on paper (on site)
0.5 Clarification among facilitators
0.6 Preparation of location (on site)

Scripts Scheduling the day, Logistics and room set up, Vennix, 1996

Jonas Matheus | jonasmatheus@web.de ! xxxv i i i

http://web.de

European Master in System Dynamics

0.4 Preliminary Model on Paper:
Time available for Task: 	 	 	 	 	 	 	 120 min (on site)
Primary Nature of Task:	 	 	 	 	 	 	 Offline
Facilitator: 	 	 	 	 	 	 	 	 Jonas

• Draw the Vensim models on paper in the facilities of the organisation

0.5 Clarification and Planning among Facilitator and Recorder:
Time available for Task: 	 	 	 	 	 	 	 60 min
Primary Nature of Task:	 	 	 	 	 	 	 Offline
Facilitator: 	 	 	 	 	 	 	 	 Jonas & Colleague

• Principal facilitator presents script to the assisting facilitator / recorder
• Discussion on unclear issues or aspects to be changed / improved

0.6 Preparation of Location:
Time available for Task: 	 	 	 	 	 	 	 60 min (on site)
Primary Nature of Task:	 	 	 	 	 	 	 Offline
Facilitator: 	 	 	 	 	 	 	 	 Jonas & Colleague
Entirely based on the script on Logistics and Room Set Up

• “Arrange the table, chairs, and flip charts in the room in a manner conducive to up-
coming activities and scripts. Let the participants sit in a semicircle facing either the
wall where a model is projected, the white board, or the chalkboard.”

• Around a big table, facing the screen, white board and windows
• “Arrange power cords, tables, and chairs for members not sitting at the table with

participants (e.g., recorders, modellers, coaches). Secure any power cords and ex-
tension cables with tape to minimise the risk that people may trip.”

• Power cords in the table, chairs available
• Arrange refreshments in a place that is convenient for participants to get up and ac-

cess during the session.
• Refreshments and snacks are provided by the organisation

1. INTRODUCTION:

 	 	 	 	 	 	 	 	 	 13.00 - 13.10 (10 min)

Description
Roles Facilitator: Jonas

Assistant: Colleague
Aim Introduction of the Session
Steps 1.1 Gatekeeper Introduction

1.2 Facilitator Team Introduction
Scripts Creating a shared vision of a modelling project (description elements used)

Jonas Matheus | jonasmatheus@web.de ! xxx ix

http://web.de

European Master in System Dynamics

1.1 Gatekeeper Introduction:
Time available for Task: 	 	 	 	 	 	 	 13.00 - 13.05 (5 min)
Primary Nature of Task:	 	 	 	 	 	 	 Presentation

1.2 Facilitator Team Introduction:
Time available for Task: 	 	 	 	 	 	 	 13.05 - 13.10 (5 min)
Primary Nature of Task:	 	 	 	 	 	 	 Presentation & Conversation
Facilitator: 	 	 	 	 	 	 	 	 Jonas

• Presentation of Team
• Names
• EMSD Programme Radboud University
• Master thesis in the Organisation

• Malware & Employees
• Software Quality & Possibilities of Exploitation

• No technical background

• Presentation of Participants
• Names
• Work description

• Presentation of Project
• Background information: High software quality decreases the chances of malicious exploitation
• Problem: Learning about and clarifying interrelations in the system with regard to behavioural

(people) and organisational (processes) elements
• Aim: Improve software quality and thereby decrease possibility of exploitation by better

knowing the interrelations within the organisation
• Resources: Three sessions * each three hours

• Agenda Presentation & Parking Lot Explanation

• Questions

2. MAJOR CHALLENGES IN SOFTWARE QUALITY AND EXPLOITATION:

	 	 	 	 	 	 	 	 	 13.10 - 13.20 (10 min)

Description
Roles Facilitator: Jonas

Assistant: Colleague
Aim Receiving the unbiased ideas on topics to be covered
Steps 2.1 Explanation & Nominal Group Technique

2.2 Presentation & Comments
Scripts Nominal Group Technique, Variable Elicitation
Notes

Jonas Matheus | jonasmatheus@web.de ! x l

http://web.de

European Master in System Dynamics

2.1 Explanation and Nominal Group Technique:
Time available for Task: 	 	 	 	 	 	 	 13.10 - 13.15 (5 min)
Primary Nature of Task:	 	 	 	 	 	 	 Divergent
Facilitator: 	 	 	 	 	 	 	 	 Jonas

• In order to serve the organisation, we want to make sure that we do not miss some-
thing important when covering this topic. Hence, we would like to ask you to write
down (in two to three words) one or two major challenges in software quality and pos-
sibilities of exploitation. As mentioned at the beginning, we are mainly interested in is-
sues that relate to people and processes, thus, it would be nice to focus your ideas on
concerns into this direction. We do this step before we start the actual model building
session because we want you to be as little influenced by us as possible. 33

• Assistant distributes post its and markers while the facilitator introduces the task.

2.2 Presentation and Comments:
Time available for Task: 	 	 	 	 	 	 	 13.15 - 13.20 (5 min)
Primary Nature of Task:	 	 	 	 	 	 	 Convergent
Facilitator: 	 	 	 	 	 	 	 	 Jonas

• Facilitator asks the participants to present one of their ideas within 20 to 30 seconds
in a round-robin fashion.

• If necessary, questions and comments for clarification, not for discussion, are possible.

• Questions

3. GROUP MODEL BUILDING WORKSHOP:

	 	 	 	 	 	 	 	 	 13.20 - 13.35 (15 min)

3.1 Conceptual Overview:
Time available for Task: 	 	 	 	 	 	 	 13.20 - 13.25 (5 min)
Primary Nature of Task:	 	 	 	 	 	 	 Presentation
Facilitator: 	 	 	 	 	 	 	 	 Jonas

Description
Roles Facilitator: Jonas Facilitator: Colleague

Assistant: Colleague Assistant: Jonas
Aim • Explain the planned topics to be covered within this GMB project

• Familiarise the participants with the System Dynamics approach
Steps 3.1 Conceptual overview

3.2 System dynamics
Scripts Vennix, 1996
Notes

 Italics within the session-scripts indicate that the text may be read out loud to the participants. 33

Jonas Matheus | jonasmatheus@web.de ! x l i

http://web.de

European Master in System Dynamics

• Present the conceptual
overview of the model-
ling project, covering all
sub-models to be built.

• Emphasise that by
definition this is an ab-
stract picture which
does not cover reality.

• Instead, the overview is
supposed to function
as a point of reference.

• Questions

3.2 System Dynamics:
Time available for Task: 	 	 	 	 	 	 	 13.25 - 13.35 (10 min)
Primary Nature of Task:	 	 	 	 	 	 	 Presentation
Facilitator: 	 	 	 	 	 	 	 	 Colleague 34

• Step-by-step presentation of an easy system dynamics model
• Introduction to stocks, flows, converters, links, polarity, delays, feedback loops
• Exercise based on a simple example of the financial sector

• Questions

4. MODELLING - SOFTWARE DEVELOPMENT, ERRORS, AND DEVOPS I:

	 	 	 	 	 	 	 	 	 13.35 - 14.30 (55 min)

Description
Roles Facilitator: Jonas

Assistant: Colleague
Aim • Present at least three sub-models

• Conduct group model building on these three sub-models
• Build the qualitative structure of the issues addresses by the sub-models at hand

Steps 4.1 Software Development
4.2 Errors
4.3 DevOps (most likely not started)

Scripts Causal mapping with seed structure, concept model, ratio exercise, Vennix, 1996
Notes

 While all other topics during the workshops are content and study related, explaining system dynamics is not which is why the 34

assistant / recorder has taken the role of the facilitator for this part.

Jonas Matheus | jonasmatheus@web.de ! x l i i

http://web.de

European Master in System Dynamics

4.1 Software Development:
Time available for Task: 	 	 	 	 	 	 	 13.35 - 14.15 (40 min)
Primary Nature of Task:	 	 	 	 	 	 	 Divergent
Facilitator: 	 	 	 	 	 	 	 	 Jonas

• Present the preliminary sub-model of software development through the power point
presentation

• Naming:
• Earlier Stages: Code, Build
• Later Stages: Deploy, Test, Release

• Work Pressure: Ratio Exercise as Explanation
• The Work Pressure is built by Demand in DevOps and Available DevOps
• What would happen if Demand in DevOps goes to zero?
• What would happen if Available DevOps goes to zero?

• Clarify for questions
• Put the paper-model on the large table between the participants

• Provide each participant with sticky notes and a marker, so that they have the opportunity to
get engaged

• Invite the participants to discuss, change, and adjust the model and delete parts of it

• In case a discussion does not really come up, the following questions may help to get
the participants talk about the topic and interact with the model. The underlined ques-
tions are most important:

• Overall Model - Disconfirmation
• What is missing in the picture?
• What is wrong in the picture?
• What would you like to change?

• Process of Software Development
• What constitutes a high software quality?
• What may happen if software quality is low?
• What happens before the planning of software?
• What happens with software in use?
• Is it accurate to split the tasks up into these two phases?
• How does planning and development take place?

• Which general actions are taken in software development?
• Are there any standards and processes in place?
• Are there conditions under which people do not follow standards and processes anymore?
• Where do such standards and processes come from?
• Do people perceive such standards and processes as beneficial or as burden due to

overregulation?
• Is software regularly checked throughout the process or is it just developed and passed on?
• Which activities throughout the software development are perceived most beneficial and why?

• How often does a software go through the agile improvement before being finalised?

Jonas Matheus | jonasmatheus@web.de ! x l i i i

http://web.de

European Master in System Dynamics

• Is a software ever finalised?
• Does the model cover the agile development process?
• What happens with software in use where changes in the earlier stages are necessary?
• Who gives feedback on what and in which way?
• To what extent can such feedback be used by developers?
• What mechanism describes the work to do? (Backlog)

• How is the backlog filled (which activities)?
• What is part of the backlog?

• Work Pressure (if the concept is still unclear, conduct the ratio-exercise)
• What aspects change work pressure?

• To what extend can you increase work speed?
• To what extend can you have overtime?
• To what extend can you delay the work to be done? What happens when there is delay?
• To what extend can there be constantly less work to do in order to decrease pressure?
• Is staff hired in case of persistent too high work pressure?
• Are there any other mechanisms that have an impact on work pressure?

• How do people perceive work pressure?
• Until what level would the people in the room perceive work pressure to be beneficial?

• Please draw this as a graph
• Productivity (see also above for work pressure)

• What aspects have an effect on productivity?
• What is the normal productivity of a software developer?

• Parameters (if discussions on data or values come up, or if abundant time is available)
• Avg. Amount of Software in earlier Stages (if these terms are accepted)
• Avg. Amount of Software in later Stages (if these terms are accepted)
• Time / Software or Time / Line of Code
• Time / stage (requirement, design, testing, etc.)
• Effect of tests on software quality
• Time / Test
• DevOps / Test

4.2 Errors:
Time available for Task: 	 	 	 	 	 	 	 14.15 - 14.30 (15 min)
Primary Nature of Task:	 	 	 	 	 	 	 Divergent
Facilitator: 	 	 	 	 	 	 	 	 Jonas

• If the participants have not yet come to the topic of errors in software development
(which is unlikely due to its connection to software quality), present the preliminary
sub-model of Errors through the power point presentation

• Clarify for questions
• Put the paper-model on the large table between the participants and add it to the ex-

isting structure
• Propose the connection from work speed to introduction of errors.

• Invite the participants to discuss, change, and adjust the model and delete parts of it

• Overall Model - Disconfirmation
Jonas Matheus | jonasmatheus@web.de ! x l i v

http://web.de

European Master in System Dynamics

• What is missing in the picture?
• What is wrong in the picture?
• What would you like to change?
• How are errors connected to the previous model on software development?

• Errors
• May software move on in the development despite having known errors or is that software

put on hold until the error is resolved?
• Does this depend on the error?

• Are errors from earlier stages automatically passed on to later stages?
• May it happen that a software development project must be stopped and restarted due to

unfixable errors?
• What happens with errors in the end after releasing the software?

• Vulnerability
• Are errors and vulnerabilities fixed in such a way that future work profits from it or are only

problems solved and future software (and architecture) is not adjusted?
• Basically: Difference between fixing and error and just patching it.

• Tests
• Which tests are conducted at what stage to find errors?
• Do these tests take a considerable amount of time?
• Do these tests have a considerable impact on software quality?
• Does the difficulty of finding errors increase with the stages?

• Fixing
• How is software fixed?
• Do these tests activities take a considerable amount of time?
• Do these tests have a considerable impact on software quality?
• Does the difficulty of fixing errors increase with the stages?

• Parameters (if discussions on data or values come up, or if abundant time is available)
• Average Amount of Known Errors in earlier stages (if these terms are accepted)
• Average Amount of Known Errors in later stages (if these terms are accepted)
• Based on the known amount and the test outcomes:

• Guessed amount of Unknown Errors in earlier stages (if these terms are accepted)
• Guessed amount of Unknown Errors in later stages (if these terms are accepted)

• Errors / Software or Errors or Errors / Line of Code
• Time / Fixing
• Time / Testing
• DevOps / Testing
• DevOps / Fixing
• Average Amount of accepted Errors

5. BREAK:

	 	 	 	 	 	 	 	 	 14.30 - 14.40 (10 min)

Jonas Matheus | jonasmatheus@web.de ! x l v

http://web.de

European Master in System Dynamics

6. MODELLING - SOFTWARE DEVELOPMENT, ERRORS, AND DEVOPS II:

	 	 	 	 	 	 	 	 	 14.40 - 15.45 (65 min)

6.1 Errors:
Time available for Task: 	 	 	 	 	 	 	 14.40 - 15.05 (25 min)
Primary Nature of Task:	 	 	 	 	 	 	 Divergent
Facilitator: 	 	 	 	 	 	 	 	 Jonas

• Continue with the modelling exercise from before the break.
• For questions on errors, see under 4.2.

6.2 DevOps:
Time available for Task: 	 	 	 	 	 	 	 15.05 - 15.45 (40 min)
Primary Nature of Task:	 	 	 	 	 	 	 Divergent
Facilitator: 	 	 	 	 	 	 	 	 Jonas

• If there is little time available and if the participants have not yet come to the topic of
DevOps and Staff, present the preliminary sub-model of DevOps through the power
point presentation

• Clarify for questions
• Put the paper-model on the large table between the participants. If there is enough

space add it to the existing structure. Otherwise, hang the models on software devel-
opment and errors clearly visible, so that the participants can refer to it.

• If there are connections available in the previous models, propose to have those connections.
• The most logical connection is from DevOps to Available DevOps for Development

• Invite the participants to discuss, change, and adjust the model and delete parts of it

• Overall Model - Disconfirmation
• What is missing in the picture?
• What is wrong in the picture?
• What would you like to change?

Description
Roles Facilitator: Jonas

Assistant: Colleague
Aim • Conduct group model building on the sub-models

• Build the qualitative structure of the issues addresses by the sub-models at hand
Steps (4.1 Software Development (most likely finished))

6.1 Errors (and 4.2 if not finished)
6.2 DevOps (if little time available, and if possible both)
6.3 Bought / Third Party (if much time available, and if possible both)

Scripts Causal mapping with seed structure, concept model, ratio exercise, Vennix, 1996
Notes

Jonas Matheus | jonasmatheus@web.de ! x l v i

http://web.de

European Master in System Dynamics

• How is DevOps connected to the previous model on software development?
• DevOps Skills

• How do the overall skills of DevOps change?
• Amount of staff
• Experience (time in the organisation)
• Knowledge (time as a developer)
• Training

• How are skills connected to productivity?
• Is it common that developers have knowledge in security?
• Do developers even think about security concerns or are they focussing on the functionality of

the software?
• DevOps in Software Development

• Next to skills, do other aspects, for instance motivation, need to be considered?
• How is the staff connected to pressure?
• What is the impact of DevOps on software quality?

• Parameters (if discussions on data or values come up, or if abundant time is available)
• Time to familiarise with the organisation
• Time of skills of natural decay
• Effect of experience on skills
• Effect of knowledge on skills
• Amount of Developers
• Hiring and firing rate
• Average skill level

6.3 Third Party Software:
Time available for Task: 	 	 	 	 	 	 	 15.05 - 15.45 (40 min)
Primary Nature of Task:	 	 	 	 	 	 	 Divergent
Facilitator: 	 	 	 	 	 	 	 	 Jonas

• If there is much time available, present the preliminary sub-model of Third Party Soft-
ware through the power point presentation

• Clarify for questions
• Put the paper-model on the large table between the participants. If there is enough

space add it to the existing structure. Otherwise, hang the models on software devel-
opment and errors clearly visible, so that the participants can refer to it.

• The model already suggests connections via schedule pressure and productivity. Clarify
whether these connections are accurate.

• Invite the participants to discuss, change, and adjust the model and delete parts of it

• Overall Model - Disconfirmation
• What is missing in the picture?
• What is wrong in the picture?
• What would you like to change?
• Are the proposed connections accurate?

• Testing Third Party Software

Jonas Matheus | jonasmatheus@web.de ! x l v i i

http://web.de

European Master in System Dynamics

• Why does testing of third party software takes place?
• How does testing of third party software takes place?
• Which tests are conducted?
• Do these tests take a considerable amount of time?
• Do these tests have a considerable impact on software quality?

• Patching, Software Quality and Exploitation
• What happens if flaws are found in software?
• Is software used despite of flaws?
• What is the impact of flawed third party software on software quality and the possibility of ex-

ploitation?
• Is software tested again after having been patched?
• What happens in case of non-compatibility?

• Parameters (if discussions on data or values come up, or if abundant time is available)
• Time / Test
• DevOps / Test
• Average Amount of accepted external Errors
• Effect of tests on software quality
• Effect of Flaws on software quality and possibilities of exploitation

7. CONCLUSION:

	 	 	 	 	 	 	 	 	 15.45 - 16.00 (15 min)

7.1 Review of the Session:
Time available for Task: 	 	 	 	 	 	 	 15.45 - 15.50 (5 min)
Primary Nature of Task:	 	 	 	 	 	 	 Presentation
Facilitator: 	 	 	 	 	 	 	 	 Jonas

• Aim of modelling workshop
• Improve software quality and thereby decrease possibility of exploitation by better knowing the

interrelations within the organisation
• Conceptual overview

• Mention areas modelled
• Connect to major challenges mentioned at the beginning

Description
Roles Facilitator: Jonas

Assistant: Colleague
Aim • Make sure that all participants agree with the outcomes of the session

• Give an outlook for the next session
Steps 7.1 Review of the Session

7.2 Review of the Model
7.3 Next Steps

Scripts Model review, next steps and closing
Notes

Jonas Matheus | jonasmatheus@web.de ! x l v i i i

http://web.de

European Master in System Dynamics

7.2 Review of the Model:
Time available for Task: 	 	 	 	 	 	 	 15.50 - 15.55 (5 min)
Primary Nature of Task:	 	 	 	 	 	 	 Presentation
Facilitator: 	 	 	 	 	 	 	 	 Jonas

• Point out the feedback loops of each sub-model and emphasise the key insights
• Software development & errors
• DevOps
• Third party software

7.3 Next Steps:
Time available for Task: 	 	 	 	 	 	 	 15.55 - 16.00 (5 min)
Primary Nature of Task:	 	 	 	 	 	 	 Presentation
Facilitator: 	 	 	 	 	 	 	 	 Jonas

• Next session on Friday 24 March 2017
• Topic: Vulnerabilities and Adversarial Behaviour
• Session report will be send out on Monday 20.03.2017
• Questions?
• Thanking for the great participation

II. A. 2 Preparatory Script Group Model Building Session 2

__

OVERVIEW:

Location: Conference Room within the Financial Organisation

Date:	 	 	 24.03.2017	

Topics: 	 Review First Session, Measuring Quality, Adversary Behaviour,  
	 	 	 Responsible Disclosure

Facilitator:	 	 Jonas Matheus  
Recorder:	 	 Colleague

Participants:	 Five with expertise in Ethical Hacking, Fraud, Penetration Testing,  
	 	 	 Responsible Disclosure, Software Development, and Vulnerability
	 	 	 Scanning

Jonas Matheus | jonasmatheus@web.de ! x l i x

http://web.de

European Master in System Dynamics

0. PREPARATION:

	 	 	 	 	 	 	 	 	 (420 min)
	 	 	 	 	 	 	 	 	 08.00 - 11.00 (180 min)

0.1 Script Preparation:
Time available for Task: 	 	 	 	 	 	 	 180 min
Primary Nature of Task:	 	 	 	 	 	 	 Offline
Facilitator: 	 	 	 	 	 	 	 	 Jonas

• Look up all scripts on Scriptapedia and check for applicability
• Based on previous (successful) project, prepare new session-scripts

0.2 Preliminary Model in Vensim:
Time available for Task: 	 	 	 	 	 	 	 120 min

Step Facilitator Assistant Time Min

Introduction Jonas Colleague 11.00 - 11.05 5

Revision
• Major Challenges & Conceptual Overview
• Model Revision by Reflector Feedback
• Measuring Quality by Key Performance Indicators

Jonas Colleague 11.05 - 11.35
11.05 - 11.10
11.10 - 11.25
11.25 - 11.35

30
5
15
10

Modelling
• Vulnerabilities
• Adversary Behaviour

Jonas Colleague 11.35 - 12.30
11.35 - 11.50
11.50 - 12.30

55
15
40

Break 12.30 - 12.40 10

Modelling
• Adversary Behaviour connected to Response and

DevOps
• Responsible Disclosure
• Third Party Software (If time)

Jonas Colleague 12.40 - 13.45
12.40 - 13.05

13.05 - 13.45

65
25

40

Conclusion Jonas Colleague 13.45 - 14.00 15

Description
Roles Facilitator: Jonas

Assistant: Colleague
Aim • Preparation of the session

• Clarification among the facilitators
• Preparation of the location

Steps 0.1 Script preparation
0.2 Preliminary model preparation in Vensim
0.3 Powerpoint presentation
0.4 Preliminary model preparation on paper (on site)
0.5 Clarification among facilitators
0.6 Preparation of location (on site)

Scripts Scheduling the day, Logistics and room set up, Vennix, 1996

Jonas Matheus | jonasmatheus@web.de ! l

http://web.de

European Master in System Dynamics

Primary Nature of Task:	 	 	 	 	 	 	 Offline
Facilitator: 	 	 	 	 	 	 	 	 Jonas

• Focus on small models (Richardson, 2013; Vennix, 1996)
• Decide on “Concept Model” (quantified) or “Preliminary Model” (qualitative)
• Focus on software development, errors, DevOps staff, and third party software

0.3 Powerpoint Presentation:
Time available for Task: 	 	 	 	 	 	 	 60 min
Primary Nature of Task:	 	 	 	 	 	 	 Offline
Facilitator: 	 	 	 	 	 	 	 	 Jonas

• Powerpoint presentation for guiding the participants through the workshop and
presenting the conceptual model, system dynamics, and the preliminary models

• Based on previous (successful) project, prepare new presentation

0.4 Preliminary Model on Paper:
Time available for Task: 	 	 	 	 	 	 	 120 min (on site)
Primary Nature of Task:	 	 	 	 	 	 	 Offline
Facilitator: 	 	 	 	 	 	 	 	 Jonas

• Draw the Vensim models on paper in the facilities of the organisation

0.5 Clarification and Planning among Facilitator and Recorder:
Time available for Task: 	 	 	 	 	 	 	 60 min
Primary Nature of Task:	 	 	 	 	 	 	 Offline
Facilitator: 	 	 	 	 	 	 	 	 Jonas & Colleague

• Principal facilitator presents script to the assisting facilitator / recorder
• Discussion on unclear issues or aspects to be changed / improved

0.6 Preparation of Location:
Time available for Task: 	 	 	 	 	 	 	 60 min (on site)
Primary Nature of Task:	 	 	 	 	 	 	 Offline
Facilitator: 	 	 	 	 	 	 	 	 Jonas & Colleague
Entirely based on the script on Logistics and Room Set Up

• “Arrange the table, chairs, and flip charts in the room in a manner conducive to up-
coming activities and scripts. Let the participants sit in a semicircle facing either the
wall where a model is projected, the white board, or the chalkboard.”

• Around a big table, facing the screen, white board and windows
• “Arrange power cords, tables, and chairs for members not sitting at the table with

participants (e.g., recorders, modellers, coaches). Secure any power cords and ex-
tension cables with tape to minimise the risk that people may trip.”

Jonas Matheus | jonasmatheus@web.de ! l i

http://web.de

European Master in System Dynamics

• Power cords in the table, chairs available
• Arrange refreshments in a place that is convenient for participants to get up and ac-

cess during the session.
• Refreshments and snacks are provided by the organisation

1. INTRODUCTION:

	 	 	 	 	 	 	 	 	 11.00 - 11.05 (5 min)

Time available for Task: 	 	 	 	 	 	 	 11.00 - 11.05 (5 min)
Primary Nature of Task:	 	 	 	 	 	 	 Presentation

• Welcoming participants and thanking for the active collaboration in the previous session.

• Aim of the session:
• Review and some discussion of the outcomes of the previous session
• This session, focus on external influence on the organisation

• Agenda Presentation & Parking Lot Explanation

• Questions

2. REVISION:

	 	 	 	 	 	 	 	 	 11.05 - 11.35 (30 min)

2.1 Major Challenges & Conceptual Overview:
Time available for Task: 	 	 	 	 	 	 	 11.05 - 11.10 (5 min)
Primary Nature of Task:	 	 	 	 	 	 	 Presentation & Convergent

Description
Aim Introduction of the Session & Aims of the day
Steps Introduction
Scripts

Notes

Description
Aim • Revision and shared agreement on previous session

• Elicitation of KPIs
Steps 2.1 Major Challenges & Conceptual Overview

2.2 Model Revision by Reflector Feedback
2.3 Measuring Quality by Key Performance Indicators

Scripts Reflector Feedback, NGT, Variable Elicitation
Notes

Jonas Matheus | jonasmatheus@web.de ! l i i

http://web.de

European Master in System Dynamics

• Presentation of the adjusted diagram of the submodels.
• Make sure that this is just a rough connection and of course very much simplified.
• Reveal step by step the included major challenges and briefly describe them, emphasise…

• Internal Software Development -> Revision (2.2)
• Monetary Focus creates lack of security (ASAP)
• Possible connection to Staff & Training

• Vulnerability and Incidents
• Adversary advantage and delays
• Working on it this session

• Overarching picture
• Not directly covered, but rather implicitly in the model (e.g. dependencies, double work)
• Hope that this project helps to get a more holistic view

• “How to measure quality?” -> Revision (2.3)
• If necessary, questions and comments for clarification, not for discussion, are possible.

