
Radboud University Nijmegen
Faculty of Social Sciences

Artificial Intelligence

M. Biondina

Bachelor Thesis

AI generated visual accompaniment for music
- Machine learning techniques for composing visual accompaniment for music

shows -

Student: Matthijs Biondina

Studies: Artificial Intelligence

Semester: 2016-2017 semester 2

Student ID: S4284046

Birth date: 14-10-1995

E-mail: m.biondina@student.ru.nl

Supervisors: Peter Desain
Artificial Intelligence, Faculty of Social Sciences, Radboud
University Nijmegen

Franc Grootjen
Artificial Intelligence, Faculty of Social Sciences, Radboud
University Nijmegen

Nijmegen, 18-08-2017

1

mailto:m.biondina@student.ru.nl

ABSTRACT
In this study a method for artificially composing visual accompaniment for

music pieces is proposed. We analyze whether the proposed method composes visual

accompaniments that are comparable in quality to visual accompaniments made by a

human artist. It was found that visual accompaniments composed by the proposed

methods are judged significantly lower in quality than their human-made

counterparts. Additionally, it was found that the performance of the proposed method

did not differ significantly from a pseudo-random approach to composing visual

accompaniments. Despite these results, this method might provide a framework for

future research on this topic.

2

INTRODUCTION
Since the invention of music, people have been interested in creating

accompaniments for this music in a visually enjoyable manner, for example in the

form of dance. Recently, due to radical advancements in technology, the possibilities

for creating visual accompaniments for music have increased enormously. Now we

compose visual accompaniments for music in all sorts of manners; from speakers that

contain small fountains which dance on the rhythm of the music, to massive light

shows at concerts where powerful laser-beams and impressive flame throwers turn

listening to music into an entirely different experience.

Research has been done on the topic of artificially generating enjoyable music.

For example, De Manteras & Arcos (2002) give an in-depth analysis of different

systems that researchers created for the artificial generation of music.

The earliest research in the field of artificially generated music was done by Hiller

and Isaacson's (1959), who used a computer to compose a classical music

composition named “Illiac Suite” (later renamed as “String Quartet No. 4”). They

used a pseudorandom system to generate notes with Markov chains. Next, these notes

were tested based on a number of heuristics. Notes that did not adhere to the

heuristics were discarded. Additionally, when no notes were available that matched

the heuristics, a backtracking process was initiated to avoid this situation.

Later, Rader (1974) designed an AI application for artificially generating music based

on a rule-based approach. Rader separated the process of generating overall harmony

and specific notes, however the methods he used for both categories were largely

similar. Generation was based on a set of rules, that specified how notes and chords

can be put together. On top of that, Rader used a set of “applicability rules” which

specified which rules could be used in which situations. Whenever there was at least

one applicability rule that specified that a certain rule does not fit in the music at a

specific situation, then it could not be used. Lastly, Rader introduced a third set of

rules, the “weighting rules”, which specified the probability that a certain rule could

be used, based on weights assigned to the applicability rules. With this system, Rader

managed to compose music that “sounds mediocre to the professional although

usually pleasing to the layman.”

3

However, not much research exists for generating visual accompaniment for

music. In many cases creating such an accompaniment is a tedious and often time-

consuming process. Therefore, it would be useful to explore possibilities in

automating this process.

The problem of creating an interesting visual accompaniment for a piece of

music can be divided into three subproblems. First of all, the visual effects of the

accompaniment should match the rhythm and energy of the music. Secondly, the

visual effects accompanying the music should fit well together, so that the visual

accompaniment is perceived as a coherent whole, rather than random bursts of light,

water, etc. on the beat of the music. Thirdly, the visual effects of the accompaniment

should be varied enough to create a visually stimulating experience.

In this study, a technique for composing visual accompaniments for music

pieces was developed that can be used on a wide variety of visual accompaniment

systems. In this study, it was chosen to use a launchpad layout as visual

accompaniment for the music. The launchpad layout provides a basic framework for

creating light shows, can be simulated easily, and is small enough to run experiments

without the need for a large setup.

A launchpad is an electronic music

instrument that has gained popularity in

recent years. The display consists of an

8x8 grid of illuminated, square buttons,

surrounded by a number of additional

buttons towards the edge of the

instrument. The specific layout used was

derived from the Novation Launchpad

Pro. In this layout there are an additional

eight illuminated, round buttons on all

four sides of the grid (see image). A

launchpad is commonly used for playing

music. An artist assigns a sound clip to
Figure 1: layout of the Novation Launchpad Pro

each button on the launchpad, which is played when the button is pressed. As long as

the artist remembers which sound belongs to which button, the launchpad can be

4

played like any key-based instrument. Additionally, the artist can assign light effects

to certain buttons. Meaning that, when a button is pressed, several buttons on the

display light up in a predefined color and sequence, creating interesting visual effects

while playing. Alternatively, the launchpad can also be used for making light shows

alone, which is the focus of this study. In that case, the artist predefines exactly which

lights will light up during the course of an entire song. This process is very time

consuming and it can take up to several hours to predefine a light show for a minute

of a song. From the artist's perspective it may therefore be useful to have a program

that performs the same job automatically.

