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Abstract

To use a Brain Computer Interface (BCI) for a game that is dependent
on timing, a useful brain signal needs to be produced quickly by the
user. The purpose of this study was to see if a Lateralized Readiness
Potential (LRP) can occur in imagined movement, that could be used to
control games that rely on precise timing. This signature brain signal is
known to be present in actual movement tasks just before the onset of
the movement, but it is unclear if it is present in imagined movement
tasks.

A modified version of Frets on Fire, a Guitar Hero clone game, was
used, called Brains on Fire. It uses actual drumming and imagined
drumming to investigate the occurrence of LRPs. The results of this
study indicated that LRPs do not occur in imagined movement tasks.
However, the results do show that a BCI game with actual movement,
like air drumming, could be used with a high performance accuracy.
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Chapter 1

Introduction

It can be very frustrating and dull to get used to working with a Brain-
Computer Interface (BCI). With the use of a game this process can be more
fun and less dull. In this thesis, I will describe how I created a simple drum
game, based on the Guitar Hero series that will use a BCI as input device
with actual movement and imagined movement. The goal of this research
is to make a simple functional version of this game and to investigate if it
is possible to make a BCI that is dependent on strict timing. Moreover, we
want to research if there occurs a Lateralized Readiness Potential (LRP) dur-
ing imagined movement. This game can be used as a training application
for other BCI purposes, which makes the training phase fun and exciting.
After this training phase the user is also able to use other applications, like
selecting between options or moving a cursor.

The area of brain-computer interfacing has grown rapidly the last decade.
This is a result of new technologies and ideas. Brain-computer interfacing is
a more specific way to communicate with machines, i.e., human-computer
interaction (HCI). Much of the current research within this subject aims at
improving the lives of patients with severe neuromuscular disorders, for
example amyotrophic lateral sclerosis (ALS). These patients gradually lose
control of their bodies and even of simple functions, such as eye-gazing.
Because these patients cannot communicate with the external world, they
live in social isolation and this might cause frustration. However, these pa-
tients are still able to use their higher cognitive functions, which could allow
them to operate a BCI (Hinterberger, Birbaumer, & Flor, 2005). The goal of
the majority of studies within this field is to provide these patients with a
possibility to independently operate machines (e.g., a lightswitch, switching
channels on a TV, mechanical prosthetic devices) or to communicate with
other people (e.g., spell words). This means that there is no muscle contribu-
tion at all to execute these actions. The possibilities to operate machines and
to communicate can improve the quality of life extremely for these patients.
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However the techniques that are developed can also be used for healthy
users. They could use BCI technology for entertainment, such as playing
games driven by their brainwaves. BCI systems can also be used for atten-
tion monitoring and adaptation. An air traffic controller that loses his visual
attention after a long period of being focused on a radar, can be suggested
to take a break by a BCI system that detects that he lost is focus (Nijholt,
Erp, & Heylen, 2009).

1.1 Non-invasive BCI

There are two different approaches within brain-computer interfacing: in-
vasive and non-invasive. This experiment is based on a non-invasive BCI,
which means that electroencephalography (EEG) will be used to measure
brainwaves. The brain produces small electric potentials between neurons
when you think, act or feel something. To measure these electric potentials,
several electrodes are attached to the outside of the scalp of the subject. The
signal that the electrodes measure is very weak and therefore, it needs to
be amplified. There are also small electric potentials inside the brain that
EEG cannot pick up, simply because these potentials are too small to arrive
at the electrode (Mason, Bashashati, Fatourechi, Navarro, & Birch, 2007). To
analyse the signal that the EEG measured, software is needed. The software
has to filter out the noise and analyse the waves using complex algorithms.
The goal of the software is to classify the brainwaves, dependent on the task,
for example classifying when someone attends to his left hand or to his right
hand.