• Questions

2.2 Model Revision by Reflector Feedback:
Time available for Task: 	 	 	 	 	 	 	 11.10 - 11.25 (15 min)
Primary Nature of Task:	 	 	 	 	 	 	 Presentation & Convergent

• Presentation of the three versions of the model:
• Copied model: very complex and detailed
• Intermediate model: more clear, yet still way too difficult
• Final model: still quite some complexity in order to actually cover the richness of the picture

• Reveal loop by loop the model and explain the dynamics.
• Lack of discipline: Why? Security fatigue?
• External Pressure: Why? Monetary reasons?

• If necessary, questions and comments for clarification, not for discussion, are possible.

• Questions

2.3 Measuring Quality by Key Performance Indicators:
Time available for Task: 	 	 	 	 	 	 	 11.25 - 11.35 (15 min)
Primary Nature of Task:	 	 	 	 	 	 	 Divergent & Convergent

• Present a slide only stating: “How to measure quality?”
• Refer to the major challenges mentioned at the beginning
• Ask the participant to write down in two to three words which indicators they would

use for measuring whether software quality regarding internal software development
has improved or deteriorated

• Refer also to the model and emphasise that we have a non-technical focus

• Facilitator asks the participants to present one of their ideas within 20 to 30 seconds
in a round-robin fashion.

• If necessary, questions and comments for clarification, not for discussion, are possible.

• Questions
Jonas Matheus | jonasmatheus@web.de ! l i i i

http://web.de

European Master in System Dynamics

3. MODELLING:

	 	 	 	 	 	 	 	 	 11.35 - 12.30 (55 min)

3.1 Software Vulnerabilities:
Time available for Task: 	 	 	 	 	 	 	 11.35 - 11.50 (15 min)
Primary Nature of Task:	 	 	 	 	 	 	 Divergent

• Present the preliminary submodel of software vulnerabilities through the power point
presentation (Software vulnerability = weak spot in a software after release)

• Clarify for questions
• Put the paper-model on the large table between the participants
• Invite the participants to discuss, change, and adjust the model and delete parts of it

• Invite the participants to first discuss causes for software vulnerabilities and the handling (10 min)
• Invite the participants to then discuss consequences of software vulnerabilities (5 min)

• In case a discussion does not really come up, the following questions may help to get
the participants talk about the topic and interact with the model:

• Overall Model - Disconfirmation
• What is missing in the picture?
• What is wrong in the picture?
• What would you like to change?

• Causes for Vulnerabilities and Handling
• Last time we discussed errors in the internally developed software and connected those to

incidents. How does this match with the picture of vulnerabilities?
• Are there any further elements that cause vulnerabilities?
• What happens with vulnerabilities?
• How are vulnerabilities detected and resolved?
• Who detects and resolves vulnerabilities? (DevOps?)
• Is it planned in the Sprint Backlog to handle (detect and resolve) vulnerabilities?

• Does it a critical vulnerability cause a major disruption in the backlog?
• How long does it take to solve vulnerabilities?

• Consequences of Vulnerabilities
• What happens if software vulnerabilities are in place?

• Reporting from RD
• Exploitation from Adversary

• Once it comes to adversary: add new structure of how an adversary behaves

Description
Aim • Present the two submodels

• Conduct group model building on these two submodels
• Build the qualitative structure of the issues addresses by the submodels at hand

Steps 3.1 Software Vulnerabilities
3.2 Adversary Behaviour

Scripts Causal mapping with seed structure, concept model, ratio exercise, initiating and
elaborating a causal loop diagram, Vennix, 1996

Notes

Jonas Matheus | jonasmatheus@web.de ! l i v

http://web.de

European Master in System Dynamics

3.2 Adversary Behaviour:
Time available for Task: 	 	 	 	 	 	 	 11.50 - 12.30 (40 min)
Primary Nature of Task:	 	 	 	 	 	 	 Divergent

• Once it comes to adversary: Stop the discussion and briefly present the submodel on
adversary behaviour via the presentation

• Clarify for questions
• Put the paper-model on the large table between the participants and add it to the ex-

isting structure
• Propose the connection from vulnerabilities to risk

• Invite the participants to discuss, change, and adjust the model and delete parts of it

• Overall Model - Disconfirmation
• What is missing in the picture?
• What is wrong in the picture?
• What would you like to change?
• Is the connection from vulnerabilities to risk appropriate?

• Risk, Threat and Vulnerabilities
• How do you define risk in the organisation?

• Is it suitable to say that vulnerability & threat define risk?
• What constitutes a threat?

• Is is suitable to say that attack preparation chain (based on motivation and resources +
skills) defines a threat?

• How do you deal with risk?
• Do you measure risk?
• Do you recognise if risk changes?
• What do you do if risk changes?

• Adversary Dynamics
• Does a successful attacker comes again?
• What does an unsuccessful attacker do?
• Do attackers aim for the low hanging fruits?
• Do attacker get to know about the success of others?
• What else leads to a decreasing number of attacks?

• Adversary Productivity
• What constitutes the productivity of an adversary?

• Resources (people, money, tools)
• Experience / Maturity / Skills
• Motivation / Threat

• How does an adversary’s productivity changes?
• Hacking & Advanced Persistent Threat (APT)

• Is this representation of an APT suitable?
• Does a hacker actually follow these steps?
• Is a step missing in the picture?
• What happens when the adversary stays longer within the system?
• Is it easier or more difficult to detect an adversary when s/he stays longer in the system?
• Since people always talk about staying under the radar, how much can an adversary learn

per round in the system without being recognised?

Jonas Matheus | jonasmatheus@web.de ! l v

http://web.de

European Master in System Dynamics

• Detection of Activities & Recognition of Incident
• How do you recognise an adversary hacking the system?
• How do you recognise an adversary in case of an APT hacking the system?
• Which possibilities has an adversary to cover his/her actions?
• Is the detection conducted with automated tools or does it cost staff?

• In case of staff: Who is working on detecting activities?
• How do you recognise an incident?

• Incident here understood as doing something and not only staying in the system
• Is the detection of an incident conducted with automated tools or does it cost staff?

• In case of staff: Who is working on detecting activities?
• Mitigate the Attack

• What do you do in case of detecting activities?
• What do you do in case of an incident?
• See next section: Adversary behaviour connected to Response and DevOps

4. BREAK:

	 	 	 	 	 	 	 	 	 12.30 - 12.40 (10 min)

5. MODELLING:

	 	 	 	 	 	 	 	 	 12.40 - 13.45 (65 min)

5.1 Response:
Time available for Task: 	 	 	 	 	 	 	 12.40 - 13.10 (30 min)
Primary Nature of Task:	 	 	 	 	 	 	 Divergent

• Continue with the modelling exercise from before the break - focus on Response.
• Mitigation

• What do you do in case of detecting activities?
• What do you do in case of an incident?
• How long can a mitigation last?
• How does a mitigation actually takes place? Do you “kick out” the hacker? Do you change

the code? Do you shut down the system? Do you close parts of the system?
• What has an influence on the effectiveness of a response?
• How do you know that a hacker is not in the system anymore?

Description
Aim • Continue working on the previous models

• Present at least one further submodel
• Conduct group model building on these submodels
• Build the qualitative structure of the issues addresses by the submodels at hand

Steps 5.1 Response
5.2 Responsible Disclosure
5.3 Bought / Third Party (if much time available)

Scripts Causal mapping with seed structure, concept model, ratio exercise, Vennix, 1996
Notes

Jonas Matheus | jonasmatheus@web.de ! l v i

http://web.de

European Master in System Dynamics

• Staff
• Who mitigates an attack?
• What happens with the work these people have to do?
• What happens with the backlog of the teams mitigating an attack?
• How long can you delay normal work for mitigating an attack?
• Could you say: The more staff, the more effective in responding?

• Incident
• Do you have to report an incident?
• What are the consequences of an incident?
• What are the consequences of a successful attack?
• Do you have to pay customers for successful attacks? (Information and / or monetary loss)
• What do you do after an incident?
• Last time we said that we create new rules after an incident. Does this apply here? What kind

of rules may be created? Incident, development, testing, HR, deterrence and punishment?

5.2 Responsible Disclosure:
Time available for Task: 	 	 	 	 	 	 	 13.10 - 13.45 (35 min)
Primary Nature of Task:	 	 	 	 	 	 	 Divergent

• Present the preliminary submodel on responsible disclosure through the power point
presentation

• Explain that we look at responsible disclosure for adding a second view on external
interaction (here ethical hackers from outside)

• Clarify for questions
• Put the paper-model on the large table between the participants
• Invite the participants to discuss, change, and adjust the model and delete parts of it

• In case a discussion does not really come up, the following questions may help to get
the participants talk about the topic and interact with the model:

• Overall Model - Disconfirmation
• What is missing in the picture?
• What is wrong in the picture?
• What would you like to change?

• Responsible Disclosure
• What is the aim of having RD?
• How many ethical hackers are actually attracted by RD programmes?
• What has an impact on ethical hackers taking part in the organisation’s RD?

• Vulnerabilities
• Payment / Income
• Status / Reputation of the organisation
• Communication and being on time

• If the RD (particularly status / reputation and vulnerabilities) of an organisation attracts ethical
hackers, does it also attract malicious hackers?

• To what extend is communication important for RD?

Jonas Matheus | jonasmatheus@web.de ! l v i i

http://web.de

European Master in System Dynamics

• What happens if known vulnerabilities are found?
• What defines the effectiveness of RD programmes?
• What is the average amount of vulnerabilities found by ethical hackers?
• Critical: What happens if ethical hackers only search for the low hanging fruits?

• Aren’t those anyways only those vulnerabilities that could have been fixed at the outset?
• May that create a wrong incentive to just not pay attention to errors since they are going

to be found anyways?

5.3 Third Party Software:
Time available for Task: 	 	 	 	 	 	 	 If time available
Primary Nature of Task:	 	 	 	 	 	 	 Divergent

• If there is much time available, present the preliminary submodel of Third Party Soft-
ware through the power point presentation

• Clarify for questions
• Put the paper-model on the large table between the participants. If there is enough

space add it to the existing structure. Otherwise, hang the models on software devel-
opment and errors clearly visible, so that the participants can refer to it.

• The model already suggests connections via schedule pressure and productivity. Clarify
whether these connections are accurate.

• Invite the participants to discuss, change, and adjust the model and delete parts of it

• Overall Model - Disconfirmation
• What is missing in the picture?
• What is wrong in the picture?
• What would you like to change?
• Are the proposed connections accurate?

• Testing Third Party Software
• Is actually all external software tested?
• Who is actually conducting these tests?
• Why does testing of third party software takes place?
• How does testing of third party software takes place?
• Which tests are conducted?
• Do these tests take a considerable amount of time?
• Do these tests have a considerable impact on software quality?

• Patching, Software Quality and Exploitation
• What happens if flaws are found in software?
• Is software used despite of flaws?
• Is software used without being tested?
• What is the impact of flawed third party software on software quality and the possibility of ex-

ploitation?
• Is software tested again after having been patched?
• What happens in case of non-compatibility?

Jonas Matheus | jonasmatheus@web.de ! l v i i i

http://web.de

European Master in System Dynamics

6. CONCLUSION
	 	 	 	 	 	 	 	 	 13.45 - 14.00 (15 min)

6.1 Review of the Session:
Time available for Task: 	 	 	 	 	 	 	 13.45 - 13.50 (5 min)
Primary Nature of Task:	 	 	 	 	 	 	 Presentation

• Aim of modelling session
• Review and discussion of the outcomes of the previous session
• Focus on external influence on the organisation

• Conceptual overview
• Mention areas modelled
• Connect to major challenges mentioned at the beginning

• Money-driven better before worse approach with focus on functionality
• Adversary advantage
• Lack of overarching picture and understanding
• How to measure quality?

6.2 Review of the Model:
Time available for Task: 	 	 	 	 	 	 	 13.50 - 13.55 (5 min)
Primary Nature of Task:	 	 	 	 	 	 	 Presentation

• Point out the mechanisms of each submodel and emphasise the key insights:
• Vulnerabilities
• Adversary Behaviour & Response
• Responsible Disclosure
• Third Party Software

6.3 Next Steps:
Time available for Task: 	 	 	 	 	 	 	 13.55 - 14.00 (5 min)
Primary Nature of Task:	 	 	 	 	 	 	 Presentation

• Next session on Tuesday 28 March 2017

• Topics:
• Revision session 2 including KPIs
• DevOps Training & Awareness, Third Party Software
• Walk Through entire model
• Policy discussion

• Session report will be send out on Monday 27.03.2017

• Questions?

• Thanking for the great participation

Description
Aim • Review the session regarding aims and connection to previous session

• Review the models built in the session
• Give a claret outlook for the upcoming session

Steps 6.1 Review of the Session
6.2 Review of the Model
6.3 Next Steps

Scripts Model review, next steps and closing
Notes

Jonas Matheus | jonasmatheus@web.de ! l i x

http://web.de

European Master in System Dynamics

II. A. 3 Preparatory Script Group Model Building Session 3
__

OVERVIEW:

Location: Conference Room within the Financial Organisation

Date:	 	 	 28.03.2017	

Topics: 	 Review Second Session, Measuring Quality, DevOps Training, Third
	 	 	 Party Software, Model Walkthrough, Policy Discussion

Facilitator:	 	 Jonas Matheus  
Recorder:	 	 Colleague

Participants:	 Five with expertise in Ethical Hacking, Fraud, Penetration Testing,  
	 	 	 Responsible Disclosure, Software Development, and Vulnerability
	 	 	 Scanning

Step Facilitator Assistant Time Min

Introduction Jonas Colleague 12.00 - 12.05 5

Revision
• Model Revision by Reflect Feedback
• Measuring Quality by Key Performance Indicators

Jonas Colleague 12.05 - 12.30
12.05 - 12.20
12.20 - 12.30

25
15
10

Modelling
• Third Party Software
• DevOps Training and Awareness

Jonas Colleague 12.30 - 13.20
12.30 - 12.50
12.50 - 13.20

50
20
30

Break 13.20 - 13.30 10

Model Walkthrough
• Internal Software Development & Third Party Software
• DevOps & Training
• Vulnerabilities
• Adversary Behaviour & Response
• Responsible Disclosure

Jonas Colleague 13.30 - 14.20
13.30 - 13.45
13.45 - 13.55
13.55 - 14.00
14.00 - 14.15
14.15 - 14.20

50
15
10
5
15
5

Improving Software Quality: Policies
• Collect Ideas via NGT
• Present and Discuss Ideas
• Vote about Ideas

Jonas Colleague 14.20 - 14.50
14.20 - 14.30
14.30 - 14.45
14.45 - 14.50

30
10
15
5

Conclusion Jonas Colleague 14.50 - 15.00 10

Jonas Matheus | jonasmatheus@web.de ! l x

http://web.de

European Master in System Dynamics

0. PREPARATION:

	 	 	 	 	 	 	 	 	 (420 min)
	 	 	 	 	 	 	 	 	 09.00 - 12.00 (180 min)

0.1 Script Preparation:
Time available for Task: 	 	 	 	 	 	 	 180 min
Primary Nature of Task:	 	 	 	 	 	 	 Offline
Facilitator: 	 	 	 	 	 	 	 	 Jonas

• Look up all scripts on Scriptapedia and check for applicability
• Based on previous (successful) project, prepare new session-scripts

0.2 Preliminary Model in Vensim:
Time available for Task: 	 	 	 	 	 	 	 120 min
Primary Nature of Task:	 	 	 	 	 	 	 Offline
Facilitator: 	 	 	 	 	 	 	 	 Jonas

• Focus on small models (Richardson, 2013; Vennix, 1996)
• Decide on “Concept Model” (quantified) or “Preliminary Model” (qualitative)
• Focus on software development, errors, DevOps staff, and third party software

0.3 Powerpoint Presentation:
Time available for Task: 	 	 	 	 	 	 	 60 min
Primary Nature of Task:	 	 	 	 	 	 	 Offline
Facilitator: 	 	 	 	 	 	 	 	 Jonas

• Powerpoint presentation for guiding the participants through the workshop and
presenting the conceptual model, system dynamics, and the preliminary models

• Based on previous (successful) project, prepare new presentation

Description
Roles Facilitator: Jonas

Assistant: Colleague
Aim • Preparation of the session

• Clarification among the facilitators
• Preparation of the location

Steps 0.1 Script preparation
0.2 Preliminary model preparation in Vensim
0.3 Powerpoint presentation
0.4 Preliminary model preparation on paper (on site)
0.5 Clarification among facilitators
0.6 Preparation of location (on site)

Scripts Scheduling the day, Logistics and room set up, Vennix, 1996

Jonas Matheus | jonasmatheus@web.de ! l x i

http://web.de

European Master in System Dynamics

0.4 Preliminary Model on Paper:
Time available for Task: 	 	 	 	 	 	 	 120 min (on site)
Primary Nature of Task:	 	 	 	 	 	 	 Offline
Facilitator: 	 	 	 	 	 	 	 	 Jonas

• Draw the Vensim models on paper in the facilities of the organisation

0.5 Clarification and Planning among Facilitator and Recorder:
Time available for Task: 	 	 	 	 	 	 	 60 min
Primary Nature of Task:	 	 	 	 	 	 	 Offline
Facilitator: 	 	 	 	 	 	 	 	 Jonas & Colleague

• Principal facilitator presents script to the assisting facilitator / recorder
• Discussion on unclear issues or aspects to be changed / improved

0.6 Preparation of Location:
Time available for Task: 	 	 	 	 	 	 	 60 min (on site)
Primary Nature of Task:	 	 	 	 	 	 	 Offline
Facilitator: 	 	 	 	 	 	 	 	 Jonas & Colleague
Entirely based on the script on Logistics and Room Set Up

• “Arrange the table, chairs, and flip charts in the room in a manner conducive to up-
coming activities and scripts. Let the participants sit in a semicircle facing either the
wall where a model is projected, the white board, or the chalkboard.”

• Around a big table, facing the screen, white board and windows
• “Arrange power cords, tables, and chairs for members not sitting at the table with

participants (e.g., recorders, modellers, coaches). Secure any power cords and ex-
tension cables with tape to minimise the risk that people may trip.”

• Power cords in the table, chairs available
• Arrange refreshments in a place that is convenient for participants to get up and ac-

cess during the session.
• Refreshments and snacks are provided by the organisation

1. INTRODUCTION
	 	 	 	 	 	 	 	 	 12.00 - 12.05 (5 min)

Time available for Task: 	 	 	 	 	 	 	 12.00 - 12.05 (5 min)
Primary Nature of Task:	 	 	 	 	 	 	 Presentation

Description
Aim Introduction of the Session & Aims of the day
Steps Introduction
Scripts

Notes

Jonas Matheus | jonasmatheus@web.de ! l x i i

http://web.de

European Master in System Dynamics

• Welcoming participants and thanking for the active collaboration in the previous session.

• Aim of the session:
• Review and some discussion of the outcomes of the previous session
• Modelling focus on Third Party Software & Training and Awareness
• Overcome specialised islands and get the big picture
• Improving software quality

• Agenda Presentation & Parking Lot Explanation

• Questions

2. REVISION
	 	 	 	 	 	 	 	 	 12.05 - 12.30 (25 min)

2.1 Model Revision by Reflector Feedback:
Time available for Task: 	 	 	 	 	 	 	 12.05 - 12.20 (15 min)
Primary Nature of Task:	 	 	 	 	 	 	 Presentation & Convergent

• Presentation of the three versions of the model:
• Copied model: very complex and detailed
• Intermediate model: more clear, yet still way too difficult
• Final model: still quite some complexity in order to actually cover the richness of the picture

• Reveal loop by loop the model and explain the dynamics.
• If necessary, questions and comments for clarification, not for discussion, are possible.

• Questions

2.2 Measuring Quality by Key Performance Indicators:
Time available for Task: 	 	 	 	 	 	 	 11.25 - 11.35 (15 min)
Primary Nature of Task:	 	 	 	 	 	 	 Divergent & Convergent

• Present a slide only stating: “How to measure quality?”
• Refer to the previous session and to the models built so far
• Ask the participant to write down in two to three words which indicators they would

use for measuring whether software quality regarding vulnerabilities, adversary be-
haviour, and responsible disclosure has improved or deteriorated

Description
Aim • Revision and shared agreement on previous session

• Elicitation of KPIs
Steps 2.1 Model Revision

2.2 Key Performance Indicators
Scripts Reflector Feedback, NGT, Variable Elicitation
Notes

Jonas Matheus | jonasmatheus@web.de ! l x i i i

http://web.de

European Master in System Dynamics

• Refer also to the model and emphasise that we have a non-technical focus

• Facilitator asks the participants to present one of their ideas within 20 to 30 seconds
in a round-robin fashion.

• If necessary, questions and comments for clarification, not for discussion, are possible.

• Questions

3. MODELLING
	 	 	 	 	 	 	 	 	 12.30 - 13.20 (50 min)

3.1 Third Party Software:
Time available for Task: 	 	 	 	 	 	 	 12.30 - 12.50 (20 min)
Primary Nature of Task:	 	 	 	 	 	 	 Divergent

• Present the preliminary submodel of Third Party Software through the power point
presentation

• Clarify for questions
• Put the paper-model on the large table between the participants.
• Invite the participants to discuss, change, and adjust the model and delete parts of it
• In case a discussion does not really come up, the following questions may help to get

the participants talk about the topic and interact with the model:

• Overall Model - Disconfirmation
• What is missing in the picture?
• What is wrong in the picture?
• What would you like to change?
• Are the proposed connections accurate?

• Testing Third Party Software
• Is actually all external software tested?
• Who is actually conducting these tests?
• Why does testing of third party software takes place?
• How does testing of third party software takes place?
• Which tests are conducted?
• Do these tests take a considerable amount of time?

Description
Aim • Present the two submodels

• Conduct group model building on these two submodels
• Build the qualitative structure of the issues addresses by the submodels at hand

Steps 3.1 Third Party Software
3.2 Software Developer Training and Awareness

Scripts Causal mapping with seed structure, concept model, ratio exercise, initiating and
elaborating a causal loop diagram, Vennix, 1996

Notes

Jonas Matheus | jonasmatheus@web.de ! l x i v

http://web.de

European Master in System Dynamics

• Do these tests have a considerable impact on software quality?
• Patching, Software Quality and Exploitation

• What happens if flaws are found in software?
• Is software used despite of flaws?
• Is software used without being tested?
• What is the impact of flawed third party software on software quality and the possibility of ex-

ploitation?
• Is software tested again after having been patched?
• What happens in case of non-compatibility?

3.2 DevOps Training and Awareness:
Time available for Task: 	 	 	 	 	 	 	 12.50 - 13.20 (30 min)
Primary Nature of Task:	 	 	 	 	 	 	 Divergent

• Present the preliminary submodel of DevOps Training and Awareness through the
power point presentation

• Clarify for questions
• Put the paper-model on the large table between the participants.
• Invite the participants to discuss, change, and adjust the model and delete parts of it
• In case a discussion does not really come up, the following questions may help to get

the participants talk about the topic and interact with the model:

• Overall Model - Disconfirmation
• What is missing in the picture?
• What is wrong in the picture?
• What would you like to change?
• Are the proposed connections accurate?
• How do maturity, security awareness, awareness about security trainings, and security train-

ings affect each other?
• Maturity

• What influences DevOps Maturity?
• Amount of staff?
• Experience (time in the organisation)?
• Knowledge (time as a DevOp)?
• Training?
• Awareness?

• Does maturity indicate knowledge in security?
• Is it common that DevOps have knowledge in security?
• Do developers even think about security concerns or are they focussing on the functionality of

the software?
• Security Training

• Are DevOps trained in security
• How are DevOps trained?
• How often are DevOps trained?
• How long does a training take?
• What are the benefits of training?

Jonas Matheus | jonasmatheus@web.de ! l xv

http://web.de

European Master in System Dynamics

• What are downsides of training?
• Is the effect of training assessed?

• Awareness about Security Training
• Do DevOps know about training?
• How do DevOps get to know about training?
• Which mechanisms are there next to just talking with colleagues?
• Is awareness about security training even important? Or is it logical and everybody knows

about such trainings?
• Awareness about Security

• Is there a difference between the awareness about security training and the awareness about
security itself?

• What does security awareness mean?
• Is security awareness a problem?
• How does one change security awareness?
• Are there other ways to influence security awareness than by training?
• Does security fatigue or overtraining or oversecuritisation exist?

4. BREAK:

	 	 	 	 	 	 	 	 	 13.20 - 13.30 (10 min)

5. MODEL WALKTHROUGH:

	 	 	 	 	 	 	 	 	 13.30 - 14.20 (50 min)

Time available for Task: 	 	 	 	 	 	 	 13.30 - 14.10 (40 min)
Primary Nature of Task:	 	 	 	 	 	 	 Presentation & Convergent

• Presentation of the overall model:
• Make the aims clear (see above)
• Make clear that the results of this session are not included
• Ask the participants to strongly question the results

• Reveal loop by loop the model and explain the dynamics.
• Discuss about all aspects the participants bring up. Include the participants by continu-

ously probing for disconfirmation (use techniques described in Andersen et al. 2013)

• Questions

Description
Aim • Revision of and shared agreement on the previous modelling results of all sessions

• Revision of and shared agreement on the links between the different submodels
• Revision of and shared agreement on the critical areas of the overall mode

Steps • Software: Internal Software Development & Third Party Software 15 min
• Staff: DevOps Training and Awareness 10 min
• Vulnerabilities 5 min
• External Interaction 1: Adversary Behaviour and Response 15 min
• External Interaction 2: Responsible Disclosure 5 min

Scripts Model Review; Reflector Feedback, Disconfirmatory Interview
Notes

Jonas Matheus | jonasmatheus@web.de ! l xv i

http://web.de

European Master in System Dynamics

6. IMPROVING SOFTWARE QUALITY: POLICIES
	 	 	 	 	 	 	 	 	 14.20 - 14.50 (30 min)

6.1 Policy Elicitation:
Time available for Task: 	 	 	 	 	 	 	 14.20 - 14.30 (10 min)
Primary Nature of Task:	 	 	 	 	 	 	 Divergent

• Introduction and aim (see above) of the exercise
• Present a slide only stating: “How to improve quality?”
• Ask the participant to write down in two to three words which policies they would

use for improving software quality.
• Refer to all the previous models, the discussions and to the measurement criteria

which were collected in the second and third (this) session.
• Have these criteria ready on the wall and uncover them.
• Have the overall Model on the screen.

