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Abstract

The bag-of-words model is a common approach to represent documents for all kind of text
mining tasks. However, the assumed independence of words does not reflect the complexity
and context of human natural language. We propose a graph-based representation of col-
lections of documents that include documents and features with their respective syntactic,
semantic and frequency-based relations.
Based on semi-supervised learning - an approach that besides using labeled data, also in-
corporates the structure of unlabeled data for classifier training - the influence of different
graph properties on text categorization is investigated. The results show that even though
bag-of-words is a powerful approach, adding word relations significantly improves classifica-
tion performance. Whether syntactic or semantic feature relations are used has, however,
no significant influence.
Although, graph-based semi-supervised learning outperforms bag-of-words based supervised
and semi-supervised learning approaches when varying the number of labeled documents, it
is not able to use the full potential of including unlabeled data.
The big advantage of graph-based methods is their flexibility to perfectly adapt the docu-
ment representation to a specific text mining task.
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1 Introduction

The majority of the online accessible data is unstructured or semi-structured text data.
In order to efficiently handle these enormous amounts, automated information extraction,
document categorization and summarization are necessary to give a user a quick overview
about a document’s content and its relevancy for a specific purpose. However, this is not
straightforward as text data is based on natural language. This form of human interaction
emerged a long time ago and is still constantly evolving. Communication based on written
and spoken language requires knowledge about grammatical structures, semantic concepts,
ambiguous word, a sense of humor, irony and sarcasm, as well as cultural understanding
and knowledge about the world.
Despite this complex interaction, most research in the field of text mining focuses on one
particular aspect of written language: the word frequency. By representing documents with
the so-called bag-of-words model words are assumed to be independent of each other. There-
fore, no information about syntactic or semantic relations between words or relevant word
sequences is captured. Especially, when classifying short documents the semantic relation
between words is relevant to identify texts that cover the same topic but use synonyms or
closely related words.

In this project we investigate whether a graph-based text representation, that captures
syntactic relations, semantic similarities as well as word frequencies, is able to improve
performance in a benchmark text categorization task. We use semi-supervised learning as it
incorporates the structure of unlabeled data points which is of substantial importance when
the amount of unlabeled data greatly exceeds the amount of labeled data.
Based on the widely used 20-Newsgroup dataset1 we investigate two different aspects:

(1) We propose a graph-based text representation that includes documents and features
of documents linked with syntactic, semantic and frequency based relations. With
semi-supervised learning we assess the influence and relevancy of different graph prop-
erties on categorization performance. Furthermore, the graph-based semi-supervised
learning approach is compared to semi-supervised learning based on a standard bag-
of-words model.

(2) In the second experiment we focus on investigating the effectiveness of semi-supervised
learning by varying the amount of labeled documents. Besides comparing graph-
based and bag-of-words based semi-supervised learning, a standard supervised learning
approach is included.

Text features related to term frequency are commonly used and have proven to perform
decently in text classification tasks. However, a main disadvantage is that two documents
are only assigned to the same class if they use the same keywords. This so-called vocabulary
gap can be bridged by adding information about the semantic similarity of words which
connects synonyms with high weights. Therefore, we expect that a model containing word
frequency as well as information about the semantic similarity of words outperforms other
feature combinations.
Furthermore, we expect that the graph-based semi-supervised learning approach leads to
a better classification performance with less labeled data points than supervised learn-
ing as structural information about unlabeled data is included during training. Moreover,

1Information and access to the 20-Newsgroup dataset can be obtained here.
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compared to bag-of-words based semi-supervised learning the graph-based semi-supervised
learning approach has the advantage of including relational information.

The thesis is organized as follows: In Chapter 2 we lay the foundation of text representation
and semi-supervised learning by reviewing literature in these fields. A special focus is on the
label propagation algorithm which will be used for semi-supervised learning. Chapter 3 gives
detailed insights about the dataset and the applied methods used for preprocessing. Graph
construction is illustrated by an example and the obtained graph-features and modulations
are discussed. In Chapter 4 we describe the structure of the two experiments, the graph-
based feature analysis and the number of labeled documents, and outline the measures used
for evaluation. Subsequently, Chapter 5 states the results and further insights that are
gained by the graph-based semi-supervised learning approach. Besides discussing results
and possible improvements, Chapter 6 gives a short overview about the computational
complexity, as with graph-based semi-supervised learning methods scalability is a key issue.
In Chapter 7 the final conclusion is presented.

2 Background

2.1 Text Representation

Representing a document in a computer processable way is necessary for any text mining
task such as document classification, sentiment analysis, topic modeling, text summariza-
tion, etc. Besides preparing the document for digital processing, a good text representation
is able to capture relevant information for a specific task while minimizing the dimensionality
of the problem such that machine learning algorithms can be applied efficiently (Sonawane
and Kulkarni, 2014).
The most popular approach in the field of text mining is vector representation. Documents
are placed in a space spanned by the vocabulary of the entire collection (Turney and Pan-
tel, 2010). These, so called, vector space models allow to assess the semantic similarity
of documents by computing the distance of the corresponding vectors (Turney and Pantel,
2010). Bag-of-words is a commonly used vector space model that captures the word fre-
quency in documents (Jiang et al., 2010). However, the words spanning the vector space
are independent from each other such that it is not possible to include information about
sentence structure, semantic or conceptual similarity of words or the structure of the entire
document (Sonawane and Kulkarni, 2014). Therefore, bag-of-words models are limited to
applications in which frequent words indicate the meaning of a text (Turney and Pantel,
2010) and in which documents that cover the same topic use similar words (Sonawane and
Kulkarni, 2014).
Often the most common n-grams, short sequences of n words, are added to the simple bag
for words model to include context information and small semantic units. Nevertheless,
bag-of-words models fail to capture semantic concepts that are expressed with synonyms or
are arranged in a slightly different word order (Rousseau et al., 2015).

In this project we will focus on graph-based text representations as they offer possibilities
to overcome the limitations of bag-of-words models. Graphs are mathematical constructs
consisting of nodes and edges that can efficiently model structural and relational information
(Sonawane and Kulkarni, 2014). Dependent on the dataset and the text mining problem,
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different graph representations of a document collection or a specific text are possible. Often
nodes represent document entities and edges the relations between them, such as information
about the author, journal, covered topics, etc (Schenker, 2003). Another possibility is to
use a graph for each text document by displaying unique words as nodes and use connecting
edges to indicate consecutive sequences, semantic similarities, common words in a sentences
and paragraphs or word co-occurrences (Sonawane and Kulkarni, 2014).
As many machine learning algorithms rely on similarity or distance measures, as well as the
computation of centroids and other numerical values (Schenker, 2003), graph-based text rep-
resentations require further processing or specially adapted graph-based machine learning
methods (Jiang et al., 2010). The required operations are often computationally expensive
as graph-based text representations add an additional level of complexity by including dif-
ferent types of structural and semantic information (Jiang et al., 2010).

Despite these limitations, recent research shows a growing interest in graph-based text repre-
sentations and its efficient combination with machine learning algorithms. After comparing
different graph-based text representations to traditional bag-of-words models Sonawane and
Kulkarni (2014) conclude that “graph models are the most suitable representations of text
documents”. Ganesan et al. (2010) use graph structures to summarize the content of short
and highly redundant comments such as product reviews. Other applications are graph-
based sentiment analysis (Castillo et al., 2015) or semantic clustering (Kannan et al., 2016).

2.2 Semi-Supervised Learning

Semi-supervised learning is a fast developing field in machine learning that combines su-
pervised learning, which is based on labeled data, with unsupervised learning, in which
underlying structures are discovered based on unlabeled data (Zhu, 2005). The idea is that
the distribution of unlabeled data adds relevant information to a supervised learning algo-
rithm and hence, positively influences the ability to assign labels to data points (Chapelle
et al., 2009). Figure 1 illustrates how the decision boundary in a binary classification task
changes when the structure of unlabeled data points is considered during the learning pro-
cess (Zhu, 2007). The objective is to assign a class to the data given the points 1 and 2.
Without further information, the decision boundary is set half way between 1 and 2 (dashed
line) such that the distance to the given data points determines the label.
However, this decision boundary incorrectly assigns class 2 to the point at x = 0. In con-
trast, by including information from unlabeled data points the underlying class structures
become clear. The data points are sampled from two Gaussian distributions and hence, by
estimating the corresponding means a better decision boundary is computed. The label of
point x = 0 is corrected as its probability to be drawn from the Gaussian distribution of
class 2 is smaller than its probability to be drawn from the distribution of class 1.