Unfortunately, at the moment, non invasive BCI systems suffer from a per-
formance that is too low to be usable in daily life. Performance is increased
by smart classification algorithms and training sessions, but to be usable
in daily life it should have an accuracy of nearly 100% (Santhanam, Ryu,
Yu, Afshar, & Shenoy, 2006). Other problems with non-invasive BCI sys-
tems are inter-subject and inter-session variability (Krauledat, Tangermann,
Blankertz, & Muller, 2008). Inter-subject variability means that a device
could work properly for one user, while someone else gets a very low per-
formance with the same device. Inter-subject variability can be improved
and this is being researched by the Berlin BCI group since 2000 (Blankertz et
al., 2008). Because brain patterns are non-stationary over time, a device can
work well for a user at one time, but may be unusable at another time for
the same user. This is called inter-session variability and this problem has
not been solved so far (Roijendijk, 2009).
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Figure 1.1: International 10-20 system (Klem et al., 1999) illustrating the standard placement of
EEG electrodes on the head (Malmivuo & Plonsey, 1995). The letters and numbers correspond
to different areas of the brain.

1.1.1 Brain Architecture

Small electric potentials between neurons produced by the brain can be mea-
sured and analysed with the use of several electrodes attached to the outside
of the scalp (Mason et al., 2007). As stated before, this measuring technique
is called EEG. However, what regions are interesting to us, how do we place
these electrodes and what can we expect to see?

BCI systems use an EEG cap with fixed places for electrodes, which are
named correspondingly to the brain areas. There are different EEG cap lay-
outs, these layouts can contain up to 256 electrodes (Vausanen, 2008). It is
important that a cap fits with the head of the user and that the electrodes
are of a good quality. A typical EEG cap architecture can look like figure
2.1. The areas that are interesting for this research are the sensorimotor ar-
eas, because these areas are known to be responsible for hand movements
and they could generate typical signatures that can be used for classification
(Wang, Hong, Gao, & Gao, 2007). Especially the electrode channels C3 and
C4 cover this important area for hand movements.

1.1.2 EEG Signature

Before, during and after an actual or imagined movement, brain patterns
emerge that can be used as signatures to detect if a subject makes a move-
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Figure 1.2: The two plots show an example of EEG signals averaged over all trials in a BCI
study (Shenoy & Rao, 2005) in the motor-related electrode channels that are called C3 and C4.
These figures show a decrease in power around 0 seconds, the onset of the movement.

ment. There are three distinct signatures for these time points. In prepa-
ration of hand movements a Lateralized Readiness Potential (LRP) occurs,
this is a negative event-related brain potential (Krauledat, 2008). This can be
recorded, caused by the way the brain is split up in areas that are dependent
on different tasks, the corresponding areas for the left hand movement and
right hand movement generate LRPs (Verhagen Metman, Bellevich, Jones,
Barber, & Streletz, 1992). During the movement an Event Related Desynchro-
nization (ERD) occurs, followed by an Event Related Synchronization (ERS).
The ERD decreases the power in the sensorimotor frequency bands, while
the ERS increases the power in the same frequency bands (Pfurtscheller &
Silva, 1999).

The signature of the LRP starts around 500 milliseconds before the onset
of the event (see figure 2.2), the moment when the actual movement starts.
In the ERD/ERS the signature can be seen at 1500/2000 milliseconds after
the onset of the event. Moreover, the LRP is measured from the time do-
main signal, while ERDs are first filtered before the signature can be seen
(Sergeant, Geuze, & Winsum, 2007). However, the ERD signals are known
to be present in imagined movement tasks (Pfurtscheller & Silva, 1999). It is
yet unclear wheter this is also the case for LRPs, studies have not lead to a
decisive answer.

1.2 Training

To use a BCI and overcome the problems of a non-invasive BCI, like inter-
subject variability, training is needed. Training can increase the performance
of the system significantly (Pradeep, Krauledat, Blankertz, Rao, & Muller,
2006). Many samples need to be collected and analysed since there is a lot
of noise in non-invasive BCI systems, this needs to be filtered out. There can
also be bad samples, by eye blinking, head movement or other or by noise



1.3. Actual Movement or Imagined Movement

from the surroundings. By averaging all the good samples, patterns can
be found in these average plots, referred to as signatures (Blankertz, Dorn-
hege, Krauledat, Muller, & Curio, 2007). These training sessions typically
are repetative and dull, and they can take a lot of time. To produce enough
data the user needs to do a simple task over and over again. The produced
data is analysed with different techniques, like spatial filtering (Gao, Gao, &
Hong, 2008).