• If necessary, questions and comments for clarification, not for discussion, are possible.

• Questions

6.2 Presentation, Clarification, and Discussion of Policies:
Time available for Task: 	 	 	 	 	 	 	 14.30 - 14.45 (15 min)
Primary Nature of Task:	 	 	 	 	 	 	 Convergent

• Facilitator asks the participants to present one of their ideas within 20 to 30 seconds
in a round-robin fashion. The facilitator clusters the policies on the wall.

• If the policy is not clear to all, the respective participant further clarifies the policy.
Make sure each policy is well understood. No discussion of the policy at that point.
Refer to the end of the “round” when each participant has proposed one idea.

• After one round, all ideas are discussed. The facilitator takes care that all parti-
cipants are actively involved in the discussion. If that is not the case, the facilitator
directly involves the non-active participants via questions, etc.

• There are either as many “rounds” as there are ideas, or until the time is over. A
round should not be more than 5 minutes.

• Questions

Description
Aim • Find suitable Policies

• Get an idea about importance of Policies
Steps 6.1 Policy Elicitation

6.2 Presentation, Clarification, and Discussion of Policies
6.3 Vote about Policies in the Model and on the Policies

Scripts NGT, Voting with Dots

Notes

Jonas Matheus | jonasmatheus@web.de ! l xv i i

http://web.de

European Master in System Dynamics

6.3 Vote about Policies in the Model and on Policies:
Time available for Task: 	 	 	 	 	 	 	 14.45 - 14.50 (5 min)
Primary Nature of Task:	 	 	 	 	 	 	 Ranking & Convergent

• Each of the participants receives a coloured pen.
• The facilitator explains that the participants have to vote about the best policy options.
• The proposed policies are clustered on the wall.
• Additionally, a printed version (A0) of the model used for the model walkthrough is

set on the wall.
• Each of the participants has five points to make with the received pen on…

• … the policies on the wall,
• … the model which was used for the model walk through

• For the policy the participants opt for a specific policy.
• For the model, the participants indicate which aspect / area they perceive as most

important.
• While the participants have to make a dot on the policies, they are allowed to circle

an area in the model (emphasise that this should be a “conservative” circle, not the
entire model or submodel).

• Questions

7. CONCLUSION
	 	 	 	 	 	 	 	 	 14.50 - 15.00 (10 min)

7.1 Review of the Session:
Time available for Task: 	 	 	 	 	 	 	 14.50 - 14.52 (2 min)
Primary Nature of Task:	 	 	 	 	 	 	 Presentation
Facilitator: 	 	 	 	 	 	 	 	 Jonas

• Aim of modelling workshop
• Finalise last submodels
• Review overall model
• Vote on Policies

Description
Aim • Review the session regarding aims and connection to previous session

• Review the models built in the session
• Give a claret outlook for the upcoming session

Steps 6.1 Review of the Session
6.2 Review of the Workshops
6.3 Next Steps

Scripts Model review, next steps and closing
Notes

Jonas Matheus | jonasmatheus@web.de ! l xv i i i

http://web.de

European Master in System Dynamics

7.2 Review of all Workshops:
Time available for Task: 	 	 	 	 	 	 	 14.52 - 14.57 (5 min)
Primary Nature of Task:	 	 	 	 	 	 	 Presentation
Facilitator: 	 	 	 	 	 	 	 	 Jonas

• Major Challenges
• Conceptual Model
• Models
• Overall Model
• Measuring Quality and Policies for Quality Improvement

7.3 Next Steps:
Time available for Task: 	 	 	 	 	 	 	 14.57 - 15.00 (3 min)
Primary Nature of Task:	 	 	 	 	 	 	 Presentation
Facilitator: 	 	 	 	 	 	 	 	 Jonas

• Validations will follow
• Session report will be send out on 05.04.2017.
• Workshop report with overall model and explanations will be send out after the valida-

tion session on Monday 10.04.2017
• Questions?
• Thanking for the great participation

Jonas Matheus | jonasmatheus@web.de ! l x i x

http://web.de

European Master in System Dynamics

II. B Qualitative Data Analysis
This study draws on the insights from a wide range of data sources. While the

causal diagrams from the group model building workshops represent the major data

source of this study (4, I), further qualitative data, such as notes taken during the mo-

delling sessions (II. C), observations, conversations, and unstructured interviews (II. D),

was used to round off the findings. Particularly in the results-section above, the trian-

gulated data was used to underline the findings from the group model building work-

shops and to give further meaning and context to the insights, thereby, enriching the

construct and internal validity of the research (Thurmond, 2001; Yin, 2014).

As common in qualitative research and case studies, the qualitative data was sub-

ject to coding and subsequent analysis through categorising reoccurring patterns and

building explanations from it (Merriam, 2009; Yin, 2014). According to Merriam, “coding is

nothing more than assigning some sort of shorthand designation to various aspects of

your data so that you can easily retrieve specific pieces of the data. The designations

can be single words, letters, numbers, phrases, colors, or combinations of these” (Merriam,

2009, p. 173). Combining the different codes

and searching for patterns across the different

data leads to the creation of categories or

themes. In other words, different individual

information that fall under the same umbrella

are clustered into groups that represent

abstractions derived from the data (Merriam,

2009). Merriam describes this exercise of

data analysis as “making sense out of the

data” which essentially means to address

the research question (2009, p. 175f.). While data analysis is generally entirely inductive

at the beginning, it becomes more and more deductive over time as the research pro-

ceeds (Figure II.B.1). In this context the following two aspects are noteworthy for the

case study at hand: First, case study research is always guided by preliminary theory

or theoretical proposition related to the topic of investigation, for instance, derived

from scientific literature. While other qualitative approaches, such as ethnographic

studies or grounded theory, may only be informed by literature or even deliberately avoid

having such guidelines to obviate biases when collecting and analysing data, particularly
Jonas Matheus | jonasmatheus@web.de ! l xx

Figure II.B.1: The Logic of Data Analysis
(Merriam, 2009, p. 184).

http://web.de

European Master in System Dynamics

single case studies rely on the guidance from and connection to literature when

collecting and analysing data (Merriam, 2009; Yin, 2014). As explained in the methodology-

section, the case study at hand was induced by the phenomena of growing numbers

of software vulnerabilities and successful cyber attacks, and guided by the scientific lite-

rature from several fields. As a consequence, the process of coding and categorising

was automatically not totally inductive as described by Merriam (2009), but rather both

inductive and deductive as theoretical elements from the reviewed literature supported

and guided the data collection and analysis. Additionally, since data is collected for

setting the scene of data analysis, and data analysis basically means addressing the

research question, by their very nature the activities of coding and categorising are

influenced by the research question. Second, the supporting qualitative data was

collected and analysed during and mainly after the group model building workshops

which represent the main data source of the case study. Hence, when the researcher

started to analyse the larger chunk of data (only five conversations, unstructured in-

terviews, and observations were made prior to the workshops), the study was already

midway in its process which allowed the researcher to work in both ways, inductively

and deductively, with the qualitative data (Merriam, 2009), as indicated in Figure II.B.1

above. The categories were developed following best practice described in research

methodology. The number of categories, for instance, was kept large enough to address

the research question and incorporate important findings from the study, but small

enough to still handle the categories (Merriam, 2009).

II. Table 1 shows the codes and categories which were applied in this study. The table

also indicates whether the code or category was derived inductively by coding and

comparing the data, deductively by referring to the theoretical insights from the reviewed

literature, by the research question, or by a combination of the different approaches.

As common in qualitative research and particularly in case studies, the insights derived

from analysing the data were integrated and abstracted in an effort of going beyond

the data itself. According to Merriam, “one of the best ways to try this out is to visualize

how the categories work together. A model is just that—a visual presentation of how

abstract concepts (categories) are related to one another” (Merriam, 2009, p. 189). Along

the same line, the insights derived from analysing the data were used to refine the causal

diagrams developed in the group model building workshops. The final version of the

Jonas Matheus | jonasmatheus@web.de ! l xx i

http://web.de

European Master in System Dynamics

causal diagram is shown in the results-section above. As common in case study rese-

arch, in the discussion-section the insights were further generalised in an effort to make

some first steps of building theory on vulnerability dynamics which goes beyond the

case of software development and cyber security (Merriam, 2009; Yin, 2014).

II. Table 1: Summary of Codes and Categories applied in the Analysis of the Qualitative Case Data
Categories and Codes Introduction

Software Development Research Question; Inductive;
Deductive

Software / Software Development / Software Operations / etc. Research Question;  
 Inductive; Deductive

Agile / Agile Approaches / Agility / Flexibility / Adaptation / etc. Research Question;  
 Inductive; Deductive

Productivity / Velocity / Disruption Inductive
Backlog / Sprint Backlog / etc. Inductive
Secure Software Development / Software Security Research Question;  

 Inductive; Deductive
Pressure Research Question; Deductive;

later confirmed and strengthen-
ed inductively

Stress / Time Pressure / Market Pressure / Workload / Work Ratio, etc. Deductive
Curt, Brusque, Grumpy, Sharp Behaviour / etc. Inductive
Observational Signs, e.g., eating at work / looking tired / etc. Inductive
Trade-Off / Tension / Decision about Functionality and Security Inductive
Self-Organisation / Push and Pull / (Strategic) Delay / etc. Inductive
Emphasis of Business Orientation / Efficiency / etc. Inductive
Risk / Business Risk / Security Risk / Financial Risk / Cost Inductive
Short-Term / Short-Run / Long-Term / Long-Run Inductive

Defects and Vulnerabilities Research Question; Inductive;
later confirmed and strengthen-
ed deductively

Error / Mistake / Defect / Flaw / Bug Inductive; Deductive
Vulnerability / Vulnerable / Software Vulnerability Research Question;  

 Inductive; Deductive
Criticality / Severity (i.e., low, medium, high, critical) Inductive
Numbers of Vulnerabilities Research Question; Inductive
Unknown and Known Inductive; later Deductive
Test / Fix / Resolve / Mean Time to Resolve / etc. Inductive; Deductive

Maturity and Training Inductive; later confirmed and
strengthened deductively

DevOps / Engineers / Developers / etc. Inductive; Deductive
Maturity / Skills / Proficiency / etc. Inductive
Awareness / Security Awareness / Awareness Culture Inductive
Training / Awareness Training / Skills Training / Process Improvement Inductive; later Deductive
Layoffs / Restructuring / etc. Inductive

Security Measures Inductive; Deductive
Regulations / Policies / Guidelines / Standards Inductive
Overregulation Deductive; Inductive

Jonas Matheus | jonasmatheus@web.de ! l xx i i

http://web.de

European Master in System Dynamics

Security Approaches (e.g., Pentest, Responsible Disclosure, Red Team) Inductive
Increase Team Size / Change Teams / etc. Inductive
Response Inductive
Problem Awareness / Systems Thinking Inductive
Training & Awareness are categorised under Maturity & Training Inductive
Development Support and Tools are categorised under Technology Inductive

Adversarial Behaviour and Cyber Attacks Research Question; Inductive
Hacking / Steps in Hacking / Hacking Process Inductive
Exploitation (Software Vulnerabilities and Vulnerability are  

 categorised under Defects and Vulnerabilities)
Research Question;  

 Inductive; Deductive
Cyber Attacks / Cyber Criminal / Cyber Adversary Research Question;  

 Inductive; Deductive
Business Case / Adversary Strategy / Adversary Organisation / etc. Inductive
Escalation / Escalatory Pattern / Arms Race / etc. Inductive; Deductive
Adversary Learning / Capability / Effectiveness / Resources / etc. Inductive
Malware / Malware Attacks Inductive; later Deductive

Aspects of Perception of Management and Employees Inductive; later confirmed and
strengthened deductively

Managerial Opinion on Employees (e.g., lack of compliance) Inductive; later Deductive
Managerial Indication of Problems / Understanding of Situation Inductive; later Deductive
Decision Making Activities with emphasis of Business
Orientation / Efficiency / etc. are categorised under Pressure

Inductive

Employee on Management and Business Inductive
Employee Indication of Problems / Understanding of Situation Inductive; later Deductive
Expression of Stress / etc. are categorised under Pressure Inductive

Technology and Innovation Inductive
Technology / Technical Solution / Technical Problem / etc. Inductive
Innovation / Change in Future / etc. Inductive

Rival Theories (not a category for results in itself) Inductive; Deductive
Anything related to the category of Technology and Innovation Inductive; Deductive
Dependencies / Politics / etc. Indcutive
Third Party Software Inductive
Anything related to the code of Overregulation in Security Measures Deductive; Inductive

Future Research (not a category for results in itself) Inductive
Economics / Financials / Costs / Benefits / etc. Inductive; later Deductive
Quantification / Simulation / etc. Inductive; Deductive
Strength of Mechanism / Probability of Occurrence / etc. Inductive
Standardised Solutions & Technology Inductive
Improvement Inductive
Validity / Generalisation / Test Theory / etc. Deductive

II. Table 1: Summary of Codes and Categories applied in the Analysis of the Qualitative Case Data
Categories and Codes Introduction

Jonas Matheus | jonasmatheus@web.de ! l xx i i i

http://web.de

European Master in System Dynamics

II. C Documentation Group Model Building

While it is common in qualitative research and participatory approaches of know-

ledge elicitation to rely on video and audio recording, like in focus groups or group

model building (Gill et al., 2008; Merriam, 2009; Vennix, 1996), the workshops within the European

financial organisation were neither tape recorded, nor transcribed due to confidentiality

reasons arising from the security environment of the study. Instead, the assistant/recorder

took notes during the workshops. Additionally, after the workshops, the researcher

wrote down his memories to enrich the potential insights from the workshops. Gene-

rally on the same or the next day, the assistant and the facilitator discussed the notes

and added, deleted or adjusted information in case of different perceptions. Such

changes were only done if both researchers deemed them to be necessary. In case of

disagreement, both opinions were noted down in order to discuss the uncertainties in

the next workshop or with content experts.

The parts below illustrate the discussed, refined, and if necessary double checked

notes of the group model building workshops. As indicated above, the causal diagrams

from the group model building workshops represent the major data source. Notes from the

workshop, conversations, unstructured interviews or observations were used to round

off the findings. Since the notes were taken to enrich the causal diagrams from the

workshops, the notes do not have the form of a full text as in interviews and conversation.

II. C. 1 Notes on Group Model Building Session 1, 16 March 2017

Jonas Matheus | jonasmatheus@web.de ! l xx i v

Specialised Islands 

(Rival Theories)

Backlog (Sof tware

Development)

Agile, (Software Devel-

opment), Self-Organ-

isation (Pressure)

One of the concerns refers to “specialised islands”. Depart-

ments only know about their own department and not about

other departments which leads to some kind of silo thinking.  
Note: Participatory modelling and causal diagrams may help to
overcome this problem.

Theoretically, the Backlog is related to all of the stocks in software

development and operations. It is the pending jobs. The Backlog

is considered as a continuous flow of development of software.

Items on the Backlog are prioritised.

1

2

3

4

5

6

7

8

9

10

11

12

http://web.de

European Master in System Dynamics

Jonas Matheus | jonasmatheus@web.de ! l xxv

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

DevOps decide how many items from the Backlog they can

manage (according to their capacity). Basically, Software un-

der Development pulls items from the Backlog and the Back-

log does not push items in.

Note: Minimum Viable Product and pulling like in Lean Man-
agement and Kanban. Only the first sprint functions by push.

A sprint is between two to four weeks long. It is a cycle that is

repeated to add more functionalities and to improve the soft-

ware based on customer feedback. Additionally, errors are

fixed with new cycles.

Testing and Development are both part of the activities within a

sprint.

If work pressure is high, it is possible to bring more teams to

address the pressure. In other words, when necessary it is pos-

sible to get people.

The agile approach clearly says that there is no pressure!

Note: Quote 1

The software is developed in small parts which are brought to

production [release] and which are improved later in further

cycles. Particularly in agile, software is developed for functional-

ity because of the customer-oriented approach and security is

then seen as add-on.

Note: Quote 13

The idea of agile is the cycle (see causal diagrams).
Note: The model should run in sprints (Weeks).

Agile, (Software Develop-

ment), Self-Organisation,

Push & Pull (Pressure)

Agile, (Software Develop-

ment), Business Orienta-

tion (Pressure), Error (De-

fects & Vulnerabilities)

Software Development,

Agile, (Software Develop-
ment)

Work Pressure (Pressure),

Increase Team Size (Secur-

ity Measures)

Agile (Software Develop-

ment), Pressure (Pressure)

Agile (Software Develop-

ment)

Agile, Flexibility, Adaptation
(Software Development),

Trade-Off Functionality and

Security, Business Orienta-

tion (Pressure)

Agile (Software Develop-

ment)

http://web.de

European Master in System Dynamics

Jonas Matheus | jonasmatheus@web.de ! l xxv i

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

Prior to production, the software is checked to know whether

enough has been done to release the feature. The software has

to be tested by the DevOps and pentested by others before it is

brought to release.

There are also regular pentests every X months which determine

the need to change software. These tests are also considered in

the Backlog if they are announced. If they are not announced,

they are not on the Backlog for the DevOps.

When errors are found in tests prior to release they are generally

also fixed before release.

Note: Important comment because it indicates that fixing defects

prior to release does not mean that there is a problem, but simply

that errors are resolved before software goes to production.

Flaws and Bugs may be measured by the “maturity of a team”

because the more mature a team is, the less mistakes the team

members do.
Note: You could correlate the maturity of the team and the

amount of incidents to measure the number of errors. Interest-

ingly, this is not done yet.

Maturity is influenced by practicing the same work and product or

changing it, by changes in the team composition (relocation, re-

structuring, layoffs, hiring), and by education. Education increases

the maturity because the more you learn and know, the more you

can work on and cover.

When you give education to the DevOps teams you decrease the

“velocity” of the team because they go to training instead of work.

Note: Similar to the mechanism described in process improvement

Agile, Secure Software

(Software Development)

Secure Software, Backlog

(Software Development),

Security Approaches

Error, Fix (Defects & Vulner-

abilities)

Flaw, Bug, Mistake (Defects

& Vulnerabilities), Maturity

(Maturity & Training)

Maturity (Maturity & Train-

ing), Errors (Defects & Vul-

nerabilities), cyber attacks

(Adversarial Behaviour and

Cyber Attacks)

Maturity, Training, Restruc-

turing (Maturity & Training),

Velocity, Disruption (Soft-
ware Development), Pres-
sure (Pressure), DevOps,
Training, Process Improve-
ment (Maturity & Training),

http://web.de

European Master in System Dynamics

Jonas Matheus | jonasmatheus@web.de ! l xxv i i

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

(e.g. Sterman, & Repenning, 2002).

At the same time, increasing maturity is important because we

have higher productivity and more security awareness and less

mistakes.

Note: Quote 32

Third Party Software is not always tested, that depends on the

case.

Bad libraries: You can use the wrong library because you do not

have enough experience. You can also use the wrong library be-

cause you have more experience because you use libraries more,

so the chance of a mistake goes up.
Note: While not considered here because technical aspect, very

interesting and counterintuitive finding. Since organisations rely

more and more on libraries due to their efficiency, this may be in-

teresting for future research.

The most expensive place to find an error is in production, and

when that happens it gets high priority.

Note: Very important, matches with literature, e.g. Boehm, 1984

or Stecklein et al., 2004.

Known errors in a sprint sometimes become unknown errors after

release because the DevOps do not tell it to the testers, so that

the testers do not only focus on those errors.
Note: There was ambiguity whether this is actually the case. No

further information confirmed this idea.

If there is a severe error, then the software is not released. It is

better to test and have low productivity during the sprint, but to

Software Development,
Productiv ity, (Software
Development), Mistakes
(Defects & Vulnerabilities),
Maturity, Training, Aware-
ness, Security Awareness
(Maturity & Training)

Third Party Software (Rival

Theories)

Technical Problem, Tech-

nical Solution (Technology)

Standardised Solutions &

Technology (Future Re-

search)

Costs, Financial Risk,
Stress (Pressure)

Error, Software Vulnerability

(Defects & Vulnerabilities);
Employee Indication of Prob-

lem: Vulnerabilities due to

Miscommunication (Aspects

of Perception of Manage-

ment and Employees)

See next page.

http://web.de

European Master in System Dynamics

Jonas Matheus | jonasmatheus@web.de ! l xxv i i i

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

have a higher productivity later.

Note: Interesting insight because this was confirmed over and
over again during the case study. Worse-Before-Better-Effect.

Try to solve dependencies before putting something on the Back-

log. Dependencies are considered to lead to lower productivity

and should not exist anymore.

Note: As the topic of dependencies has arisen over and over

again, it is definitively an example of a another explanation for is-

sues in software development.

Tests come from DevOps tools.

Tests are done because they are stated in our way of working.

Note: Compliance culture. The more standards there are, the

more work there is. Hence, standards create work.

Tests started because there were incidents, so testing tools were

created.
Note: Interesting feedback loop.

Tests often come from best practice.

Note: Outside the boundaries.

A problem for productivity is that many tests are done more than

once by different teams. That decreases the productivity of the

whole company, but not the productivity of the team that os per-

forming the test.
Note: Could be seen as a “Fraction of Inefficiency.

Note: Policy: Align workflows.

Tests are generally automated.

Agile, Software Develop-

ment, Productivity, (Soft-
ware Development), Test

(Defects & Vulnerabilities),

Dependencies (Rival Theor-

ies)

Test (Defects & Vulnerabilit-
ies), Technical Solution
(Technology)

Test (Defects & Vulnerabilities),

Standards (Security Measures)

Overregulation (Rival Theories)

Test (Defects & Vulnerabilit-

ies)

Test (Defects & Vulnerabilit-
ies)

Productivity (Software De-

velopment), Dependencies

(Rival Theories)

Improvement (Future Re-

search)

Test (Defects & Vulnerabilit-

ies), Technical Solution

(Technology & Innovation)

http://web.de

European Master in System Dynamics

Jonas Matheus | jonasmatheus@web.de ! l xx i x

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

Outside pressure makes you try to do more.

Note: Market Pressure / Pressure from Competition

External stakeholders (product owner, higher management)

create pressure. The product owner is often part of the team,

then it is outside pressure that makes the product owner push

the DevOps.

Note: Very important comment: As shown in several other data

sources: Business-driven perspective and pressure make product

owner push the DevOps.

Dependency on other teams, e.g. via bad design of software and

bad communication between teams. Products should, however,

not be designed together. Only one team should be responsible

and teams and products should not be dependent on each other.

Errors are generally solved in another sprint.

Note: Contradicts to the earlier statement that errors are fixed

within the same sprint. Since this was the only occasion were this

statement was made with regard to errors (for vulnerabilities this

statement is true), this statement was not very much considered.

If there is a severe error, two or three people within a team may

stop working and move to solve that error. If it is an error it be-

comes high priority to make the release happen. If it is a vulner-

ability, it depends on the severity of the vulnerability.

Experience and Maturity are covered in the Dreyfus Model.

Other DevOps teams do and sometimes test Third Party Software.

Market Pressure (Pressure)

Stress, Pressure, Push,

Business Orientation, Self-

Organisation (Pressure)

Dependencies (Rival Theor-
ies)

Error (Defects & Vulnerab-
ilities),

Disruption (Software De-
velopment), Error, Vulner-

ability, Severity (Defects &

Vulnerabilities),

Maturity (Maturity & Training),

Test, Vulnerability (Defects &
Vulnerabilities), Third Party

Software (Rival Theories)

http://web.de

European Master in System Dynamics

II. C. 2 Notes on Group Model Building Session 2, 24 March 2017

Jonas Matheus | jonasmatheus@web.de ! l xxx

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

Review Session 1

Accuracy of a Minimum Viable Product (MVP) is basically equal to

the sprint planning. An MVP needs at least one or more sprints.

Critical incidents (meaning critical problems, defects, and vul-

nerabilities) are solved immediately. This very much disrupts the

current Sprint Backlog and decreases productivity. All other is-

sues that are less important are set on the Backlog.

Note: Business disruption

Tests are part of the regular activities of a sprint. Hence, rename

in the model to “tests during sprint”.

Some of the participants say that the entire industry is entirely

overregulated and use anecdotes to refer to that. Others say

that security cannot be overregulated.

In the end, the participants agreed upon saying that overregula-

tion exists once DevOps face the problem of long checklists

that prohibit them from actually working. Other forms of regula-

tions (e.g., tests or fixing on time, etc.) were not considered as

overregulation. Stated differently, as long as DevOps remain

productive, regulation is good and useful.

A common problem throughout many industries is that within one

organisation there are different standards and guidelines all over

the world. One of the participants reported an anecdote about

another organisation where there have been very different report

times for vulnerabilities. Thus, depending on the country, some

needed to report within two days, others within months, etc.

Sprint Backlog (Software
Development)

Disruption (Software Devel-

opment); Delay (Pressure);

Defect, Vulnerability (Defect

& Vulnerabilities); Cyber
Attack (Adversarial Beha-

viour and Cyber Attacks

Test (Defects & Vulnerabilit-

ies)

Productive (Software De-

velopment); Regulation

(Security Measures); Over-

reguation (Rival Theories)

Standard (Security Meas-

ures)

http://web.de

European Master in System Dynamics

Jonas Matheus | jonasmatheus@web.de ! l xxx i

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

Important errors that are not fixed immediately [see above] but

set on the Backlog for the upcoming sprint still disrupt the

Backlog because they really need to be addressed in the next

cycle. Productivity drastically drops in those cases.

Measure quality

• You cannot manage what you cannot measure.

• Develop Criteria

• Does everybody have the same definition of quality?

• Less Errors / Features; more Maturity, more Features

• Quality is not about testing but about having less flaws from

the start.

• Maturity of processes: Assure quality from the beginning on

in upstream activities, not only at the very end in down-

stream activities. Thus, find defects as early as possible.

Technical debt means that what you do not pay now, you pay in

the future. It describes procrastination when fixing. At a certain

level, the debt has become so high that one is not able to re-

lease any features anymore. Thus, the defects have to be fixed

first before any development activities ca take place again.