The program proposed in this study could be used to compose any visual show

accompanying music. In this study, the program was used solely for the purpose of

composing launchpad light shows. However, the program could be used for any

visual display, given that the following requirements are met: Firstly, a set of training

data must be available to train the program. The program attempts to replicate

behavior from human-made example shows and apply this behavior to the music of

the new song. Therefore, the quality of the shows composed by the program is limited

by the quality of the human-made examples, the number of examples provided, and

the similarity between the music in the example shows and the music for the show

that is to be composed. (e.g. if the program is only given examples of shows made for

classical music, it will not perform well at making a show for a rock song). Secondly,

it must be possible to create an abstract representation of the layout of the instrument

used to produce the show that is consistent between the training data and the final

light show. For example, the layout of the Novation Launchpad Pro, used in the

study, consists of 96 illuminated buttons, which are numbered 28 to 123. This layout

is consistent between all Novation Launchpad Pros, therefore any light show made

on a Novation Launchpad Pro can be used as training data for the program, and a

light show composed by the program can be played on any Novation Launchpad Pro.

Similarly, if the program would be used to compose a water show or a firework show,

it would be required that the human-made shows used for the training data are made

either for exactly the same layout, or on a similar layout, where elements can be

paired one-to-one with the new layout.

In order to artificially compose enjoyable light shows, one must know what it

is that makes human-made light shows enjoyable. Unfortunately, no research has

5

been done on this topic. However if one views light shows as an extension of the

music they are made for, then one might be able to apply the same heuristics that

make music enjoyable to light shows.

Minsky (1981) compares listening to a piece of music to watching a scene in a

room. Minsky says that in each person's mind work many agents with very specific

tasks. For example one agent might recognize a few small scraps from the visual

field, another agent might recognize a shape in these scraps, and another agent might

recognize this shape as part of a piece of furniture. Similarly, when it comes to music,

a person's mind might have many agents dedicated to recognizing different parts of

music. They might have one agent solely dedicated to recognizing rhythm, another

that is capable of recognizing simple melodies, and another that assigns meaning to

the music on a much higher level. Within this system there exists a hierarchy of

layers, where each layer processes a more abstract and “meaning” oriented version of

the information received from the layer below. As Minsky puts it: “Relations at each

level, turn to Thing at next above; more easily remembered and compared.” This

means that, while listening to music, the mind does not only process “the now”, but

also searches and remembers meaning over a broader spectrum of time. As a result,

when a rhythm is more monotonic or a melody more simplistic, the agents higher up

in the hierarchy become less excited. De Manteras & Arcos (2002) state that a

neuron's firing rate decreases over time when the neuron repeatedly receives the same

input. This effect is called habituation. This explains that music is perceived as more

interesting when it contains a certain amount of variation, “that is, when it contains

alterations in dynamic, pitch, and rhythm.” Based on this, one can conclude that the

light shows should also contain sufficient alterations in dynamic, “pitch,” and

rhythm. Since the rhythm of the light show should match the rhythm , pitch and

loudness of the music, these heuristics should be covered as long as the composed

light show sufficiently fits the music. However, to prevent habituation, it is necessary

to place restrictions on the program that force it to include a sufficient variety of

visual effects in its light shows; hence creating light shows that are enjoyable to

watch.

One might also wonder whether the light effects used have any meaning for the

audience that goes beyond having matching rhythms. Bolivar et al. (1994) found that

people are able to “assess the degree of audiovisual semantic congruency” between

6

video clips and accompanying music. In their study, they showed participants

aggressive/friendly video clips accompanied by aggressive/friendly music, and asked

the participants to judge whether the music matched the clip. Although the

comparison between video clips and light shows is somewhat abstract, this does show

that people are able to perceive incongruence between visual and auditory stimuli.

This suggests that the application needs to be capable of depicting the energy of the

songs to a level beyond merely matching the rhythm.

Many artificial music generation systems depend on a specified set of rules to

compose this music. Since no research has been done before regarding a general

approach to visually accompanying music, it would be difficult to formulate such

rules for our purpose. Alternatively, some artificial music generation programs work

by iteratively improving a composition throughout a number of generations with a

genetic algorithm (Biles, 1994). The fitness function in these systems is often

implemented algorithmically. However, Wiggins (1998) points out that there exists no

general formalized fitness function for judging the quality of music. Therefore it is

often necessary to let a human operator subjectively judge the quality of a piece of

music generated by the system. In this case we speak of an Interactive Genetic

Algorithm For the system proposed in this study, neither of these methods is optimal,

as there are no general heuristics for judging the quality of a light show, making it

difficult to define a rule-based system; and the premise of this study is to create an

automated system, therefore making the system interactive would contradict with our

interests.