With the use of a game, training can be more exciting and fun, and less dull.
This can increase the usability of BCls in general. In this study a game is
described and tested, which can make the training phase more fun, but still
effective. This can make BCI more accessible for healthy users and it is a
step forward in the commercialisation of BCIs.

1.3 Actual Movement or Imagined Movement

A lot of research within BCI is focused on controlling a BCI device with
imagined movement, also referred to as motor imagery. Imagined move-
ment is used, because the main goal is to develop products for handicapped
people who are not able to use actual movement (Prasad, Herman, Coyle,
McDonough, & Crosbie, 2009). Imagined movement can be hard to learn,
because it is more unknown to people than doing an actual movement. A
BCI can also be controlled with actual movement signals, this can be useful
in gaming, for example. The BCI adds a new dimension to the game that
can be entertaining. Actual movement is a more reliable (McFarland, Miner,
Vaughan, & Wolpaw, 2000) source in comparison to imagined movement in
the motor cortex and for healthy users actual movement is a more natural
way to communicate.

1.4 Frets on Fire

For this experiment we will use an existing game called Frets on Fire (Kyostila,
2006). This game is based on the popular Guitar Hero games (Kay, 2005),
but it is open source software and written in Python (Van Rossum, 1989). It
can be run on almost every operating system and is very flexible. Frets on
Fire can be played with a keyboard, an external joystick or even a Guitar
Hero controller. There is also a very useful song editor tool, to create songs
or edit existing ones. Frets on Fire has the possibility to import Guitar Hero
songs or random songs stored in OGG format. A midi track can be created
manually for the notes and can be edited with the song editor tool. This
game can be used for a BC], it is easy to modify and it is fun to play!
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1.5 Our Study

As our previous sections show, there are a couple of things to think about be-
fore setting up an experiment. Our goal is to create a game that is playable
with a BCIL. As stated before, it is important that it can handle quick re-
sponses from a subject and gives feedback in a short amount of time, prefer-
ably without a lag. Additionally, preferably, training sessions have to be fun.
Using actual movement to initially control the game is important to detect
the LRP signatures, they can be very clear and typical. We are interested
if this also occurs with imagined movement. Literature is vague about this,
some say it is in the signal of imagined movement (Kranczioch, Mathews,
Dean, & Sterr, 2009) and some say it is not present in the signal (Nazarpour,
Praamstra, Miall, & Sanei, 2009). This is a interesting question and our
experiment appropriate for this question. The game will effect an LRP in
the actual movement task, after training the subject, imagined movement is
used and compared with the actual movement data. We investigated the
following question:

e Do LRPs occur in imagined movement?

To produce an answer to this question, we created a rhythm game with a
BCI as an input device. Actual movement and imagined movement were
measured and analysed. In the next chapter the experiment design is clari-
fied.
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Methods

2.1 Experiment Goal

The goal of this experiment was to ivestigate if LRPs occur in imagined
movement tasks. Do subjects produce them? And if so, are they suitable to
use as a signature to classify between left and right hand movement?

The experiment consisted of a training block, an imagined movement block
and a control block. We compared the training block EEG data with the
imagined movement block EEG data. We checked for LRP signals, which
most probably will be present in the training block, but the question is if
they were also present in the imagined movement block. The control block
was used to ivestigate the signal-to-noise ratio in our data, and what kind
of brain signals a subject is producing just by looking to the game while not

playing it.