Note: Technical debt describes a typical better-before-worse

effect.

Due to the self-organising nature of agile software develop-

ment approaches, DevOps teams decide themselves whether

a product is good or bad. The objectivity depends on the team

which makes it quite subjective. Hence, generally, there is

some kind of self-assessment. There is only rarely external as-

sessment of the quality.
Note: Eroding goals vs. pressure.

Productivity, Disruption

(Software Development);
Errors, Fix (Defects & Vul-

nerabilities)

Standards (Security Meas-

ures)

Maturity (Maturity & Train-

ing)

Defect, here technical debt

(Defects & Vulnerabilities)

Productivity (Software De-

velopment)

self-organising (Pressure),

standards (Security Meas-

ures)

http://web.de

European Master in System Dynamics

Jonas Matheus | jonasmatheus@web.de ! l xxx i i

Vulnerabilities & Adversary Behaviour

The relationship between defects and vulnerabilities is not 1:1. It may

be possible though to create average based on past relationships.

Next to vulnerabilities from internally developed software, there

may be unclear vulnerabilities from dependencies, third party

software configuration, or software complexity (i.e., none of the

defects alone depicts a vulnerability but combined they are one).

Organisations need to take care of the quality processes of

suppliers to ensure own/final quality (e.g., six-sigma).

Often, vulnerabilities reappear after being fixed. Software

vendors release a patch to fix the vulnerability and in the next

version of the software the old vulnerability is introduced again.

Note 1: While third party software is only addressed to a lim-

ited extent in this study, this mechanism may be a very inter-

esting one to study.

Note 2: Zero-Day Vulnerabilities are a regular consequence of

such behaviour.

An adversary needs often more than one vulnerability to breach

an organisation’s system.

Many attackers use automated tools. After one successful at-

tack they run automated attacks against many other targets,

attempting to exploit the same vulnerability. It is not that an

attacker desperately hopes for success with one target but

rather follows a run, wait, and see approach. Such automated

solutions are the same vulnerability scanners (e.g., Metasploit)

as an organisation may use.

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

Defect, Vulnerability (De-

fects & Vulnerabilities)

Technology (Technology &

Innovation); Dependencies,

Third Party Software (Rival

Theories)

Vulnerabilities, Zero Days

(Defects & Vulnerabilities);

Third Party Software (Rival

Theories)

Vulnerabilities (Defects &

Vulnerabilities); Cyber Ad-

versary (Adversarial Beha-

viour and Cyber Attacks)

Attacker (Adversarial Beha-
viour and Cyber Attacks);

Automated Solution (Tech-

nology & Innovation)

http://web.de

European Master in System Dynamics

Jonas Matheus | jonasmatheus@web.de ! l xxx i i i

Some of the participants suggested that no motivation for is

necessary for such attacks. Other did not really agree with

this. In a conversation after the session, both facilitators

agreed that at least some minimum level of motivation for an

attack (not for an attack against a specific target) is necessary

because else there would be no attack at all.

Attackers share information and knowledge with each other.

Sharing knowledge means often sharing workload as know-

ledge is the major issue for a successful hack. Hence, attack-

ers increase their productivity by sharing knowledge.

Automation is not necessary for the success of an attack. A

mature attacker may be successful without automation. Auto-

mation makes it easier though.

While automated attacks have a very low effectiveness as many

attacks are blocked, the human productivity (which may be seen

as the bottleneck) is improved due to automation because humans

only need to look at those attacks that are actually promising.

It is possible to run fully automated attacks.

Changing or staying with a target does not follow a simple

mechanism. Attackers who are not interested in a specific tar-

get may lose motivation to attack that specific target again,

and thus, change after an unsuccessful attack. Attackers who

are interested in a specific target or who have gathered many

information about a target are less likely to change after an un-

successful attack. Particularly attackers who try to hack into a

system need specific and good information about it. In other

words, some hackers really need to know their target for being

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

Adversary Motivation, Ef-

fectiveness (Adversarial
Behaviour and Cyber At-

tacks)

Adversary Strategy; Effect-

iveness (Adversarial Beha-

viour and Cyber Attacks)

Attack (Adversarial Beha-
viour and Cyber Attacks);

Automated Solution (Tech-

nology & Innovation)

Effectiveness; Adversary

Strategy (Adversarial Beha-

viour and Cyber Attacks);

Automated Solution (Tech-
nology & Innovation)

Attack (Adversarial Beha-

viour and Cyber Attacks);

Automated Solution (Tech-

nology & Innovation)

Adversary Strategy, Target
(Adversarial Behaviour and

Cyber Attacks)

http://web.de

European Master in System Dynamics

Jonas Matheus | jonasmatheus@web.de ! l xxx i v

successful, thus, changes are vey unlikely for them, no matter

the outcome of an attack. Other attackers who do not chose a

target but attack randomly change after an unsuccessful attack.

Vulnerabilities are categorised by their severity / criticality: Critical,

high, medium, and low.

Note: For modelling you can use either a randomiser, or calcu-

lated general fractions (data sets may be publicly available).

We need to have a very short mean time to resolve to reduce the risk.

Note: Quote 26

Technology describes an exponential growth pattern and top-

ics include blockchains, artificial intelligence, quantum com-

puters, etc. Those aspects may change the entire game of ICT

and cyber security.

The overall numbers of attacks against the financial industry is

decreasing. Nowadays organisations like Amazon are becom-

ing more and more a target because they are less protected

and regulated.
Note: This statement seems to be a believe and less a fact as

literature and reports document the contrary: Financial organ-

isations are still prime targets for cyber attacks.

The footprint of an organisation is very important to determine

the real chance of being attacked.

The effectiveness of an adversary is determined by his/her mo-

tivation, maturity, and resources. An adversary always need

motivation to attack but resources and / or maturity are less

important. Thus: Motivation * (Maturity + Resources). Determining

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

Vulnerabi l i ty, cr i t ical i ty

(Defects & Vulnerabilities)

Mean Time to Resolve

(Defects & Vulnerabilities)

Technology, Innovation,
Change in Future (Techno-

logy & Innovation)

Take care of Footprint ->

security measure

Effectiveness (Adversarial

Behaviour and Cyber At-

tacks)

http://web.de

European Master in System Dynamics

Jonas Matheus | jonasmatheus@web.de ! l xxxv

the effectiveness of an attacker in this way makes him/her very

similar to an organisation. In this sense, attackers are not different

from companies, they have objectives, teams, maturity, tools, and

so on. They are just using different, and illegal methods.

Note: Quote 29

Once an adversary is successful he/she escalates and attacks

again, and again, and again. Such further attacks may repres-

ent an Advanced Persistent Threat (APT) as the attacker may

dive deeper into the target’s ICT system with each successful

attack. It may be that only successful prevention and attack

mitigation may stop this reinforcing feedback loop.

If an adversary gets detected while being in the system an or-

ganisational response is started. It may, however, be that the

adversary is too fast and has already left the system again.
Note: Either stealthy under the radar or fast and heavy in but

also fast out.

Organisations do not always kick an attacker out. Instead,

they inform a government which can arrest the attacker.
Note: The private organisation itself has no mechanism to arrest

the attacker.

Forensic investigations decrease the productivity of a sprint

because DevOps need to be involved when scrutinising the

causes and consequences of an attack.

Responsible Disclosure

White hat hackers are neither hired, nor does an organisation

have a contract with them. There is just a collaboration

based on official regulations.

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

Business Case, Adversary

Strategy (Adversarial Beha-

viour and Cyber Attacks)

Escalate (Adversarial Beha-

viour and Cyber Attacks)

Security Approaches, Re-

sponse (Security Measures)

Response (Security Meas-

ures)

Productivity (Software De-

velopment)

http://web.de

European Master in System Dynamics

Jonas Matheus | jonasmatheus@web.de ! l xxxv i

White hat hackers leave if there are no vulnerability findings, not

enough payment, a mismatch between the expected and the

actual payment, a payment that takes too much time, or an or-

ganisation that simply does not fix the reported vulnerabilities.

Hackers (both malicious and ethical) are attracted when a well-known

company releases a new product (e.g., service, website, etc.).

Organisations generally do not pay for internally known vul-

nerabilities. Since this is demotivating for an ethical hacker,

organisations need to fix vulnerabilities fast, so that known

vulnerabilities are not reported within responsible disclosure.

Holiday seasons describe the best time to attack any organ-

isation as less people are available for detection and response.

On Christmas Eve the number of cyber attacks drastically

increased in the last years.

Organisations do not invite ethical hackers to conduct respons-

ible disclosure activities.

If an ethical hacker does not only conduct responsible disclos-

ure but actually misuses the vulnerability and reports afterwards

it is a crime which organisations generally report. This situation

is very dangerous for an organisation though as suing an “ethic-

al” hacker may spread in the community which could cause

many to stop collaborating with the organisation.

Communication and trust are very important in responsible dis-

closure! If expectations are mismatched and trust lost, ethical

hackers may turn to malicious hackers.

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

Responsible Disclosure

(Security Measures)

Responsible Disclosure

(Security Measures); Attack
(Adversarial Behaviour and

Cyber Attacks)

Mean time to resolve (De-

fects & Vulnerabilities);

Responsible Disclosure

(Security Measures)

Attacks, Adversary Strategy

(Adversarial Behaviour and

Cyber Attacks)

Responsible Disclosure

(Security Measures)

Responsible Disclosure

(Security Measures); Attack

(Adversarial Behaviour and
Cyber Attacks)

Responsible Disclosure

(Security Measures); Escal-
ation (Adversarial Behaviour

and Cyber Attacks)

http://web.de

European Master in System Dynamics

II. C. 3 Notes on Group Model Building Session 3, 28 March 2017

Jonas Matheus | jonasmatheus@web.de ! l xxxv i i

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

Review Session 2

Attacks are not always for getting money but for getting re-

sources. Hence, change “Adversary Budget” to “Adversary

Resources”.

Organisations learn from the adversary and from other orga-

nisations (external threat intelligence and security cooperation)

In the end, it is about the comparison between companies: If

other companies pay more then ethical hackers might leave

and go to those other organisations.

The meantime to resolve affects the trust of the ethical ha-

cker towards the organisation he/she is collaborating with.

Measure quality

• Incidents / Findings

• Incidents / Tests

• True / False

• Known Vulnerabilities not solved yet

• DevOps maturity as it indirectly increases due to incidents

• Responsible Disclosure Incidents / Reports

• Surveys with ethical hackers

• Threats vs. Controls

• Risk and Threats: Risk is the chance a threat occurs.

Threats and vulnerabilities may remain the same but the risk

can change. This depends on the risk appetite: 1. Accept the

risk, 2. Avoid the action, 3. Mitigate the impact and the oc-

currence, 4. Insure against the risk.

Resources (Adversarial

Behaviour and Cyber At-

tacks)

Learning (Maturity and

Training); Escalation, Arms

Race (Adversarial Behaviour

and Cyber Attacks)

Responsible Disclosure

(Security Measures)

Mean Time to Resolve
(Defects & Vulnerabilities) ;

Responsible Disclosure

(Security Measures)

Standards (Security Meas-

ures)

Financials (Future Research)

http://web.de

European Master in System Dynamics

Jonas Matheus | jonasmatheus@web.de ! l xxxv i i i

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

Third Party Software (TPS)

Organisations sometimes collaborate with open source soft-

ware solutions. Thus, organisations provide support or even

DevOps teams for those open software solutions in case of

major problems to, for instance, patch it. While this approach

exists, it is not common though.

Depending on the contract, some parts of TPS are managed by

an organisation and others are done by the software vendor.

Changing or patching, etc. is part of operations/maintenance

and thus part of the activities of DevOps. In other words,

maintenance is part of the overall work of DevOps.

Customisation of TPS is part of the work of DevOps as well.

Sometimes customising TPS changes a lot and is a lot of

work, sometimes it is very little. While customising has the

benefit of matching the TPS with an organisation’s system, it

has the downside that every released patch also needs to be

customised.

DevOps and other employees within an organisation are mu-

tually responsible for searching, finding, and assessing new

TPS options.

Decommissioning TPS results sometimes in the acquisition of

new TPS, but by far not always, particularly not when an or-

ganisation wants to have less slack.

Changing TPS and applying the patch to TPS has the same

consequences for DevOps regarding their workload.

Third Party Software (Rival

Theory) -> Only very inter-
esting / striking aspects are

pointed out. Else this is not

further coded.

Workload (Pressure)

Workload (Pressure)

http://web.de

European Master in System Dynamics

Jonas Matheus | jonasmatheus@web.de ! l xxx i x

Training and Awareness

Awareness for training comes, for instance, via intranet,

signposts on the walls within an organisations facilities, best

practice, online sources, contact with other teams, directed

messages, the maturity within a team because the DevOps

talk about issues that make aware, and other aspects.

Training has an impact on productivity. All time spend in train-

ing decreases the productivity of a team. If you overtrain, this

productivity loss has quite an impact.
Note: Similar to Repenning, & Sterman, 20002

More mature generally means more aware of training options

and of security issues.

DevOps become aware by looking at the test results. If those

results are discussed within the team over time this increases

the maturity of the team.

DevOps teams and managers plan for training. Thus, it is a

regular activity and should not disrupt business.

You need regular trainings for being aware of potential

sources of problems. If you do not train you may not know

that there is a problem or what a problem is about.

Security fatigue may arise due to overtraining. Security fatigue is

unlikely as long as DevOps do not say “oh no, again a training…”

Less than security fatigue, securitisation may lead to mature

DevOps become security people which would mean that maturity

and security awareness among DevOps decreases.

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

Awareness for Training,

Maturity (Maturity and Train-

ing)

Productivity, Disruption
(Software Development),

Training (Maturity and Train-

ing)

Maturity, Awareness, Se-
curity Awareness (Maturity

and Training)

Tests (Defects and Vulner-

abilities); Maturity (Maturity

and Training)

Disruption (Software Devel-

opment), Training (Maturity

and Training)

Overregulation (Rival The-

ory)

Securitisation, similar to
restructuring (Maturity and

Training)

http://web.de

European Master in System Dynamics

Jonas Matheus | jonasmatheus@web.de ! xc

Model Walkthrough

DevOps productivity is affected by incidents, training, and

disruptions from defects and much more severe from vulner-

abilities.

The participants agreed with the structure on agile software

development, defects, and vulnerabilities.

Vulnerable TPS may cause an incident: If attackers know that

a TPS is vulnerable (e.g., a bad library), all organisations em-

ploying that TPS may get attacked. At the same time, secure

TPS (e.g., good libraries) prevent incidents which attempt to

exploit this kind of weakness.

Known defects in TPS should increase the number of known

vulnerabilities and the probability of being attacked. There

was, for instance, an attack exploiting a google vulnerability

which afterwards affected washing machines.

When you respond to an attacker who is already in, often you

are too late. What you do is you try to reduce the impact,

learn from it, and go on.

Note: Quote 33.

It is not firefighting when defects are fixed. Then the world

has not seen it. But it really is firefighting when the world

knows about it, thus when there are known vulnerabilities or

known attacks, because those need to be addressed fast.
Note: Very important. There seems to be a line between ad-
dressing defects and addressing vulnerabilities and attacks.
Follow this further.

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

Productivity, Disruption
(Software Development),

Defects, Vulnerabilities,

Criticality (Defects & Vulner-

abil it ies); Incident (Ad-

versary Behaviour & Cyber

Attacks)

Attack (Adversary Beha-

viour & Cyber Attacks),

Third Party Software (Rival

Theories)

Vulnerability (Defects &

Vulnerabilities), Third Party

Software (Rival Theories)

Respond (Security Measure)

Pressure, Firefighting (Pres-

sure), Defects, Vulnerabilit-

ies (Defects & Vulnerabilit-

ies)

http://web.de

European Master in System Dynamics

 

Jonas Matheus | jonasmatheus@web.de ! xc i

Generally, there are enough DevOps, so some can firefight

and others can continue with the regular activities. There would

(or should?!) always be a fraction of DevOps that continues

working on the regular activities and not go to firefighting vul-

nerabilities and attacks.

Note: POs may have information on that.

Improving Quality: Policies

Fast feedback loops to the DevOps diminishes the delay

between making a mistake and getting to know about it.

Teams know the quality of their software while developing.

This may be done with automated mechanisms or good

standards.
Note: In this way teams would not / are less likely to fall into

the adaptation trap because they know the amount of future

work.

If you have dependencies you may see the errors of the other

teams. Here teams could collaborate and learn from each

other. Yet, dependencies also create unknown future workloads

as teams do not know how many errors are in a software.

Acknowledge security: Train the trainers (and decision makers)

Clear assignments, clear concepts: While this decreases the

number of misunderstandings and subsequent problems, it

leaves little room for creativity which may impede the self-or-

ganising nature of DevOps teams.

Emergency teams, list of people that can help in emergencies.

Common in many firms now is let teams fix their own mess.

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

Productivity, Disruption

(Software Development),

Firefighting (Pressure)

Standards, Measures, Sys-

tem Thinking, Problem

Awareness (Security Meas-

ures); Automation (Techno-

logy & Innovation)

Workload (Pressure), De-

pendencies (Rival Theories)

Managerial Opinion, Under-

standing of Problem (Per-

ception)

Self-organising (Pressure),

Standards (Security Meas-

ures)

Awareness, Learning Re-

sponse (Security Measures)

http://web.de

European Master in System Dynamics

II. D Documentation Interviews, Conversations, and Observations
Next to the causal diagrams built in (and afterwards based on) the group model

building workshops (4; I), and the notes taken during the sessions (II.C), further qualitati-

ve (and quantitative) data was gathered throughout the six month on site. As indi35 -

cated in the methodology-section and in the appendix above, the group model buil-

ding workshops were followed by further qualitative data collection via e-mail, chat,

phone calls, conversations, unstructured interviews, observations, and the review of

documents and archival data. The parts below show the notes from unstructured

interviews, conversations, and observations. Some conversations or interviews are written

down in such a form that they resemble a discussion. This was done in those case were

the notes taken by the researcher during the conversation or unstructured interview

were rich enough to support such a story-like approach. Yet, since those notes do not

equal a tape recording, also the story-like descriptions mainly contain the essence of

the interview or conversation. In other cases, for instance, when the researcher was

presenting results to the team, there was not enough time to take rich but only more

abstract notes. Thus, in such cases only the notes and not full story-like discussions are

presented. Observations are always given in form of notes and never in form of a rich

story. Notes on documents and archival data are not displayed due to confidentiality. As

above, the notes are coded and categories and are sometimes commented.

II. D. 1 Unstructured Interview, 13 February 2017

 The quantitative data is not used explicitly in this study for two reasons: First, quantitative data was mainly collected 35

within and outside of the European financial organisation for the purpose of quantifying a mathematical simulation model.
As indicated above, no quantitative simulation model was built due to time and data constraints, as well as anomalies
within a model which would have been used as basis. Second, due to confidentiality reasons no quantitative data from
within the financial organisation can be shown within this study.

Jonas Matheus | jonasmatheus@web.de ! xc i i

Secure Software De-

velopment (Software
Development)

Interviewer: Hi X, thank you for taking the time to meet with me.

Y told me that you would get me a quick start on software de-

velopment, software security, software vulnerabilities, and cyber

attacks. Is that correct?

X: That sounds good, yes we do that. Where should we start?

How much do you know about secure software development?

Interviewer: Thanks. I read quite something about the different

models that we have out there, like Microsoft SDL or OWASP 10.

1

2

3

4

5

6

7

8

9

10

http://web.de

European Master in System Dynamics

Jonas Matheus | jonasmatheus@web.de ! xc i i i

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

I also looked at the one from Adobe and I saw something

from literature. What do you think about those process models?

Am I missing an important aspect?

X: Yes, you described the well-known approaches. Very

good. There is another one that I personally really like be-

cause it is theoretical and practical at the same time. It is

called BSIMM which means build security in maturity model.

It is done by an expert who runs his own company and sim-

ultaneously works as a professor at university. His name is

Gary McGraw.

Interviewer: Yes, I have already stumbled upon the name

McGraw. He seems to be one of the main experts in the field

of secure software development. Or do I have a wrong im-

pression?

X: No, you are perfectly right. He emphasises the importance

of building security in for decades now and he is a well-re-

spected source.

Interviewer: X, you talked about the BSIMM and you said that

you personally really like it. What is BSIMM about and why do

you like it so much.

X: BSIMM is not purely descriptive like many other process mod-

els. It is descriptive as an overview and prescriptive as a guideline

at the same time. It comes from practitioners who are also active

in science, and it is made for other practitioners. McGraw and

his colleagues have worked with many partners in different

industries and have found out what companies do to stay safe.

In fact, BSIMM shows best practice across many industries. It is

Secure Software Develop-

ment (Software Develop-

ment)

Secure Software Develop-

ment (Software Develop-

ment)

Guideline (Security Meas-

ures)

http://web.de

European Master in System Dynamics

Jonas Matheus | jonasmatheus@web.de ! xc iv

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

based on very rich data from many companies [around 100],

compares the different approaches, gives good ideas about pros

and cons, and even measures concepts over time.

Interviewer: Great, that sounds very good. I will look into it. Since

the BSIMM seems to be so good, is it generally employed in

most companies?

X: Laughing. Never. Although we have all those models, each

company is different. I would even say that in most companies

different departments have a different understanding of what a

secure software development process is and what should be in-

cluded. So, no, there is no generally agreed upon framework.

Interviewer: Does that mean that security is not a matter of con-

cern for most or is that rather a communication problem?

X: I would say both. Everybody simply understands things slightly

different. I think that is normal and part of our nature. But you can

also see that there are too little security people in software [the

field]. In the BSIMM they [the authors] distinguish between

people who belong to the software security group, to the satellite

group, and to DevOps. The software security group describes

those few people who are experts in both areas. The satellite

group is for those people who are expert DevOps and have some

knowledge in security. Well, and the DevOps are the rest. You

know what DevOps are, right?

Interviewer: Laughing. Yes, thank’s for asking. Ok, I think I got

this. Which other topics do we need to look at? What do you

think we should think about when trying to analyse secure soft-

ware development and cyber attacks?

Secure Software Develop-

ment (Software Develop-

ment), Employee Problem

Understanding / Perception

(Perception)

Awareness (Maturity &

Awareness), Employee

Problem Understanding /

Perception (Perception)

Maturity (Maturity & Training)

http://web.de

European Master in System Dynamics

Jonas Matheus | jonasmatheus@web.de ! xcv

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

X: Hm, difficult question. There is lot’s to think about… I

would say we should discuss the development activities,

testing, the problems when you become vulnerable, cyber

attacks, and responsible disclosure… Where do we go first?

Interviewer: Since we have already covered the development

part a bit, let’s go to testing. Why do you test? What do you

mean when you talk about testing?

X: Ok, so there are many different tests. Initially, tests were

done to see whether a software works how it should work.

That’s about functionality. In security we have quite some fur-

ther tests. In software security you test, for example, for the

boundaries of your software… that means, does it still function

under extreme conditions… then, you test for the require-

ments… does the software do what it is supposed to do…

We also have features testing… you would for example

check that an online application has a login and a logout

function. You can also do fuzz-testing what is quite new. With

that you would for example type in .fra instead of .fr as country

code for France. You may not believe but sometimes a success-

ful cyber attack needs nothing more than something like that…

Interviewer: Wow, very interesting. Since I am entirely new in this

field, could you explain how a cyber attack takes place. From

the previous project I know how a malware attack works, but

how does a hacker get into an organisation’s system?

X: Laughing. Yes, we can go there. It actually fits quite well

because hackers also use all those testing methods. In fact,

they use the same tools for checking our system as we do.

Test (Defects & Vulnerabilit-

ies)

Software Security, Secure

Software Development

(Software Development)

Cyber Attack (Adversary

Behaviour & Cyber Attacks)

Test (Defects & Vulnerabilit-

ies), Hacker (Adversary

Behaviour & Cyber Attacks),
Automation (Technology &

Innovation)

http://web.de

European Master in System Dynamics

Jonas Matheus | jonasmatheus@web.de ! xcv i

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

There is, for example, the CVE data base which lists publicly

known vulnerabilities. So a hacker looks there and then takes

a testing tool, for instance Metasploit, and checks a system

that he wants to attack.

Interviewer: That sounds quite simple. How does such an at-

tack take place?

X: It can be that simple but it can also be very difficult. That

depends on the case, on the target, etc. Anyways, I would

say we can summarise a hacking attack in three steps: First,

you collect information about your target, such as the web

server version, the os [operating system] version, the frame-

work [java, .net, javascript, etc.], or simply browse for weak

spots… In a second step, you try to find a vulnerability based

on the information you collected. Hackers use automated

tools for that or even do that manually if they are really skilled.

In a last step, a hacker simply exploits the vulnerability.

Interviewer: On an abstract level that sounds quite simple.

X: Well, depending on the target, it may be quite simple.

Quite often you see numbers in the address field of the

browser. You can try to change those numbers and some-

times that is already enough for entering a system because

suddenly you have access to something that you should not

have access to.

Interviewer: That sounds like even I could hack… Both laugh-

ing… One thing struck me… You talked about the skills of a

hacker. What did you mean with that?

Hacking Attack (Adversary

Behaviour & Cyber Attacks)

Vulnerability, Weak Spot,

Weakness (Defects & Vul-

nerabilities), Automated

solution (Technology &

Innovation)

E ffect iveness, Hacker

(Adversary Behaviour &
Cyber Attacks)

http://web.de

European Master in System Dynamics

Jonas Matheus | jonasmatheus@web.de ! xcv i i

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

X: Hackers have skills sets and many hackers work in teams.

So those teams have then specialists for using a specific tool,

for knowing which tool or approach to use, for manual hacking,

for knowledge on specific systems or aspects like different OS,

or even for misusing responsible disclosure programmes… De-

pending on the case, such teams can be a lose connection

between a few script kiddies or it can be a tightly organised

team that is part of a larger organisation. Particularly the latter

case is then very similar to any normal company. Such criminal

organisations can even have departments, different hierarchical

levels, duties, and so on… Do you know Z? I think you should

talk with him about hacking, he knows much more than I do…

Interviewer: Ok. I see. I will talk with him.

X: I will arrange a meeting for you.

Interviewer: Great, thanks! You talked earlier about vulnerabilities

and exploiting those. How can you prevent such a situation?