Similar, to supervised or unsupervised learning, the field of semi-supervised learning con-
sists of a wide variety of research branches (Chapelle et al., 2009) which include different
approaches and algorithms. We focus on graph-based semi-supervised learning because
graphs are able to capture multiple complex text properties of a collection of documents
(see Section 2.1).
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Figure 1: The illustration, taken from (Zhu, 2007), compares supervised and semi-supervised
learning in a binary classification task. While in supervised learning only the labeled data is
used to predict the remaining classes (dashed decision boundary), in semi-supervised learn-
ing the unlabeled data points provide information about the underlying class distribution
such that the classification performance is improved (solid decision boundary).

Another division in semi-supervised learning concerns the type of data for which class labels
are assigned. While transductive semi-supervised learning is limited to the unlabeled data
used for training, inductive learning aims to classify also unseen data (Chapelle et al., 2009).
In this project we only consider transductive learning.

By incorporating the structure of unlabeled data the classification performance of stan-
dard supervised learning can be improved (Bengio et al., 2006) and hence, the required
number of labeled data to reach a similar performance can be reduced. Therefore, semi-
supervised learning is mainly applied when a lot of unlabeled data exists, but labeling is
time-consuming, costly or requires a lot of effort or expert knowledge (Zhou et al., 2003).
This is the case for all kind of text and web categorization tasks, as well as protein or genome
sequencing, speech recognition or text parsing. Balcan et al. (2005) show its advantage com-
pared to supervised learning approaches in the field of person identification from webcam
images. Similarly, when used for the prediction of gene regulatory networks semi-supervised
learning outperforms support vector machines and random forests (Patel and Wang, 2015).
Also, for subsets of the here used 20-Newsgroup dataset semi-supervised learning has been
applied. Zhou et al. (2003) shows that smoothing the classification function with respect
to the intrinsic structure revealed by labeled and unlabeled data points decreases the error
rates of 4-class text categorization. Zhu et al. (2003) demonstrate that the semi-supervised
learning approach based on Gaussian random fields is able to efficiently exploit the structure
of unlabeled data to improve accuracy in binary text classification.
All in all, semi-supervised learning is a promising field of research, especially, as more and
more mainly unstructured and unlabeled data becomes online accessible.

2.2.1 Label Propagation

In this section we will have a detailed look at label propagation which is a commonly
used graph-based semi-supervised learning approach. Labeled and unlabeled data points
are represented as nodes in a graph and connected with weighted edges representing their
similarity (Liu et al., 2012). The initially known labels are propagated through the graph
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until all nodes are assigned to a class (Zhu and Ghahramani, 2002). Bengio et al. (2006)
specifies two graph consistency assumptions on which the label propagation algorithm is
based:

(1) smoothness assumption – similar or closely related points belong to the same class.
As edges in the graph represent similarity, neighboring nodes are likely to have the
same label.

(2) cluster assumption – points that lie on a connected graph structure, for example a
cluster, are likely to have the same label. Thus, decision boundary are located in
low-density regions.

These assumptions play an important role in graph-based semi-supervised learning as their
realization and implementation builds the basis for different label propagation algorithms
(Zhou et al., 2003).

For an in-depth understanding of label propagation we introduce a mathematical graph
notation which is based on Zhu et al. (2005):
Given is a data set X consisting of labeled samples {(x1, y1), (x2, y2), ...(xl, yl)} with yi ∈
{1, 2, ..., C} and unlabeled samples {xl+1, ...xu}. l corresponds to the number of labeled
data points, u to the number of unlabeled data points and C is the number of different
classes. All n data points are either labeled or unlabeled, hence, n = l+ u, where normally
l << u. A weighted graph G = (X ,W) is constructed such that every data point xi is
represented as a node. Nodes are connected with weighted edges wij, which together form
the weight matrix W.

Figure 2: Original label propagation algorithm of (Zhu and Ghahramani, 2002). Source:
(Bengio et al., 2006).

The original label propagation algorithm was introduced by Zhu and Ghahramani (2002)
and since then modified and extended many times. In the following the basic label propa-
gation algorithm, which is also stated in pseudo code in Figure 2, is described:
To estimate the labels of all data points Ŷ = (Ŷl, Ŷu) the weight matrix W is normalized
by multiplying it with the inverse of its degree matrix D. D is defined as Dii =

∑
jWij

corresponding to the total number of out-going edges of node xi. Therefore, the matrix
product D−1W corresponds to the normalized transition matrix indicating how probable it
is to transition from one node to another one.
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Labels are then propagate through the graph by multiplying the transition probability with
the labels: Ŷ = D−1WY . With Ŷl = Yl we ensure that the initial labels are fixed. This
process is repeated with Y = Ŷ until convergence is reached.

The original label propagation algorithm ensures that the initially known labels do not
change over time which is reached by minimizing the following function (Bengio et al.,
2006): ∑

i∈Vl

(ŷi − yi)2 = ||Ŷl − Yl||2 (1)

To include the smoothness assumption, rapid changes in the predicted labels Ŷ between
similar data points are penalized by minimizing the following function:

1

2

∑
i,j∈V

Wij(ŷi − ŷj)2 = Ŷ T (D −W )Ŷ = Ŷ TLŶ (2)

The combination of (1) and (2) results in a cost function that contains the trade-off between
the smoothness of the predicted labels over the entire graph and the accuracy of the initially
given labels Xl (Liu et al., 2012):

C(Ŷ ) = ||Ŷl − Ŷl||2 + µ Ŷ TLŶ

with µ regulating the corresponding relevance.
This cost function can be compared to regression: While we want a predicted curve to be
as close as possible to the observed data, over-fitting has to be prevented by regularization
and smoothing.

This simple idea is the basis for more complex label propagation algorithms that improve
performance and running time, and model more complex consistency assumptions or make
it possible to include noisy data.

2.3 Project Idea

In this project we combine graph-based text representation with semi-supervised learning.
We propose a flexible graph representation for collections of documents which includes doc-
uments as well as features as nodes. Kannan et al. (2016) uses a similar graph to generate
semantic clusters for short e-mail responses. However, while their feature space is limited to
short responses of a few words, we extend their approach such that entire text documents
are represented. Based on label propagation we investigate the influence of different graph
features on a 4- and 20-class text categorization task. By varying the number of labeled
documents we compare the graph representation with bag-of-words based supervised and
semi-supervised learning.

We propose that a graph-based representation which is able to capture word frequency, sen-
tence structure, and semantic similarity will improve classification in comparison to standard
bag-of-words models. Regarding different graph features, we assume that semantic informa-
tion is, especially for text categorization, more valuable than syntactic information because
it allows to overcome the vocabulary gap in short documents.
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With a low number of labeled documents we expect the semi-supervised learning approaches
to outperform bag-of-words based models, as they incorporate the structure of unlabeled
data points during training. On top of that, graph-based semi-supervised learning should
be better than bag-of-words based semi-supervised learning as it includes information about
syntactic and semantic relations of words.

3 Methods

In this section the 20-Newsgroup dataset and the applied methods, from preprocessing,
graph construction, feature extraction to graph modulation are described. Figure 3 gives an
overview about the involved steps and points out the different settings used for comparison.

Preprocessing, label propagation and analysis are implemented in python 2.7 under us-
age of the natural language toolkit (nltk)1 and scikit-learn2. Furthermore, the graph
database management system Neo4j3 is used for text representation.
Preprocessing and graph construction will be demonstrated by a short example, which is
based on posts from the baseball newsgroup but modified such that certain properties of
the graph construction can be illustrated.