METHODS
Due to the impracticalities of designing the system as a rule-based AI or

making the system interactive, instead a Machine Learning approach was chosen,

where the program learns from example light shows made by a human. The program

then replicates the behaviors of the human-made light show when presented with a

new song.

7

Training Data

We contacted Youtuber InspirAspir, who was willing to provide us with several

light shows he made for his Youtube channel, and gave us permission to use these

light shows for training and testing purposes. In total, seven of his light shows have

been used, namely:

Table 1 (list of light shows used, made by InspirAspir)

Song Artist(s)

Abyss Kaskobi

Blow Up ViperActive

Invincible DEAF KEV

Lost Woods (remix) InspirAspir

Roses The Chainsmokers

Wizards in Winter Trans-Siberian Orchestra

These songs provided a reasonably wide variety of genres, ranging from

dubstep to alternative rock.

The data files InspirAspir provided were formatted in the form of Ableton Live

project files. These files contain several thousand lines of commands, specifying at

which time during the show a certain light should light up, for how long, and in what

color.

Since the launchpad itself can not decode these files itself, but instead receives

MIDI events from an intermediate program (like Ableton Live), these files had to be

converted to MIDI files. Since MIDI files are sorted in chronological order, whereas

the project files are sorted on button number, a buffer had to be implemented in the

program that stored all MidiNoteEvents from the project files, sorted them on time,

and wrote these to a MIDI file afterwards. The MIDI code needed to light up one

button on the launchpad can be easily derived from the corresponding MidiNoteEvent

in the project file.

8

Figure 2: several lines of code from an Ableton Live project file. Each line encodes a flash of a
single light on the launchpad (an event). The tags that are relevant for translating an event to
MIDI code are as follows:

• Time: the amount of time from the beginning of the show to the start of the event
• Duration: the amount of time that the light stays lit
• Velocity: an integer value describing with which color the light flashes from a list of

predefined colors

For a detailed description on how light shows are encoded in MIDI, see Appendix I.

Simulating the Launchpad

Since Radboud University does not own a launchpad, a program had to be

written to simulate the light shows on a computer. As well as bypassing any technical

issues that could have arisen with integrating the program with a physical launchpad

device, this made it possible to neatly integrate the light shows with the experimental

setup later on. The layout of the Novation Launchpad Pro used by InspirAspir was

replicated and placed over a black background to maximize the amount of contrast

between the lights and the background. The numbers assigned to each button were

copied from the Novation Launchpad Pro (see figure 3). This took some

experimentation and manual adjustment, since no ready-made scheme existed for this

layout. Within the program, the layout can be easily configured and changed to any

layout desired.

9

Figure 3: the layout of the simulation display, as well as the numbers assigned to each light

The launchpad is able to display 128 predefined colors. The number assigned

to these colors were also copied from the Novation Launchpad Pro (see figure 4). By

doing so, the simulations of the light shows in the data set matched as closely to the

originals made by InspirAspir as possible.

10

Figure 4: numbering of the 128 colors displayed by the launchpad. Source: LAUNCHPAD PRO
Programmer's Reference Guide

While simulating a light show, the program displays the light show and plays

the accompanying song in parallel. The program keeps an internal buffer of the MIDI

file describing the light show and executes these hex-bytes one by one. As long as a

MIDI event is preceded by a delay of 0 ms, the program updates the internal state of

the simulation, but does not update the visual display. Once the program finds a MIDI

event with a delay larger than 0 ms, it updates the display and pauses the program for

the specified amount of time before continuing the process of reading and updating

the simulation. The simulation maintains an internal clock, which is used as reference

when determining how long the program needs to wait given a certain delay. This

guarantees that the timing of the light show is not thrown off by any computation

time needed to update the simulation. Otherwise this computation time might add up

over the course of the song and create inconsistency between the timing of the

displayed light show and the original MIDI file. The behavior of the simulation is

illustrated in figure 5.

11

Figure 5: a sequence of changes to the visual display of the simulation. NB: light shows are
generally fast paced; the sequence shown would only last circa half a second in real time.

Training Data

In order to replicate human behavior, the program needs to be able to pick and

choose from a wide variety of options of visual effects from the original light shows.

To this purpose, the original light shows were split up in separate effects. An effect is

12

defined as an amount of MIDI code which, through a sequence of light-off and light-

on events, delays and updates, transforms the launchpad display from one state into

another. An effect can only be played during a light show if the pattern of lights that

are on on the display matches the pattern of lights of the starting state of the effect.

Since the MIDI code of an effect only tells the launchpad which lights to turn on and

off and in which color, a selected effect might otherwise leave lights on where they

are supposed to be off and vice versa. Thus altering the visual appearance of the

effect from its intended use. Effects are usually short, repeating sequences, lasting 0.5

to 2 seconds. For example, the sequence shown in (figure 5) would be stored as a

single effect in the database. Occasionally, the light shows contained sequences that

had no clear or repeating pattern. In those cases, we split up the sequences in separate

effects at arbitrary points based on patterns that commonly occurred between other

effects (see figure 6).