2.2 Equipment

To record the brainsignals, 64 AG/AgCl active electrodes were used accord-
ing to the international 10 - 20 system (Klem et al., 1999). The offsets of
these electrodes was kept under 25 mV. A Biosemi box amplifier (Honsbeek,
Kuiper, & Rijn, 1999) was used to record and amplify the brainsignal. The
signals were sampled at 2048 Hz. Electro-oculographic activity (EOG) was
measured for detection of eye movements and eye blinks, this was filtered
from the data in a later stage. Two electrodes placed directly above and
below the left eye, measured the vertical EOG. The horizontal EOG was
measured by two electrodes placed on the outer sides of both eyes. Further-
more, arm movements were measured by electromyographic (EMG) activity.
Surface EMG was recorded from muscles just beneath the elbow on the right



2. METHODS

and left arm. These signals were used to remove movement artefacts out of
trials that did not require movement. It was also used during the training
phase, to compare the timing of the movement with the signal.

The experiments were run in BrainStream (Severens, 2009) in combination
with Brains on Fire, our modified version of Frets on Fire (Kyostila, 2006).
In the training block two midi drum-blocks are used. The subject will play
the game in this training block with the use of drumsticks. The midi drum-
blocks correspond to the left button and the right button. By hitting one
of the midi-drum blocks, the button is triggered. With the use of the midi
drum-blocks we know the exact points in time where the subject wants to
send his signal, this can be used in the training phase to detect the delay in
the BCI processing and to train a classifier to distinguish between left and
right hand hits.

2.2.1 Brains on Fire

For this experiment we used an existing game called Frets on Fire (Kyostila,
2006). This game is based on the popular Guitar Hero games (Kay, 2005),
but it is open source software, written in Python (Van Rossum, 1989). Frets
on Fire simulates guitar playing, while our experiment is more suitable for
simulating drumming. Guitar playing needs two hands for playing one note,
a strum, or rhythm hand and a fret, or melody hand. Moreover, notes can
be played long or short, so there is a lot of variability. To simulate this
successfully with our BCI equipment is rather time consuming and has a
high potential for failure, therefore, making a simulation of drumming is the
more effective way to go. To make it suitable for brain-computer interfacing
there are a lot of modifications applied. The modifications that are being
made are:

1. Disable the rhythm button.

2. Decrease the number of buttons from five to two.
3. Make a larger time span to hit the notes.

4. Create new songs for training and testing.

5. Create a new input device

The rhythm button needs to be disabled, because only one button at a time
will be used. The number of buttons is decreased from five to two, because
of the simplicity. One button is operated by the left hand, the other button
is operated by the right hand. This makes clear what needs to be classified.
If it works well, it can be elaborated. Timing and BCI is a important fac-
tor in this experiment. The game is dependent on timing, if the user hits a
note too late he missed the note, but also if the BCI software takes too long
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to classify and send the results, the note can be missed. This can be very
frustrating, therefore the time span in which a note can be hit, is enlarged
with 50 milliseconds. There were no songs with only two buttons, therefore
the creation of new songs was needed. A song with different rhythms and
isolated beats is used for training and some famous songs with simple drum
patterns, e.g., Blur’s Song2 and Cocaine by Eric Clapton, are used for later
training stages and for the testing phase. The last and most important mod-
ification is creating a new input device. The game needs to communicate
with the BCI, and vice versa. The BCI software can communicate with the
game using a network socket and JSON messages (Bates, Nelson, & Wilmes,
2009). JSON messaging is a simple protocol, and in our case, used to encode
the actions that are send from the BCI to the game.

Figure 2.1: An in-game picture of Frets on Fire, the two buttons that we use are red and green.
The notes scroll from the upper part of the screen to the bottom of the screen. When the notes
pass the button line, the correct button needs to be pushed, in this case the red button needed
to be pressed. When a button is pushed it will lit.
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2.3 Participants

Six students (Five men and one woman, 20-26 years old) participated in this
study. Four of them had participated in a BCI experiment before, including
an imagined movement experiment. All participants were right-handed and
were free of neurologic disorders.