3.1 The Dataset

We use the 20-Newsgroup dataset4, a popular benchmark dataset for text mining tasks,
to evaluate graph-based semi-supervised learning and compare it to standard bag-of-words
based approaches. The collection consists of about 11 300 newsgroup texts divided into 20
different topics from which some are closely related (Rennie, 2008) while others differ a lot.
Table 1 gives an overview about the classes and their respective number of documents. With
about 550 to 600 documents, the classes are quite balanced. Exceptions are talk.religion.misc
with 377 newsgroup posts and alt.atheism with 480 documents.

Example – Newsgroup documents

Here are two adapted examples from the baseball newsgroup category which we use to
illustrate the preprocessing and graph construction steps.

I’m just so happy that Chicago beat
Toronto overtime on Friday!

I’m a *classic* Chicago fan. But, in
the playoffs the Detroit Toronto games
are the BEST.

1http://www.nltk.org/
2http://scikit-learn.org
3https://neo4j.com/
4Different versions of the 20-Newsgroup dataset exist. We use the corpus from scikit-learn for which

more information can be found here.
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Table 1: Overview of topics and respective number of documents in the 20-Newsgroup
dataset.

Topic N Topic N
alt.atheism 480 rec.sport.hockey 600
comp.graphics 584 sci.crypt 595
comp.os.ms-windows.misc 591 sci.electronics 591
comp.sys.ibm.pc.hardware 590 sci.med 594
comp.sys.mac.hardware 578 sci.space 593
comp.windows.x 593 soc.religion.christian 599
misc.forsale 585 talk.politics.guns 546
rec.autos 594 talk.politics.mideast 564
rec.motorcycles 598 talk.politics.misc 465
rec.sport.baseball 597 talk.religion.misc 377

3.2 Preprocessing

Preprocessing describes the process of obtaining clean text from raw input data (compare
Figure 3). The goal is to keep relevant information while reducing the dimensionality of
the problem. In text categorization this corresponds to normalizing words, removing special
characters as well as irrelevant or noisy information.

For the 20-Newsgroup dataset we use the sklearn built-in option to remove headers, (e.g.
subject title, mail address), footers (e.g. personal signature, favorite quote, etc.) and
references from different posts, in order to avoid duplicate data or content-independent
information. However, to make a graph-based representation of the entire document collec-
tion computationally feasible, further preprocessing is required. Therefore, we reduce the
amount of unique words in the text documents:
The documents are tokenized based on Verberne et al. (2016). All tokens are changed
to lowercase letters and lemmatized such that inflectional forms of a term are reduced
to a common basis (Manning et al., 2008). For example, plural forms are changed to
singular forms, such as houses → house, mice → mouse, and tense inflections are changed
to the original verb, e.g. showed → show, written → write. For lemmatization the nltk

WordNetLemmatizer is used.
Commonly used words such as articles or conjunctions often do not contribute to the mean-
ing of a sentence and hence, are removed based on a predefined list of stopwords5. Further-
more, words that appear less than 10 times in the entire document collection, as well as
words that appear in more than 50% of the documents are removed. The remaining unique
words are organized in a vocabulary and documents that do not contain any word from the
vocabulary are removed from the dataset. The remaining documents are separated into lists
of sentences containing the preprocessed unique words.

5See here for the full list of stopwords
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Example – Preprocessing

Preprocessing converts the text documents into lists of sentences. The sentences them-
selves are split into lemmatized words from which stopwords are removed. Applying
preprocessing to the example documents results in:

[just, happy, chicago, beat, toronto,
overtime, friday]

[classic, chicago, fan]
[playoff, detroit, toronto, game, best]

Figure 3: Visualization of the step-by-step process for graph-based semi-supervised learn-
ing. The raw documents and the corresponding label vector that indicates unlabeled data
with -1 are the starting point of the approach. By preprocessing the documents, clean text
that is split in sentences represented as lists of words is obtained. In graph construction,
we iterate through the sentences and add respective words and relations to the graph until
the full collection of documents is represented. In order to use the graph properties for
label propagation, relevant features have to be extracted and converted into a square ma-
trix consisting of document-document, document-feature and feature-feature relations. We
will investigate different graph properties, as well as graph modulation which induce the
similarity and cluster assumptions required for good performance of the algorithm. As we
are interested in comparing the influence of different graph properties on the performance
the obtained labels of a test set will be compared to the true labels.
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3.3 Graph Construction

Based on the preprocessed texts a graph of the entire document collection is constructed.
For this purpose, we use the Neo4j graph database in which nodes represent entities while
edges illustrate their relation. Both, nodes and edges, can contain further properties such
as names, identifiers or weights.

We distinguish between two different node types:

Document Nodes represent a document, in this case a newsgroup post, and contain
a unique name as well as a property indicating their label.

Feature Nodes represent a feature of the collection, such as unique words and the
special features $Start$ and $End$ which indicate the beginning and end of a sentence.
Feature nodes contain a name and a numerical identifier.

For each document a document node with its corresponding properties is created. Similarly,
every unique word is added to the graph as a feature node. For every word that appears
in a document, their corresponding document and features nodes are connected via an is in
edge. Syntactic structure between words is captured by relating successive words within
a sentence with a followed by edge. The beginning and end of a sentence are furthermore
connected to the $Start$ and $End$ feature nodes.
Both edge types, followed by and is in, have a count that is increased as soon as a word
appears more often in the same document or a sequence of words is repeated within the
entire collection. To normalize the frequency counts they are divided by the total number of
in-coming edges of the node the edge is pointing to. Thus, all edge weights range between 0
and 1. The document-feature edge indicates the relative frequency of a word in a document
while the relation between feature indicates the probability of transitioning to a certain
word.
Please note, that due to the removal of stopwords, we do not capture the actual syntax
of the documents. Features that normally not occur next to each other in a sentence are
in the graph representation connected with a followed by edge. However, when looking at
the entire dataset, the edge weight of such unusual word combinations that do not reflect
syntactic information, go to zero while more frequent and relevant word sequences take over.
Also, by normalizing with the in-degree, not the probability of transitioning from node x to
node y, but the probability of x being the predecessor of y is captured. This illustrates a
fundamental problem of directed edge weights in a graph-based representation to which we
come back in the dicussion section. However, for the purpose of document classification the
actual syntax is not as relevant as the possibility to capture relevant word sequences like
n-grams with different length.
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Example – Graph Construction

Figure 4 shows the graph representation of the preprocessed example documents. Fea-
ture nodes (blue) are connected to the documents (green) they appear in. The feature-
feature edges connect the unique words to sentences [...]

Figure 4: Graph-based representation of the two example documents. Each document is
represented as a green node with a unique name and an identifier. The blue nodes correspond
to the features, unique words and $Start$, $End$ features, of the documents. Edges between
feature nodes, labeled as followed by indicate the syntactic structure of the documents while
the weight of the is in edges corresponds to the normalized word frequency.

[...] In Figure 5 the properties of specific nodes and relations of the example graph are
illustrated. The document node for the example text (right side in the box) is called
Doc 1 and has no out-going edges, but 12 in-coming edges which corresponds to the
number of words (8) plus $Start$ and $End$ multiplied by 2, as there are two sentences
in the post. For example, the word chicago appears once in the post and therefore has
a is in weight of 1 which normalized by the total number of in-weights is 1

12 = 0.083.
Regarding syntactic information, the feature node chicago has two in-coming edges
which means it has two preceding words. In this example, they are from different posts.
Furthermore, the feature node has four out-going edges which include the two succeeding
words, as well as the is in relation to each of the documents. The normalized weight
to the preceding feature node representing the word classic is 0.5.
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Figure 5: Both node types, document (green) and feature (blue), have an id, an in-weight,
out-weight and a comprehensive identifier, name for document nodes and word for feature
nodes. Document nodes have an extra label property indicating their corresponding class,
if known. Both relation types (gray), is in, and followed by have a weight describing
the frequency of the particular relation and its normalized weight. The norm weight is
obtained by dividing through the total number of in-weights of the node they are pointing
to. <id> corresponds to the internal Neo4j identifier.

