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ABSTRACT
In this study a method for artificially composing visual accompaniment for 

music pieces is proposed. We analyze whether the proposed method composes visual 

accompaniments that are comparable in quality to visual accompaniments made by a 

human artist. It was found that visual accompaniments composed by the proposed 

methods are judged significantly lower in quality than their human-made 

counterparts. Additionally, it was found that the performance of the proposed method 

did not differ significantly from a pseudo-random approach to composing visual 

accompaniments. Despite these results, this method might provide a framework for 

future research on this topic.
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INTRODUCTION
Since the invention of music, people have been interested in creating 

accompaniments for this music in a visually enjoyable manner, for example in the 

form of dance. Recently, due to radical advancements in technology, the possibilities 

for creating visual accompaniments for music have increased enormously. Now we 

compose visual accompaniments for music in all sorts of manners; from speakers that

contain small fountains which dance on the rhythm of the music, to massive light 

shows at concerts where powerful laser-beams and impressive flame throwers turn 

listening to music into an entirely different experience.

Research has been done on the topic of artificially generating enjoyable music. 

For example, De Manteras & Arcos (2002) give an in-depth analysis of different 

systems that researchers created for the artificial generation of music. 

The earliest research in the field of artificially generated music was done by Hiller 

and Isaacson's (1959), who used a computer to compose a classical music 

composition named “Illiac Suite” (later renamed as “String Quartet No. 4”). They 

used a pseudorandom system to generate notes with Markov chains. Next, these notes

were tested based on a number of heuristics. Notes that did not adhere to the 

heuristics were discarded. Additionally, when no notes were available that matched 

the heuristics, a backtracking process was initiated to avoid this situation. 

Later, Rader (1974) designed an AI application for artificially generating music based

on a rule-based approach. Rader separated the process of generating overall harmony 

and specific notes, however the methods he used for both categories were largely 

similar. Generation was based on a set of rules, that specified how notes and chords 

can be put together. On top of that, Rader used a set of “applicability rules” which 

specified which rules could be used in which situations. Whenever there was at least 

one applicability rule that specified that a certain rule does not fit in the music at a 

specific situation, then it could not be used. Lastly, Rader introduced a third set of 

rules, the “weighting rules”, which specified the probability that a certain rule could 

be used, based on weights assigned to the applicability rules. With this system, Rader

managed to compose music that “sounds mediocre to the professional although 

usually pleasing to the layman.”
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However, not much research exists for generating visual accompaniment for 

music. In many cases creating such an accompaniment is a tedious and often time-

consuming process. Therefore, it would be useful to explore possibilities in 

automating this process.

The problem of creating an interesting visual accompaniment for a piece of 

music can be divided into three subproblems. First of all, the visual effects of the 

accompaniment should match the rhythm and energy of the music. Secondly, the 

visual effects accompanying the music should fit well together, so that the visual 

accompaniment is perceived as a coherent whole, rather than random bursts of light, 

water, etc. on the beat of the music. Thirdly, the visual effects of the accompaniment 

should be varied enough to create a visually stimulating experience.

In this study, a technique for composing visual accompaniments for music 

pieces was developed that can be used on a wide variety of visual accompaniment 

systems. In this study, it was chosen to use a launchpad layout as visual 

accompaniment for the music. The launchpad layout provides a basic framework for 

creating light shows, can be simulated easily, and is small enough to run experiments 

without the need for a large setup.

A launchpad is an electronic music 

instrument that has gained popularity in 

recent years. The display consists of an 

8x8 grid of illuminated, square buttons, 

surrounded by a number of additional 

buttons towards the edge of the 

instrument. The specific layout used was 

derived from the Novation Launchpad 

Pro. In this layout there are an additional 

eight illuminated, round buttons on all 

four sides of the grid (see image). A 

launchpad is commonly used for playing 

music. An artist assigns a sound clip to 
Figure 1: layout of the Novation Launchpad Pro

each button on the launchpad, which is played when the button is pressed. As long as 

the artist remembers which sound belongs to which button, the launchpad can be 
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played like any key-based instrument. Additionally, the artist can assign light effects 

to certain buttons. Meaning that, when a button is pressed, several buttons on the 

display light up in a predefined color and sequence, creating interesting visual effects 

while playing. Alternatively, the launchpad can also be used for making light shows 

alone, which is the focus of this study. In that case, the artist predefines exactly which

lights will light up during the course of an entire song. This process is very time 

consuming and it can take up to several hours to predefine a light show for a minute 

of a song. From the artist's perspective it may therefore be useful to have a program 

that performs the same job automatically.