The corresponding MIDI code of these effects was stored as well as the context

in which the effect was originally used, in the form of the music segment from the

song over which the effect was displayed, the state of the visual display before the

effect was played, and the color of the lights that were on before the effect was

played. Combining these characteristics allows the algorithm to select effects that

match the music and fit in well with the flow of the light show; both positionally and

color wise. Segmentation of the light shows was done manually. An application was

built that made it possible to manually play the light shows from the training data

frame by frame, and create a cut, wherever a switch between two effects is made.

This process was time-consuming. Once in the database , however, the separated

effects can be used permanently for composing new shows. Certain patterns on the

launchpad appear to occur frequently in transitions between effects (see figure 6).

13

Figure 6: examples of patterns on the launchpad that often occur between effects.

Based on these characteristics, it should be possible to make an automated

system for segmenting effects in a light show. This, combined with other heuristics

like the average length of effects could be used to design an algorithm that performs

this process artificially, for example with an artificial neural network. However, since

time was limited and there was enough data to move onto artificially composing light

shows, this possibility was not explored further. The training data consisted of

roughly 1700 effects.

Composing Light Shows

The problem of composing new light shows was divided into three sub-

problems: matching the emotion of the music and the light show, matching the

rhythm of the music and the light show, and creating an optimal flow within the light

show.

Emotion

In order to match the energy of the light show with the energy of the music, the

program calculates similarity scores between a short clip from the song and the music

clips corresponding to the effects in the database. The effects used in the original light

shows convey the emotion of the song they were originally made for. For example, if

part of a song conveys an uplifting message, then the effects originally placed over

14

this part of the song would also convey this uplifting message in some form or

another. Hence, if a music clip from the new song is similar to a fragment of the

original song, then the effect played over that fragment of the original song should

also fit well with the fragment of the new song. Since artificially analyzing similarity

between fragments of two songs on such an abstract level is both subjective and

difficult to achieve, it was decided to compare music fragments with a more low-level

approach. The similarity between two clips was determined by calculating the sum of

squared errors between the spectrograms of both clips, divided by the length of the

clips. Dividing by the length of the clip removes the program's bias towards shorter

effects. In order to account for variations in rhythm between the two songs, the final

similarity score is defined as the best fit between the two spectrograms given a delay

before the new effect ranging from 0 to 250 ms. The final formula to calculate the

similarity between a new clip (c) and a clip from a song (s) starting at (tstart) is as

follows (see figure 7 for an illustration of this formula):

similarity (c , s , t start)= max
delay=0

250 length(c)

length(c)+ ∑
t=0

length(c)

(c (t)−s(t start+delay+t))2

Although similarity is approximated on a more concrete level, the effect of this

approach should be roughly the same. When two music clips convey the same sort of

energy, the spectrograms of the two clips should also correlate more strongly, based

on for example the volume and the direction of the pitch.

Rhythm

The option to compare the bpm (Beats Per Minute) of the new song to the

bpms of the original songs was considered, however it has proven very difficult to

artificially determine the bpm of a song. The algorithms delivered very inaccurate

results and only returned a plausible number for about fifty percent of the songs.

Because of this, it was decided to omit this possibility. Instead, in order to match the

rhythm of the light show with the rhythm the same formula as mentioned above was

used, with the difference that at the argmax is used rather than the maximum value.

Since the effects are so short that generally they cover only a single beat in the music,

it has no purpose to consider the overall bpm of the songs. The final formula to

15

determine the optimum amount of delay needed to insert a new effect with music clip

(c) into a song (s) starting at (tstart) is as follows (see figure 7 for an illustration of

this formula):

bestDelay (c , s , t start)=argmax
delay=0

250 length (c)

length(c)+ ∑
t=0

length(c)

(c (t)−s (t start+delay+t))2

By using the offset needed to create the best fit between two clips, the beats of

both clips are lined up. Since the volume of a music clip is higher on the beat than off

it, the best fit between two similar music clips should be at or near the point where

the two beats align.

Figure 7: illustration of the similarity and bestDelay functions. For all possible delays between 0
and 250 milliseconds, the functions divide the length of the clip (c) by the sum of squared errors
between (c) and the song (s) starting from (t_start + delay) over the length of (c). The similarity
function returns the maximum value of this calculation and the bestDelay function returns the
argmax.

16

Flow

The problem of guaranteeing good flow within the light show was divided in

two. Firstly, the light show must not jump around positionally. What this means is

that an effect must start from the same state on the launchpad that the previous effect

has ended on. This was done by putting restrictions on the effects that the algorithm

could choose from the database. While composing a new light show, the algorithm

maintains an internal simulation of the launchpad show, registering which lights are

on, and which color they have. When adding a new effect to the light show, the

algorithm limits the effects it considers to effects that start in the same position as the

simulation has at that time. Secondly, the colors displayed in the new light show

should flow together nicely. In the original light shows in the training data, the

starting color of an effect was generally similar to the color of the previous effect.