3.4 Graph-based Features

While graphs are able to capture multiple complex relations, in order to apply conventional
semi-supervised learning approaches, such as label propagation, a matrix representation of
the graph is necessary. In this section, we illustrate the matrix representation and look in
more detail at the features which are captured in the graph or can be inferred from it.

In the matrix representation each node with its respective relations to all other nodes is
stated. As we distinguish between document and feature nodes in the graph we will also use
this difference to analyze the matrix representation W. With n document and m feature
nodes the corresponding matrix W has the shape n + m × n + m. It can be divided into
the following parts:

W =



d1,1 d1,2 · · · d1,n | df1,1 df1,2 df1,3 · · · df1,m
d2,1 d2,2 · · · d2,n | df2,1 df2,2 df2,3 · · · df2,m

...
...

. . .
... |

...
...

. . .
...

dn,1 dn,2 · · · dn,n | dfn,1 dfn,2 · · · dfn,m
−− −− −− −− −− −− −− −− −−
fd1,1 fd1,2 · · · fd1,n | f1,1 f1,2 · · · f1,m
fd2,1 fd2,2 · · · fd2,n | f2,1 f2,2 · · · f2,m
fd3,1 fd3,2 · · · fd3,n | f3,1 f3,2 · · · f3,m

...
...

. . .
... |

...
...

. . .
...

fdm,1 fdm,2 · · · fdm,n | fm,1 fm,2 · · · fm,m


Where d indicates a document-document relation, df and fd a document-feature relation
and f a feature-feature relation. For further analysis we split the matrix into four parts: a
document DD, a feature FF and a document-feature DF matrix.

W =

(
DD DF

DFT FF

)
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Document Matrix

The document matrix, DD, describes the relations or similarity between documents. This
can, for example, be based on the author, publication time, journal, topic or any other
measure that directly or indirectly relates two documents. As we do not include such
information, the document matrix corresponds to a n×n dimensional identity matrix DD =
In. This reflects that each document is identical to itself, while having no specified relation
to other documents.

Document-Feature Matrix

The document-feature matrix, DF, captures information that relates document with feature
nodes, for example based on their frequency. With n document and m feature nodes, DF
is a n×m matrix. In the following we list the different document feature relations that we
consider in our experiments:

Term frequency (Tf) – When word appears in a document their corresponding nodes are
connected with an is in edge. The edge includes a frequency count which, in order
to obtain the normalized term frequency, is divided by the total number of words
appearing in a document. Thus, the weights range between 0 and 1 and sum up to 1
within a document.

Term frequency - inverse document frequency (Tf-Idf) – When weighting the importance of
a word within a document, Tf-Idf takes besides the term frequency also its frequency
in the entire document collection into account. The underlying assumption is that
very frequent terms in a collection of documents do not carry relevant information
to differentiate documents with a certain label from documents with another one.
For example, in a collection of articles about sports the word hockey carries more
information than the word sport even though the latter might be more frequent. We
use scikit-learn Tf-Idf implementation which is computed as:

Tf -Idf(t) = Tf(t, d) · Idf(t)

Idf(t) = log(
1 +N

1 +Df(d, t)
) + 1

with N being the total number of documents and Df(d, t) being the number of doc-
uments that contain the term t.

Tf+Tf-Idf – As the weight matrix W includes twice the document-feature matrix, once as
DF and once as DFT the previously discussed features can be combined.

Sentence Count – During graph construction two additional features nodes, $Start$ and
$End$, are introduced to emphasize the sentence structure. Like other feature nodes
they are connected to the document nodes they appear in and hence, give information
about the number of sentences. Note that the sentence count is not a full document-
feature matrix but only adds the $Start$ and $End$ columns, with their respective
document relations, to one of the previously described matrices.
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Feature Matrix

The feature matrix FF describes how features relate to each other. Again, all kind of
measures such as syntactic or semantic similarity, sentence co-occurrences, etc. are possible.
With m features, which are in our case unique words, FF is a m ×m matrix. Dependent
on the chosen weight measure the matrix is either symmetric or asymmetric.
The following text features are used in this report:

Transition Matrix – By constructing the graph such that successive words in a sentence
are connected with an edge, the feature-feature relation indicates how often a cer-
tain feature fj follows feature fi. Normalizing the count weights leads to a transition
probability matrix. Here, the transition probability indicates how probable it is that
feature fi precedes feature j. The removal of stopwords during preprocessing intro-
duces noise, but nevertheless consistent syntactic structure is captured and common
word sequences have a high transition probability.

Trigrams – The transition probability can also be interpreted as an indicator for a path
between two feature nodes. When multiplying such a connectivity matrix n times
with itself, paths of length n are detected (Raluca Tanase, 2009). We use the square
matrix of W to investigate the influence of trigram relations on text classification
performance.

Context Similarity – If words appear in similar contexts, they are often from a certain
word class or family that can be substituted with each other (Lyon, 2015), for ex-
ample, weekdays like Monday and Thursday. The same is true for words from other
semantic classes and subclasses such as animals, birds, objects, body parts, etc. In-
cluding semantic similarity in the matrix representation could link documents with
the same category even though they use different words.
The context of a feature is defined as all the words in its direct environment as prede-
cessors or successors. In order to measure the similarity of two words w1 and w2 with
their respective context sets C1 and C2, the Jaccard index is used:

J(C1, C2) =
‖C1 ∩ C2‖
‖C1 ∪ C2‖

As in text data the sentence structure is relevant, we distinguish between the preceding
and succeeding context of a word. Thus, the context similarity between two features is
computed by averaging the Jaccard indices of the preceding and succeeding context.
To ensure the computational feasibility of this method, only feature pairs with a
normalized transition probability higher than 0.1 are considered.

Average – To combine these different graph properties we include the average of their
corresponding feature matrices in the analysis.

3.5 Graph Modulation

Besides including relevant graph properties, to successfully use the modeled matrix W in
label propagation, it has to fulfill the smoothness and cluster assumptions discussed in
Section 2.2.1.
Kernel methods compute the pairwise similarity of all elements in a matrix and are often
used to implement smoothness in semi-supervised learning. We use and combine three kernel
methods to investigate their effect on text categorization performance:
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Cosine Similarity – is commonly used to measure document similarity in the vector space
model. It is defined as the dot product of two vectors divided by their magnitude:

k(x, y) = cosΘ =
x y>

‖x‖‖y‖
=

∑n
i=1 xiyi√∑n

i=1 x
2
i

√∑n
i=1 y

2
i

If vectors are orthogonal their cosine similarity is 0, whereas it is 1 if they are parallel.
Vectors with opposing directions have a cosine similarity of -1.

RBF Kernel – is commonly used in support vector machines and defined as:

k(x, y) = exp(−γ ‖x− y‖2) = exp(− 1

σ−2
‖x− y‖2)

where σ−2 describes the variance of a Gaussian distribution. γ = 1
σ−2 indicates the

reach or influence of a single data point. The higher γ, the more local, the lower the
more global the reach. Even small changes in the γ-value have significant influence
on the model (Wang and Zhang, 2008). Figure 6, taken from Pedregosa et al. (2011),
illustrates these effects.

Figure 6: Left: Illustration of how the γ parameter determines the influence of a single
training example in a binary classification task with an SVM, which is why the C parameter,
which influences the smoothness of the decision surface, is included. While with a too low
γ the complexity of the data can not be captured (upper left), a too high γ yields a too
small radius of influence such that only one training sample at a time is included (lower
right). Right: Influence of C and γ on cross-validation accuracy is illustrated as a heat
map. Already small changes in γ lead to significantly different results. Figures are taken
from (Pedregosa et al., 2011).

Laplacian Matrix – Liu et al. (2012) argues that while the RBF kernel effectively estab-
lishes local consistency, additionally smoothing with the Laplacian improves global
consistency because unreliable edges between points that are relatively far apart are
removed. The normalized Laplacian is applied in addition to the RBF kernel and is
defined as:

L̃ = D−1/2LD−1/2

L = D−W
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with W being the weight matrix and D its corresponding degree matrix, defined as
D = diag([D11, ...Dnn]) with Dii =

∑n
j=1Wij .