The program proposed in this study could be used to compose any visual show 

accompanying music. In this study, the program was used solely for the purpose of 

composing launchpad light shows. However, the program could be used for any 

visual display, given that the following requirements are met: Firstly, a set of training 

data must be available to train the program. The program attempts to replicate 

behavior from human-made example shows and apply this behavior to the music of 

the new song. Therefore, the quality of the shows composed by the program is limited

by the quality of the human-made examples, the number of examples provided, and 

the similarity between the music in the example shows and the music for the show 

that is to be composed. (e.g. if the program is only given examples of shows made for

classical music, it will not perform well at making a show for a rock song). Secondly, 

it must be possible to create an abstract representation of the layout of the instrument 

used to produce the show that is consistent between the training data and the final 

light show. For example, the layout of the Novation Launchpad Pro, used in the 

study, consists of 96 illuminated buttons, which are numbered 28 to 123. This layout 

is consistent between all Novation Launchpad Pros, therefore any light show made 

on a Novation Launchpad Pro can be used as training data for the program, and a 

light show composed by the program can be played on any Novation Launchpad Pro.

Similarly, if the program would be used to compose a water show or a firework show,

it would be required that the human-made shows used for the training data are made 

either for exactly the same layout, or on a similar layout, where elements can be 

paired one-to-one with the new layout.

In order to artificially compose enjoyable light shows, one must know what it 

is that makes human-made light shows enjoyable. Unfortunately, no research has 
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been done on this topic. However if one views light shows as an extension of the 

music they are made for, then one might be able to apply the same heuristics that 

make music enjoyable to light shows. 

Minsky (1981) compares listening to a piece of music to watching a scene in a 

room. Minsky says that in each person's mind work many agents with very specific 

tasks. For example one agent might recognize a few small scraps from the visual 

field, another agent might recognize a shape in these scraps, and another agent might 

recognize this shape as part of a piece of furniture. Similarly, when it comes to music,

a person's mind might have many agents dedicated to recognizing different parts of 

music. They might have one agent solely dedicated to recognizing rhythm, another 

that is capable of recognizing simple melodies, and another that assigns meaning to 

the music on a much higher level. Within this system there exists a hierarchy of 

layers, where each layer processes a more abstract and “meaning” oriented version of

the information received from the layer below. As Minsky puts it: “Relations at each 

level, turn to Thing at next above; more easily remembered and compared.” This 

means that, while listening to music, the mind does not only process “the now”, but 

also searches and remembers meaning over a broader spectrum of time. As a result, 

when a rhythm is more monotonic or a melody more simplistic, the agents higher up 

in the hierarchy become less excited. De Manteras & Arcos (2002) state that a 

neuron's firing rate decreases over time when the neuron repeatedly receives the same

input. This effect is called habituation. This explains that music is perceived as more 

interesting when it contains a certain amount of variation, “that is, when it contains 

alterations in dynamic, pitch, and rhythm.” Based on this, one can conclude that the 

light shows should also contain sufficient alterations in dynamic, “pitch,” and 

rhythm. Since the rhythm of the light show should match the rhythm , pitch and 

loudness of the music, these heuristics should be covered as long as the composed 

light show sufficiently fits the music. However, to prevent habituation, it is necessary 

to place restrictions on the program that force it to include a sufficient variety of 

visual effects in its light shows; hence creating light shows that are enjoyable to 

watch.

One might also wonder whether the light effects used have any meaning for the

audience that goes beyond having matching rhythms. Bolivar et al. (1994) found that 

people are able to “assess the degree of audiovisual semantic congruency” between 
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video clips and accompanying music. In their study, they showed participants 

aggressive/friendly video clips accompanied by aggressive/friendly music, and asked 

the participants to judge whether the music matched the clip. Although the 

comparison between video clips and light shows is somewhat abstract, this does show

that people are able to perceive incongruence between visual and auditory stimuli. 

This suggests that the application needs to be capable of depicting the energy of the 

songs to a level beyond merely matching the rhythm.

Many artificial music generation systems depend on a specified set of rules to 

compose this music. Since no research has been done before regarding a general 

approach to visually accompanying music, it would be difficult to formulate such 

rules for our purpose. Alternatively, some artificial music generation programs work 

by iteratively improving a composition throughout a number of generations with a 

genetic algorithm (Biles, 1994). The fitness function in these systems is often 

implemented algorithmically. However, Wiggins (1998) points out that there exists no

general formalized fitness function for judging the quality of music. Therefore it is 

often necessary to let a human operator subjectively judge the quality of a piece of 

music generated by the system. In this case we speak of an Interactive Genetic 

Algorithm For the system proposed in this study, neither of these methods is optimal, 

as there are no general heuristics for judging the quality of a light show, making it 

difficult to define a rule-based system; and the premise of this study is to create an 

automated system, therefore making the system interactive would contradict with our 

interests. 