However, since our algorithm can pick and choose effects from different songs and

from different moments within the same song, there is no longer the guarantee that

the colors of two effects placed together by the algorithm will also flow together

nicely. In order to solve this, it was recorded how much the RGB values of the effects

in the database changed after their first update from the state the previous effect

ended in. Any time the algorithm adds a new effect to the light show, it looks at the

colors of the lights that are turned on on the launchpad at that time and at the amount

the colors of the new effect changed in the context of their original light show. Based

on these values, the algorithm adjusts the colors of the new effect such that the

change in colors with respect to the previous state of the launchpad is equal to the

change in colors of the unadjusted effect with respect to the preceding state of the

launchpad in its original light show. For example, if in the original light show an

effect ended with all lights that are turned on being red, and after the first update of

the next effect all lights that are turned on are still red (ie. there is no change in color

in the original light show), then when the algorithm chooses to implement this effect

in the light show and at that time all lights on the launchpad that are turned on are

green, then the algorithm will adapt the colors of the effect in the new light show to

also be green (ie. there is no change in color in the new light show).

Gradual Improvement

Estimating the similarity between to music clips is a rather time-consuming

17

process. Therefore, it is unfortunately not possible to perform an exhaustive search on

the database. Instead a Greedy Best-First Search algorithm was implemented which

uses localized Depth-First Search, inspired on the algorithm described by Hiller

(1959). The algorithm composes a light show for a given song using the Greedy Best-

First Search algorithm. At each step during the process the algorithm estimates the

similarity between the next segment of the new song with the music clips from the

effects in the database that have the same starting state as the internal simulation has

at that time. Additionally, in order to guarantee an enjoyable level of variety in the

light show, the algorithm is not allowed to use the same effect twice within a certain

amount of time (2 minutes).The algorithm picks the effect with the highest similarity

score and adds that to the light show. This process is repeated until a light show has

been composed for the entire song. However a threshold variable is maintained

during the process. At any point during the process, when the similarity score of the

best-fitting effect does not exceed the threshold, the algorithm backtracks one step in

the light show it has composed so far, and blacklists the last effect added to the light

show. It then proceeds with searching for the best-fitting effect from that point on

(excluding the ones that are blacklisted). If no effects are available, or the similarity

scores of the available effects do not exceed the threshold, it backtracks another step,

etc. During the first epoch, the threshold of the algorithm is set to 0. Hence, during

the first epoch, the algorithm performs an ordinary Greedy Best-First Search. At the

end of each epoch, the threshold value is increased to the similarity score of the

worst-fitting effect in the light show. The light show it has composed during that

epoch is written to a file, and the process starts over. Since the threshold value

increases after each epoch, each next epoch will compose a light show that is slightly

better than the previous. The program can be interrupted at any time, in which case

the program will return the best light show so far.

Composing the Light Shows

For the experiment seven different light shows were composed by the program

for seven different songs. Each of these seven songs was selected based on their

similarity in style and genre to one of the songs from the initial data set. Six out of

seven songs were made by the same artist that made the corresponding song from the

initial data set. For one of the songs, InspirAspir – Lost Woods (remix) (a dubsteb

18

remix of a soundtrack song from the Zelda game franchise), no song made by the

same artist existed that was similar in style. Instead a dubstep remix of another song

from the Zelda soundtrack was selected made by a different artist, Bitonal Landscape

– Legend of Zelda: Main Theme (remix). The full list of songs used in the experiment

is as follows:

Table 2 (the full list of songs used in the experiment)

InspirAspir AI

Kaskobi – Abyss Kaskobi – Phantom

ViperActive – Blow Up ViperActive – Atomic

Bomb Squad – Damn Daniel Bomb Squad – Morphine

DEAF KEV – Invincible DEAF KEV – Samurai

InspirAspir – Lost Woods (remix) Bitonal Landscape – Legend of Zelda:
Main Theme (remix)

The Chainsmokers – Roses The Chainsmokers – Closer

Trans-Siberian Orchestra – Wizards in
Winter

Trans-Siberian Orchestra – Wish Liszt

All light shows have been trained for 5 hours, after which the last finished light

show made by the program has been used during the experiment. During those 5

hours the program has managed to progress through fifteen to forty epochs,

depending on the length of the song. Composing the light shows took a total of 35

hours. It must be noted that the program runs fully automatically, and does not

require any form of human interaction.

Control Group

For each light show composed by the AI a pseudo-random variant was also

made for the control group. In the control group, the algorithm selected random

effects from all effects in the database who's starting state matched the state on the

launchpad, without calculating the similarity between music clips of the new song

and the original songs. A random amount of delay (between 0 and 250 milliseconds)

was added before each effect, and no changes were made to the colors of the effects.