2.4 Experiment time-line

2.4.1 Preparation phase

To prepare the subject for this experiment, the EEG-cap needs to be attached.
The participant is asked to sit down in a comfortable position. When the
EEG-cap is attached the midi drum-blocks are adjusted to the preferences
of the subject, for example, the height and how the blocks are tilted. A
short instruction is given to the subject about EEG in general. Also, a short
introduction of the game is given and the subject can already get familiar
with the drumsticks. Every subject will hit the drum-blocks differently, espe-
cially the force that the subjects use, will differ. A common issue with midi
drum-blocks is that users hit the blocks too softly. To measure a baseline the
subject is asked to hit the left drum block 10 times. After this calibration,
the subject is asked to do the same thing for the right drum-block. Now a
threshold can be set for this subject.

This preparation phase, including attachment of the EEG-cap, should take
about 45 minutes.

2.4.2 Training phase
Training block

Before the training phase begins, the game will be started. The first block
uses the midi drum-blocks, the sensor registers when and which button is
pressed or, preferably, hit by the subject. The electrodes attached to the EEG-
cap of the subject will register the brain signals that the subject produces in
the sequences. The subject needs to hit the target that is shown in the game.
The target can be the left midi drum-block or the right midi drum-block.
The left midi drum-block is operated by the drumstick in the subject’s left
hand. The right midi drum-block is operated by the drumstick in the right-
hand.

Finally the software needs to distinguish between two classes, left midi
drum-block hit or right midi drum-block hit. In this training phase there is
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direct feedback from the game, because the subject operates it with the midi

drum-blocks and not with brain signals. Initially there will be six sequences.

Every sequence consists of one training song with a length of around two
minutes. This song consists of simple beat patterns, first a beat pattern is

played by the computer, and after this, it needs to be played by the subject.

The song will have 70 evenly distributed notes that need to be played by the
subject. This will add up to 420 samples of left and right hand hits.

Imagined movement block

For the imagined block, the user gets specific instructions on how to imagine
movement. The subject needs to imagine it vividly and not in third person
(Prasad et al., 2009). Think about the feeling of hitting the drum-block. After
the instruction the block is started. There will be three sequences, for every
sequence one training song is used, again without feedback.

Control/Nothing block

To detect what happens in the brain while the subject is simply just watching
and listening to the game, we do a so-called nothing block. The subject gets
instructed to just look at the screen during the game and without imagining
movement. This way we have a control condition to compare to the other
data; for example, in the visual brain areas class dependent information
could occur, caused by the stimuli on the screen. Moreover, it is useful
to know how the brain signal of a subject looks when there are no actions
involved. If that signal is known, it is possible to differentiate between actual
or imagined movement and non-movement.

11
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2.4.3 Global time-line

Preparation Block 1: Real movement Block 3: Nething/Control
45 minutes 15 minutes ‘ 5 minutes
o n |
|
10 minutes

Block 2: Imagined movement

Figure 2.2: Global experiment time-line

e Preparation phase (45 minutes)

— Attach EEG-cap
— User Instructions

— Threshold Detection
e Training phase 40 minutes
— Block 1: Real movement block (with drumsticks)

* 6 training songs

- Block 2: Imagined movement block

* 3 training songs

— Block 3: Control/Nothing block

* 1 training songs

12
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2.5 Data analysis

The methods that were used to analyse the data will be explained in this
part. In our experiment, the data analysis took place after the experiment,
this was possible since it was an offline experiment. All analyses were done
by Matlab (Moler, 1984).