METHODS
Due to the impracticalities of designing the system as a rule-based AI or 

making the system interactive, instead a Machine Learning approach was chosen, 

where the program learns from example light shows made by a human. The program 

then replicates the behaviors of the human-made light show when presented with a 

new song.

7



Training Data

We contacted Youtuber InspirAspir, who was willing to provide us with several

light shows he made for his Youtube channel, and gave us permission to use these 

light shows for training and testing purposes. In total, seven of his light shows have 

been used, namely:

Table 1 (list of light shows used, made by InspirAspir)

Song Artist(s)

Abyss Kaskobi

Blow Up ViperActive

Invincible DEAF KEV

Lost Woods (remix) InspirAspir

Roses The Chainsmokers

Wizards in Winter Trans-Siberian Orchestra

These songs provided a reasonably wide variety of genres, ranging from 

dubstep to alternative rock.

The data files InspirAspir provided were formatted in the form of Ableton Live 

project files. These files contain several thousand lines of commands, specifying at 

which time during the show a certain light should light up, for how long, and in what 

color.

Since the launchpad itself can not decode these files itself, but instead receives 

MIDI events from an intermediate program (like Ableton Live), these files had to be 

converted to MIDI files. Since MIDI files are sorted in chronological order, whereas 

the project files are sorted on button number, a buffer had to be implemented in the 

program that stored all MidiNoteEvents from the project files, sorted them on time, 

and wrote these to a MIDI file afterwards. The MIDI code needed to light up one 

button on the launchpad can be easily derived from the corresponding MidiNoteEvent

in the project file.
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Figure 2: several lines of code from an Ableton Live project file. Each line encodes a flash of a 
single light on the launchpad (an event). The tags that are relevant for translating an event to 
MIDI code are as follows:

• Time: the amount of time from the beginning of the show to the start of the event
• Duration: the amount of time that the light stays lit
• Velocity: an integer value describing with which color the light flashes from a list of 

predefined colors

For a detailed description on how light shows are encoded in MIDI, see Appendix I.

Simulating the Launchpad

Since Radboud University does not own a launchpad, a program had to be 

written to simulate the light shows on a computer. As well as bypassing any technical 

issues that could have arisen with integrating the program with a physical launchpad 

device, this made it possible to neatly integrate the light shows with the experimental 

setup later on. The layout of the Novation Launchpad Pro used by InspirAspir was 

replicated and placed over a black background to maximize the amount of contrast 

between the lights and the background. The numbers assigned to each button were 

copied from the Novation Launchpad Pro (see figure 3). This took some 

experimentation and manual adjustment, since no ready-made scheme existed for this

layout. Within the program, the layout can be easily configured and changed to any 

layout desired. 
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Figure 3: the layout of the simulation display, as well as the numbers assigned to each light

The launchpad is able to display 128 predefined colors. The number assigned 

to these colors were also copied from the Novation Launchpad Pro (see figure 4). By 

doing so, the simulations of the light shows in the data set matched as closely to the 

originals made by InspirAspir as possible.
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Figure 4: numbering of the 128 colors displayed by the launchpad. Source: LAUNCHPAD PRO 
Programmer's Reference Guide

While simulating a light show, the program displays the light show and plays 

the accompanying song in parallel. The program keeps an internal buffer of the MIDI

file describing the light show and executes these hex-bytes one by one. As long as a 

MIDI event is preceded by a delay of 0 ms, the program updates the internal state of 

the simulation, but does not update the visual display. Once the program finds a MIDI

event with a delay larger than 0 ms, it updates the display and pauses the program for 

the specified amount of time before continuing the process of reading and updating 

the simulation. The simulation maintains an internal clock, which is used as reference

when determining how long the program needs to wait given a certain delay. This 

guarantees that the timing of the light show is not thrown off by any computation 

time needed to update the simulation. Otherwise this computation time might add up 

over the course of the song and create inconsistency between the timing of the 

displayed light show and the original MIDI file. The behavior of the simulation is 

illustrated in figure 5.
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Figure 5: a sequence of changes to the visual display of the simulation. NB: light shows are 
generally fast paced; the sequence shown would only last circa half a second in real time.

Training Data

In order to replicate human behavior, the program needs to be able to pick and 

choose from a wide variety of options of visual effects from the original light shows. 

To this purpose, the original light shows were split up in separate effects. An effect is 
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defined as an amount of MIDI code which, through a sequence of light-off and light-

on events, delays and updates, transforms the launchpad display from one state into 

another. An effect can only be played during a light show if the pattern of lights that 

are on on the display matches the pattern of lights of the starting state of the effect. 