19

The Experiment

During the experiment a total of 34 participants have been asked to judge the

quality of two light shows. The majority of the participants were students at Radboud

University Nijmegen. Before the experiment participants have been asked to sign a

letter of consent, to indicate that they consented to taking part in our study and did so

out of free will. Additionally, participants were asked to explicitly declare that they

did not have epilepsy, that they did not suffer from photosensitive epileptic seizures

and that they did not have any other afflictions that could be triggered by visual cues.

The participants were instructed that they were going to watch two light shows

made by Youtuber InspirAspir, and that they would be asked to answer several

questions about these light shows to measure how they judged the quality of both

light shows. The participants were assigned to the experimental group or the control

group at random. Participants in the experimental group were shown one light show

made by InspirAspir and the corresponding light show made by the AI program.

Participants in the control group were shown one light show by InspirAspir and the

corresponding light show made by the pseudo-random algorithm. The order in which

participants watched the two light shows was randomized. In the end, the

experimental group contained 20 participants and the control group contained 14

participants.

The decision to split the participants in two groups was made based on

practical reasons. Participation in the experiment required circa 15 minutes of time.

This was short enough that we could recruit volunteers from students who were

spending time between lectures. Had a within-subject design been used, it would

have been necessary to show participants three light shows each. In that case,

participation would have required circa 20 to 25 minutes, which would have made it

much more difficult to find the same number of participants.

The experiment has been performed with a double-blind design. At the start of

the experiment each participant has been asked to write down a number on their

questionnaire. This number could later be traced back to the condition they were in.

The researcher did not see which number the participants wrote down, nor did the

researcher see which light shows the participant was watching.

After watching each light show, the participant has been instructed to judge the

20

quality of the light show by indicating how much they agreed with nine statements

about the light show. For each statement they could indicate that they fully disagreed,

disagreed, had a neutral opinion, agreed or fully agreed with the statement. Their

answers were scored on a scale from 1 to 5, where “fully disagree” corresponded with

a score of 1, and “fully agree” corresponded with a score of 5. Questions 5 and 8 (see

below) have been scored in reverse where “fully disagree” corresponded with a score

of 5, and “fully agree” corresponded with a score of 1. The nine statements were as

follows:

Table 3 (list of statements on the questionnaire)

Number Statement

1 The effects matched well with the song at any given moment.

2 The effects flowed together nicely.

3 The effects paired well together.

4 The rhythm of the light show paired well with the rhythm of the song.

5 The light show was chaotic.

6 Overall, the light show conveyed the energy of the song well.

7 I enjoyed watching this light show.

8 There were moments during the light show when I was bored.

9 There were moments during the light show when I was amazed.

After watching both light shows and answering the questions corresponding to

that light show, participants were informed that only one of the light shows they

watched had been made by InspirAspir, whereas the other one had been made by an

Artificial Intelligence Computer program. They were then asked which of the two

they deemed was most likely made by the Artificial Intelligence computer program.

21

RESULTS
The results from the experiment show that the participants preferred the

human-made light shows over both the light shows made by the AI approach and the

pseudo-random approach. Both results are statistically significant (p < 0.0005 and p <

0.01).

Next it was analyzed whether the participants preferred the AI made light

shows over the pseudo-randomly generated light shows. For this purpose, the gain-

scores (scorecomputer – scorehuman) have been calculated for each of the nine statements.

Next the gain-scores over all nine statements have been averaged to find the

difference in overall perceived quality between the computer-made light shows and

the human-made ones. There is no statistically significant effect between the gain-

scores of the AI made light shows and the pseudo-randomly generated ones (p >=

0.25). Meaning that the participants did not prefer the AI approach over the pseudo-

random approach.

meanexp meancontrol stdexp stdcontrol nexp ncontrol Cohens d p

-0.7534 -0.7302 0.8425 0.4964 20 14 -0.0323 p >= 0.25

In fact, the gain-scores in the control group are slightly higher than the gain-

scores in the experimental group, however this effect is nowhere near statistically

significant either (p >= 0.25).

meancontrol meanexp stdcontrol stdexp ncontrol nexp Cohens d p

-0.7302 -0.7534 0.4964 0.8425 14 20 0.0323 p >= 0.25

Next it has been analyzed how participants judged the quality of the computer-

generated light shows with respect to the human-made ones on the different

statements separately. Here some more interesting results have been found that might

suggest that participants judge the quality of several aspects of the AI and pseudo-

random approach differently, however again no statistically significant results are

found. The gain-scores are slightly higher in the experimental group for statements 2,

3, 4, 5 and 6. However these results are not statistically significant (p >= 0.25 for

statements 2, 3, 4 and 6 and p < 0.20 for statement 5). The gain-scores are slightly

22

higher in the control group for statements 1, 7, 8 and 9. However these results are not

statistically significant either (p >= 0.25 for statements 1, 7 and 8 and p < 0.10 for

statement 9).