4 Experiments

The experiment section is split in two parts:

(1) analysis of the influence of graph-based features on text categorization performance

(2) comparison of graph-based semi-supervised learning and bag-of-words based (semi-)
supervised learning approaches with a varying number of labeled documents

Furthermore, to ensure the stability of the observed effects, both experiments are conducted
on two text categorization tasks that differ in the number of classes.

4.1 Text Categorization Tasks

The rec subset in the 20-Newsgroup data consists of rec.autos, rec.motorcycles,
rec.sport.baseball, rec.sport.hockey and is used as a 4-class categorization task. 20-class cat-
egorization is performed on the entire 20-Newsgroup dataset. See Table 1 for an overview
of the different categories and their corresponding number of documents.

The sklearn 20-Newsgroup dataset includes about 300 empty documents. Moreover, the
removal of stopwords or too less frequent words during preprocessing leads to further empty
documents that are excluded from the dataset. In 4-class categorization from the originally
2389 documents 102 are empty. Similarly, in 20-class categorization 335 empty documents
are removed such that 10979 remain. Table 2 illustrates these numbers and gives information
about the number of unique words in the different text categorization tasks. In 4-class
categorization 1836 features are identified in the document collection, while in 20-class
categorization there are 7002 features consisting of the 7000 most frequent unique words and
the special features $Start$ and $End$. The average document length in the 20-Newsgroup
data is 190 words.

Table 2: Characteristics of the two text categorization datasets. The total number of
documents is assessed after preprocessing where empty documents are removed. The number
of features corresponds to all unique words plus the $Start$ and $End$ features that indicate
the beginning and end of a sentence.

Categorization Classes Removed Total number Number of
Task documents of documents features

4-class autos, motorcycles 102 2287 1836
baseball, hockey

20-class all 20-Newsgroup 335 10979 7002
classes
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4.2 Graph-based Feature Analysis

As discussed in Section 3.4 a graph-based representation of a collection of documents has
the advantage to capture different properties and relations between documents and features.
However, standard semi-supervised learning algorithms require a matrix as an input which
in turn limits the possibility to express the different text properties and their complex way
of interaction.
Therefore, we investigate how the different graph-based features influence the performance of
semi-supervised learning on text categorization tasks. For semi-supervised learning, slightly
modified versions of the label propagation and label spreading algorithm in
sklearn.semi supervised are used. The modification ensures that implemented graph
modulations such as the RBF kernel can be circumvented or replaced by different modula-
tions.

First, we analyze the effect of different document-feature combinations. As illustrated in
Section 3.4 and Figure 3, we use the normalized term frequency (Tf), normalized term
frequency - inverse document frequency (Tf-Idf ) or even both (Tf+Tf-Idf ), as the DF
matrix occurs twice in the weight matrix W. For the feature-feature relations the transition
matrix is used as default. These different matrix settings are compared to standard semi-
supervised learning based on a Tf-Idf weighted bag-of-words model. This condition is called
baseline in the result section.
Furthermore, for each setting different combinations of graph-modulations such as cosine
similarity, RBF kernel and Laplacian matrix are applied. The RBF kernel parameter is set
to γ = 5 after a 3-fold cross-validated parameter search in the interval of [0.15, 10]. This
value is used for all experiments and settings that include an RBF kernel.

As Tf+Tf-Idf emerges to have the highest performance with different graph modulations,
this will be used as default for the DF matrix when different feature-feature relations are
analyzed. As discussed in Section 3.4, the FF matrix can be represented as transition
matrix, trigrams, context similarity or the average of these properties. Additionally we in-
vestigate how adding information about sentence length to the transition matrix influences
semi-supervised learning performance in the selected categorization tasks. Again, the results
are listed with different graph modulations.

For both text categorization tasks and all different settings, 100 documents from each class
are randomly selected as labeled data points. To ensure that the performance is not de-
pendent on the selected labeled documents, the experiment is repeated three times and the
resulting mean F-scores and standard deviations are reported.

4.3 Number of labeled documents

As underlined throughout this report, for many tasks in the field of text mining an immense
amount of unlabeled data is accessible while labeled data is rare or associated with time
consuming manual effort. Therefore, the second experimental part deals with the question
how the number of labeled documents used for semi-supervised learning influences the per-
formance and how this compares to bag-of-words based standard approaches in supervised
and semi-supervised learning.
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From the previous experiment the best performing DF and FF matrices with their corre-
sponding graph modulation is chosen: For document-feature relations it is the Tf+Tf-Idf
condition, while it is context similarity for the feature-feature relations. In addition to the
RBF kernel with γ = 5, the Laplacian matrix is used for graph modulation. This setting
will be referred to as graph-based semi-supervised learning (graph-based SSL).
To evaluate the influence of the graph-based text representation, this setting is compared
to semi-supervised learning with the same graph modulations based on a Tf-Idf vector rep-
resentation (bag-of-words SSL). Furthermore, to assess the performance of semi-supervised
learning compared to a standard supervised learning approach, a linear support classification
implemented in sklearn.svm.LinearSVC is used. It is trained on Tf-Idf vector representa-
tion with default parameters. It will be referred to as bag-of-words based supervised learning
(bag-of-words SL).
The different approaches are compared by varying the number of labeled documents from 1
to 350 documents per category. The labeled documents are selected randomly. To marginal-
ize the effect of the random selection the full experiment is conducted ten times and the
average F-scores with their corresponding standard deviations are reported.
The experiment is conducted for both, the 4-class and the 20-class, categorization task.

4.4 Evaluation

The true labels in the 20-Newsgroup dataset are used to evaluate the prediction outcomes
of the unlabeled documents in the different learning approaches.
In information retrieval, precision, the percentage of correctly as relevant identified doc-
uments, and recall, the percentage of relevant documents that have been identified, are
commonly used to evaluate the performance of an algorithm (Forman, 2003). Transferred
to a binary classification task, a relevant document corresponds to a document that belongs
to the class of interest. Precision and recall are then computed as:

precision =
TP

TP + FP

recall =
TP

TP + FN

where TN stands for the number of true negatives, TP for the number of true positives,
FN for the number of false negatives and FP for the number of falsely positive classified
documents in a binary classification task. Both measures can be combined to the F-score
which corresponds to the harmonic mean of precision and recall:

F -score =
2 · precision · recall
precision+ recall

This form of evaluating a binary classification task can be extended to multiple classes.
The, so called macro average, computes precision, recall and F-score for each class and
then averages the results. Thus, each class contributes equally, independent of its size, to
the average. Despite the discussion whether a proportionally weighted contribution to the
average is more accurate, we use the macro average as the class sizes in the 20-Newsgroup
dataset are relatively balanced.
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5 Results

The result section is separated into the graph-based feature analysis and the classifier per-
formance with a varying number of labeled documents. Both sections are further split
into 4- and 20-class categorization. At the end, we discuss additional insights obtained by
graph-based semi-supervised learning.

5.1 Graph-based Feature Analysis

For both categorization tasks the results are summarized in two tables.
In the first table different document-feature relations and graph modulations are compared.
Note that the label propagation algorithm is based on matrix multiplication which requires
a square matrix as input. Therefore, without a graph modulation the Tf-Idf vector repre-
sentation does not yield any result.
The second table focuses on the effect of different feature-feature relations, while using
Tf+Tf-Idf as DF matrix.

Both tables display the mean F-scores, with their corresponding standard deviations, aver-
aged over three runs in which 100 randomly selected documents of each class are used as
labeled data. In every row the best result is highlighted and results that differ significantly
from it are marked with an asterisk. Statistical significance is assessed with an unpaired
t-test at significance level 0.05.

5.1.1 4-class Text Categorization

Without the usage of an RBF kernel the mean F-scores are, independent of the used
document-feature relations, with around 10% impractically low (compare first two rows,
None and cos, in Table 3). Adding an RBF kernel with γ = 5 improves the performance
in all conditions, except for the Tf condition. In combination with cos the F-scores further
increase. Nevertheless, the results obtained in the different Tf settings are significantly
lower than the highest F-score in each row. Also, the standard deviations of 21.93% and
7.69% are unusually high.