X: There are many measures in place… For external software

that companies buy or rent, you generally see that the software

vendor makes a patch available to fix the vulnerability. The problem

here is that larger patches may actually cause quite some

downtime which would disrupt the business. So, for companies,

patching can be very expensive and that can be the reason why

it is sometimes not done. The problem there is, if you do not

patch such known vulnerabilities, everybody can easily exploit

them, except you create other protection mechanisms… For

internally developed or customised solutions, you can do

pentesting [penetration testing], dynamic analysis which is

somewhat a light version of pentesting or responsible disclosure…

Hacker, Adversary Strategy,

E ffect iveness, Teams,
Learning, Business Case

(Adversary Behaviour &

Cyber Attacks)

Prevention (Security Meas-

ures)

Patch (Security Measure),

Third Party Software (Rival

Theories),

Disruption (Software Devel-

opment)

Vulnerability (Defects &

Vulnerabilities)

Pentesting, etc. (Security

Measures)

http://web.de

European Master in System Dynamics

II. D. 2 Unstructured Interview, 13 February 2017

Jonas Matheus | jonasmatheus@web.de ! xcv i i i

x

Interviewer: X, we have now covered aspects of software devel-

opment, software security, software vulnerabilities, and cyber

attacks. Is there anything else, you think I should know about?

X: No, I think to start with, we made quite a good tour. Of

course, whenever you have questions, come back to me.

Interviewer: Thank you for your time and for helping me get-

ting this project started and for arranging the meeting with Z.

X: No worries, you’re welcome!

171

172

173

174

175

176

177

178

179

180

181

182

Hacking (Adversary

Behaviour & Cyber

Attacks)

Interviewer: Hi X, I’m Y. Nice to meeting you.

X: Nice to meeting you too.

Interviewer: Thank you for taking the time to talk with me about

hacking. Z told me you’re the one I need to talk to when I want

to know something about that topic.

X: Smiling… Yeah, I know a bit about it… What do you want to

know?

Interviewer: Let’s start quite simple and direct. What is hacking?

X: Chuckling… Quite general, hacking means that you combine

things or ideas to do something it was not intended to be used.

You can also say, you simply abuse something in an unintended

way. In IT hacking means then that you try to find ways to have

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

http://web.de

European Master in System Dynamics

Jonas Matheus | jonasmatheus@web.de ! xc ix

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

more possibilities than the software was intended to provide you

with. The problem here is often that requirements are not well

set. The desired software behaviour for people from operations

and business is not security. They do not care because securi-

ty doesn’t give money and if nothing happens nobody even

recognises the success of security because you don’t know

why nothing happened. [Quote 14]. So, that is quite dange-

rous because hacking is about thinking about ways how to go

around or misuse an IT solution. It is easier as an attacker to

misuse one mistake than to prevent all mistakes as a devel-

oper. And many developers are also simply not trained to think

like a malicious hacker. They do not develop software an think

at each place about how to misuse something.

Interviewer: Thank you, that was quite a nice introduction to

hacking. Let’s make on step further and come to hackers.

What is important for hackers?

X: Hackers and attackers in general are in a better position

than defenders. They are not time bound, they have plenty of

targets, and they only need to find the weakest link. Pro-

grammers, in contrast, need to think about all problems that

can exist. And the attack surface of a global organisation is

really large. Think about all the employees that are spread over

so many countries. I would even say that every public asset of

every organisation is constantly under attack.

Interviewer: That does not sound really promising…

X: It’s also not that bad. Laughing…

Interviewer: Laughing… Well, if you say so, I trust you with that.

Business Risk, Security

Risk, Costs (Pressure)

Attacker Advantage (Ad-

versary Behaviour & Cyber

Attacks)

Lack of Training (Maturity &

Training)

Attacker Advantage (Ad-
versary Behaviour & Cyber

Attacks)

http://web.de

European Master in System Dynamics

Jonas Matheus | jonasmatheus@web.de ! c

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

You’re the expert. X, we’ve talked now about what hacking is

and about important aspects for a hacker. What I just realise,

we have not come to the topic of how a hacker works. I

mean… chuckling… in movies you always see guys with

hoodies who type something on a keyboard… is it really like this?

X: Laughing… it depends. But yes, it can be like that… I

would say hackers normally gather information about their target,

they try to find a way in, and they test if that way actually works.

Interviewer: So, you mean, first a hacker searches for inform-

ation, then he tries to find a vulnerability, and then he tries to

exploit it… is that correct?

X: Yes, indeed. In the first step you would try to find out what

a target’s business is about, where they are located, what

kind of people work for the company, what kind of websites

there are, etc. You have many options there, like social media,

company homepage, job descriptions, etc… If you find some-

thing that looks older then it is likely that it is more vulnerable…

Interviewer: Ok, that was the first step. How is it in the next one?

X: The easiest way in is via a combination of social engineering

and malware. For me that is still part of hacking. You just

convince somebody to click on a link or download the attach-

ment and then you have your malware on the other's asset.

Or you manage to even get things directly done like with the

CEO fraught… You heard about that?

Interviewer: No, not really… should I?

Hacking (Adversary Beha-

viour & Cyber Attacks)

Vulnerable (Defects & Vul-
nerabilities)

Hacking with malware and

social engineering attacks
(Adversary Behaviour &

Cyber Attacks)

http://web.de

European Master in System Dynamics

Jonas Matheus | jonasmatheus@web.de ! c i

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

X: Ah, no worries… It’s quite simple… basically you call the

secretary of the CEO and tell that person that the CEO told

you to call to get a super important transfer done. It’s a minor

thing, just some 250.000$ or something… and if the secretary

hesitates then you point out that you can totally understand

that but the business will not happen and then the secretary has

to explain that to the CEO and live with the consequences…

it has been done quite a lot…

Interviewer: That is quite a tricky way of getting money.

X: It is… So, in any case, you try to find a way in, no matter

how you do it. And then you exploit the vulnerability. Generally,

you exploit a vulnerability in one of the public facing assets

[those are generally websites, employees, physical facilities].

And the exploitation is quite simple. You try negative and

positive numbers in a field, you change the numbers in the

address field in your browsers, you check about rounding errors,

or you search for logic errors. In the end, it’s always about

those cases that are on the edge.

Interviewer: So the exploitation is also the last act in the system

or does the hacker dig deeper?

X: That depends. Those cases above are quite simple but

can be done over a longer time as long as the bug is not

fixed. If you have a more sophisticated attacker, then that

one can stay in your system and try to increase his privilege

level to be able to do more stuff. Or the guys can move in your

system and search for vulnerabilities in non-public facing assets.

Interviewer: Ok, I guess, I start to understand this more and

Vulnerability, Public Facing

Asset (Defects & Vulnerabil-

ities)

Bug, Vulnerability (Defect &

Vulnerability), Attacker Ef-

fectiveness, APT (Adversary

Behaviour & Cyber Attacks)

http://web.de

European Master in System Dynamics

Jonas Matheus | jonasmatheus@web.de ! c i i

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

more… how can an organisation prevent such attacks?

X: The configuration of your systems is quite important. A

web server should, for example, have a low privilege level

because it does not need more and because it is dangerous

if it has more. And in addition, companies have prevention,

detection, and response measures… If you only prevent you

will lose because there is always a weakest link… So, you

have a problem when an attacker is inside your system be-

cause you do not recognise that without detection.

Interviewer: How does such detection work?

X: Without going into details, it can be quite simple: If a

computer tries to connect to the entire network or at a very

strange time of the day, then I would say most systems see

that as suspicious… And if you have something like that, you

could get the guys from CERT and so on to respond.

Nowadays most systems have security in depth which means

that you have security measures on each layer of the system…

for example… your software is up to date, your system has

the most secure configurations, your people are well trained

and so on… Of course, you have situations where you can-

not do much. If your OS has a huge vulnerability that you do

not know about because nobody, not even the vendors

knows about, then you have a problem… I mean, everybody

who uses that OS has then a problem…

Interviewer: That would be a zero-day if I’m not mistaken?

X: That is correct…

Prevent ion, Detect ion,

Response (Security Meas-

ures), Adversary Advantage

(Adversary Behaviour &

Cyber Attacks), Technology,

Configuration (Technology &
Innovation)

Detection, Response, Cy-
ber Resilience (Security

Measures), Configuration

(Technology & innovation)

Zero Days (Defects & Vul-

nerabilities)

http://web.de

European Master in System Dynamics

Jonas Matheus | jonasmatheus@web.de ! c i i i

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

Interviewer: To find such a zero-day… how do you do that?

Do you need to be lucky? Or is that skill?

X: Hacking is about creativity. Creativity is the most important

skill of a hacker. Attackers have always somebody in their team

who is creative. Hackers often work in large teams, especially

when we talk about criminal organisations or governmental

forces. Those groups work like companies, they have managers,

business people, perhaps even people from legal… and the

hackers are specialised in many different areas, like physical

security, operation systems, webservers, networks, software

applications, automated tools, brute force, cyber fraud, zero

days, phones, and so on… Many hackers use automated

tools because it makes it easier but you really don’t need that

for hacking… There is for example this guy on Youtube who

breaks into the physical facilities of a bank with whisky…
Note: Of course, the interviewer and X watched the video.

Interviewer: Unbelievable… I really see that it is about creativity…

X, you sad earlier that you respond on an attack, when

somebody is in. How does that happen.

X: Very general, you try to find the root cause of the incident

and you try to get the guy out.

Interviewer: Is that possible?

X: Generally yes, but it can be really hard. Battles between

hackers and defenders can go over several months. Often

you think the guy is out but then he was just stealthy or had

a backdoor or something else and is still inside. If you have,

for example, an attacker with a high privilege level, you really

Hacking, Skills, Effective-

ness, Attacker Maturity

(Adversary Behaviour &

Cyber Attacks)

Adversary Strategy, Busi-
ness Case (Adversary Be-

haviour & Cyber Attacks)

Automation (Technology &
Innovation)

Disruption (Software Devel-

opment), Response (Secur-

ity Measures), Attack (Ad-

versary Behaviour & Cyber
Attacks)

Time of an Attack, Disrup-

tion (Software Develop-

ment), Pressure (Pressure),
Hackers, Attack (Adversary

Behaviour & Cyber Attacks)

http://web.de

European Master in System Dynamics

II. D. 3 Observation, 27 February 2017

Jonas Matheus | jonasmatheus@web.de ! c i v

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

have a problem because once you think that you have him out,

he is just somewhere else because he could give himself the

rights to be there… I remember, there was this case of a smaller

company where the people went back to work and the attacker

was still inside because they could not afford it anymore to neg-

lect their normal jobs. At the end of the day, they needed some

kind of external security provider to get the attacker out…

Note: Quote 36 [parts in the middle are not used].

Interviewer: That sounds quite heavy. Was that because the

company was so small or could that happen with anybody?

X: I guess the size played a role but theoretically speaking,

this could happen to any organisation…

Interviewer: Ok, I see. X, thank you very much for all those in-

sights. Do you have anything else you want to share with me?

Otherwise, I do not want to steal more of your time! Chuckling…

X: Ok… If you have any further questions, just come over.

Interviewer: Thank you very much. Have a nice day.

X: You too.

Major Disruption possible
(Software Development)

Emphasis on Business

(Pressure)

The following quotation was written down during a meeting

with several members from the financial organisation. The

meeting was not set for the purpose of this study.

X: We are a business, we have no unnecessary slack in this

organisation and people are not just sitting around and wait

to do something! [Quote 3]

1

2

3

4

5

6

7

http://web.de

European Master in System Dynamics

II. D. 4 Unstructured Interview, 17 March 2017

Jonas Matheus | jonasmatheus@web.de ! cv

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

This meeting took place with several colleagues from the Eu-

ropean financial organisation. The researcher joined the meeting

for two reasons: First, the meeting was an interesting learning

opportunity, second, he could ask questions on vulnerabilities.

In the light of this setting, the notes below do not represent

all aspects discussed during the meeting but only those

which are interesting for this study and which are at the same

time not confidential.

[…]

Interviewer: So what do you mean when we talk about risk,

and threats, vulnerabilities, and all those things. In other words,

where is the difference between the different aspects?

X: You take the vulnerabilities and the threats and you have

your risk. You take the risk and the measures that are in place

and you can talk about a successful or unsuccessful attack.

[…]

X: So you have critical, high, medium, and low vulnerabilities.

Software vendors provide patches when there is a vulnerability

but this may quite some time. So the point in time when you

detect a vulnerability is not the same when it gets fixed.

When you scan for vulnerabilities you should really not find

the same vulnerability twice in a row because the vulnerability

should have been closed already…

[…]

Fix, Criticality, Mean time to

resolve (Defects & Vulner-

ability), patch (security
measures), Third Party

Software (Rival Theories)

http://web.de

European Master in System Dynamics

Jonas Matheus | jonasmatheus@web.de ! cv i

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

Interviewer: What is the impact of vulnerabilities - no matter

whether they are internally developed or externally supplied -

when one finds them? What does that mean for an organisation?

X: Critical vulnerabilities disrupt the sprint backlog of a DevOps

team. They get the information, they change their priorities and

they deal with it. Other stuff just gets on the backlog.

[…]

Interviewer: How does vulnerability detection work?

X: There are many options… Vulnerability scanners, for example,

can only find known vulnerabilities. So if you know about a

vulnerability due to a vulnerability scanner, then anybody else

may know about that vulnerability too because they may use

the same scanner. If you rely on pentesting, dynamic analysis,

red teaming or responsible disclosure, you may find unknown

vulnerabilities. All of those approaches have their limitations

though. For example, responsible disclosure is pretty limited

because it is only for web applications and public facing assets

but for nothing that you have internal. And in addition you

could question whether it makes sense to pay for the findings

that are about all those preventable low hanging fruits…

[…]

Interviewer: So far we talked about many different aspects

related to vulnerabilities. Would you mind if we turn to intern-

ally developed software?

X: No, perfectly fine for me… but what do you want to know?

Disruption (Software Devel-

opment)

Test / Detection (Defects &

Vulnerabilities)

Several security measures

(Security Measures)

http://web.de

European Master in System Dynamics

II. D. 5 Conversation, 20 March 2017

Jonas Matheus | jonasmatheus@web.de ! cv i i

Interviewer: Across all the different industries there are all these

rules, these standards, these measures, and so on, and yet there

are really avoidable software vulnerabilities that are even listed

in OWASP Top 10. What do you think, why is that the case?

X: There are many reasons. The quality of people… many

developers have simply no idea about security. Then, there is

a clear lack of discipline… I mean, people know about rules and

in many cases, people still do not care. You see that particu-

larly in the industries where fast delivery counts… Yes, so

there is time pressure. And then there is business. The product

owner from the business side looks first at functionality because

that creates income, then at security because that costs money.

We have enforceable standards in place, so people need to

consider both, functionality and security. When there are

deadlines this puts them under stress.

Note: Quote 2.

[…]

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

Reasons for software vul-

nerabilities

Maturity, Security Skills

(Maturity & Awareness),

Lack of Compliance (Secur-

ity Measures)

Time Pressure, Stress,

Business Focus (Pressure)

Rules, Standards, etc.

(Security Measures)

Interviewer: Thank you very much for taking the time to

shortly have a chat. I would like to describe you the following

theoretical situation and would be happy to hear your

thoughts about it. Would you be ok with that?

X: Yes, of course. Go ahead.

Interviewer: A lot of people in security are creating new rules, reg-

ulations, standards, etc. to improve security. This certainly has a

good effect and decreases the amount of avoidable problems.

1

2

3

4

5

6

7

8

9

10

http://web.de

European Master in System Dynamics

Jonas Matheus | jonasmatheus@web.de ! cv i i i

I’m wondering though whether it could be possible that from

a certain point on there are so many regulations that the

quality of work actually suffers from the amount of regulations

that need to be taken into account?

X: Good question! Well, I would say, for now we certainly do

not have it because we are just on the way of normalising

and organising the different areas.

Interviewer: Ok, I understand, so for now it is fine. Sorry for

probing on this, but do you think that overregulation could

become a problem in the future?

X: No worries. You’re right, I very much see your point that

there is a certain danger that we actually make things worse

by trying to make them better. It is true that it is certainly not

the amount of rules we create that make things better, but

the quality of our work.

Interviewer: I see. So, to sum up, for now the organisation is

doing well, but it could be that some kind of overregulation

arises in the future.

X: Yes, that is very correct and I think that is a very interest-

ing thought. Thank you for bringing this up.

Interviewer: Great, nice to be of help and thank you very

much for your time and your responses. Have a nice day!

X: You too.

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

Overregulation (Rival Theory)

Systems Thinking (Security

Measures)

http://web.de

European Master in System Dynamics

II. D. 6 Unstructured Interview & Validation 1, 3 April 2017

Jonas Matheus | jonasmatheus@web.de ! c i x

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

This unstructured interview was conducted in order to validate

the outcomes of the group model building session. As common,

the researcher used the approach of disconfirmatory interviews

for validating the model and the results. As described in II. A

and II. E., the model was shown to the expert by unfolding it

feedback loop per feedback loop. The researcher presented it

and probed the expert each time to criticise, change, adjust,

and disconfirm the model. Due to the nature of this meeting, the

text below does not show the entire interview. Instead, it provides

the introduction, and notes about the comments from the

expert, and responses from the researcher on the comments.

The expert took part in the first group model building session and

is familiar with system dynamics terminology and methodology.

Interviewer: Hi X, thank you for taking the time to meeting Y [the

gatekeeper] and me today. Considering your busy schedule, I

very much appreciate that.

X: That's alright. It’s fun working with you and I like the mo-

delling, so it's good for me.

[Nice chat, arranging room together for using the screen, etc.]

Interviewer: Ok, I think we can get started. Everything good

with the two of you?

X: Yes, let’s start.

Y: Fine for me as well.

Interviewer: Ok. X, I am going to present the entire model to

http://web.de

European Master in System Dynamics

Jonas Matheus | jonasmatheus@web.de ! cx

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

you. Since the model is pretty large by now - your colleagues

made a good job there - I will unfold it basically one feedback

loop after another. What I want you to do is the following: Try as

hard as you can to criticise and disconfirm what I am explain-

ing to you. I would like you to challenge me, so that I really

need to explain well what we have done here. I want you to

do that because I want to make sure that we actually have a

good product at the end.

X: Ok, I can do that… Laughing…

Interviewer: Great. I would like to ask you to look at the model

particularly from the following three perspectives: Structure,

Variables, Boundary [the researcher wrote those three aspects

on the white board]. What I mean by that is: Does the chosen

structure represent the real system? Do the chosen variables

exist in reality? And have we drawn the right boundary or are we

excluding something we should not exclude or do we include

something that is not necessary to include because it does

not add value. You remember for example from the first

workshop that we said that we exclude technology in the sense

that we do not model technical details. That is for instance a

boundary we drew. Everything clear?

X: Yes, perfect. I guess we can do that.

Interviewer: Great, let’s start. And please, always think about

telling me what we did wrong here. Tear this model apart if

necessary, but tell me what needs to be changed.

X: Loud laughing… I won’t let it survive! Laughing… Go ahead.

http://web.de

European Master in System Dynamics

Jonas Matheus | jonasmatheus@web.de ! cx i

[…]

X: You’re right the amount of regulations depends on attacks

and best practice but it also depends on the DevOps team. A

mature DevOps team needs little regulations and is not really

affected by it because it follows the underlying ideas of the

regulations anyways due to its maturity.

Interviewer: So, the more mature a team, the less regulations

it needs.

X: Yes, that it correct.

Interviewer: But the regulations still exist?

X: Yes.

Interviewer: So, the number of regulations remains the same

but the effect on productivity within a mature team decreases.

Is that correct?

X: You could say so, I believe.

Interviewer: Are all DevOps team equally mature or are there

quite some differences?

X: Grim smile… There are obviously quite some differences.

That is normal with people. Why are you asking?

Interviewer: Well, then I would suggest that we keep this con-

nection in mind but do not draw it because the benefit from ma-

ture teams is offset by the immature teams. What do you think?

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

Maturity (Maturity & Train-

ing), Regulations (Security

Measures), Attacks (Ad-

versary Behaviour & Cyber

Attacks)

Productivity (Software De-
velopment), Maturity (Ma-

turity & Training)

http://web.de

European Master in System Dynamics

Jonas Matheus | jonasmatheus@web.de ! cx i i

X: Hm… mumbling… Yes, I believe that is correct. Sounds good.

[…]

X: The productivity of a DevOps team depends on its maturity.

There is knowledge on the distribution of maturity amongst

and within DevOps teams in the organisation and there is

knowledge on the productivity of different maturity levels. You

should check that.

Interviewer: Thank you, I will.

[…]

X: Ah… I disagree there… The problem is less that we have a

securitisation and turn all our good people in DevOps to se-

curity people. This has probably only very limited impact. So,

one problem we see is that mature people are more likely to

leave to other companies. So when we train DevOps, we

need to consider that they may leave. I believe training and af-

terwards keeping mature people is the key.
Note: Important insight. Disagreed.

Interviewer: How does this occur? Could you elaborate on that.

X: Of course people do not leave immediately when they reach

a certain level of maturity, it is rather a delayed effect, and it

only starts from a certain level of maturity. But I would say, it

significantly influences us and I believe any other organisation

out there. The challenge is really to keep these people.

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

Productivity (Software De-

velopment), Maturity (Ma-

turity & Training)

-> E.g. Dreyfus

Secur i t isat ion, Mature

Leave, Layoffs (Maturity &

Training)

Keep maturity (Security

Measure)

http://web.de

European Master in System Dynamics

Jonas Matheus | jonasmatheus@web.de ! cx i i i

[…]

X: I see little relevance for including third party software. Why

do we include it here?

Interviewer: Being busy with third party software takes time

from the DevOps because they need to choose what to get,

they need to test the software, they may customise it, and

they need to communicate with the respective contract part-

ner so that the problem gets solved. In addition, errors or

flaws in third party software may lead to vulnerabilities. What

do you think about it. You did not seem to be persuaded,

shall I delete this part of the model?

X: No, not at all. It makes sense that the DevOps teams are

busy with third party software. But if we go into detail, I

would say that the most time consuming task here is the

analysis of test results and of found errors.

Interviewer: Ok, I understand. So with third party software it

really depends on the task.

X: Yes, that’s right.

Interviewer: Is there anything else you would like to point out

with regard to third party software? Anything that disturbs

you in the model? Anything we’ve missed?

X: Errors in third party software could hinder internal software

to work. If you have dependencies, or if something from our

stuff would become vulnerable because of the external solu-

tion, then you have an impact there.

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

TPS (Rival Theory)

Productivity (Software De-

ve lopment) , Work load

(Pressure), Vulnerability

(Defects & Vulnerabilities)

Dependencies, TPS (Rival

Theory)

http://web.de

European Master in System Dynamics

Jonas Matheus | jonasmatheus@web.de ! cx iv

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

Interviewer: I see. In sum, third party software is relevant but

it depends on the tasks whether it actually takes time.

X: Yes, that is true.

Interviewer: Nothing else to change?

X: Laughing… no, looks fine.

[…]

X: Tests do not take that much time anymore. Like, you

know, they have really only little impact on the productivity of

DevOps because of automation. What still is an issue is the

distinction between true and false positives because that can

take quite some time. But again, like so many other things,

that depends on the maturity. More mature teams are much

better here. Actually, true and false positives is even one

common criterion for assessing the maturity of a DevOps team.

Interviewer: Ok, so, tests have generally limited impact on the

productivity of a team. If a team and its tools are mature this

is even less the case. If they are less mature, then productiv-

ity is more affected. Is that what you said?

X: Yes, pretty much. Generally, tests are really not a major

issue anymore when we look at sprints and productivity.

Interviewer: Ok. Got it.

[…]

Productivity (Software De-

velopment), Automation

(Technology & Innovation)

Maturity in testing (Maturity

& Training)

Productivity (Software De-

velopment), Automation

(Technology & Innovation)

http://web.de

European Master in System Dynamics

Jonas Matheus | jonasmatheus@web.de ! cxv

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

X: Yeah, I would say that’s correct. You can generally say that

known errors also become known vulnerabilities. Some of the

errors may not be perceived as vulnerability and then you don’t

know it but that is rare, I would say. Where I am not sure is how

you see the relationship between errors and vulnerabilities.

Do you see that as 1:1?

Interviewer: No, not at all. You and the others have emphas-

ised quite a lot that such a clear ratio does not exist, at best

we may have an average.

X: Yes, that sounds correct. Ok.

[…]

X: Stop there, I think that is wrong. DevOps have nothing to

do with the detection of vulnerabilities. So detection of vul-

nerabilities should not be connected to DevOps productivity.

Interviewer: Ok, interesting. Then we have obviously missed

that link throughout all those sessions. Do you want me to

delete it?

X: Yes, I would say so. The DevOps really do not do the vul-

nerability detection.

Interviewer: Ok, I’ll take it out.

[…]

Error - Vulnerability - Rela-

tionship (Defects & Vulner-
abilities)

Productivity (Software De-

velopment) Vulnerability

Detection (Defects & Vul-

nerabilities)

http://web.de

European Master in System Dynamics

Jonas Matheus | jonasmatheus@web.de ! cxv i

You always resolve the critical vulnerabilities immediately. You

cannot put them on the Backlog. The rest, that’s a different

thing… In many industries vulnerabilities are actually not fixed

on time. But you have to see that vulnerabilities can be ex-

ploited immediately, so you need to fix fast!

Note: Quote 25

Interviewer: Ok, so I will emphasise here the need to reduce

the mean time to resolve?

X: Yes, that’s it. We need to find and fix fast.

[…]

X: Hm…

Interviewer: So we found something. What do you think? What

do we need to change with this mechanism?

X: I would say that this one there is only half of the story…

Generally, an attacker changes his target after an unsuccessful

attack. If the attacker has a specific objective and conducts a

targeted attack against an organisation, he will stay with that

target because he has more information about it and he has a

reason to attack that target.

Note: Quote 31

Interviewer: Ok, so I will add that part after the meeting?

X: I would say yes. At the same time, an attacker may chan-

ge the target if he wants to exploit another target with the

same vulnerability. The exploited company knows now about it

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

Disruption, Backlog (Soft-

ware Development), Pres-
sure (Pressure), Vulnerabilit-

ies, fix fast (Defects & Vul-

nerabilities)

Adversary Strategy (Ad-

versary Behaviour & Cyber

Attacks)

http://web.de

European Master in System Dynamics

Jonas Matheus | jonasmatheus@web.de ! cxv i i

but since many companies do not admit that they were suc-

cessfully attacked, an attacker can just go the next and do

the same trick there again…

Interviewer: Ok, I’ll add that too?