Experimental condition was preferred over control condition:

Table 4

Statement* meanexp meancontrol stdexp stdcontrol nexp ncontrol Cohens d p

2 -0.6000 -0.7857 1.0954 1.1217 20 14 0.1679 p >= 0.25

3 -0.6316 -0.6429 1.1161 0.9288 19** 14 0.0108 p >= 0.25

4 -1.1500 -1.2857 1.3485 1.2666 20 14 0.1031 p >= 0.25

5 -0.5500 -1.0000 1.5720 0.9608 20 14 0.3315 p < 0.2

6 -0.6316 -1.0000 1.065 1.3587 19** 14 0.3078 p >= 0.25

* see table 3 for reference

** one participant did not answer this question for the AI approach

Control condition was preferred over experimental condition:

Table 5

Statement* meancontrol meanexp stdcontrol stdexp ncontrol nexp Cohens d p

1 -0.9286 -1.1500 0.7300 1.3485 14 20 0.1135 p >= 0.25

7 -0.2143 -0.4000 1.1883 1.0954 14 20 0.1638 p >= 0.25

8 -0.5000 -0.8500 1.0190 1.2258 14 20 0.3053 p >= 0.25

9 -0.2143 -0.8000 1.1883 0.9515 14 20 0.5556 p < 0.1

* see table 3 for reference

Lastly, it has been analyzed whether the participants were able to distinguish

which of the two light shows they watched was made by a computer. In the

experimental condition 45.00% of the participants correctly assessed which light

show was made by a computer. In the control condition 42.86% of the participants

correctly assessed which light show was made by a computer. The difference between

these groups is not significant (p >= 0.25).

23

DISCUSSION
In this research it has been studied whether people would judge the quality of

AI composed light shows lower than light shows composed by a human artist.

Additionally it has been studied how participants judged the quality of AI composed

light shows in comparison to pseudo-randomly generated light shows. Lastly it has

been researched whether people would be able to correctly differentiate between a

light show made by a human artist and a light show made by a computer.

To answer the first question, a t-test for paired observations has been done

based on answers participants gave to nine statements regarding the quality of an AI

composed light show and a human-made light show. Based on the results, one can

conclude that people judge the quality the AI composed light shows as lower than the

human-made light shows. The program proposed in this paper will therefore need to

be improved before it can compose light shows on the same level as a human artist.

To answer the second question, a t-test for paired observations has been done

based on the difference scores (gain-scores) of the human-made light shows and the

AI-composed ones and the difference scores (gain-scores) of the human-made light

shows and the pseudo-randomly generated ones. It has been found that there is no

statistically significant difference between the gain-scores of the AI composed light

shows and the pseudo-randomly generated light shows. Therefore one can conclude

that the AI approach for composing light shows is not better than the pseudo-random

approach used in the control group. Additional research with a larger amount of

participants is needed to determine whether people prefer the AI based approach over

the pseudo-random approach.

Additionally the judged quality of the AI composed light shows and the

human-made light shows has been analyzed on the nine statements separately. For

this purpose, t-tests for paired observations have been done based on the difference

scores between the human-made light shows and the AI-composed ones and the

difference scores between the human-made light shows and the pseudo-randomly

generated ones for all statements separately. Results largely match the previous

findings when all nine components were combined, and no difference is found

between the gain-scores of the AI composed light shows and the pseudo-randomly

generated ones that is anywhere close to significant. Somewhat interesting results are

24

found on two of the nine components, that might suggest that people judge the

individual qualities of the AI composed light shows and the pseudo-randomly

generated light shows differently.

Firstly, the gain-score of the AI approach is higher than the gain-score of the

pseudo-random approach for the statement “The light show was chaotic.” This

suggests that the music-similarity algorithm and the algorithm for adapting colors

between effects might help in creating a level of order that is closer to the light shows

made by a human artist. One must consider however, that the found effect was not

statistically significant (p < 0.2), therefore no definite conclusions should be drawn

from this finding. Additional research with a larger group of participants should be

performed to find out whether this effect is truly due to the participants finding the AI

composed light shows less chaotic, or whether it was caused by chance.

Secondly, the gain-score of the pseudo-random approach is higher than the

gain-score of the AI approach for the statement “There were moments during the light

show that I was amazed.” This suggests that using the program for composing light

shows decreases the amount of amazement people feel when watching those light

shows. Alternatively, it is possible that people interpreted this statement differently

than it was intended. Possibly some participants interpreted this statement as “there

were moments during the light show that I was negatively surprised by the behavior

of the light show.” Therefore, the statement should have specified that the participants

were “positively amazed.” Since the original question was intended as asking in the

positive direction, the possibility that participants interpreted this question in the

negative sense has not been included in the analysis above. It must be noted that the

effect found in the experiment is not statistically significant (p < 0.1), and therefore

no definite conclusions should be drawn based on this finding. Further research with

a larger group of participants should be performed to find out whether this effect is

truly due to participants experiencing the pseudo-randomly generated light shows as

more amazing than the AI composed ones, or whether it is caused by chance. In

further research, this statement should also be rephrased to specify that the participant

was positively amazed, to reduce the amount of ambiguity.