Since the MIDI code of an effect only tells the launchpad which lights to turn on and 

off and in which color, a selected effect might otherwise leave lights on where they 

are supposed to be off and vice versa. Thus altering the visual appearance of the 

effect from its intended use. Effects are usually short, repeating sequences, lasting 0.5

to 2 seconds. For example, the sequence shown in (figure 5) would be stored as a 

single effect in the database. Occasionally, the light shows contained sequences that 

had no clear or repeating pattern. In those cases, we split up the sequences in separate

effects at arbitrary points based on patterns that commonly occurred between other 

effects (see figure 6).

The corresponding MIDI code of these effects was stored as well as the context

in which the effect was originally used, in the form of the music segment from the 

song over which the effect was displayed, the state of the visual display before the 

effect was played, and the color of the lights that were on before the effect was 

played. Combining these characteristics allows the algorithm to select effects that 

match the music and fit in well with the flow of the light show; both positionally and 

color wise. Segmentation of the light shows was done manually. An application was 

built that made it possible to manually play the light shows from the training data 

frame by frame, and create a cut, wherever a switch between two effects is made. 

This process was time-consuming. Once in the database , however, the separated 

effects can be used permanently for composing new shows. Certain patterns on the 

launchpad appear to occur frequently in transitions between effects (see figure 6).
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Figure 6: examples of patterns on the launchpad that often occur between effects.

Based on these characteristics, it should be possible to make an automated 

system for segmenting effects in a light show. This, combined with other heuristics 

like the average length of effects could be used to design an algorithm that performs 

this process artificially, for example with an artificial neural network. However, since 

time was limited and there was enough data to move onto artificially composing light

shows, this possibility was not explored further. The training data consisted of 

roughly 1700 effects.

Composing Light Shows

The problem of composing new light shows was divided into three sub-

problems: matching the emotion of the music and the light show, matching the 

rhythm of the music and the light show, and creating an optimal flow within the light 

show.

Emotion

In order to match the energy of the light show with the energy of the music, the

program calculates similarity scores between a short clip from the song and the music

clips corresponding to the effects in the database. The effects used in the original light

shows convey the emotion of the song they were originally made for. For example, if 

part of a song conveys an uplifting message, then the effects originally placed over 
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this part of the song would also convey this uplifting message in some form or 

another. Hence, if a music clip from the new song is similar to a fragment of the 

original song, then the effect played over that fragment of the original song should 

also fit well with the fragment of the new song. Since artificially analyzing similarity 

between fragments of two songs on such an abstract level is both subjective and 

difficult to achieve, it was decided to compare music fragments with a more low-level

approach. The similarity between two clips was determined by calculating the sum of 

squared errors between the spectrograms of both clips, divided by the length of the 

clips. Dividing by the length of the clip removes the program's bias towards shorter 

effects. In order to account for variations in rhythm between the two songs, the final 

similarity score is defined as the best fit between the two spectrograms given a delay 

before the new effect ranging from 0 to 250 ms. The final formula to calculate the 

similarity between a new clip ( c ) and a clip from a song ( s ) starting at ( tstart ) is as 

follows (see figure 7 for an illustration of this formula):

similarity (c , s , t start)= max
delay=0

250 length(c)

length(c)+ ∑
t=0

length(c )

(c (t)−s(t start+delay+t))2

Although similarity is approximated on a more concrete level, the effect of this 

approach should be roughly the same. When two music clips convey the same sort of 

energy, the spectrograms of the two clips should also correlate more strongly, based 

on for example the volume and the direction of the pitch.

Rhythm

The option to compare the bpm (Beats Per Minute) of the new song to the 

bpms of the original songs was considered, however it has proven very difficult to 

artificially determine the bpm of a song. The algorithms delivered very inaccurate 

results and only returned a plausible number for about fifty percent of the songs. 

Because of this, it was decided to omit this possibility. Instead, in order to match the 

rhythm of the light show with the rhythm the same formula as mentioned above was 

used, with the difference that at the argmax is used rather than the maximum value. 

Since the effects are so short that generally they cover only a single beat in the music,

it has no purpose to consider the overall bpm of the songs. The final formula to 
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determine the optimum amount of delay needed to insert a new effect with music clip

( c ) into a song ( s ) starting at ( tstart ) is as follows (see figure 7 for an illustration of 

this formula):

bestDelay (c , s , t start)=argmax
delay=0

250 length (c)

length(c )+ ∑
t=0

length(c)

(c (t )−s (t start+delay+t ))2

By using the offset needed to create the best fit between two clips, the beats of 

both clips are lined up. Since the volume of a music clip is higher on the beat than off

it, the best fit between two similar music clips should be at or near the point where 

the two beats align.