2.5.1 Preprocessing

Recorded raw EEG data includes a lot of environmental noise. This noise
can mask the brain signal that is of interest to the experiment. To reduce
the amount of environmental noise, preprocessing was used. Our data is
gathered by an offline experiment. To analyse this data different techniques
were used. First the raw data was down sampled from 2048 Hz to 32 Hz.
Next the data was sliced into epochs of 1 second. To remove slow drifts,
linear detrending was applied to the sliced data. With an average reference
over all channels, the data was re-referenced to improve the signal-to-noise
ratio (Vanrumste et al., 2002). After these first steps of preprocessing, bad
epochs were rejected. The rejections are based on variances between epochs.
The variance of every individual epoch was calculated, also the standard
deviation of all epoch variances was calculated. An epoch was removed
when the power of an individual epoch deviated more than 3 standard de-
viation from the mean of all epoch power. Not only bad epochs needed to
be removed, the data could also contain bad channels. The rejection of bad
channels works in a similar way as the rejection of epochs. When a channel
was rejected, the data needed to be re-referenced again. There cannot be a
bad channel in the reference, because the accuracy will be decreased by the
noise the bad channel generates (Delorme et al., 2010).

2.5.2 Feature selection and classification

After the preprocessing the data will be filtered using a bandpass filter. This
step is needed to remove noise and frequencies that are uninteresting to us.
We applied a bandpass filter, with a cutoff frequency of 3dB, between 0.75
and 11 Hz. All the frequencies above 12 and beneath 0.25 Hz are completely
removed, because they will mainly consist out of noise (Luck, 2005).

An important step is training the classifier. A common approach in BCI re-
search is linear logistic regression (Tomioka, Aihara, & Muller, 2007). This is
also what we used, with L2 regularization (Farquhar, 2009), to prevent over-
titting. Overfitting means that the training will be too specific on one kind
of dataset and will not be able to classify not-seen data decently. After this
ten-fold cross validation is used to find the optimal regularization strength.

13
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The data is sliced into ten subsets, subsequently a classifier is trained on
nine of the ten subsets. The last, untrained, subset is used for testing the
classifier and to get a performance accuracy. The test subset is changed ten
times, the ten performances are averaged. This mean will be a representative
performance accuracy for the trained classifier.
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Results

3.1 Real movement plots

In this section we show that LRPs occur when playing the game during the
real movement training block. When using real movement an LRP can be
seen in a event-related potentials plot (ERP). In ERP plots the EEG data of
all the trials is averaged, this will suppress all the other brain activity that
can be found in the data (Pfurtscheller & Silva, 1999), but are not dependent
on the action that the subject needs to carry out.
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Figure 3.1: An ERP plot of one subject while doing a real movement training block. A typical
LRP can be seen in the C2 and C4 region.
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In figure 3.1 the ERP plot of one subject is shown, while doing the real
movement training block. This is an average of around 700 trials. When we
zoom in to the areas of interest (see figure 3.2), an LRP can be seen very
clearly in C2 and C4. This subject is representative for the other subjects
that participated in this experiments, except for some small deviations.

—— class right
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20 . .
Typical LRP, decrease 1n power
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-4 A hand in this case)

hl.
- 600 0 250
time {ms)

Figure 3.2: Zoomed in picture of the C4 area, where a typical LRP occurs.

The complete ERP plot also shows that there is a lot happening in the visual
cortex, respectively in electrode area P9, P10, O1 and Iz. This could be a
visual response that is caused by the flashing buttons, but it could also be
caused by movement artefacts. Therefore, in addition, data is recorded while
the subject only watches the screen. If the visual response is also present in
this additional data, it is caused by the visual input that the game gives to
the subject, because the subject will not move in this block.
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Corresponding to this ERP plot, there is a receicer operating characteristics
curve plot, which is shown below. This plot is called an AUC plot (Bamber,
1975). This plot shows a mapping of the electrodes on the scalp. The AUC
plot also shows at what time and for which channels the two classes, in our
case left versus right, differentiate the most. In this plot we can see which
channels are the most responsible for the classification.
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Figure 3.3: An AUC plot of one subject while doing a real movement. Strong colours (e.g.,
values 0.2 and 0.8) correspond to strong class information, while white colours correspond to
weak or no class information (e.g., value 0.5).
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Figure 3.3 shows that there are different areas responsible for the classifica-
tion. Our areas of interest also contribute to this classification: C2, C4, CP2
and CP4 can classify for left hand movement; C1, C3 and C5 can classify for
right hand movement. There are also electrodes that tend to leak informa-
tion, like the electrodes more to the side of the head: T7, T8 and TP8. This
can be caused by slight movements of the neck or other muscles around the
head. However, it could also be a protracted or inverted signal of the motor
cortex. There is some class information in the virtual cortex too, respectively
in electrode area P9, P10, O1 and Iz. It could be real class information based
on visual information, or it could be caused by movement.