Table 3: Comparison of document-feature matrices in 4-class text categorization task. The
table displays the mean F-scores, averaged over 3 runs with 100 randomly selected training
documents per class, and their corresponding standard deviations. The discussed document-
feature matrices are combine with different graph modulations, where γ = 5 for the RBF
kernel. As a baseline semi-supervised learning based on the Tf-Idf bag-of-words model is
used. In each row, the best results are printed in bold and F-scores that differ significantly
are marked with an asterisk.

Baseline Tf Tf-Idf Tf + Tf-Idf
None - 9.87 ± 0.00 9.95 ± 0.19 9.95 ± 0.21
cos 10.08 ± 0.19 9.91 ± 0.00 10.08 ± 0.19 10.08 ± 0.19
RBF 75.10 ± 2.00 10.19* ± 0.23 74.32 ± 2.97 77.76 ± 0.43
RBF + cos 70.37* ± 1.38 47.78* ± 21.93 73.25* ± 0.41 75.72 ± 0.71
RBF + Laplace 76.44* ± 0.51 9.91* ± 0.23 74.75 ± 2.61 77.96 ± 0.39
RBF + cos + Laplace 73.40 ± 1.19 26.97* ± 7.69 74.75* ± 0.37 75.05 ± 0.16
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The Tf+Tf-Idf condition has with about 75.4% (with cos) to 77.8% (without cos) constantly
the highest F-scores. Compared to the Baseline, which corresponds to semi-supervised
learning based on the Tf-Idf bag-of-words representation, the F-scores differ significantly or
are, in the RBF+cos+Laplace condition, with p = 0.076 close to be statistically significant.
An exception is the RBF condition.
Compared to the Tf-Idf condition the best results differ significantly as soon as cosine sim-
ilarity is involved in graph modulation. With an F-score of 77.96% the Tf-Idf condition
paired with the RBF+Laplace graph modulation yields the overall best performance.

Therefore, we use Tf+Tf-Idf as DF matrix for the comparison of the different graph-based
feature-feature relations (see Table 4). With an F-score of about 78.1%, context similarity
yields the best performance, but only if no cosine similarity is applied. Also, note that
the transition matrix, trigrams and the average only differ slightly and without statistical
significance from the highest F-score.

Table 4: Comparison of feature-feature matrices in 4-class text categorization task. The
table displays the mean F-scores which are averaged over 3 runs with 100 randomly selected
training documents per class and their corresponding standard deviations. Tf+Tf-Idf is
used as DF matrix, combined with different feature-features relations and evaluated based
on different graph modulations with γ = 5 for the RBF kernel. In each row, the best results
are printed in bold and F-scores that differ significantly are marked with an asterisk.

Transition Trigram Context Average Transition Matrix
Matrix Similarity Sentence Length

RBF 77.76 ± 0.43 77.89 ± 0.32 78.14 ± 0.57 78.11 ± 0.28 60.30* ± 2.16
RBF + cos 75.72 ± 0.71 74.90 ± 0.55 72.01* ± 0.65 72.26* ± 0.79 75.56 ± 1.53
RBF + Laplace 77.96 ± 0.39 77.96 ± 0.25 78.13 ± 0.62 78.10 ± 0.31 63.22* ± 3.54
RBF + cos + Laplace 75.05 ± 0.16 71.72 ± 1.71 71.89 ± 1.77 70.62 ± 1.53 75.53 ± 3.29

Adding information about the sentence length to the transition matrix decreases perfor-
mance by 15− 17% when the F-score is assessed without cosine similarity. However, when
cosine similarity is involved in graph modulation, the performance does not significantly
differ from the best results which are around 75.5%. Furthermore, in all different sentence
length settings the corresponding standard deviations are higher than usual.

5.1.2 20-class Text Categorization

In general, the results of 20-class text categorization are consistent with the previously dis-
cussed performance of graph-based semi-supervised learning in 4-class text categorization.
Table 5 displays the mean F-scores based on different DF settings. Without the usage of
an RBF kernel the performances of about 0.5% are impractically low (compare None and
cos row in Table 5).

When using an RBF kernel, the Tf+Tf-Idf and Tf-Idf document-feature relations have,
with about 56% (with cos) and 62% (without cos), constantly the highest F-scores. In all
four graph modulations, RBF, RBF+cos, RBF+Laplace and RBF+Laplace+cos, are these
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results significantly higher than the F-scores in the Baseline and Tf condition.

Table 5: Comparison of document-feature matrices in 20-class text categorization task. The
table displays the mean F-scores, averaged over 3 runs with 100 randomly selected training
documents per class, and their corresponding standard deviations. The discussed document-
feature matrices are combine with different graph modulations, where γ = 5 for the RBF
kernel. As a baseline semi-supervised learning based on the Tf-Idf bag-of-words model is
used. In each row, the best results are printed in bold and F-scores that differ significantly
are marked with an asterisk.

Baseline Tf Tf-Idf Tf - Tf-Idf
None - 0.50 ±0.01 0.52 ±0.00 0.49 ±0.00
cos 0.52 ±0.00 0.52 ±0.00 0.52 ±0.00 0.52 ±0.00
RBF 52.88* ±1.91 0.52* ±0.02 60.82 ±1.70 61.97 ±0.36
RBF + cos 46.67* ±0.37 9.55* ±6.51 54.91±0.68 55.48 ±0.61
RBF + Laplace 59.69* ±0.81 0.68* ±0.28 61.00 ±1.44 62.01 ±0.28
RBF + Laplace + cos 48.05 *±0.25 7.01* ±2.69 57.37 ±0.21 56.76 ±0.82

Table 6 shows the mean F-scores for 20-class text categorization when different graph-
based feature-feature relations are combined with the Tf+Tf-Idf DF matrix. Again, context
similarity shows the highest F-scores (63%) when no cosine similarity is applied. However
there is no significant difference when other feature-feature relations are used as a FF matrix.
Adding cosine similarity yields a performance drop of about 6%.
Similar to 4-class categorization, information about sentence length leads without cosine
similarity to a significant deviation form the best results, while when it is applied there is
no significant difference between the resulting F-score and the respectively best performing
feature setting.

In Section 6 we come back to these results and discuss possible explanations for the observed
effects.

Table 6: Comparison of feature-feature matrices in 20-class text categorization task. The
table displays the mean F-scores which are averaged over 3 runs with 100 randomly selected
training documents per class and their corresponding standard deviations. Tf+Tf-Idf is
used as DF matrix, combined with different feature-features relations and evaluated based
on different graph modulations with γ = 5 for the RBF kernel. In each row, the best results
are printed in bold and F-scores that differ significantly are marked with an asterisk.

Transition Tri-gram Context Average Transition Matrix
Matrix Similarity Sentence Length

RBF 61.97 ±0.36 62.00 ±0.35 62.07 ±0.37 62.03 ±0.34 46.73* ±2.87
RBF + cos 55.48 ±0.61 55.36 ±0.51 52.70* ±0.41 52.88* ±0.35 54.27 ±0.55
RBF + Laplace 62.01 ±0.28 62.04 ±0.28 62.09 ±0.28 62.05 ±0.31 52.08* ±1.33
RBF + Laplace + cos 56.76 ±0.82 56.05 ±0.79 55.30 ±0.63 55.05 ±0.82 56.53 ±0.64
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5.2 Number of labeled Documents

Figure 7 and Figure 8 display how the number of labeled documents influences 4- and 20-
class text categorization performance. Shown are the mean F-scores that are averaged over
10 runs in which the labeled documents, that are used for training, are randomly selected.
The corresponding standard deviations are plotted as error bars.

Graph-based semi-supervised learning with Tf+Tf-Idf and context similarity as FF ma-
trix (graph-based SSL), is compared to Tf-Idf based bag-of-words semi-supervised (bag-of-
words SSL) and supervised learning (bag-of-words SL). For both semi-supervised learning
approaches the graph is modulated by an RBF kernel with γ = 5 and the normalized
Laplacian matrix.
The number of labeled documents per class range from 1 to 350.