X: Hm… No, I think you don’t have to. I think the first mech-

anism is more important… this one may be too detailed…

Interviewer: Ok, so I will add the first one so that we show that an

attacker can stay or change target but I do not add the level of

detail that we have with different reasons for changing…

X: Yes, that sounds good…

[…]

X: What kind of attacks do we describe here?

Interviewer: We mainly look at hacking since that kind of attacks

exploits software vulnerabilities. Malware is interesting too.

X: So, if we think about hacking, not many software solutions

are actually vulnerable because they are simply not public

facing assets. Those apps that are connected to the outside

world, there the vulnerabilities are really high risk ones… the

others are dangerous too but since they are not public, they

are less likely to be found and exploited. So, yes, the struc-

ture here is completely correct, but I’m not sure how likely

that [he talked about attacks] is…

Interviewer: I see. May I ask one question there?

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

Adversary Strategy,Busi-

ness Case (Adversary Be-
haviour & Cyber Attacks)

Hacking, Malware (Ad-

versary Behaviour & Cyber

Attacks)

Vulnerability, public facing

asset (Defects & Vulnerabil-

ities)

http://web.de

European Master in System Dynamics

Jonas Matheus | jonasmatheus@web.de ! cxv i i i

X: Laughing… You may… Laughing… but perhaps I don’t

answer… Laughing…

Interviewer: You said that such targeted hacking attacks are

quite rare. However, hackers may also abuse a software vul-

nerability by malware attacks or first enter the organisation by

social engineering and then hack internal software that is

much less secure. Is that a possible and plausible scenario?

X: Yeah… I see where you’re going… Many hackers would

not do that because they attack randomly and aim for the

low hanging fruits. But if you think those sophisticated guys

like state-funded groups, they would possibly do it within an

APT.

Interviewer: So, I keep everything as it is or do we change

something?

X: No, keep everything. I only asked out of curiosity.

Interviewer: Ok, perfect.

[…]

X: Yeah, that is a good point. We need to keep the white hats

with us and happy. And if you do not fix fast or if you do not

pay as promised or if other things go wrong then you may

piss off such a white hat hacker quite a lot and he could at-

tack you or publicly expose the vulnerability.

Interviewer: Have such cases happened?

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

APT (Adversary Behaviour

& Cyber Attacks)

Low hanging fruit, APT,

State funded actor (Ad-

versary Behaviour & Cyber
Attacks)

System thinking, Respons-

ible Disclosure (Security

Measure)

http://web.de

European Master in System Dynamics

Jonas Matheus | jonasmatheus@web.de ! cx ix

X: Yes, there were cases in different industries… One was with

a consultancy company that offered ethical hacking and audit

to other companies but had a flaw in their own system. Some

hackers contacted that company but they didn’t believe it and

even treated the ethical hackers in a patronising way… Well,

they got their revenge and just published the vulnerability…
Laughing…

Interviewer: Ok, so I guess we keep this here… laughing…

X: Yes, keep it in the model…

[…]

X: The workload of a DevOps team should always stay stable.

The problem is when it actually stays stable and you do not

develop anymore because of all the other work you have to

do. Then you delay the stuff on your backlog.

Note: Quote 5

Interviewer: So, if we want to know how good something is,

we should not only look at the current workload but also at the

development of the Backlog you mean?

X: Definitively! That is quite important…

[…]

Interviewer: Ok, so now we are done with the model. We have

checked what is right and what is wrong but now let’s step

back from it and think about what is missing in the picture…

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

Software Development,

Backlog (Software Devel-

opment), Workload, Delay

(Pressure)

Software Development,

Back log , P roduct i v i t y

(Software Development),

Workload, Delay (Pressure)

http://web.de

European Master in System Dynamics

Jonas Matheus | jonasmatheus@web.de ! cxx

X: Hm… Thinking… Many vulnerabilities can be fixed in the

environment… you can for example adjust a firewall much

faster and easier than a software vulnerability. So what you

do is, you first change the firewall to make yourself safe and

then, later you fix the software vulnerability…

Interviewer: Does that always work?

X: No.

Interviewer: Could it happen that such vulnerabilities are then

- as you described above - put on the Backlog and stay

there and are never fixed because the firewall was adjusted?

X: It could be but it shouldn’t because then the firewall gets

quite complex… So, I would say, normally you keep that

clear and clean…

Interviewer: Great. Ok. Thanks. Other thoughts? What are we

missing?

X: I think nothing, looks good. I think you did a good job.

Interviewer: Thanks X. Nice to hear that. When you consider

these insights, what do you think are the most important aspects

to improve the software quality?

X: Get mature people, keep mature people. Train them, keep

them aware. Test early, fix fast, do responsible disclosure and

keep the white hats happy. So if we focus on maturity, we make

it right from the beginning. Together with other upstream

activities, mature people are most important to security.

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

Avoid disruption (Software

Development), Vulnerabilit-
ies (Defects & Vulnerabilit-

ies), Environment/Firewall

(Technology & Innovation)

Delay (Software Develop-

ment)

Test and fix (Defects &

Vulnerabi l i ty), Maturity,

Tr a i n i n g (M a t u r i t y &

Training), upstream activit-

ies, responsible disclosure,
Keep mature people (Se-

curity Measure)

http://web.de

European Master in System Dynamics

Jonas Matheus | jonasmatheus@web.de ! cxx i

Interviewer: Ok, I see. What about measures regarding attacks?

X: As I said, the firewall is important. External facing assets

are really under attack, so you need to have them safe from

early on or make them safe when you have a problem. … but

actually make it right from the beginning… Laughing… Being

busy later because of a vulnerability that you could have

avoided is quite inefficient. So do it right the first round.

Interviewer: How do we deal with an attacker? What do we

need to know about him or her?

X: An attacker has a business case, like we have one too.

[Quote 30] An adversary attacks where there are easy gains,

low hanging fruits, or great rewards… if you make it harder for

him to get in, he will try it at another company, so we are safer…

Interviewer: The weakest link among companies…

X: Yes, you could say so.

Interviewer: Ok, do we need to include those things here in

the model?

X: No, keep it in mind when you talk about the attacker. But I

think the model is good, it matches.

Interviewer: Any final comment X?

X: Laughing… no, I think that’s it.

Interviewer: Ok, that’s it. Thank you for your time and effort!

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

Productivity (Software De-

velopment), Vulnerability,
Public Facing Assets (De-

fects & Vulnerabilities),

Environment/Firewall (Se-

curity Measures)

Low hanging fruits (Defects
& Vulnerabilities), Business

Case, Adversary Advantage

(Adversary Behaviour &

Cyber Attacks)

http://web.de

European Master in System Dynamics

II. D. 7 Unstructured Interview, 6 April 2017

Jonas Matheus | jonasmatheus@web.de ! cxx i i

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

[…]

Interviewer: Who is involved in responding to incidents?

X: It’s always those people who are responsible for the soft-

ware and those people who are needed for responding. At

the beginning, many people are involved for finding the root

cause. Afterwards, once it is found, only those stay who

need to stay.

Interview: And DevOps are involved here as well?

X: Yes, particularly the seniors among the DevOps. You can-

not take a rookie for such a task. You need the best people

to solve such an issue.

[…]

Interviewer: You know that I have worked with the partici-

pants on how to measure quality. What do you think? How to

measure quality?

X: You look at maturity, training, test results…

Interviewer: … you mean the number of defects per feature…

X: Yes, that’s correct. Then you look at pentests, responsible

disclosure, and in the end at attacks, unsuccessful attacks,

and successful attacks.

Interviewer: I see. Why are you so specific with the attacks?

Incident (Adversary Beha-

viour & Cyber Attacks)

Response, Root Cause

(Security Measure)

Productivity, Disruption

(Software Development)

Security Measures: How to

know about quality -> up-

stream to downstream
ideas (Security Measures)

http://web.de

European Master in System Dynamics

Jonas Matheus | jonasmatheus@web.de ! cxx i i i

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

X: The fact that you know about a certain number of attacks,

does not mean that there are not more attacks. In addition,

you do not measure your quality solely by looking at the

number of attacks because you do not have any influence on

that number. If for example a malware campaign starts you

can be as good as you want, the attacks still hit you. Poten-

tially they are not successful but they hit you. So you cannot

only measure your quality by the number of attacks.

Interviewer: Ok, so we should always look at the three to-

gether: Started attacks, successful attacks, and unsuccess-

ful attacks.

X: Yes, correct.

Interviewer: Ok. Overall, how do you value these different cri-

teria?

X: Quite simple: Those that are upstream are more important

than those that are downstream.

Interviewer: Ok, indeed, quite simple…

[…]

Interviewer: How do you see the connection between pro-

ductivity and the backlog. People have often talked about

disrupting the sprint backlog or putting tasks on the overall

backlog. What is you feeling about it.

X: The productivity of the teams is correlated with the backlog

Attack, Malware (Adversary

Behaviour & Cyber Attacks)

Upstream - Downstream

(Security Measures)

Productivity, Disruption,

Backlog, Sprint Backlog

(Software Development),

Delay (Pressure)

http://web.de

European Master in System Dynamics

II. D. 8 Conversation, 6 April 2017

Jonas Matheus | jonasmatheus@web.de ! cxx iv

If the backlog grows, we are at least not productive enough

to keep it stable. If the backlog grows you may have a stra-

tegic delay…

Interviewer: What do you mean with a strategic delay? And is

that related to agile software development approaches?

X: Agile is fine with delaying work and that is a good thing to

prevent pressure. But if you do that for too long, you create a

strategic delay which may cost you, depending on the in-

dustry, several percent of your revenues.

Note: Quote 6

Interviewer: Ok, so that seems to be a potential downside of

agile.

X: Yes, you could say so. And I don’t think that this is ac-

knowledged enough throughout all those industries that use

agile nowadays…

Interviewer: Very interesting insights, thank you.

[…]

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

Productivity, Backlog (Soft-

ware Development), Stra-
tegic Delay (Pressure)

Agile (Software Develop-

ment)

Agile, Backlog, (Software

Development), Pressure,

Delay, Costs (Pressure)

Agile (Software Develop-

ment)

Misperception on agile

(Perception)

Security Awareness Train-

ings (Maturity & Training)

Interviewer: X, Y, do you have time for two short questions?

It’s about security awareness trainings and the two of you are

amongst the trainers for security within the organisation and

you conduct these trainings for several years by now, so I

thought that you are the right ones to ask.

Y: That’s true. Yes, go ahead. We have a meeting with Z in a bit,

1

2

3

4

5

6

7

http://web.de

European Master in System Dynamics

Jonas Matheus | jonasmatheus@web.de ! cxxv

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

but until then it’s fine.

Interviewer: Great thanks, it’s going to be short. So, first ques-

tion: Have you ever experienced some kind of “security-fatigue”

among the employees within the organisation?

X: In general, we do not experience such security fatigue among

the trained staff because the organisation is just too large. We

do not come so often to people that they feel annoyed by the

trainers and the security topic.

Y: Today I had a session with people I have trained the last time

half a year ago. The training was still about the same topic, but

we adjusted the content in such a way that there were enough

new insights for the trainees. After the session, the employees

expressed their happiness about the training and were asking

when I would come back the next time.

X: Indeed, when W and me announce a new training with ex-

actly the same name, then people will think ‘oh, the two again, I

already know all of that’. So, for us it is necessary to commu-

nicate that the “same presentation” is actually very different from

the one that people have seen previously. We constantly update

our training based on new knowledge, and so people always

receive new insights from training. So, I have not seen a security

fatigue but rather a “meeting fatigue” if people think that the

meeting will not lead to new insights.

Interviewer: Thank you for these descriptions. Second question:

I would like to know how long your trainings generally take?

Y: Training A and similar ones last around one and a half hours.

Overregulation (Rival The-

ory)

Overregulation (Rival Theor-

ies)

http://web.de

European Master in System Dynamics

II. D. 9 Observation with DevOps Team, 26 April 2017

Jonas Matheus | jonasmatheus@web.de ! cxxv i

40

41

42

43

44

45

46

47

48

49

50

X: Yes, that is correct. Other trainings such as B take three

hours.

Interviewer: So, to sum up, all trainings last between one and a

half to three hours?

Y: Yes, that is correct.

Interviewer: Thank you very much for your time and your helpful

responses.

x

Productivity (Softwar Devel-

opment) or Time constraints

(Pressure)?

Workload / Observational

(Pressure)

Setting

The researcher was picked up by one of the DevOps. Upon

arrival, the researcher was introduced to the team.

The team started on time with the Stand Up Meeting. As the

name indicates, the entire DevOps Team (six people) and the

Product Owner from the business side were standing around a

screen and conducted the meeting. One of the team members

was in front of his computer and continued working.

Round-wise, each DevOp presented his/her current work. The oth-

ers sometimes asked questions or just listened to the one present-

ing. One of the team members was leading and guiding the meeting.

The team uses the common software for organising a sprint.

Next to “to do”, there are the categories “reject / reopened”, “in

progress”, “to verify”, and “closed / resolved”. Everything was

well organised and clear.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

http://web.de

European Master in System Dynamics

Jonas Matheus | jonasmatheus@web.de ! cxxv i i

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

Content and Situational Observations

Particularly dependencies within the team and more with other

teams were pointed out.

One of the developers had found errors in a software while

merging two solutions. The developer described that he had

fixed the errors and had added a test which had not been in-

cluded until that point. The team discussed whether to use the

test (enable it) or keep it disabled. After a very short time, the

team decided to look into it later. Several of the team members

offered to look into it together.

The team was subject to a heavy dependency. Several of the

items were marked / flagged because of the need of information

/ work from other teams. For instance, the responsible from the

other team planned a meeting on a very short note. The Dev-

Ops team seemed to be quite annoyed by such a spontaneous

meeting and discussed whether to meet. They came to the

conclusion that they would try but probably drop it because of

too little time available.

One of the developers described an item that, if not fixed, could

not be released. In this case, dependencies played a significant

role. The team seemed stressed about that.

Additionally, another developer described that a high-priority

item (for the overall organisation) was subject to difficulties.

He described it as likely that it may not be possible to deploy

the software. The atmosphere became more tense, the

people were talking faster and more hectic, the DevOps team

appeared to be stressed.

Dependencies (Rival Theor-

ies)

 

Observational -> felt like

stressed here (Pressure)

Dependencies (Rival Theor-
ies)

Observational (Pressure)

Dependencies (Rival Theor-

ies)

Defect (Defects & Vulnerab-

ilities), Stress (Pressure)

http://web.de

European Master in System Dynamics

II. D. 10 Observation with DevOps Team, 8 May 2017

Jonas Matheus | jonasmatheus@web.de ! cxxv i i i

52

53

54

55

56

57

58

59

60

61

62

63

The team discussed the availability of each team member and

clarified whether enough people would be present on the week-

end for the deployment.

Overall Impression

The meeting was governed by stress. The DevOps constantly

looked at their watches, postponed several problems to be

talked about after the meeting again, and discussed several

topics that were very problematic.

The team pointed to several of their items that, if not fixed and

solved, could not be deployed.

Pressure (Pressure)?

Pressure, Stress, Observa-

tional (Pressure)

Defect (Defects & Vulnerab-

ilities)

Productivity, agile (Software

Development), self-organ-

ising (Pressure)

Agile (Software Develop-

ment), Self-organising (Pres-

sure)

Setting

The DevOps team was in the same building as the researcher.

Hence, the researcher came to the office without being picked

up. Upon arrival, the researcher was introduced to the team.

The researcher was a bit too early and received a place to

work. During the time prior to the stand up everybody was

busy working. At the same time though, the atmosphere was

good, sometimes there were jokes and everybody was relaxed.

The two Product Owners from the business side were not present.

Instead, they had sent an e-mail which indicated that the team could

decide what to do. The team discussed the matter as follows:
“What about our friends from business?”

“They are not here today. They sent a brief email, basically

saying ‘do what you want’.”

“What do you mean?”

“”We just re-evaluate the backlog and set something for the

next sprint.”

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

http://web.de

European Master in System Dynamics

Jonas Matheus | jonasmatheus@web.de ! cxx ix

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

The team started on time with the Stand Up Meeting. As the

name indicates, the entire DevOps Team (eight people) was

standing around a screen and conducted the meeting.

Round-wise, each DevOp presented his/her current work. The

others asked questions or just listened to the one presenting.

The team had a good overview of each other’s work. One of

the team members was leading and guiding the meeting. Another

team member - she appeared to be the one with the best or-

ganisation and overview - interfered sometimes if necessary.

The way of work appeared to be rather informal and unstructured.

The team uses another, yet common software for organising a

sprint than the previous DevOps team.

Content and Situational Observations

Overall, the DevOps described what they had done and what

they were going to do next. The descriptions were at part quite

technical and are not listed here for two reasons, first because

those aspects are out of scope, and second, because of con-

fidentiality reasons. The following quotes describe how the team

talked and communicated.
“I learned something there, was quite cool…”

“Today I pick up a new story and just see what happens…”

One of the DevOps described a vulnerability […] The DevOps

had sent a report to the responsible. The conversation went on

as follows:
“If they can’t suppress it, we don’t go to production.”

“Why not?”

“Because we do not deploy in such a case.”

Productivity (Software De-

velopment) or Time con-
straints (Pressure)?

Agile (Software Develop-

ment)

Obviously not stressed

(Pressure)

Software Security (Software

Development), Security Risk

(Pressure), Vulnerability, Fix

(Defect & Vulnerability)

http://web.de

European Master in System Dynamics

II. D. 11 Observation with DevOps Team, 8 May 2017

Jonas Matheus | jonasmatheus@web.de ! cxxx

52

53

54

55

56

57

58

59

60

61

62

63

The team talked about the planning of the day regarding the retro-

spective and the panning. One of the team members could not be

present for the retrospective which did not seem to be an issue.

Overall Impression

The overall atmosphere was very relaxed and somewhat even

excited regarding the next sprint. The team was in a good

mood, no time pressure appeared to be present, and it seemed

like the team was satisfied and had a good working relationship.

Additionally, the team appeared to be fully self-organised as

they freely decided on what to do when and in which order.

Agile (Software Develop-

ment), Time Pressure, self-
organised (Pressure)

Productivity, Agile (Software

Development)

Agile (Software Develop-

ment) -> interesting as some

authors (e.g., Schwaber,
2004) said that closed doors

are not necessary…

See next page.

Setting

The retrospective session started shortly after the Stand Up. The

time in between was used to work, whereas the atmosphere was

quite relaxed and the people continuously talked with each other

and joked.

“…, how is the planning today?”

“Easy planning…”

“Yeah, we just do 68…”

“What 68?.”

The retrospective session was started somewhat on time.

One of the team members was missing due to another meet-

ing. During the first minutes in the meeting room everybody

was joking and the team did not really enter the topic. Once

they started with the retrospective, they closed the door and

became more serious.

Retrospective describes the activity of reviewing the previous

sprint. Each team member got a pen and post its to write down

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

http://web.de

European Master in System Dynamics

Jonas Matheus | jonasmatheus@web.de ! cxxx i

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

what went well and what could have been better. In addition,

the team members wrote down scores to give an impression of

their feeling about the last sprint. One of the team members

was collecting and organising the post its on the wall. While

there was one organising the meeting, there was nobody who

was leading the others.

Content and Situational Observations

The team clearly emphasised to aim at good quality. One of

the DevOps referred to “a period of hot fixes” from which

they were out by now but to which they also definitively do

not want to go back.

The team discussed several more specific content issues

which are not listed here for reasons of relevance and confid-

entiality.

The team discussed the problem of dependencies on other

teams, softwares, or even places where they need to travel to.

One of the DevOps was really enthusiastic about developing

some features. While he did some really important work in

the previous sprint which was very much appreciated by the

entire team, he was not too happy with it: “I really didn’t

know what to do. I was fixing the entire time. I have the feel-

ing that this round was somewhat skewed. Adding features

was really not a goal anymore… I believe there is enough on

the Backlog to do… I think I would like to develop something

in the upcoming time.”

Discussing the quality of software and the review process,

one of the DevOps emphasised a point that most others did

Agile (Software Develop-

ment)

Secure Software Develop-

ment (Software Develop-

ment), Firefighting, Busi-

ness Risk, Security Risk,

Quality (Pressure)

Dependencies (Rival The-

ory)

http://web.de

European Master in System Dynamics

Jonas Matheus | jonasmatheus@web.de ! cxxx i i

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

not seem to be aware about: “I’m new here, so I was really

wondering… Why do we not grab the coder and do the code

review together. I mean, it’s a great learning opportunity, we

should really consider doing that, but I guess we don’t have the

time, right?” [Quote 24] … Thoughtfully, the others agreed with

him on that suggestion. Interestingly, there was not much discus-

sion. One of the others mumbled something about that “if you

have way to little time, you don’t have time for such activities”

but afterwards the discussion went somewhere else.

Within the team, fixing seems to be really appreciated!

Close to the end of the retrospective, the team came back to the

topic on dependencies and collaboration. Next to general de-

pendencies (longer conversation about it), some of the DevOps

complained about a team that did not fulfil its duties regarding

standby. DevOps teams normally have a standby agreement with

other teams to cover each other in case of emergencies, in both

business and security. The DevOps pointed out the following:
“They [another team] don’t do standby, so if there is an issue

we have to work quite hard. I think, we should escalate that

to a higher level.”

Note: Quote 35.

Hence, in case of an emergency, problems may arise from

time delays in response, pressure, or understaffing. The team

discussed all options and decided to go the official way to

escalate the problem within the hierarchy of the organisation.

Overall Impression

The DevOps seemed to be quite satisfied with the previous

sprint. One of them summed it up by saying “I feel it was

productive. Could have been better, but I think it was good.”

Time Pressure (Pressure),

errors and vulnerabilities
(Defect & Vulnerabilities),

Learning (Maturity & Train-

ing), Differences in percep-

tions among employees

(Perception)

Quite a statement for time
pressure (Pressure)

Lack of Compliance (Secur-

ity Measure), Dependencies

(Rival Theories)

Pressure (Pressure), Emer-

gency, Response (Security
Measures)

http://web.de

European Master in System Dynamics

II. D. 12 Observation with DevOps Team, 8 May 2017

Jonas Matheus | jonasmatheus@web.de ! cxxx i i i

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

Setting

The planning of the upcoming sprint was initially planned for

after lunch. Due to a short term appointment within the de-

partment of the DevOps the planning session was postponed

to the later afternoon. The DevOps took care that this would

fit the agenda of the researcher.

In contrast to the retrospective, the planning did not take

place in a room but just in the open work space. The entire

team (including the one who was absent for the retrospective)

gathered around a large screen and started to discuss the

work for the upcoming sprint.

There was no manager or leader but instead the entire team

decided together, underlining the self-organised nature of

agile approaches.

The planning functions by assigning points to different tasks

on the Backlog.

Content and Situational Observations

The planning was quite informal and often based on guesses.

The team even joked about it. Yet, there seemed to be some

kind of informal roles within the team, meaning that some of

the DevOps were pushing for more, others for less, others for

different work. It seemed to be quite balanced and productive.

The team made several steps: First they analysed how much

work was left from the previous sprint. This work would need

to be finished first, and so they had to take those tasks with

them to the next cycle. In total those were X points. Next, the

Either part of company

culture or part of agile but

all over people where al-

ways taking care that things

match for the researcher…

Agile (Software Develop-

ment)

Agile (Software Develop-

ment), Self-organising (Pres-

sure)

Pull Lean (Pressure)

http://web.de

European Master in System Dynamics

Jonas Matheus | jonasmatheus@web.de ! cxxx iv

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

team discussed the number of tasks on the backlog. They

also discussed the importance of those tasks. Finally, the

team always referred to their normal number of points they

make per sprint to guide their decision process. In short, the

decision process was guided by the normal amount of work

done in a sprint, by the amount of work that is left from the

previous sprint which needs to be done first, and by the

amount of work that exists in total.

The self-organising and flexible nature of agile approaches

became quite clear when the team decided to try to do much

more work as usual because of a very important task. Inter-

estingly, the team discussed very long whether they should

“risk” to take the task despite believing that it would become

too much. Having been asked by the researcher about what

could happen if the team could not manage to make all

tasks, the team acknowledged that nothing would happen as

the products would simply not go to release as long as they

are not finalised.

Overall Impression

The team decided very freely about the upcoming work. The

system is flexible. The system very much resembles the lean

approach, as also indicated by participants from the group

model building workshops. Yet, some parts of the planning

seemed to be too unstructured (e.g., one DevOps mixed the

entire time the points that needed to be set for the different

tasks). It was obviously very good that one of the team

members had a very good overview. Overall, the team

seemed not stress but rather excited about the upcoming

sprint and the tasks they had chosen.

Push Lean (Pressure)

Anchor (Pressure)

Secure Software Develop-

ment (Software Develop-

ment)

Lean (Pressure)

Not stressed (Pressure)

http://web.de

European Master in System Dynamics

II. D. 13 Conversation, 12 May 2017

II. D. 14 Conversation, 18 May 2017

Jonas Matheus | jonasmatheus@web.de ! cxxxv

Business Risk, Security Risk

(Pressure)

The following quotation was written down after a private

meeting with an Executive from another organisation. The

meeting was not related to the study or to the European fin-

ancial organisation. Yet, the topic of the conversation was

cyber security and the comment summed up many previous

conversations the researcher had with colleagues.

X: Business is about risk. If there is no risk, there is no busi-

ness because everybody would simply do it. Cyber attacks

are just another kind of risk we have to deal with.

Note: Quote 39.

1

2

3

4

5

6

7

8

9

10

11

Errors (growing) (Defects &

Vulnerabilities); Mispercep-

tion / Understanding of

problem, global, not organ-
isation specific (Perception)

This meeting took place with several colleagues from the Eu-

ropean financial organisation and an external expert in software

security. The researcher joined the meeting for two reasons:

First, the meeting was an interesting learning opportunity,

second, he could discuss software vulnerabilities, testing, and

ways for improvement. In the light of this setting, the notes

below do not represent all aspects discussed during the

meeting but only those which are interesting for this study

and which are at the same time not confidential.

[…]

X: The global errors in software are piling up. This is poten-

tially not recognised but the overall number is, in my opinion,

by far larger than actually reported.