Lastly, an adaptation on the Feigenbaum test has been performed, as described

by Feigenbaum (2003), to see whether people would be able to correctly differentiate

25

between the behavior of a human expert and an AI on a specific task, namely

composing light shows. 45% of participants were able to correctly identify the AI

composed light show; 42.86% of the participants were able to correctly identify the

pseudo-randomly generated light show. These results seem promising at first.

However, the results discussed above show that people prefer the human-made light

shows over the light shows composed with the AI or pseudo-random approaches.

Additionally many participants have indicated that they found one of the light shows

clearly better, but did not know whether this meant that that light show was made by

a human or by a computer. What these results show is that people do not know what

to expect from a human or a computer when it comes to composing light shows.

Therefore, they are unable to judge which light show was made by a computer and

which one by a human.

CONCLUSION
This research has proposed a method for composing visual accompaniment to

music using Artificial Intelligence techniques. In this research it has been found that

light shows made by a human artist are perceived as higher in quality than light

shows made by the proposed method. Additionally, it has been found that the

program described in this research did not perform significantly better than a pseudo-

random approach which selected random visual effects based on the current state of

the system. Therefore, it can be concluded that the proposed method will need much

improvement before it is capable of composing visual accompaniment to music on

the level a human artist would achieve.

ACKNOWLEDGEMENTS
We are happy to acknowledge the help and encouragement of Youtuber

InspirAspir, for providing us with his own light shows for training and experimenting,

as well as helping us formulate questionnaire questions to measure the perceived

quality of the light shows.

26

REFERENCES
Biles, J. A. (1994). GenJam: A genetic algorithm for generating jazz solos. ICMC

Proceedings 1994, 131-137.

Bolivar, V. J., Cohen, A. J., Fentress, C. (1994). Semantic and Formal Congruency in

Music and Motion Pictures: Effects on the Interpretation of Visual Action.

Psychomusicology: Music, Mind & Brain, 13(1-2), 28-59.

De Mantaras, R.L., & Arcos, J.L. (2002). AI and music: From composition to

expressive performance. AI magazine, 23(3), 43.

Feigenbaum, E.A. (2003). Some challenges and grand challenges for computational

intelligence. Journal of the ACM, 50(1), 32-40.

Hiller, L.A., Isaacson, L.M. (1959). Experimental music: composition with an

electronic computer. New York: McGraw-Hill Book Company.

Minsky, M (1982). Music, Mind, and Meaning. Music, Mind, and Brain, 1-19.

Rader, G.M. (1974). A method for composing simple traditional music by computer.

Communications of the ACM, 17(11), 631-638.

Wiggins, G. A. (1998). Evolutionary methods for musical composition. Edinburgh:

University of Edinburgh, Dept. of Artificial Intelligence.

27

APPENDIX I
 The MIDI code for one event consists of four or more hexadecimal bytes. For

example, one MIDI event might look like this:

17 90 33 1

A B C D

The first byte (A) describes the amount of delay in ticks before the MIDI event

is executed. For our purposes, we set the amount of time per tick to an arbitrary

1ms/tick. In the example the hexadecimal byte 17 corresponds with a delay of 23

milliseconds.

The second byte (B) describes the type of event. For the launchpad light shows,

only “note on” events are used, corresponding to the hexadecimal byte 90. When a

light is turned off, the corresponding MIDI event will code a “note on” event that sets

the color of the light to black.

The third byte (C) describes the number of the light that the event codes for.

There are 96 lights on the launchpad display numbered 28 (1C) to 123 (7B). In our

example, light 33 will be turned on on the launchpad, which corresponds with light

number 51.

The fourth byte (D) describes the color that the light will be set to. The

launchpad can display 128 predefined colors numbered 0 (0) to 127 (7F). In our

example the light is set to color 1 (1), which corresponds with a dark gray.

Whenever a delay longer than 127 milliseconds is required, an additional byte

is added to the beginning of the MIDI event. The added bytes are always equal to or

larger than 80, whereas the last byte of the delay is always smaller than 80. Whenever

the program encounters a delay byte larger than or equal to 80, while playing a light

show, 80 is subtracted from this number, and the remainder is multiplied by the

maximal amount of time that can be coded by the next byte. To illustrate, the

maximal amount of time that can be coded by one delay byte is 127 ticks (7f). If the

program needs to wait 128 ticks another byte is added to create (81 00). Similarly,

when two bytes are not enough to code the amount of delay required, then a third

byte is added to create a delay of 16384 ticks (81 80 00). Up to three additional bytes

can be added to the delay, allowing for a massive FF FF FF 7F, which codes for

28

more than an hour of delay.

29

	ABSTRACT
	INTRODUCTION
	METHODS
	RESULTS
	DISCUSSION
	CONCLUSION
	ACKNOWLEDGEMENTS
	REFERENCES
	APPENDIX I