5.2.1 4-class Text Categorization

All classifiers improve the mean F-scores with an increasing number of labeled documents
(compare Figure 7). While bag-of-words SSL is, when using only one labeled document per
class, with an F-score of 18.86% lower than chance level, bag-of-words SL and graph-based
SSL start of with 34.49% and 35.11%. With 350 labeled documents the F-scores of bag-
of-words and graph-based SSL are with 83.5%, about 7% higher than the bag-of-words SL
mean F-score.

In general, graph-based SSL has constantly the best performance. However, with a small
number of labeled documents the bag-of-words SL approach shows a similar performance.
Increasing the number of labeled documents, though, increases their difference in perfor-
mance. The opposite is true for bag-of-words SSL. While with a low number of labeled
documents it performs worse than chance, from about 70 labeled documents per class its
F-scores are equivalent to the ones obtained from graph-based SSL.

Also note the decrease of the standard deviation with an increasing number of labeled
documents which is especially apparent in both semi-supervised learning approaches. For
supervised learning the standard deviations seem to be consistent.

A one-way repeated ANOVA with F (2, 20) = 69.118, p = 1.04 ·10−9 shows that the different
classification methods significantly influence the average F-score in a 4-class text categoriza-
tion task. A post hoc test with Tukey-Kramer correction shows that graph-based SSL differs
with p = 4.04 · 10−5 significantly from bag-of-words SSL, as well as from bag-of-words SL
(p = 1.53 · 10−5). With p = 8.9 · 10−4 also bag-of-words SSL and bag-of-words SL differ
significantly.

5.2.2 20-class Text Categorization

The results for 20-class categorization are displayed in Figure 8. Compared to 4-class cat-
egorization similar effects can be observed. Bag-of-words SL and graph-based SSL start off
with a mean F-score of about 16.38% for one labeled document per class, while bag-of-words
SSL shows with 7.24% the lowest result. Nevertheless, with about 50 labeled documents
bag-of-words SSL catches up with the supervised learning approach. Together with graph-
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Figure 7: Classifier comparison for 4-class text categorization with a varying number of
labeled documents. Displayed are the mean F-scores averaged over 10 independent runs, in
which the labeled documents are selected randomly for each class. The error bars show the
corresponding standard deviation.

based SSL the highest F-score is about 68% for 350 labeled documents per class.

Again, the semi-supervised learning approaches show a decreasing standard deviation.

A one-way repeated ANOVA with F (2, 20) = 41.88, p = 7.08 · 10−8 shows that the different
classification methods have a significant influence on the average F-score in 20-class text cat-
egorization. A post hoc test with Tukey-Kramer correction indicates that the graph-based
SSL differs with p = 1.57 · 10−5 significantly from bag-of-words SSL, as well as from bag-of-
words SL (p = 1.24 · 10−5). Between bag-of-words SSL and bag-of-words SL no significant
difference is found.

All in all, graph-based SSL outperforms the other approaches in 20-class text categorization.
However, dependent on the number of labeled documents bag-of-words SSL or bag-of-words
SL yield equivalent F-scores.
With respect to the standard deviations, graph-based SSL seems to be more stable than
bag-of-words SSL.
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Figure 8: Classifier comparison for 20-class text categorization with a varying number of
labeled documents. Displayed are the mean F-scores averaged over 10 independent runs, in
which the labeled documents are selected randomly for each class. The error bars show the
corresponding standard deviation.

5.3 Additional Insights

Before discussing in detail the results of the two main experiments we will have a quick look
at additional insights we gain from the graph-based semi-supervised learning approach.
First of all, we evaluate the transition probabilities. We assume that words that appear
often in a particular sequence have a high normalized transition probability. To evaluate
whether the proposed graph representation is able to capture such frequent bigrams, we
state all word pairs with a normalized transition probability higher than 0.9 in Table 7.

The word pairs on the left side of the table are familiar terms including cities, countries,
commonly used expressions or proper names. In contrast, the word pairs on the right side
might need further explanation.
A web search reveals the quote ’Skepticism is the chastity of the intellect, and it is shameful
to surrender it too soon or to the first comer [...]’ from George Santayana which can be
linked to the first four word pairs. Presumably, these keywords are not very frequent in the
rest of the document collection and therefore, repeating this quote a few times, for example
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Table 7: Word pairs in the graph representation with a normalized transition probability of
at least 0.9.

Word 1 Word 2 Word 1 Word 2
new york skepticism chastity
new zealand chastity intellect
san diego intellect geb@cadredslpittedu
los angeles geb@cadredslpittedu shameful
star trek serdar argic
vice versa bank n3jxp
radio shack go quaker

in the foot note of a post, leads to very high transition probabilities.
Other word pairs can be explained in a similar way. bank n3jxp is related to a user of
the newsgroup channel and serdar argic is the pseudonym of one of the first newsgroup
spam bots that appeared in 1994 (Serdar Argic, 2017). The expression go quakers is ob-
viously related to the Quaker basketball and football team of the University of Pennsylvania.

All in all, these word pairs with a very high transition probability indicate that the graph
representation is able to capture relevant word sequences. See Section 6 for a more in-
depth discussion about how high transition probabilities emerge and their influence on the
semi-supervised learning.

In semi-supervised learning the labeled nodes are propagated through the graph until all
nodes are assigned to a label. As we use documents and words as nodes in the graph
representation, these words will also be assigned to a label. Besides the label also its
corresponding probability is given.
This allows us to inspect the words that are typical for a certain class. Figure 9 displays the
word clouds for four example categories, talk.politics.guns, soc.religion.christian, sci.space
and sci.crypt. The more space a word takes in the cloud, the higher is its probability to
belong to the specific class.
In general, the most prominent words in a word cloud are highly associated with their
respective class. However, an in-depth analysis of the word clouds goes beyond the purpose
of this report. But we like to underline this feature of semi-supervised learning and discuss
possible applications of feature labeling in Section 6.
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Figure 9: Example word clouds that correspond to the classes talk.politics.guns,
soc.religion.christian, sci.space and sci.crypt. The bigger a word is displayed the higher
is gits probability to belong to the respective class.

6 Discussion

In this section we review the obtained results, make suggestions for improvements, discuss
the computational complexity of graph-based semi-supervised learning and propose fields of
applications that benefit most from this approach.

6.1 Discussion of Results

For both experiments, the results of 4- and 20-class text categorization are quite consistent.
The performance of semi-supervised learning without an RBF kernel is impractically low.
Consequently, the proposed graph representation does not transmit sufficient information
about node relations necessary for label propagation. However, applying an RBF kernel to
the weight matrix conveys this information. As the γ parameter of the RBF kernel has a
significant influence on the matrix and the corresponding text categorization performance
(Wang and Zhang, 2008), a cross-validated parameter optimization is required in order to
ensure good results while avoiding over-fitting.

A main finding of this report is that graph-based semi-supervised learning - by including
feature-feature relation - outperforms bag-of-words based semi-supervised learning. While
both approaches use Tf-Idf weighting, in the graph representation also document-document
and feature-feature relations are stated. As the identity matrix is used to represent document-
document relations, the feature-feature relations are responsible for the improvement in text
categorization.
However, as the different feature-feature relations, transition matrix, trigrams, context sim-
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ilarity or their average, yield very similar results, it seems irrelevant which of them is used.
Therefore, our first hypothesis can only be confirmed half way: Even though word relations
improves semi-supervised learning, context similarity does not show a significant advantage
compared to syntactic feature relations.

A possible explanation for this that the document-feature relations are represented twice in
the weight matrix. Thus, adding feature-feature relations has an effect on the classification
performance, but small changes in the FF matrix do not lead to significant differences.
Moreover, the documents are quite short, especially after removing stopwords. This leads to
relatively high Tf-Idf weights compared to the feature-feature relations in the FF matrix.
This also explains the big influence of sentence length on the performance of semi-supervised
learning: In a document that consists of a few short sentences, the probability of a word
to connect to a $Start$ or $End$ feature is higher than its probability to transition to any
other word in the entire vocabulary.

Therefore, further research that investigates a way of normalizing graph features for label
propagation is needed. Moreover, optimizing the feature weights dependent on the specific
text mining task, could lead to significant improvements in the performance of graph-based
semi-supervised learning.