Figure 7: illustration of the similarity and bestDelay functions. For all possible delays between 0 
and 250 milliseconds, the functions divide the length of the clip (c) by the sum of squared errors 
between (c) and the song (s) starting from (t_start + delay) over the length of (c). The similarity 
function returns the maximum value of this calculation and the bestDelay function returns the 
argmax.
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Flow

The problem of guaranteeing good flow within the light show was divided in 

two. Firstly, the light show must not jump around positionally. What this means is 

that an effect must start from the same state on the launchpad that the previous effect 

has ended on. This was done by putting restrictions on the effects that the algorithm 

could choose from the database. While composing a new light show, the algorithm 

maintains an internal simulation of the launchpad show, registering which lights are 

on, and which color they have. When adding a new effect to the light show, the 

algorithm limits the effects it considers to effects that start in the same position as the 

simulation has at that time. Secondly, the colors displayed in the new light show 

should flow together nicely. In the original light shows in the training data, the 

starting color of an effect was generally similar to the color of the previous effect. 

However, since our algorithm can pick and choose effects from different songs and 

from different moments within the same song, there is no longer the guarantee that 

the colors of two effects placed together by the algorithm will also flow together 

nicely. In order to solve this, it was recorded how much the RGB values of the effects

in the database changed after their first update from the state the previous effect 

ended in. Any time the algorithm adds a new effect to the light show, it looks at the 

colors of the lights that are turned on on the launchpad at that time and at the amount 

the colors of the new effect changed in the context of their original light show. Based 

on these values, the algorithm adjusts the colors of the new effect such that the 

change in colors with respect to the previous state of the launchpad is equal to the 

change in colors of the unadjusted effect with respect to the preceding state of the 

launchpad in its original light show. For example, if in the original light show an 

effect ended with all lights that are turned on being red, and after the first update of 

the next effect all lights that are turned on are still red (ie. there is no change in color 

in the original light show), then when the algorithm chooses to implement this effect 

in the light show and at that time all lights on the launchpad that are turned on are 

green, then the algorithm will adapt the colors of the effect in the new light show to 

also be green (ie. there is no change in color in the new light show).

Gradual Improvement

Estimating the similarity between to music clips is a rather time-consuming 
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process. Therefore, it is unfortunately not possible to perform an exhaustive search on

the database. Instead a Greedy Best-First Search algorithm was implemented which 

uses localized Depth-First Search, inspired on the algorithm described by Hiller 

(1959). The algorithm composes a light show for a given song using the Greedy Best-

First Search algorithm. At each step during the process the algorithm estimates the 

similarity between the next segment of the new song with the music clips from the 

effects in the database that have the same starting state as the internal simulation has 

at that time. Additionally, in order to guarantee an enjoyable level of variety in the 

light show, the algorithm is not allowed to use the same effect twice within a certain 

amount of time (2 minutes).The algorithm picks the effect with the highest similarity 

score and adds that to the light show. This process is repeated until a light show has 

been composed for the entire song. However a threshold variable is maintained 

during the process. At any point during the process, when the similarity score of the 

best-fitting effect does not exceed the threshold, the algorithm backtracks one step in 

the light show it has composed so far, and blacklists the last effect added to the light 

show. It then proceeds with searching for the best-fitting effect from that point on 

(excluding the ones that are blacklisted). If no effects are available, or the similarity 

scores of the available effects do not exceed the threshold, it backtracks another step, 

etc. During the first epoch, the threshold of the algorithm is set to 0. Hence, during 

the first epoch, the algorithm performs an ordinary Greedy Best-First Search. At the 

end of each epoch, the threshold value is increased to the similarity score of the 

worst-fitting effect in the light show. The light show it has composed during that 

epoch is written to a file, and the process starts over. Since the threshold value 

increases after each epoch, each next epoch will compose a light show that is slightly 

better than the previous. The program can be interrupted at any time, in which case 

the program will return the best light show so far.

Composing the Light Shows

For the experiment seven different light shows were composed by the program 

for seven different songs. Each of these seven songs was selected based on their 

similarity in style and genre to one of the songs from the initial data set. Six out of 

seven songs were made by the same artist that made the corresponding song from the 

initial data set. For one of the songs, InspirAspir – Lost Woods (remix) (a dubsteb 
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remix of a soundtrack song from the Zelda game franchise), no song made by the 

same artist existed that was similar in style. Instead a dubstep remix of another song 

from the Zelda soundtrack was selected made by a different artist, Bitonal Landscape

– Legend of Zelda: Main Theme (remix). The full list of songs used in the experiment 

is as follows:

Table 2 (the full list of songs used in the experiment)

InspirAspir AI

Kaskobi – Abyss Kaskobi – Phantom

ViperActive – Blow Up ViperActive – Atomic

Bomb Squad – Damn Daniel Bomb Squad – Morphine

DEAF KEV – Invincible DEAF KEV – Samurai

InspirAspir – Lost Woods (remix) Bitonal Landscape – Legend of Zelda: 
Main Theme (remix)

The Chainsmokers – Roses The Chainsmokers – Closer

Trans-Siberian Orchestra – Wizards in 
Winter

Trans-Siberian Orchestra – Wish Liszt

All light shows have been trained for 5 hours, after which the last finished light

show made by the program has been used during the experiment. During those 5 

hours the program has managed to progress through fifteen to forty epochs, 

depending on the length of the song. Composing the light shows took a total of 35 

hours. It must be noted that the program runs fully automatically, and does not 

require any form of human interaction. 