Note: Quote 10.

[…]

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

http://web.de

European Master in System Dynamics

Jonas Matheus | jonasmatheus@web.de ! cxxxv i

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

X: I think, developers need better help while making the

software. I don’t mean larger handbooks, or longer guidelines

because I think that does not help. I want to bring knowledge

close to the developers. The developers should know at each

very specific stages what to do, and why to do it, and how to

do it. With this approach, the developers see how things are

going while testing.

[…]

X: The global market runs behind. We fix too late. That costs

much more and that takes much more time than just doing it

right from the beginning. It is also that software is becoming

more complex which makes it even harder to fix afterwards. So,

what we need is, that we guide developers from the beginning.

[…]

X: I think, giving the developers clear help while programming

is the best and cheapest and most efficient way to go. And

we can think here about automated solutions too. Imagine

that the programmers get the information about the quality of

the software in real time. That would have a huge impact.

[…]

Note: The described approaches would very likely improve

the software quality through a simple approach, particularly

the automated real-time feedback! Yet, it is unclear to what

extent aspects like compliance, pressure, lack of awareness,

or unknown problems are considered in the discussion. This

remained open at the end.

Overregulation (Rival Theor-
ies),

Direct Support for DevOps

(Security Measure)

Vulnerabilities, Fix (Defects

& Vulnerabilities)

Software Complexity (Tech-

nology & Innovation)

Direct feedback -> System

thinking (Security measure),

Automation (Technology &

Innovation)

Pressure (Pressure), Lack of

Awareness (Maturity &

Training), unknown defects

and vulnerabilities (Defects
& Vulnerabilities), Compli-

ance (Security Measures)

http://web.de

European Master in System Dynamics

II. D. 15 Unstructured Interview, 18 May 2017

Jonas Matheus | jonasmatheus@web.de ! cxxxv i i

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

Interviewer: Hey X, thank you very much for taking the time.

X: No worries man, I really hope that I can help you.

Interviewer: Thanks, that is kind. I am pretty sure you can.

Let’s start quite easy [smiling]; Why do we have vulnerabilities

in software?

X: Laughing… Yes, that is a very easy start… To be honest, I

would say it’s business. You know, for business you look at

functionality, at features, at availability, and so on. As long as

that is given, business is happy.

Interviewer: I can imagine. Anyways… What do you think, is

there a way to find out how many errors you have on average

per feature?

[It followed a very long discussion. In the end, it seems that

there is no way of knowing that. What is known though is the

number of defects per line of code. If somebody can find out

the lines per code per component and than the number of

components per feature, then it would become clear how

many errors exist on average per features]

Interviewer: Anyways, I will try it later agin with some others

or with the DevOps team. And if we don’t know, we don’t

know, then we can also not make a number up.

X: There you’re right. But man, I’m sorry that I couldn’t help

you out there.

Interviewer: No worries.

Business risk (Pressure)

See below, II. D. 16

http://web.de

European Master in System Dynamics

Jonas Matheus | jonasmatheus@web.de ! cxxxv i i i

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

X: Can I help you with something else? I still have quite some

time to kill before the next meeting. Laughing…

Interviewer: That is great, thanks. Yes, I guess you can. I ac-

tually wanted to know the numbers to have a better idea

about how many vulnerabilities arise from defects in software

that is released.

X: That is a good question… I can really tell you, vulnerabilities

are not only critical because of their level, but also because

of the underlying mathematics. The numbers count because

many low and medium vulnerabilities may be as dangerous

as one or two critical ones.

Note: Quote 28.

Interviewer: Yes, I can totally see that. I was quite surprised

when I got to know that in many industries companies simply

ignore the lower vulnerabilities and put them on the back-

log…

X: Yes, that’s it man. You know, it is like meta data. One

piece alone is really not helpful but combined, many lower

vulnerabilities can give an attacker quite some information.

They enforce each other and they function like stepping

stones, it’s like a domino effect.

Interviewer: That sounds quite logical to me I have to say.

X: Yes, I think so too. But you still have so many low hanging

fruits out there… Many companies underestimate their real

weakness and many of them have a very poor error handling.

Vulnerabilities, Criticality

(Defects & Vulnerabilities)

Delay (Pressure), Vulnerabil-

ities (Defects & Vulnerabilit-
ies)

Vulnerabilities (Defects &

Vulnerabilities)

Weakness (Defects & Vul-

nerabilities), error handling

(Security Measure), Low
hanging fruits (Adversary

Behaviour & Cyber Attacks)

http://web.de

European Master in System Dynamics

Jonas Matheus | jonasmatheus@web.de ! cxxx ix

Interviewer: X, we started with that at the very beginning, but

let’s come back to that one more time. How is it possible that

we have so many software vulnerabilities in this world. Which

role does stress play in this matter?

X: Stress is really important. You can see from the code

whether somebody was stressed or not. You simply see it in

the quality.

Interviewer: What else may be problematic for software security?

X: You know, when teams plan their sprints - I know that

from experience, I also worked as a DevOps - it is easy to

plan with functionality. You have a “proof of concept”. Once

your software functions, well, then it functions, and you stop

testing it. Such use cases cannot be employed for security.

The problem is, many programmers are used to stop after

one successful test. For security you use, however, abuse

cases where the main idea is to find as many problems as

possible to make the software secure…

Interviewer: But this problem seems to be known… why do

DevOps not simply spend more time on that? I mean, there is

no reason to stop after the first “successful test”.

X: That is correct… but DevOps often lose the fight against

the product owner who prefers functionality over security…

Note: Quote 15.

Interviewer: So you mean, in the end, the business side has

the last word.

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

Stress (Pressure)

Use / Abuse / Software

Security (Software Devel-

opment)

Business, Financial Focus

(Pressure)

http://web.de

European Master in System Dynamics

Jonas Matheus | jonasmatheus@web.de ! cx l

X: Kind of, yeah. What you also have to see with tests:

Everybody is afraid to miss something, so that increases the

number of false positives. People rather report too much than

too little. But when you continuously report really high num-

bers then your mind is simply not able to deal with all these

reports. And after some time, your good efforts to avoid

problems create problems because you make errors. Per-

haps we can even say, the higher the false positives, the

higher also the false negatives [i.e., missed vulnerabilities].
Note: Very interesting concept. Since positives / negatives

are barely considered in this study, here potentially not ap-

plicable. Yet, X describes a very interesting mechanism.

Interviewer: Vulnerabilities come from errors…. So, how

much effort does it take to actually fix an error?

X: That really depends. Complex errors may take lots of time,

typos can be solved within less than ten minutes.The prob-

lem is when you have technical debt. There you can say, the

older the worse and the more difficult to fix. If you wait for

instance several years fixing that software becomes obsol-

ete… In my opinion technical debt and the lifespan of a soft-

ware are highly correlated. You know, it is so stupid… if you

need to fix a bug from the previous sprint, it takes you in

maximum an hour, most likely rather a few minutes. If a bug

is a year old, you may need weeks. To avoid that I think, re-

factoring should be done on a regular basis as part of the

normal development process. Sadly, in so many companies it

is never done.

Note: Quote 21.

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

Stress (Pressure), Test

(Defects & Vulnerabilities),

Systems Thinking (Security

Measures)

Software Complexity (Tech-

nology & Innovation)

Error - Technical Debt

(Defect & Vulnerability)

Agile (Software Develop-

ment), Lack of compliance

(Security Measure)

http://web.de

European Master in System Dynamics

Jonas Matheus | jonasmatheus@web.de ! cx l i

Interviewer: What do you think, why is it never done?

X: People often say ‘we do it later because now we really do

not have the time’, but then later it is simply not put on the

Sprint Backlog and just not done. [Quote 27] In addition, if

you plan with refactoring you already have a problem… as I

said, you should simply do it on a regular basis… Don’t mis-

understand me, I don’t want blame the DevOps, often you

also have dependency problems in agile and then you can

suddenly never do refactoring because you have to wait for

others…

Interviewer: Yes, I have already heard quite often that de-

pendency is a hue problem in agile… But X, I think you’re

meeting is in a bit. What would be your final comment for this

very nice and enriching discussion?

X: Oh, yeah, you’re right man. Hm… I really like the kiss ap-

proach. You know, keep it simple and so on… and I think if

stress is high, quality and particularly security go down which

costs a lot in the long run. In fact, cheap is always expensive

in the long term. Eventually, you need security anyways, so

do it right from the beginning! When you do it later, it costs

more, it is harder, and it harms your business.

Note: Quote 38

Interviewer: Hey X, thank you very much that was great, you

gave me so many valuable insights.

X: No worries man, I really enjoyed it. Let’s continue another

time. And if you have some questions in the meantime, just

come over…

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

 

Time pressure, delay (Pres-

sure)

Dependency (Rival Theory)

Stress, Costs, Risks (Pres-

sure)

http://web.de

European Master in System Dynamics

II. D. 16 Conversation, 18 May 2017

Jonas Matheus | jonasmatheus@web.de ! cx l i i

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

This conversation took place with a security expert who was on a

short visit in the office as he normally works in another country.

The expert and the researcher discussed many technical details of

software development and software security. The discussion was

active and resembled rather a workshop than a mere conversation.

The text below summarises the gained insights which are suitable

for documentation and gives an impression of the work. Next to the

discussion given below, the expert and the researcher also checked

data [particularly numerical| and analysed it together to make sure

that the right insights were used for the study and the project

within the organisation [for confidentiality reasons not shown below].

[…]

X: Y, lets get some food an then get to work!

Interviewer [Y]: Great, let’s go. [around 17.00h]

[…]

X: So what do you mean with an error? What is an error for you?

Interviewer: Any kind of mistake you have during coding of

configuring the software. Or more generally. An error or a de-

fect is anything you do not want to have in your software.

X: Ok, quite broad definition but I see the value of it. For se-

curity, all those things may be a problem.

Interviewer: Exactly, that is why I chose such a broad definition.

Error, Mistake, Defect (De-

fects & Vulnerabilities)

Secure Software (Software

Development)

http://web.de

European Master in System Dynamics

Jonas Matheus | jonasmatheus@web.de ! cx l i i i

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

X: Good for me! Now let’s see. You know that most software

vendors develop their software with libraries… let’s go into that…

[Shortly later…, around 17.30h]

X: So, if you have an error, or defect, or mistake, or whatsoever you

want to call it in this library, is that one mistake for you or are those

five mistakes because five features are based on that library.

Interviewer: Tricky question… Well, you need to fix one mis-

take but - assuming that this mistake makes you vulnerable -

you have five vulnerabilities. What do you think?

X: Yes, I think that sounds logical… Ok, let’s get to the laptops

and do some research on open source software… we should

be able to find there the number of defects per feature…

Interviewer: Great, let’s go.

[Quite some time later…around 18.15h]

X: I think it should be possible to find out how many errors

you have per feature. We can find online open source solutions

or the software of vendors and check there. We already know

the number of errors of lines per code [1-10/1000 is seen as

worldwide average]. We now need to find out the actual lines

of codes for a software and then we need to see how many

classes and how many components such a software has.

[Quite some time later… around 19.00h]

Technical Solution (Techno-

logy & Innovation)

Technical Solution (Techno-

logy & Innovation)

Error, Mistake, Defect,

Vulnerability (Defects &

Vulnerabilities)

http://web.de

European Master in System Dynamics

Jonas Matheus | jonasmatheus@web.de ! cx l i v

X: It took more time than expected, but here we have something

that brings us closer… based on this open source solution we can

expect to have […] files for a class and […] files per component.

Interviewer: How do we get closer with these insights to the

number of errors?

X: Let’s see how we can make that…

[Quite some time later… around 19.30h]

X: It really seems that there is no such direct relationship…

Do you have any other idea or hint how we can get there

from your previous investigation?

Interviewer: Well, initially I thought you would answer me that

question! Both laughing… I have one paper [Rahmandad, &

Repenning, 2016] that gives a number but I am not sure

whether it is accurate… and I will meet a DevOps team and

this is definitively one question that I am going to ask…

X: So, what was the number?

Interviewer: Tell you first what you would guess and then we

compare. Laughing…

X: Puh, that is hard… For this open source software we looked

into… If I have to guess I would say it is definitively higher than

0,3 defects per feature… what does the paper say?

Interviewer: 0,5 per feature… so could even be an accurate num-

ber… Well done! Both laughing… I will check with the DevOps…

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

Secure Software (Software

Development), Error, Mis-

take, Defect, Vulnerability

(Defects & Vulnerabilities)

http://web.de

European Master in System Dynamics

II. D. 17 Unstructured Interview - Validation 2, 23 May 2017

Jonas Matheus | jonasmatheus@web.de ! cx lv

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

These notes document an unstructured interview that evolved

from the presentation and discussion of the outcomes of the

study / project to the involved team in the security department

of the European financial organisation. The presentation was

initiated by the responsible for software security who wanted the

team to know about the project in greater detail. While the pre-

sentation had an informatory function for many of the experts,

for the purpose of the study this presentation served as second

opportunity for validating the findings of this research. As described

above in II.D.6, the researcher used the approach of disconfir-

matory interviews for validating the model and the results. In

contrast to the recommendations from Andersen and colleagues

(2013), but in line with the wish of Diker (2003), the disconfirmatory

interview was done with a group and not in an individual setting.

For further information see below at II.E. Prior to presenting the

model, the researcher strongly invited the participants to questi-

on the results and interrupt the presentation whenever they felt

like. Once more, the model was shown to the experts by unfol-

ding it feedback loop per feedback loop. Due to the nature of

this meeting, the text below does not show the entire interview.

Instead, it provides the notes taken by the researcher during

the presentation and discussion. Without being experts, the team

members were all familiar with system dynamics terminology

and methodology as they had been confronted with several times.

[…]

X: But does this model include automated testing?

Interviewer [Y]: Not explicitly…

Automated Testing (Tech-

nology & Innovation)

http://web.de

European Master in System Dynamics

Jonas Matheus | jonasmatheus@web.de ! cx lv i

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

X: But everybody uses automation nowadays… what does a

model serve us if we do not have automation in there?!

Z: Well, I would say we have automation in there. Simply be-

cause it does not need an own structure. It is the same thing

for the DevOps, just faster and better…

W: I agree with that… Automation just means that we do our

tests with automated tools, but it does not say that

everything changes…

X: Wait, wait… I cannot follow… why do you talk about test-

ing? And why does nothing change with automation?

V: X, I have to say that W, Y, and Z, are right. Automation is

simply for testing. Yes, there are a few other things we can do

with it, but for now this is limited. It safes us lots of time with

testing and gives better findings than many manual tests, but

we still need to fix it ourselves. Isn’t it W?

Note: Quote 11.

W: Yes, that really is the case! Discovering but not fixing doesn’t help.

X: How is that possible, and why is it done so much then?

W: Because it really helps. You find much more defects with

much less work. That is great.

Z: So X, I would say, we cover automation here quite well. I

think we can keep it like this in the model.

X: Hm… Ok, let’s move on.

Test, Fix (Defect & Vulner-

abilities), Automated Testing

(Technology & Innovation)

Secure Software Develop-

ment (Software Develop-

ment), Test, Fix (Defect &

Vulnerabilities),

http://web.de

European Master in System Dynamics

Jonas Matheus | jonasmatheus@web.de ! cx lv i i

[…]

U: Do you mean with awareness that the DevOps are aware

of the training possibilities or that they are aware of security

or doe you mean both?

Interviewer: Good question! Yes, we had this discussion previously.

The model here only shows the awareness of DevOps for

training and then whether they are trained and then whether

they are mature. Since security awareness is part of maturity,

we thought about including it here. What do you think?

U: Ah, yes, I see. Yeah, it’s not so intuitive at first glance, but

I get what you mean.

Interviewer: Ok, thanks. Do you think we should change it?

U: Ah, no, I think it’s ok like that…

T: I think so too. But we should make clear when we work

with the model in the future and present it that maturity includes

awareness because creating an awareness culture is really

one of the major solutions for security.

U: Yes, I agree. We should keep that in mind.

Interviewer: Thank you for the comment. I will take a note on

that! Still not change it?

U: No, I think it’s fine.

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

Awareness (Maturity / Train-

ing)

Security Awareness, Matur-

ity (Maturity & Training)

Awareness Culture (Maturity

& Training)

http://web.de

European Master in System Dynamics

Jonas Matheus | jonasmatheus@web.de ! cx lv i i i

[…]

S: Do you cover with that attack also insider threats?

Interviewer: No, not really. I mean, if an insider attacks like an

external, then yes, but else no.

Z: I would also say that this is outside the boundary of this

model. An insider really works differently than what we see here.

An insider has more motivational aspect about why to attack.

U: Yes, I agree with you but I could imagine that to a certain ex-

tent this structure holds for basically any attack. Any attacker

needs to have information, find a way in, and actually exploit

that way. So, yeah, you say its different, but the way of the

attack is quite similar for me…

Z: Yes, that may be. But I think an insider attack has further

dynamics that we do not look at here.

Interviewer: S, is your question answered?

S: Yes, perfect, I just wanted to know that…

Interviewer: Do we need to change something or adjust

something or do we need to keep something in mind here?

U: No, I think all of us got that this is not an insider threat but

I think also that this attack structure is quite generic, so its

good. Keep it.

Z: Yes, keep it like this.

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

Insider Threat (Adversary

Behaviour & Cyber Attacks)

Attack (Adversary Beha-

viour & Cyber Attacks)

http://web.de

European Master in System Dynamics

Jonas Matheus | jonasmatheus@web.de ! cx l i x

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

[…]

S: Why do you have the footprint here? What do you mean

with that?

Interviewer: Well, the larger an organisation the more known

it is and the more likely it is a target. So an organisation may

get attacked simply because it is known or because it is part

of a certain industry, and so on…

V: I agree… I think the footprint is quite important. There are

even organisations that do social media data mining to have

intel that they can use for preventing attacks.

Interviewer: Clear, question answered or shall we adjust

something?

S: Nono, fine…

[…]

R: Are those DevOps internal or external?

Interviewer: For now, we focused on internal DevOps. But

yes, I am aware of the trend that many companies outsource

their people and hire instead external providers.

R: Yes, that is correct. It’s quite common.

Q: But I think it’s interesting. External people are often more

mature because they are experts in their field and you hire them

Footprint (Security Meas-

ure)

Social Media Data Mining,
Prevention (Security Meas-

ures

DevOps (Maturity & Aware-

ness)

See next page

http://web.de

European Master in System Dynamics

Jonas Matheus | jonasmatheus@web.de ! c l

for that. But I’m not sure whether you lose that benefit be-

cause those externals do not know the culture and system of

the company they are working in…

T: Yes, I agree on that.

Interviewer: Ok, do we need to make that explicit here?

Q: Na… I don’t think so. R?

R: No, it’s fine like that.

[…]

X: But that is unlikely… How many people does an organisa-

tion need for handling incidents?

Interviewer: I completely see that this is unlikely. But it exists

and thus offers the potential to firefighting attacks.

Q: I think this is a really interesting and valid mechanism! And I

think we should be aware of that. Just recently, [another firm]

had something similar. They had more than a thousand people

in the warroom for an entire day. This was a planned exercise

for training but the business impact was still heavy. I can really

imagine that this has a strong effect on companies.

Note: Quote 34.

[…]

Interviewer: Are there any final ideas, comments, remarks,

wishes? What do you think is still missing here?

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

Maturity, Culture, System

(Maturity & Training)

Firefighting (Pressure)

Firefighting (Pressure)

http://web.de

European Master in System Dynamics

Jonas Matheus | jonasmatheus@web.de ! c l i

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

S: Do we really have overregulation?

Interviewer: Sorry, I missed to point that out. This structure

shall only indicate that you can create overregulation, not that

you have it…

Q: Laughing… With regard to one specific thing [name de-

leted] we definitively have overregulation Many laughing…

But no, I think its perfectly fine.

S: Ok, yes, good.

Interviewer: Are there any other questions or comments?

X: How do you make sure that you have the right data? Yes,

this one is qualitative but when you build the model, I mean, the

simulations, how do you know that you have the right data.

Interviewer: I rely on the help of this team.

Z: Yes, we work together on getting the right data. We check

that we have the correct numbers when we get information

from others.

X: Make sure that you really do that. Otherwise we cannot

use the insights from the simulations later on…

Interviewer: We use very clear validation methods…

Z: Yes, we check our results with historical data, with expert

opinion, with publicly available and internal data and so on…

Overregulation (Rival The-

ory)

Validity (Future Research)

Validity (Future Research)

Validity (Future Research)

Validity (Future Research)

http://web.de

European Master in System Dynamics

II. D. 18 Conversation, 30 May 2017

Jonas Matheus | jonasmatheus@web.de ! c l i i

W: X, we really make sure that the data is correct. Y and I

spent last week more than two hours on discussing errors

and mistakes and vulnerabilities and checked that we have

the correct data. We’re really on track there.

X: Ok, that sounds good. Guys, I just want that we do good

work. But it looks like we do, I like that.

[…]

224

225

226

227

228

229

230

231

232

Validity (Future Research)

Automation (Technology &

innovation)

Fix (Defect & Vulnerability)

Understanding of Situation

(Perception)

X: Good morning, shall we grab a coffee?

Interviewer [this was really a conversation, so the term does

not really apply but it is kept for consistency]: Yes, of course,

let’s go.

X: How is the project, the model, and the study going?

Interviewer: Thank’s for asking quite good. I really liked the

recent team meeting. That got me quite some ideas.

X: That is great. What did you like about it? What are your

thoughts about it?

Interviewer: Well, I found the discussion on automation really

good. It was quite interesting to see how V and W pointed

out the limitations of it. For me it really seemed like that you

lose all benefits of automation if you do not fix after finding.

That was really interesting and I also had the impression that

there may be some misperceptions about the actual

strengths of automation… What do you think?

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

http://web.de

European Master in System Dynamics

Jonas Matheus | jonasmatheus@web.de ! c l i i i

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

X: Yes, true. People want automation but finance basically says

‘you get automation, but how many people do we save by that?’

The problem there is, even with automation we do not get better. It

is true that we detect more but since we have less people, we

can’t benefit from our increased knowledge because we can’t fix it.

Note: Quote 12.

Interviewer: Yes, I really have the impression that the value of nor-

mal staff is often underrated. I start to have the perception that our

initial idea for the modelling of high workloads, higher work efforts

in the light of too little people, and errors seems to be quite valid.

X: Yes, I think so too.

Interviewer: Not saying that it is the case here in this organ-

isation, but it seems like a general possibility.

X: Yes, we’re doing quite alright. But still, instead of hiring

more DevOps for actually doing more work, they hired some-

body basically holding a whip for making the DevOps work

faster and to increase the pressure to deliver. [Quote 8]

Interviewer: Laughing… If you say so… but I see one major

benefit from automation even if you do nothing afterwards…

at least you know your future work and you do not adapt to a

wrong future by underestimating the true number of problems…

X: Yes, you’re right. But you could still have to many vulnerabilities.

Interviewer: That’s why you need both: People and automation.

X: Exactly, I think we’re on a very good track!

Business, Finance, Risk

(Pressure), Layoff (Maturity &
Training), Automation (Tech-

nology & innovation)

Workload, Pressure, Under-

staffing (Pressure), Layoff

(Maturity & Training), Error

(Defect & Vulnerability)

Pressure (Pressure), Opinion
about management (Per-

ception)

Systems Thinking (Security

Measure)

http://web.de

European Master in System Dynamics

II. D. 19 Unstructured Interview with DevOps Team, 2 June 2017

Jonas Matheus | jonasmatheus@web.de ! c l i v

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

Setting

The researcher visited again the same DevOps team which he

had observed during the retrospective and planning meeting.

This meeting was at the middle of a sprint, in contrast to the

previous ones which indicated the start of a new sprint.

Since the team had offered its help whenever needed, the rese-

archer gladly accepted the invitation to discuss a few aspects

most likely DevOps know best about.

The meeting took place in a room. The door was closed. The

meeting started exactly on time and ended exactly on time.

The atmosphere was from the beginning much more tense

than during the previous meetings. Everybody seemed to be

somehow slightly stressed.

Content and Situational Observations

Interviewer: Thank you for having me again. I really appreciate your

help and you have given me already many insights. Thanks a lot!

Today I have quite some questions, so should we just get started?

X: Yes, go ahead.

Interviewer: Can it happen that all of you are working on an

incident and nobody is left for developing and operating

software?

Y: Well, every team keeps space for incidents. But I think you

never have everybody in response.

X: I’m not sure I agree with you… Think about the one case.

Agile (Software Develop-

ment)

Stress? (Pressure)

http://web.de

European Master in System Dynamics

Jonas Matheus | jonasmatheus@web.de ! c l v

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

There we were quite busy. [To the interviewer] That was not a

security incident. That was a planned thing… we decided together

with the managers that we want to do something important…

we are glad that we did it but there we had months of heavy

work… That wasn’t really response but all of us were busy…

Y: Ah yeah… you may be right…

Interviewer: Ok… Hypothetically speaking, what do you think

are reasons for a growing backlog?

Z: Dependencies…

W: The items are just not important anymore and nobody dele-

tes them from the backlog…

V: I feel that we do not have too much work, so I don’t know…

U: Yes, that’s why he said “hypothetically”… laughing… I also

think that it is dependencies…

T: Sometimes it is also that things just pop up… you did not

plan with it but then something happens and you have to

postpone things… I mean, that’s also part of a backlog…

S: It’s also that you have more features which means that you

have more work and more knowledge about more work…

Z: Yeah… you see… it’s difficult… you know, that’s the nice

thing with agile - nobody knows what you do, not even we

know it… Laughing…

Workload (Pressure), Incid-

ent (Adversary Behaviour &
Cyber Attacks)

Dependency (Rival Theory)

Dependency (Rival Theory)

Software Development

(Software Development)

Software Development

(Software Development)

Agile Software Develop-

ment (Software Develop-
ment)

http://web.de

European Master in System Dynamics

Jonas Matheus | jonasmatheus@web.de ! c l v i

Interviewer: Laughing… Ok, thanks, those were quite some

answers… Next, do you have fixed tasks or can you change

freely between, let’s say developing, testing, and fixing?

Y: We move freely.

Z: Yes, that’s part of agile.

Interviewer: Ok, great. Next question… To what extent do you

use automation and how much does that change your work?