In the second experiment we compare graph-based semi-supervised learning with bag-of-
words based supervised and semi-supervised learning. By varying the number of labeled
documents the effectiveness of the different classifiers is compared.
Graph-based semi-supervised learning constantly yields the highest F-scores for both tasks,
4- and 20-class text categorization. However, dependent on the number of labeled documents
the other two approaches have a similar performance.
In contrast to our hypothesis, the supervised learning approach achieves, with a very low
number of training documents per class, the same results as graph-based semi-supervised
learning. It seems that the usage of unlabeled documents does not improve text categoriza-
tion.

This is either due to the dataset itself, for example when the structure of the unlabeled
documents does not relate to the respective classes, or the document representation is not
able to transmit this information to a particular semi-supervised learning approach. Nigam
et al. (2006) demonstrates that for the 20-Newsgroup dataset unlabeled documents increase
categorization accuracy when using generative semi-supervised learning with Expectation-
Maximization. Also, (Su et al., 2011) yield comparable results and further shows that
increasing the number of unlabeled data from 1000 to 10000 documents improves perfor-
mance, while adding further unlabeled documents does not result in a significantly better
accuracy.
Thus, in contrast to our findings, semi-supervised learning is advantageous for the catego-
rization of the 20-Newsgroup dataset. However, generative and graph-based semi-supervised
learning are very different approaches, what makes it difficult to directly compare the re-
sults. While, for generative mixture models it is guaranteed that unlabeled data improves
accuracy, provided that the assumption that each mixture component corresponds to the
documents of a specific class is met (Zhu, 2005), no such claim is made for graph-based
methods.
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Nevertheless, in combination with label propagation the proposed graph representation is
not able to exploit the full potential of unlabeled documents. In the following possible rea-
sons are discussed.

To make graph-based semi-supervised learning efficient, it is essential that similar documents
are connected with high edge weights such that labels can propagate easily. As we only
establish an indirect connection between documents by relating them based on their words,
label propagation becomes more difficult. Although some words might be good indicators
for a certain class, labeling them might block the path to a different document class using
the words.
Also, the high number of nodes in the graph representation, which emerges from using doc-
uments as well as feature as nodes, yields a higher level of complexity for the identification
of similar documents.

Another possible problem might be that by using sentence structure as a feature for graph
representation, the resulting weight matrix is asymmetric. For instance, the probability
of the preceding house is higher than the probability of house preceding the, leading to a
bidirectional connection with different edge weights. Although Table 7 shows that these
relations are able to capture relevant n-grams, the transition matrix is highly influenced by
the word frequency and whether in- or out-degree are used for normalization. Using the
in-degree the transition probability indicates the likelihood that feature fi precedes feature
fj . Thus, words that have a low total frequency, such as york, angeles, chastity, and at
the same time appear often after certain words, like new, los, skepticism,.. will result in a
high transition probability. Using the out-degree for normalization yields the probability of
transitioning from feature fi to fj . Here, word pairs with seldom words at beginning, such
as york state, kansas city, have a high transition probability. Therefore, the computation of
syntactic feature introduces a certain degree of ambiguity. This can be resolved by using a
symmetric measure for similarity such as word co-occurrence within a sentence.

Despite not using the full potential of unlabeled documents, the graph-based semi-supervised
approach yields, as expected, better results than bag-of-words based semi-supervised learn-
ing. Thus, in the next section we discuss its potential and different fields of applications.

6.2 Potential of graph-based Semi-Supervised Learning

As illustrated in section 5.3 semi-supervised learning offers the possibility to get a better
understanding of the collection of documents. Transition probabilities indicate frequent
word sequences without a manual definition of the n-gram length. Furthermore, words with
a high context similarity give insights into the overall content of the documents and show
how well word families are represented.

As we include word nodes in the graph representation, with label propagation they are also
assigned to a certain class. This does not only contribute to the understanding of the decision
making process, but also offers new application possibilities. Word clouds (see Figure 9)
illustrate the relevancy of terms in a specific class and indicate possible subcategories.
The assigned feature class can also be used to infer information for a different categorization
task. For instance, feature labeling in sentiment analysis indicates which words are charac-
teristic for expressing a certain sentiment. This information can be used for a similar task
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on a dataset with no initial labels. Kannan et al. (2016) use this idea to group short e-mail
replies into semantic clusters containing different ways of expressing a similar objective, like
agreeing on an appointment or saying thanks.
Another field of application for graph-based semi-supervised learning and the idea of exploit-
ing labeled features offers network analysis. For instance, voter targeting aims to identify
the key properties, like education, gender and age, of people voting for a certain party or
being yet undecided.

The main advantage of graph-based semi-supervised learning is its flexibility to adapt to
a specific text mining task by selecting appropriate graph properties and adapting their
influence respectively. Although we focus on different document-feature and feature-feature
relations, the similarity of documents is an important property that can contribute valuable
information for text categorization. It can be assessed by including information about the
author, journal, year of publication, etc.
Besides the discussed feature relations, other graph properties are conceivable, such as word
co-occurrence in a sentence, semantic similarity based on word embeddings like word2vec,
etc.

However, this process of feature engineering which includes the selection of graph properties
and their weighting, is time-consuming and requires the manual effort to understand the
dataset and to know which features are appropriate for a given task.

6.3 Computational Complexity

The complexity of a problem is related to the resources, like time and space, required to
compute a solution as a function of its input size (Ruohonen, 2013). The proposed graph
representation of a document collection requires iterating through all documents and their
corresponding words. Every word and relation is checked for existence and if necessary
modified or created. This leads to a time complexity linear to the number of documents n
plus the number of words m O(n+m).
The advantage of graph representations is that properties based on neighboring relations,
e.g. all words that appear after a certain feature, are obtained by traversing through the
graph which is with O(p) proportional to the total number of neighboring nodes p.
However, for the purpose of label propagation a matrix that contains the similarity of each
node to all others, has to be constructed. As kernel operations, like cosine similarity or the
RBF kernel, corresponds to the dot-product of feature vectors (Zelenko et al., 2003) are able
to do so. For a n+m dimensional feature space a kernel function requires the computation
of a n+m× n+m feature matrix and its storage (Cesa-Bianchi et al., 2015).
Semi-supervised learning scales poorly with the size of the data (Liu et al., 2012) as it in-
cludes expensive matrix modulations such as the computation of the matrix inverse which is
O((n+m)3) in the worst case (Zhu et al., 2005). However, iterative approaches such as label
propagation can be reduced to a complexity of O(n+m) per iteration when sparse matrices
are used (Zhu et al., 2005). For graph construction (see Jain et al. (2013)), modulation
and semi-supervised learning (see Ravi and Diao (2015)) also more efficient algorithms and
approximations exist. We do not further discuss these methods, as the focus of this paper
is not on the reduction of the computational complexity of graph-based semi-supervised
learning which is a research field on its own.
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All in all, scalability of graph-based semi-supervised learning is limited, especially when
documents as well as features are represented in the graph. Therefore, graph-based semi-
supervised learning is in particular interesting for categorizing smaller datasets.

7 Conclusion

In this thesis, we show advantages and disadvantages of graph-based semi-supervised learn-
ing compared to bag-of-words based supervised and semi-supervised learning. While adding
feature-feature relations significantly improves text categorization performance, it does not
make a difference whether syntactic or semantic relations are used. Especially for the cate-
gorization of short texts where bag-of-words based approaches often suffer from sparseness
or the usage of synonyms, graph-based semi-supervised learning can lead to a better per-
formance.
Although the proposed approach does not exploit the full potential of including unlabeled
documents in semi-supervised learning, its possibility to make use of the feature labeling
brings numerous advantages. Another large asset of graph-based representations is their
flexibility to include different node types and relations such that the features used for semi-
supervised learning can be perfectly adapted to a specific text mining task.
A next step is to include document-document relations to establish similarities based on
information about the author, journal or publication date as well as user interaction data
such as the number of clicks, upvotes and queries, which is especially relevant for web page
classification. However, further research is required in order to weight the graph properties
and benefit from including unlabeled documents.
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