Control Group

For each light show composed by the AI a pseudo-random variant was also 

made for the control group. In the control group, the algorithm selected random 

effects from all effects in the database who's starting state matched the state on the 

launchpad, without calculating the similarity between music clips of the new song 

and the original songs. A random amount of delay (between 0 and 250 milliseconds) 

was added before each effect, and no changes were made to the colors of the effects.
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The Experiment

During the experiment a total of 34 participants have been asked to judge the 

quality of two light shows. The majority of the participants were students at Radboud 

University Nijmegen. Before the experiment participants have been asked to sign a 

letter of consent, to indicate that they consented to taking part in our study and did so 

out of free will. Additionally, participants were asked to explicitly declare that they 

did not have epilepsy, that they did not suffer from photosensitive epileptic seizures 

and that they did not have any other afflictions that could be triggered by visual cues.

The participants were instructed that they were going to watch two light shows 

made by Youtuber InspirAspir, and that they would be asked to answer several 

questions about these light shows to measure how they judged the quality of both 

light shows. The participants were assigned to the experimental group or the control 

group at random. Participants in the experimental group were shown one light show 

made by InspirAspir and the corresponding light show made by the AI program. 

Participants in the control group were shown one light show by InspirAspir and the 

corresponding light show made by the pseudo-random algorithm. The order in which 

participants watched the two light shows was randomized. In the end, the 

experimental group contained 20 participants and the control group contained 14 

participants.

The decision to split the participants in two groups was made based on 

practical reasons. Participation in the experiment required circa 15 minutes of time. 

This was short enough that we could recruit volunteers from students who were 

spending time between lectures. Had a within-subject design been used, it would 

have been necessary to show participants three light shows each. In that case, 

participation would have required circa 20 to 25 minutes, which would have made it 

much more difficult to find the same number of participants.

The experiment has been performed with a double-blind design. At the start of 

the experiment each participant has been asked to write down a number on their 

questionnaire. This number could later be traced back to the condition they were in. 

The researcher did not see which number the participants wrote down, nor did the 

researcher see which light shows the participant was watching.

After watching each light show, the participant has been instructed to judge the 
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quality of the light show by indicating how much they agreed with nine statements 

about the light show. For each statement they could indicate that they fully disagreed,

disagreed, had a neutral opinion, agreed or fully agreed with the statement. Their 

answers were scored on a scale from 1 to 5, where “fully disagree” corresponded with

a score of 1, and “fully agree” corresponded with a score of 5. Questions 5 and 8 (see 

below) have been scored in reverse where “fully disagree” corresponded with a score 

of 5, and “fully agree” corresponded with a score of 1. The nine statements were as 

follows:

Table 3 (list of statements on the questionnaire)

Number Statement

1 The effects matched well with the song at any given moment.

2 The effects flowed together nicely.

3 The effects paired well together.

4 The rhythm of the light show paired well with the rhythm of the song.

5 The light show was chaotic.

6 Overall, the light show conveyed the energy of the song well.

7 I enjoyed watching this light show.

8 There were moments during the light show when I was bored.

9 There were moments during the light show when I was amazed.

After watching both light shows and answering the questions corresponding to 

that light show, participants were informed that only one of the light shows they 

watched had been made by InspirAspir, whereas the other one had been made by an 

Artificial Intelligence Computer program. They were then asked which of the two 

they deemed was most likely made by the Artificial Intelligence computer program.

21



RESULTS
The results from the experiment show that the participants preferred the 

human-made light shows over both the light shows made by the AI approach and the 

pseudo-random approach. Both results are statistically significant (p < 0.0005 and p <

0.01).

Next it was analyzed whether the participants preferred the AI made light 

shows over the pseudo-randomly generated light shows. For this purpose, the gain-

scores (scorecomputer – scorehuman) have been calculated for each of the nine statements. 