17
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3.2 Imagined movement plots

The question is, are these LRP signatures also visible when imagining the
task? To get an answer to this question we take a look at the same plots of a
subject, but this time motor imagery is used.
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Figure 3.4: An ERP plot of one subject while doing an imagined movement block. There are no
LRPs and almost no class dependent information in the areas that are responsible for (imagined)
movement.

In figure 3.4 the ERP plot of one subject is shown, after doing the imagined
block. On average, this consists of 200 trials. When we zoom in to some
areas of interest (see figure 3.5), there is neither LRP nor class information
present in the interesting brain areas and time-points.
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Figure 3.5: Zoomed in picture of the C1, C2, C3 and C4 area, where no LRP occurs.

For this task we can also have a look at the AUC plot, and see where the
class information could be located in the brain.



3.2. Imagined movement plots
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Figure 3.6: An AUC plot of one subject while doing imagined movement. Strong colours (e.g.,
values 0.2 and 0.8) correspond with strong class information, while white colours correspond to

weak or no class information (e.g., value 0.5).

The figure above shows that there is almost no class information around
time 0. Using LRP as classification signature and imagined movement to
control the game, seems unlikely. In this time window there is no usable
class information, the same is true for regions other than the motor cortex.
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3.3 Control plots

These previous plots can be compared to an additional condition, the control
condition, where the subject is just looking at the screen.
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Figure 3.7: An ERP plot of one subject while doing no actual movement, nor imagined move-
ment, but just observing the screen.

A similar pattern as with the imagined movement can be seen above, the
regular spikes that occur in the imagined ERP plot (see figure 3.7) around
-500 ms in the motor cortex, are also present in this control condition. This
could be caused by the visual metronome line that is present in the game.
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Figure 3.8: An AUC plot of one subject while doing no actual movement, nor imagined move-
ment, but just observing the screen. Strong colours (e.g., values 0.2 and 0.8) correspond with
strong class information, while white colours correspond to weak or no class information (e.g.,

value 0.5).

By looking at the AUC plot (see figure 3.8), it is clear that there is almost no
class information present by just looking at the screen around time 0. It is
comparable to the AUC plot of the imagined movement.
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3.4 Classification performance

In this section, we compare classification performances between the different
conditions. We are interested in the difference in performance between real
movement and imagined movement.

Table 3.1 shows the cross validated estimated classification performance of
all conditions that are tested, using the data analysus method described in
section 2.5.
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Subjects | Training Imagined | Control/Nothing
S1 86 (+/-1%) | x X

S2 92 (+/-1%) | x X

S3 82 (+/-2%) | 50 (+/-3%) | 55 (+/-5%)

S4 81 (+/-3%) | * 56 (+/-5%)

S5 64 (+/-3%)* | 62 (+/-3%) | 55 (+/-6%)

S6 77 (+/-1%) | 53 (+/-5%) | x

| Average [ 80 | 55 | 55 |

Table 3.1: Cross validated estimated classification accuracy and standard error rates (in %) for
each subject and available conditions. (* indicates that there is probably something wrong with
this dataset, some broken markers or a part of the data missing, caused by software problems)

Unfortunately some datasets were broken, because the software did not save
the midi time points correctly and therefore the data is impossible to anal-
yse. Looking at the performance difference between the training block and
imagined block, we see a big difference of 80% versus 55%. Moreover, the

nothing block and imagined block do not show a significant difference, both
55%.