Y: Of course, we use automation. Everybody does that…

W: One of us used to spend his entire time on testing the develo-

ped software. Now with automation, we have much more time for

developing and operating. Of course, we still do manual testing

but by far not as much as we used to. [Quote 9].

X: Just as a note, we have not too much time left and you said

you have more questions. We should hurry up.

Interviewer: Ok, yes, thank you for reminding me. Just based on

your experience, how many errors per feature do you think exist?

[Not listed due to confidentiality because here the discussion

was not only about open source software that everybody has

access to but about internal software, software from vendors,

and open source software. Thus, this part is not given.]

Interviewer: Thanks. When do you fix errors?

T: Generally immediately.

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

Agile Software Develop-

ment (Software Develop-

ment)

Automation (Technology &

innovation)

Productivity (Software De-

velopment), Automation

(Technology & innovation)

Disruption (Software Devel-

opment), error (Defect &
Vulnerability)

http://web.de

European Master in System Dynamics

Jonas Matheus | jonasmatheus@web.de ! c l v i i

Interviewer: Ok, and do you do refactoring to avoid more

complex problems?

Y: Ah, we do it sometimes…

U: I think we should take the time for doing it… we do it too

little…

X: Why should we take the time for refactoring? It is obvi-

ously done enough because otherwise it would be a priority

on our Sprint Backlog. [Quote 21]

Interviewer: Hm… ok… What do you think are main sources

for vulnerabilities? And how do you make sure that there is

no vulnerability when you release a feature?

Y: There you should ask T…

T: Smiling… more and new technology like libraries can really

help you but you can also make quite some mistakes. We are

really aware of that and take care to avoid problems there…

yeah… how do we know about vulnerabilities… generally

pentest tells us about the quality of our work.

Y: Yes, I agree. When you pass pentest, you’re fine.

X: Yes, I think so too. There are no vulnerabilities in our soft-

ware because we would know whether the features are vul-

nerable because pentest would tell us. Since that has not

been the case, there are no vulnerabilities. [Quote 22]

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

Agile - Refactor (Software

Development)

Understanding of situation

(Perception)

Understanding of situation

(Perception)

Vulnerabilities (Defect &

Vulnerabilities), Awarness

(Maturity & Training), Sys-

tems Thinking (Security

Measure), Technical Solu-

tions, Libraries (Technology

& Innovation)

Pentest (Security Measure)

Understanding of situation

(Perception)

http://web.de

European Master in System Dynamics

Jonas Matheus | jonasmatheus@web.de ! c l v i i i

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

Interviewer: Ok… Two last questions…

X: Sorry to interrupt, but I stop here at two o’clock, then I

need the room for another meeting…

Interviewer: Ok, sorry, I’ll try my best. First, I already talked

with S about it, but what is the connection between the

overall number of features and the work you have to do.

Y: Well, if there are more features, there is more work.

S: That’s what I said too. But I also think that when there is

more work, we create more features…

Y: Hm… yes, I think so… sounds good.

Interviewer: Second…

X: Sorry guys, it’s two and we need to stop. Thanks for com-

ing over and working with us.

Y: Ah, that’s bad. If you need anything, just get in contact

with S and come again.

Z: Yes, I think that’s good. Would be great.

Interviewer: No worries, thank you for the great help.

Overall Impression:

The team was much more stressed during the sprint. Outside of

the room, the researcher continued talking with S who admitted

with a grim smile that those days the team was quite under busy.

Software Development

(Software Development)

Time Pressure (Pressure)

Observational, stress (Pres-

sure)

http://web.de

European Master in System Dynamics

II. D. 20 Unstructured Interview, 21 June 2017

Jonas Matheus | jonasmatheus@web.de ! c l i x

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

Interviewer: X, do you have a moment for me so that I can ask

you one question?

X: No… smiling and silence… but two is fine for me [smiling].

Sorry, I am in this mood today… laughing…

Interviewer: Perfectly fine for me smiling… and thanks a lot, X.

Do you remember our meeting a few month ago about the topic

of software vulnerabilities?

X: Yes of course, we talked about vulnerabilities, how they are

created, how we can find them, and how they may be ex-

ploited. You have the data on that from Y., correct?

Interviewer: Yes, that is correct. That data is, however, con-

cerned with […], not with the vulnerabilities created by software

developers here in the company. Instead, I am particularly inter-

ested in software vulnerabilities caused by internal development.

X: Ah yes. Hm… I think I told you that also software vulnerabilit-

ies can be exploited by malware as well as hacking attacks?

Interviewer: Yes, you did.

X: Ok, great, so we are on the same page. But sorry, what is it

that you want to ask?

Interviewer: Ah yes, indeed. I am interested in why there are ob-

viously avoidable software vulnerabilities. According to CVE and

the Rand report on Zero Days - you know that one, don’t you?

[X shows that he knows it] - there is a growing number of known

Vulnerability (Defect & Vul-

nerability), Hacking, Mal-

ware (Adversary Behaviour

& Cyber Attacks)

http://web.de

European Master in System Dynamics

Jonas Matheus | jonasmatheus@web.de ! c l x

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

and unknown vulnerabilities. Additionally, Verizon shows the

growing number of successful attacks, literature, practice

and media emphasise the importance of hacking attacks,

and there are support mechanisms such as the BSIMM or

OWASP Top 10 to avoid defects and subsequent vulnerabilit-

ies. Yet, most of the discovered vulnerabilities for instance by

pentests or responsible disclosure, are simple, easy to avoid,

and are sometimes even on the OWASP Top 10. What do you

think, what is the reason for that?

X: Indeed, I agree with you. Most of what is found is very simple

and easy to avoid. I think there are several reasons.

Interviewer: Do you have anything specific in mind?

X: Security is not the major focus of software development.

Interviewer: Do you think about the trade-off between func-

tional and non-functional aspects [Note: in software devel-

opment and even more general cyber security, it is common

knowledge that security always involves trade-offs]?

X: For example.

Interviewer: Since we now touched upon this topic. Thinking from

a management or business perspective: how would you see the

time dimension in this context? I mean, companies work with

short-, medium-, and long term perspectives. How would you

describe these two - functionality and security - aspects?

X: Functionality is short term, definitively It’s about creating im-

mediate business value. And it’s about prestige… You know?

Business (Pressure)

Short term functionality,

finance, value (Pressure)

http://web.de

European Master in System Dynamics

Jonas Matheus | jonasmatheus@web.de ! c l x i

Interviewer: I think so, but please, go ahead.

X: Functionality brings the team more prestige here within the

organisation. Nobody sees security. So, they go for function-

ality and for the prestige. [Quote 20]

Interviewer: What about medium and long term?

X: A high quality is always nice but I would say it pays partic-

ularly in the long term because you build on it.

Interviewer: Coming back to my initial question, what is the

reason for avoidable mistakes?

X: When developing functionality, we know the use cases.

Security is more difficult because we must think of abuse

cases. When we need to decide, often the certain use cases

come first, and then the uncertain abuse cases. [Quote 16]

Interviewer: Ok, what else?

X: Security awareness. For many people in IT and business it’s

simply not a topic. And people underestimate the problem be-

cause they cannot imagine the causes and consequences.

People are not hired for security but for functionality because

security does not pay off and is invisible. If you have no attemp-

ted and prevented attack, security doesn’t pay off. That’s why

secretly quite some people in the security field always hope for

small incidences, so that managers stay aware of the problem.

Interviewer: I see, very nice, thank you for the explanations.

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

Opinion about others (Per-

ception)

Long term quality / security

(Pressure)

Use, Abuse (Software De-

velopment)

Security Awareness (Matur-

ity & Training)

Misperception of Danger
(Perception)

Understanding of Security

(Perception)

http://web.de

European Master in System Dynamics

II. D. 21 Unstructured Interview, 22 June 2017

Jonas Matheus | jonasmatheus@web.de ! c l x i i

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

The interview evolved from a conversation that the researcher

and the expert had anyways.

Interviewer: So X, what do you think. Are security investment

rather short-term, or medium-term, or long-term?

X: Ah man, you know, security is always good because when

you increase security you increase the overall quality of a

software… but many people don’t get that.

[A colleague joins the conversation… short interruption, small

talk and then the discussion goes on].

Interviewer: I see. Ok, if I frame it differently: When we think

about software functionality and software security, where do

you see those two from a temporal perspective?

X: Yeah… Functionality is short term… you do it now for surviving

market pressure.

Y: I’m not fully convinced there. I mean, yes functionality is

short term but I’m not sure whether we have such market

pressure… I would say, since we are a financial organisation

time to market pressure is less of a problem for us. We are

not an app developer. We do not lose market share if we re-

lease something later. We also do not have to address all

customer demands, but instead make sure that the software that

customers use actually functions in a proper way. [Quote 4]

X: Yeah, you could say so… that is valid…

Secure Software Develop-

ment (Software Develop-
ment)

Short term Functionality,

market pressure (Pressure)

Skeptical about time to

market pressure (Pressure)

http://web.de

European Master in System Dynamics

Jonas Matheus | jonasmatheus@web.de ! c l x i i i

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

Y: For being good you do not need to be a first mover. Just

be an early adopter: You are still fast on the market but you

learn from the mistakes of the others…

[The conversation continued, after a while Y left again.]

Interviewer: Ok, I see that point. What do the two of you think

about security? What time horizon do we have there?

X: I would say security is rather long-term. I mean in the first 24

to 168 hours you may get attacked more because hackers want

to “test” your new software… but afterwards it is really long-

term. If you are vulnerable the question is not if you get suc-

cessfully attack but when. So, I always say: You need security

anyways, just build it in and make it right from the beginning.

Interviewer: What would you recommend?

X: Always check for technical debt, always refactor, invest in

good tools and libraries, and do not postpone too much be-

cause then you may end up never doing it… I would bet it

pays off very fast if you make a good job at the beginning.

Interviewer: All of that makes sense… But then I’m still wonder-

ing, why do people not build it in? It seems so much better!

X: Ah man, you know… If there is high business pressure,

you go for functionality because you need to survive busi-

ness. You should not do that for too long though but most of

the time you would. [Quote 19]

Interviewer: Ok, so again the business-security-nexus… Thanks.

Short short term with se-

curity and then long term

(Pressure)

Secure Software Develop-

ment (Software Develop-

ment)

Software development

(software Development),

technical solutions (Techno-

logy & Innovation)

Business Pressure (Pres-

sure)

http://web.de

European Master in System Dynamics

II. D. 22 Conversation, 22 June 2017

Jonas Matheus | jonasmatheus@web.de ! c l x i v

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

X: Functionality is for making money now and security is a

long-term investment. People don’t think that far ahead…

[…]

X: Why should you knowingly accept such security risks?

That’s the idea of risk… There was this car case in the USA,

quite some time ago, where a company built cars with a tank

in the back of the car knowing that people would die in case

of a rear-end collision. They still did it because they saved a

few dollars per car…

Interviewer: And?

X: They got fined in the end after some people suffered from

severe injuries and others even died…

[…]

X: Yes, that is nice about agile. You are more flexible and you

try to really have no unnecessary pressure…

Interviewer: How do you do that next to make people work

harder and longer?

X: One approach is having more people for a project… If we

want to increase the people working on something, we do not

increase the team size, but add new teams. Let’s say we have a

team of eight people. We then split the team in two teams with

four people each and add four new DevOps to each team, and

if necessary, we just continue like this. [Quote 7]

Functionality short term,

security long term (Pres-
sure), Problem Understand-

ing (Perception)

Risk approach to finance

(Pressure)

Agile (Software Develop-

ment), Pressure (Pressure)

DevOps (Maturity & Train-

ing), Problem Awareness

(Security Measure)

http://web.de

European Master in System Dynamics

II. D. 23 Unstructured Interview & Validation 3, 22 June 2017

Jonas Matheus | jonasmatheus@web.de ! c l xv

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

Interviewer: Hey X, thank you for always taking the time for

me. These conversations really help check whether I am on

the right track.

X: Yes, that’s alright. I like our conversations.

Interviewer: Me too, thanks. X, you know, I’m wondering how

it is possible to have vulnerabilities in the light of all those ef-

forts to avoid them. I mean, there are process models, there

are guidelines, there are automated tools, etc. I heard about

a lack of compliance, I heard about lacking awareness, I

heard that business does not really care about security be-

cause it does not give but cost money, and so on… What do

you think, what are the main reasons for vulnerabilities?

X: First of all, I would say that the more software you have

the more exposure there is. When you have more assets,

then the attack surface is larger.

Interviewer: I understand. So are the numbers of vulnerabilit-

ies growing because of the increasing use and importance of

technology?

X: Yes and no. Yes, as I explained above but also no because

the picture is more complex. Many organisations outsource

the development and operations of minor, less important issues.

Those are generally not connected to the actual organisation,

so you do not really risk something. Quite often, the standard

within companies is really high and the standard for those

outsourced solutions is quite low. I don’t like that because an

organisation’s reputation can still be affected by a successful

Weaknesses, Exposure

(Defect & Vulnerability)

Change of future and tech-

nology (Technology & in-

novation)

Business (Pressure)

Employee Opinion, Mana-

gerial Opinion (Perception)

http://web.de

European Master in System Dynamics

Jonas Matheus | jonasmatheus@web.de ! c l xv i

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

attack against an outsourced solution. I mean, the thing is

really not important so you can do that but I find it’s the

wrong approach.

Interviewer: Ok, I see that part. What else do we have? You

know, I have now so much data and information that I want

to consolidate the insights. But for doing that I need to be

sure that I didn’t miss something.

X: Clear. Another thing is whether you talk about public fa-

cing assets or internal assets. What you could see with the

massive, publicly well documented hack against a large elec-

tronics, entertainment, and movie company where an attacker

managed with hard work to get insight their system. After-

wards, however, he could move around entirely free because

their internal assets were really not well protected. You don’t

want that…

Interviewer: Yes, I have heard that before. But of course, if

you have limited resources, you first defend on the outside…

X: Obviously, that’s why such situation occur. You said earlier

that there may be a lack of compliance… I’m not sure I

would follow you there. I think it depends on your reference

point. Some industries have really high standards, others

have lower ones. Thus, somebody can be very compliant and

still develop very insecure software… and somebody else

can develop very secure software but not comply to rules…

Interviewer: That is very interesting. Thank you. Yet, I heard

quite often people talking about this topic… they did not

seem to have such a balanced view as you just described…

See above…

Public facing assets (De-

fects & Vulnerabilities)

APT (Adversary Behaviour

& Cyber Attacks)

Comp l i ance (Secur i t y

Measures), Understanding

of Situation (Perception)

http://web.de

European Master in System Dynamics

Jonas Matheus | jonasmatheus@web.de ! c l xv i i

Anyways… Somebody once told me that the tension

between functionality and security is as normal as the tension

between freedom and security in our society… what do you

think?

X: I fully agree. It is normal, it should be there and we can

handle that.

Interviewer: But if you have this tension, you have stress…

haven’t you?

X: Yes, true. But also the other way round: If you have no

stress you have no trade-off.

Interviewer: How do you think people generally decide when

there is this tension?

X: If business is important, people take a shortcut with secur-

ity or simply postpone tasks. It stays on the backlog though,

so it should be done… you cannot just take something away

from the backlog without doing it, so it should be done…

Interviewer: Do all teams follow that rule of “business-first”?

X: Laughing… No, by far not.. It depends on their maturity

and awareness about the topic. The more mature, the less

likely are they to drop any security issues… The good thing in

agile is that we have an ownership culture. The one who

builds and the one who manages is responsible. That means,

if something goes wrong it is first the business side that has

to explain it and then the DevOps… so in that sense there is

quite an incentive to make things right…

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

Business Risk, Security

Risk (Pressure)

Business Risk, Security

Risk, Trade-Off, Stress

(Pressure)

Business Risk, Security

Risk, Delay (Pressure)

Agile, Secure Software

Development (Software

Development), Maturity

Culture, (Maturity & Training)

http://web.de

European Master in System Dynamics

Jonas Matheus | jonasmatheus@web.de ! c l xv i i i

Interviewer: I understand… let’s move on to something else…

How would you see functionality and security from a temporal

perspective? Are those two short-, medium-, or long-term?

X: Functionality is short term, that is clear. You create functiona-

lity for creating value. Security is also somewhat short-term

but also long-term… I think, it’s rather a long-term thing…

The problem here is that long-term benefits from security are sa-

crificed for short-term gains from functionality because peop-

le think it is so unlikely that something happens. [Quote 17]

Interviewer: And?

X: Ah, they are wrong, obviously!

Interviewer: Ok, I guess I have it. Do you have some more time?

X: Of course, let’s go through everything you need.

[The interviewer showed the expert the generalised causal

diagram from Figure 15 above. Then the interviewer explained

the generalised diagram and asked the expert - as explained

above and following the same rules - to disconfirm and criti-

cise the model. Since the expert already knew this process,

he fully took on this role.]

X: I disagree here… We do not call fixing defects firefighting,

with vulnerabilities you’re right though… Looking at the

loops, I think, both are plausible, both may lead to problems,

but while the first [defects] is normal in agile methods, the

latter [vulnerabilities] should not occur. [Quote 23]

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

Short term Functionality,

Long term security (Pres-

sure)

Trade-Off (Pressure), Opin-

ion and Understanding

about Situation (Perception)

Firefighting (Pressure), De-

fects, Vulnerabilities (De-

fects & Vulnerabilities)

http://web.de

European Master in System Dynamics

Jonas Matheus | jonasmatheus@web.de ! c l x i x

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

[This was changed for the final model. Afterwards the discus-

sion continued…]

X: That loop is correct. But the escalation depends on the

attacker and his target. [Quote 32] A determined state actor

will not stop attacking you because of one unsuccessful at-

tempt. Such an attacker will escalate no matter what hap-

pens. Somebody who is not interested in specifically target-

ing you will be much less escalating.

Interviewer: Yes, I see. I will emphasise that when talking

about it. And if we model that quantitatively one can play with

the numbers there… So, let’s come to the last loop. You

know that mechanism by now: It basically means that your

people are firefighting incidents which is why they cannot do

their normal work anymore.

X: Yes, I know that mechanism and we have discussed it. It’s

perfectly valid… We would not accept that but that may be

our approach. When a team cannot handle its work, you

want to cut the pressure loop. We take people from different

teams to create new teams to support the stressed DevOps.

We sometimes have new teams when DevOps are stressed

with vulnerabilities, but especially when incidents occur.

Interviewer: Ok, great. That is really interesting. Thanks. Ok,

now I explained you the entire diagram, basically the abstract

form of the results of my study here. What do you think, be

as critical as you can… what is wrong, what am I missing,

what do I need to change?

X: No, it’s good. I do not miss anything. And you make the

Adversary Strategy, Escala-

tion, state actor (Adversary

Behaviour & Cyber Attacks)

Firefighting (Pressure), In-
cident (Adversary Behaviour

& Cyber Attacks)

Workload (Pressure), Vul-

nerabilities (Defects & Vul-

nerabilities), Incident (Ad-

versary Behaviour & Cyber

Attacks), Systems Thinking

(Security Measure)

http://web.de

European Master in System Dynamics

Jonas Matheus | jonasmatheus@web.de ! c l xx

story explicit. I would not believe you if you told me that pres-

sure leads to vulnerabilities but saying that stress leads to de-

fects - which we all know - and defects lead to vulnerabilities

makes much more sense. I think this is a great way of putting it.

And you are perfectly right here: The less time you have, the

more mistakes you have, and the more mistakes you have, the

more vulnerabilities you have… Yes, I think you have it. I think

your abstraction is perfect and your logic makes really sense. Of

course, we may argue that you normally should not end up in

an escalatory firefighting behaviour because you should rather

cut those cycles before it is too late, but I guess not all compan-

ies do that and that does not stand against your description…

No, I like it, I think it’s very good. [Very interesting summary]

Interviewer: Great, thanks a lot! Let’s do one final thing.

X: Yes.

[The researcher draws the graphs from Figure 6, the Yerkes-

Dodson Law, Figure 10, the Adaptation Trap, and Figure 13,

the suggested behaviour of the discussed system, on the

wall and explains it to the expert. Then he questions the ex-

pert to comment about it. In short, the expert fully confirmed

all three of those potential developments and underlined that

they are even known among him and his colleagues. When

leaving the meeting room, the expert asks the researcher

about a critical feedback.]

X: After having done so much investigation here, what do you

think, what should we do better?

Interviewer: Laughing… First of all, I would say that this company

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

Pressure (Pressure), De-

fects, Vulnerabilities (De-
fects & Vulnerabilities)

Time Pressure (Pressure),

Defects, Vulnerabil it ies

(Defects & Vulnerabilities),

Systems Thinking (Security
Measure)

Firefighting (Pressure), Es-

calation(Adversary Beha-

viour & Cyber Attacks)

http://web.de

European Master in System Dynamics

Jonas Matheus | jonasmatheus@web.de ! c l xx i

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

is doing a great job. I do not see that this organisation is in

any kind of danger or problems. Of course, some of the is-

sues we talked about, I could see here in the organisation,

minor things, but I would say you do fine… But if you ask me

where I would look at, I would say at the perception of

things. In the very first workshop, you were there too, you

guys made really clear that agile doesn’t know pressure.

Later I could find out that indeed, DevOps have pressure. I

would even say, of course they have pressure because pres-

sure is normal. But now we could question that… Can agile

have pressure? I think this is what I would recommend:

Check whether agile has pressure here and make sure to

avoid blundering into the dynamics that we have just dis-

cussed with the model… What do you think?

X: That is a very good point, thank you. Yes… Among my

colleagues throughout many industries, this is a big question.

Nobody knows whether we actually apply agile or whether

we simply call it like this and do instead something else

[Quote 37].

Both laughing…

Understanding of Situation

(Perception)

http://web.de

European Master in System Dynamics

II. E Structure Validation through Disconfirmatory Assessment Interviews

Andersen and colleagues have pointed out that “system dynamics requires the inten-

se use of qualitative data and human judgement in all stages of model development”

including the validation of a model (2012, p. 255). In system dynamics research, model

validation is understood as a gradual, prolonged, and important process of iteratively

and incrementally building confidence in the model with each new insight and test

(Barlas, 1996; Forrester, & Senge, 1980). Since the model developed for the purpose of this

study is qualitative in nature, no quantitative validation (i.e., structure-behaviour-tests

and behaviour tests) was applied. Instead the study relied on common techniques of

structure validation in system dynamics research (i.e., Structure Verification, Boundary

Verification, Unit Consistency), as well as approaches to construct, internal, and external

validity and reliability in case study research (Yin, 2014).

One technique applied three times throughout the six month on site is the disconfir-

matory assessment interview (hereafter referred to as disconfirmatory interview) which

was developed and proposed by Andersen and her colleagues (2012). Disconfirmatory

interviews confront participants and experts within a study with the outcomes of the

research, request them to challenge the results, and make use of common biases and

heuristics, such as anchoring or defence routines, which are, in contrast to normal

interviews, particularly valuable when attempting to falsify outcomes. In the end, it is

the aim to increase the participants’ and experts’ confidence in the model, to help

them address their practical real-world problem, and to improve the overall validity of

the study. Since reality is not objectively defined, but subjectively perceived by individuals,

validation in system dynamics, and more broadly, in qualitative research is often unders-

tood as “a matter of social discussion” (Barlas & Carpenter, 1990) which is why the discon-

firmatory interview is an exceptional tool for assessing the validity of system dynamics

models and case studies.

Since the construct, internal, and external validity and reliability of the research

have been shown throughout the entirety of the study, this subsection does not aim to

repeat this process. Instead, it briefly shows to what extent the use of the disconfirmatory

interview within this study resembles and differs from the four examples provided by

Andersen and her colleagues in their study (2012). The comparison is done within the

two tables (11, 12) below which are based on the study from Andersen et al. (2012).

Jonas Matheus | jonasmatheus@web.de ! c l xx i i

http://web.de

European Master in System Dynamics

II. Table 2: Comparison of Interviewing Principles in Disconfirmatory Interviews

Characteristic Employed Approach
Interviewee Participants from the workshops, responsible team (similar to Black,

2002).
Technology of delivery Face-to-face (as Black, 2002).
Types of questions Unstructured, partly semi-structured (similar to Black, 2002; Luna-

Reyes, 2004).
Behaviour Presentation Only discussion of potential behaviour with the Gatekeeper and the

main responsible for software security.
Structure Presentation Causal diagram supported by feedback stories (similar to Diker, 2003).
Recording Technique Notes due to Confidentiality.
Data Processing Notes, discussion of notes with colleagues and experts, comparison

with other data and literature as common in qualitative research (see
e.g., Merriam, 2009; & Yin, 2014).

Data Analysis Coding and Categorisation, Explanation Building, Model Refinement

II. Table 3: Comparison of Interviewing Features in Disconfirmatory Interviews

Recommended Approach Employed Approach
Use boundary objects to
structure the interviews

Qualitative system dynamics model was shown via a powerpoint
presentation on a large screen to enrich the social conversation with
participants. Comments were noted on post its and written down by
the recorder in.a note book. Since all of the participants had some lim-
ited prior experience in system dynamics , the understanding and dis-
cussions were enhanced (similar to Black, 2002; and Diker, 2003).

Anchor respondents with
concrete and specific
content

Qualitative system dynamics model presented to participants by reveal-
ing one feedback loop after another, thereby unfolding the story of se-
cure software development, software vulnerabilities, and external cyber
attacks (similar to Black, 2002; and Diker, 2003).

Use the deference effect to
focus [participant] on
disconfirmation

Participants were explicitly asked to interrupt the unfolding stories when
they desired clarification or adjustments. Presenting, discussing and
changing the model with domain experts meant testing and improving the
validity of the model (similar to Black, 2002; and Diker, 2003).

Organise the interview
around the model’s structure

Unfolding model structure as device to explore and discuss model with little
emphasis on formal analysis (similar to Black, 2002; and Diker, 2003).

Tailor the interview to the
audience

Most of the participants had worked on the model during the workshops.
Others were domain experts. Limited knowledge in system dynamics was
present (similar to Black, 2002; and Diker, 2003).

Individual not group
interview

Two individual- and one group interview. In contrast to Andersen et al.’s
(2012) recommendation, discussing the model in a group with domain
experts who had not taken part in the model conceptualisation revealed
several interesting insights (similar to Diker, 2003).

Changes explicitly
articulated

Changes not explicitly listed, but explicitly explained to the participants.

Jonas Matheus | jonasmatheus@web.de ! c l xx i i i

http://web.de