Next the gain-scores over all nine statements have been averaged to find the 

difference in overall perceived quality between the computer-made light shows and 

the human-made ones. There is no statistically significant effect between the gain-

scores of the AI made light shows and the pseudo-randomly generated ones (p >= 

0.25). Meaning that the participants did not prefer the AI approach over the pseudo-

random approach.

meanexp meancontrol stdexp stdcontrol nexp ncontrol Cohens d p

-0.7534 -0.7302 0.8425 0.4964 20 14 -0.0323 p >= 0.25

In fact, the gain-scores in the control group are slightly higher than the gain-

scores in the experimental group, however this effect is nowhere near statistically 

significant either (p >= 0.25). 

meancontrol meanexp stdcontrol stdexp ncontrol nexp Cohens d p

-0.7302 -0.7534 0.4964 0.8425 14 20 0.0323 p >= 0.25

Next it has been analyzed how participants judged the quality of the computer-

generated light shows with respect to the human-made ones on the different 

statements separately. Here some more interesting results have been found that might 

suggest that participants judge the quality of several aspects of the AI and pseudo-

random approach differently, however again no statistically significant results are 

found. The gain-scores are slightly higher in the experimental group for statements 2, 

3, 4, 5 and 6. However these results are not statistically significant (p >= 0.25 for 

statements 2, 3, 4 and 6 and p < 0.20 for statement 5). The gain-scores are slightly 
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higher in the control group for statements 1, 7, 8 and 9. However these results are not 

statistically significant either (p >= 0.25 for statements 1, 7 and 8 and p < 0.10 for 

statement 9).

Experimental condition was preferred over control condition:

Table 4

Statement* meanexp meancontrol stdexp stdcontrol nexp ncontrol Cohens d p

2 -0.6000 -0.7857 1.0954 1.1217 20 14 0.1679 p >= 0.25

3 -0.6316 -0.6429 1.1161 0.9288 19** 14 0.0108 p >= 0.25

4 -1.1500 -1.2857 1.3485 1.2666 20 14 0.1031 p >= 0.25

5 -0.5500 -1.0000 1.5720 0.9608 20 14 0.3315 p < 0.2

6 -0.6316 -1.0000 1.065 1.3587 19** 14 0.3078 p >= 0.25

* see table 3 for reference

**  one participant did not answer this question for the AI approach

Control condition was preferred over experimental condition:

Table 5

Statement* meancontrol meanexp stdcontrol stdexp ncontrol nexp Cohens d p

1 -0.9286 -1.1500 0.7300 1.3485 14 20 0.1135 p >= 0.25

7 -0.2143 -0.4000 1.1883 1.0954 14 20 0.1638 p >= 0.25

8 -0.5000 -0.8500 1.0190 1.2258 14 20 0.3053 p >= 0.25

9 -0.2143 -0.8000 1.1883 0.9515 14 20 0.5556 p < 0.1

* see table 3 for reference

Lastly, it has been analyzed whether the participants were able to distinguish 

which of the two light shows they watched was made by a computer. In the 

experimental condition 45.00% of the participants correctly assessed which light 

show was made by a computer. In the control condition 42.86% of the participants 

correctly assessed which light show was made by a computer. The difference between

these groups is not significant (p >= 0.25).
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DISCUSSION
In this research it has been studied whether people would judge the quality of 

AI composed light shows lower than light shows composed by a human artist. 

Additionally it has been studied how participants judged the quality of AI composed 

light shows in comparison to pseudo-randomly generated light shows. Lastly it has 

been researched whether people would be able to correctly differentiate between a 

light show made by a human artist and a light show made by a computer.

To answer the first question, a t-test for paired observations has been done 

based on answers participants gave to nine statements regarding the quality of an AI 

composed light show and a human-made light show. Based on the results, one can 

conclude that people judge the quality the AI composed light shows as lower than the 

human-made light shows. The program proposed in this paper will therefore need to 

be improved before it can compose light shows on the same level as a human artist.

To answer the second question, a t-test for paired observations has been done 

based on the difference scores (gain-scores) of the human-made light shows and the 

AI-composed ones and the difference scores (gain-scores) of the human-made light 

shows and the pseudo-randomly generated ones. It has been found that there is no 

statistically significant difference between the gain-scores of the AI composed light 

shows and the pseudo-randomly generated light shows. Therefore one can conclude 

that the AI approach for composing light shows is not better than the pseudo-random 

approach used in the control group. Additional research with a larger amount of 

participants is needed to determine whether people prefer the AI based approach over 

the pseudo-random approach. 

Additionally the judged quality of the AI composed light shows and the 

human-made light shows has been analyzed on the nine statements separately. For 

this purpose, t-tests for paired observations have been done based on the difference 

scores between the human-made light shows and the AI-composed ones and the 

difference scores between the human-made light shows and the pseudo-randomly 

generated ones for all statements separately. Results largely match the previous 

findings when all nine components were combined, and no difference is found 

between the gain-scores of the AI composed light shows and the pseudo-randomly 

generated ones that is anywhere close to significant. Somewhat interesting results are 
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found on two of the nine components, that might suggest that people judge the 

individual qualities of the AI composed light shows and the pseudo-randomly 

generated light shows differently. 