Chapter 4

Discussion

In the reported experiment, we explored the possibility of the occurrence of
LRPs in imagined movement. The results of the training block, which uses
real movement, are good overall and are as we expected. With an average
classification accuracy of 80%, with only one subject with a performance
lower than 77%, we can state that in this short time frame around the onset
of the action, a good performance can be reached. The standard errors are
low, all around 1%.

The results of the imagined movement task are not very high, the average
classification accuracy resulted in 55%, which is near chance-level. The stan-
dard errors of the imagined movement task are around 5%.

Classification accuracy between the real movement task and the imagined
movement task differed a lot. The high classification accuracy from the
real movement task indicates that LRPs are present in the brainsignal dur-
ing this task. Also the standard errors of the imagined movement task are
higher than in the real movement task, which indicates that the software is
just guessing what the subject did.

The low performance accuracy for the imagined movement task is in line
with previous research about LRPs in imagined movement (Nazarpour et
al., 2009). We have not found any form of an LRP in our imagined move-
ment task results, neither were there attenuated signals, as stated by certain
literature (Kranczioch et al., 2009). The imagined movement task had the
same performance as the nothing task, both around chance-level. This also
indicates that LRPs do not occur in imagined movement tasks.

The low performance in imagined movement can have several explanations:
the task, making big hitting movements, could be difficult for participants,
especially for people who never participated in imagined movement experi-
ments before. Participants may have used a wrong kind of imagery, or their
timing was not correct. None of the subjects had a high standard error in
imagined movement, not even when they had already participated in motor
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imagery experiments.

Subject 5 has some remarkable results, the performance of the training block
is the lowest of all the subjects, but the imagined movement block is almost
as high, both having the same standard error. The low performance in the
training data could be caused by the amount of epochs and channels that
were rejected out of the data, or by the fact that a part of the data was cor-
rupted by saving problems. Reasons could also be of technical nature, e.g,
the type of feature extraction and classification, the corresponding classifica-
tion window, the equipment. For generalization purposes, more data needs
to be be acquired.

Despite the fact that imagined movement cannot be used for this game, ac-
tual movement can be used for enabling people to control this game by air
drumming. Additionally we ran two experiments without using drumsticks,
or the midi drum-pads. The performance accuracy was relatively high, 92%
and 75%. Only simple data analysis tools were used, so performance could
be higher when using more complex algorithms to analyse the data.

To play a game like this, it is important that the BCI software can analyse
data quickly and correctly. The data indicates that the BCI can be accurate
enough to play a game with an accuracy of around 80%, only using the EEG
data, simple analysis and drumming motions. This indicates that playing
games that are dependent on timing and are operated using actual move-
ment, are possible.



Chapter 5

Conclusions and future work

This experiment indicates that there are no LRPs in imagined movement. To
prove this, more data needs to be acquired. Furthermore, the data needs
to be analysed more thoroughly. Maybe other signatures can be used to
control a game that is dependent on precise timing. Unfortunately, known
signatures in Brain-Computer Interfacing cannot be used to operate a game
that is dependent on precise timing (Pfurtscheller & Silva, 1999).

The results of the actual movement task indicate that it is possible to control
this game by air drumming. The game itself needs to be tested online with
this actual movement. If this works correctly, new buttons can be added,
e.g., a foot pedal. This can be seen as a new feature for games, allowing
people to operate games with air drumming.

The results indicate that playing games that are dependent on timing could
be operated using actual movement. We only used fixed time points and
two classes, left or right. This could be elaborated to an asynchronous BCI,
which means it can classify movement in time without fixed time points.
Asynchronous BCIs can classify whether there is movement or not for every
point in time, if there is movement the same classification can be used for
left and right hand movement that we used in our experiment. This asyn-
chronous BCI could be applied to comparable games.

To make it more suitable for healthy users and gamers, a wireless headset
could be incorporated in the game (Shende, 2008). The headset would make
it easier for people to play the game and it would be more inviting. Also
a multiplayer mode could be created and air guitar might actually be intro-
duced. Playing as a whole band with Brains on Fire, the possibilities are
endless!
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