Firstly, the gain-score of the AI approach is higher than the gain-score of the 

pseudo-random approach for the statement “The light show was chaotic.” This 

suggests that the music-similarity algorithm and the algorithm for adapting colors 

between effects might help in creating a level of order that is closer to the light shows

made by a human artist. One must consider however, that the found effect was not 

statistically significant (p < 0.2), therefore no definite conclusions should be drawn 

from this finding. Additional research with a larger group of participants should be 

performed to find out whether this effect is truly due to the participants finding the AI

composed light shows less chaotic, or whether it was caused by chance. 

Secondly, the gain-score of the pseudo-random approach is higher than the 

gain-score of the AI approach for the statement “There were moments during the light

show that I was amazed.” This suggests that using the program for composing light 

shows decreases the amount of amazement people feel when watching those light 

shows. Alternatively, it is possible that people interpreted this statement differently 

than it was intended. Possibly some participants interpreted this statement as “there 

were moments during the light show that I was negatively surprised by the behavior 

of the light show.” Therefore, the statement should have specified that the participants

were “positively amazed.” Since the original question was intended as asking in the 

positive direction, the possibility that participants interpreted this question in the 

negative sense has not been included in the analysis above. It must be noted that the 

effect found in the experiment is not statistically significant (p < 0.1), and therefore 

no definite conclusions should be drawn based on this finding. Further research with 

a larger group of participants should be performed to find out whether this effect is 

truly due to participants experiencing the pseudo-randomly generated light shows as 

more amazing than the AI composed ones, or whether it is caused by chance. In 

further research, this statement should also be rephrased to specify that the participant

was positively amazed, to reduce the amount of ambiguity.

Lastly, an adaptation on the Feigenbaum test has been performed, as described 

by Feigenbaum (2003), to see whether people would be able to correctly differentiate 
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between the behavior of a human expert and an AI on a specific task, namely 

composing light shows. 45% of participants were able to correctly identify the AI 

composed light show; 42.86% of the participants were able to correctly identify the 

pseudo-randomly generated light show. These results seem promising at first. 

However, the results discussed above show that people prefer the human-made light 

shows over the light shows composed with the AI or pseudo-random approaches. 

Additionally many participants have indicated that they found one of the light shows 

clearly better, but did not know whether this meant that that light show was made by 

a human or by a computer. What these results show is that people do not know what 

to expect from a human or a computer when it comes to composing light shows. 

Therefore, they are unable to judge which light show was made by a computer and 

which one by a human.

CONCLUSION
This research has proposed a method for composing visual accompaniment to 

music using Artificial Intelligence techniques. In this research it has been found that 

light shows made by a human artist are perceived as higher in quality than light 

shows made by the proposed method. Additionally, it has been found that the 

program described in this research did not perform significantly better than a pseudo-

random approach which selected random visual effects based on the current state of 

the system. Therefore, it can be concluded that the proposed method will need much 

improvement before it is capable of composing visual accompaniment to music on 

the level a human artist would achieve.
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APPENDIX I
 The MIDI code for one event consists of four or more hexadecimal bytes. For 

example, one MIDI event might look like this:

17 90 33 1

A B C D

The first byte (A) describes the amount of delay in ticks before the MIDI event 

is executed. For our purposes, we set the amount of time per tick to an arbitrary 

1ms/tick. In the example the hexadecimal byte 17 corresponds with a delay of 23 

milliseconds.

The second byte (B) describes the type of event. For the launchpad light shows,

only “note on” events are used, corresponding to the hexadecimal byte 90. When a 

light is turned off, the corresponding MIDI event will code a “note on” event that sets

the color of the light to black.

The third byte (C) describes the number of the light that the event codes for. 

There are 96 lights on the launchpad display numbered 28 (1C) to 123 (7B). In our 

example, light 33 will be turned on on the launchpad, which corresponds with light 

number 51.

The fourth byte (D) describes the color that the light will be set to. The 

launchpad can display 128 predefined colors numbered 0 (0) to 127 (7F). In our 

example the light is set to color 1 (1), which corresponds with a dark gray.

Whenever a delay longer than 127 milliseconds is required, an additional byte 

is added to the beginning of the MIDI event. The added bytes are always equal to or 

larger than 80, whereas the last byte of the delay is always smaller than 80. Whenever

the program encounters a delay byte larger than or equal to 80, while playing a light 

show, 80 is subtracted from this number, and the remainder is multiplied by the 

maximal amount of time that can be coded by the next byte. To illustrate, the 

maximal amount of time that can be coded by one delay byte is 127 ticks (7f). If the 

program needs to wait 128 ticks another byte is added to create (81 00). Similarly, 

when two bytes are not enough to code the amount of delay required, then a third 

byte is added to create a delay of 16384 ticks (81 80 00). Up to three additional bytes 

can be added to the delay, allowing for a massive FF FF FF 7F, which codes for 
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more than an hour of delay.
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