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Abstract

The research presented in this thesis elaborates on whether modal logic
has an advantage over models without modal logic in constructing models for
legal cases. There are several kinds of logics that could be used to construct
such a model. Within this thesis for the model with modal logic: Standard
Deontic Logic (SDL) together with Propositional Deontic Logic (PDeL) is
used. For the model without modal logic: a reduction graph representation
is used.

This thesis starts off with theoretical background on both SDL and
PDeL, and the reduction graph representation, where the background for
the models used in this thesis is given. Secondly, the models are constructed
for two legal cases, the Bourhill v Young case and HI’s case. Finally, a com-
parison is made between the logical models to conclude whether, in the cases
used in this thesis, deontic logic is an advantage. From the comparison it
can be concluded that, for the cases used in this thesis, using deontic logic is
not necessarily an advantage over using the reduction graph representation.
This is due to the fact that deontic logic is relatively complex and does not
yet deal well with cases that need a subjective approach.
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Chapter 1

Introduction

Artificial intelligence is more and more common in the field of law, but
as stated by Surden [27]: “AI is not magic”. Currently the two broad
categories with the most success are Machine Learning, and Rules, Logic
and Knowledge representation [27, 9, 12]. Machine Learning approaches
are currently mostly used in law since they try to mimic the way humans
learn [27]. There are however several drawbacks of using Machine Learning,
for example overfitting or the need of much data. A system of Knowledge
representation, Logic and Rules on the other hand does not learn from data,
also known as a bottom-up approach, but uses a top-down approach. This
means that before the system is used, all possibilities need to be in the system
already. The relationship between logic and law has been troublesome over
the past century [12]. Law is one of the disciplines where it is difficult to
use AI in, since law is not only about strict rules but also about “common
sense”. When looking at what kind of logic is used several papers can be
found that discuss the use of modal logic, specifically deontic logic [14, 31].
Modal logic is an umbrella term that covers the logic of different sorts of
modalities. A more elaborate explanation is given in chapter 2. Branting
on the other hand describes how reduction graphs can be used to represent
legal cases [7]. A reduction graph is a representation of the judgement of a
certain predicate. A more elaborate explanation is given in chapter 2.

This thesis will look into the difference between using modal logic and
using reduction graphs, which do not use modal logic. The research question
for this thesis is:

Is using modal logic, specifically deontic logic, an advantage in logical
models for solving legal problems?

In this thesis only two logical models will be compared on two different cases,
therefore it cannot be generally concluded whether using modal logic is an
advantage over not using modal logic. However, it is a start.
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In chapter 2 both deontic logic and reduction graphs are further elab-
orated on. In chapter 3 the legal models will be shown. In chapter 4 the
models will be compared. Lastly in chapter 5 a conclusion will be drawn.
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Chapter 2

Theoretical background

2.1 Preliminaries

Before reading this thesis several definitions need to be clarified.

• Logical model: A logical model is a model of the specific case using
expressions of a specific kind of logic. This can also be called a logical
framework.

• Norm: A norm is a standard for evaluating or making judgements
about behaviour or outcomes [26].

• Normative judgement: A normative judgement is a judgement about
a normative situation such as rights and duties [28].

• Legal authorities: Legal authorities is any provision of law or regu-
lation that carries the force of law [17]. Examples of legal authorities
are statutes, rules and regulations, court rulings etc.

• Warrant: A warrant is a general or hypothetical statement that can
act as a bridge. They can be very simple, but often of the form: “If A,
then B” [25].

Within this thesis the basic principles and terminology of logic is used and
therefore not elaborated on. This knowledge is based on the syllabus from
the course Formal Reasoning at the Radboud University (IPK001), the syl-
labus can be found at: https://www.cs.ru.nl/~freek/courses/fr-2017/
public/fr.pdf.

Before the logical models can be made or elaborated on, theoretical back-
ground on modal, particularly deontic logic, and reduction graphs is needed.
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2.2 Modal logic: deontic logic

This section is split up in three subsections. In the section 2.2.1 modal
logic in general is elaborated on, in section 2.2.2 deontic logic in specific is
elaborated on. In section 2.2.3 two forms of deontic logic that will be used
in this thesis are further elaborated on.

2.2.1 Modal logic

Striclty speaking, modal logic is the study of the deductive behaviour of the
the expressions “it is necessary that” and “it is possible that” [11]. Deductive
reasoning is reasoning from general to a specific case [13]. For example the
reasoning “Alice has a lot of dresses” is deducted from: “Every woman has
a lot of dresses” and “Alice is a woman”. Broadly speaking it can be viewed
as the logic of different sorts of modalities (or modes of truth) [4]. It is often
used to describe a family of logics, among these logics are alethic logic, tem-
poral logic, deontic logic and doxastic logic. There are essential similarities
between these logics, but they also have different characteristics [30]. The
term “modal logic” is reserved for the logic of the alethic modalities, which
studies the expressions “necessarily” and “possibly” using the operator �
for “It is necessary that . . . ” and the operator ♦ for “It is possible that
. . . ” [19]. There are five statuses in alethic modal logic:

1. It is necessary that . . .

2. It is possible that . . .

3. It is impossible that. . .

4. It is non-necessary that . . .

5. It is contingent that . . .

The fourth status is the negation of the first status, and the third status is
the negation of the second status. As shown in figure 2.1, these statuses can
also be depicted in a modal square of opposition. This visually shows how the
statuses are related to one another. The modal square of opposition is based
upon Aristotle’s notion of contrary (two propositions cannot both be true,
but they can both be false) and contradictory (the truth of one proposition
implies the falsity of the other proposition) [21, 3]. A proposition can only
be in one state at the same time, which is also intuitive for the statuses.
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Figure 2.1: Modal square of opposition [19])

All of these statuses can be defined using the first status and opera-
tor (�), the negation operator (¬) and the and-operator (∧). r is used as
proposition:

1. �r

2. ¬�¬r

3. ¬�r

4. �¬r

5. ¬�r ∧ ¬�¬r

Modal logic is most of the time constructed from a relatively weak logic:
K [11], which is named after Saul Kripke. To get the logic K, the following
need to be added to propositional logic, where T and Q are formulas:

1. �: The operator for “It is necessary that . . . ”

2. Necessity rule: If T is a theorem of K then �T is too.

3. Distribution Axiom: �(T → Q)→ (�T → �Q)

The necessity rule is saying that the rules of logic are necessary and true
in all possible worlds. The distribution axiom states that when an implica-
tion is necessary, the participants of that implication statement are necessary
when used in another implication statement. The Necessity is distributed
over T and Q in our case.

The logic K is the basis for most modal logics [19]. Often systems are
added to K to make them more suitable for a certain logic. Examples are
the systems D, T, S4 or S5.
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2.2.2 Deontic logic

Temporal logic has operators that concern time and doxastic logic has op-
erators that concern believe. When looking at legal problems and law, oper-
ators that concern norms are most suited [14]. We can find these operators
in deontic logic, the logic concerning ethics, which consists of these three
operators [30]:

1. O for “It is obligatory that . . . ”

2. P for “It is permissible that . . . ”

3. F for “It is forbidden that . . . ”

Deontic- and alethic logic have essential similarities, this can for example
be seen in the fact that they have a basis is the same principles. For example,
deontic logic also has five normative statuses [19]:

1. It is obligatory that . . .

2. It is permissible that . . .

3. It is impermissible that . . .

4. It is omissible that . . .

5. It is optional that . . .

The first three actually resemble the three operators given before. The
fourth however is often ignored and the fifth status is often described as: “It
is a matter of indifference that . . . ”, and thus defined in terms of the first
three statuses. Like in alethic logic, the statuses can also be defined in terms
of the first status, again r is used as a proposition:

1. O(r): Or

2. P(r): ¬O¬r

3. F(r): O¬r

4. ¬Or

5. ¬Or & ¬O¬r

Figure 2.2 shows the Deontic Square (DS), which is similar to the modal
square of opposition. The status for optionality can also be added to this
square to obtain the deontic hexagon in figure 2.3.
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Figure 2.2: Deontic Square (DS) [19])

Figure 2.3: Deontic hexagon [19])

In figure 2.3 abbreviations of the statuses are used instead of the full
words. p is used as a proposition:

• OBp: It is obligatory that p.

• IMp: It is impermissible that p.

• OP ∼ p: It is not optional that p.

• OMp: It is omissible that p.

• PEp: It is permitted that p.

• OPp: It is optional that p.
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As said before, often systems are added to the logic K to make it more
suitable for a certain logic. To construct deontic logic an axiom D is often
added to the logic K, this is then called the logic D. The axiom D, where
A is a formula:

OA→ PA

This axiom states that what is obligatory is also permitted. The other way
around however is not true, since all that is permitted is not necessarily
obligatory. This system can also be used in other modal logics, for example
in alethic modal logic. But there are differences between alethic modal logic
and deontic logic. The system T (some logicians call this system M) adds
the following axiom:

�A→ A

In alethic modal logic this axiom states that anything that is necessary is
true. In deontic logic this axiom states that anything that is obligatory is
true, but this is not the case. There are things that are obligatory but not
done.

2.2.3 Standard Deontic Logic & Propositional Deontic Logic

The basis of this subsection mostly comes from the doctoral thesis by Roy-
akkers [22]. Since it is a fairly large thesis only the parts needed to solve the
two cases used in this thesis are elaborated on below. Reading the doctoral
thesis and the adaptation by Royakkers [24, 23] fully will cover more top-
ics that are beyond the scope of this thesis. Because the doctoral thesis by
Royakkers [22] is used extensively in this thesis some definitions and expla-
nations are the same in this thesis. This is because changing those definitions
and explanations would alter the meaning, and thus making them incorrect.

In Standard Deontic Logic (SDL) there cannot be dealt with actions,
a norm is expressed by applying a operator (O) to letters (for example:
p) for example O(p) means: “It is obligatory that p”. This cannot be read
as: “It is obligatory to do p”, this shows the difference between Ought-
to-do and Ought-to-be statements. Ought-to-do statements are those that
involve both agents and actions and support imperatives. These can change
the state of a current situation or world. Ought-to-be statements are those
that involve state of affairs and assertions, thus not agents and actions, and
thus cannot change the current situation. SDL cannot deal with Ought-
to-do statements, and thus cannot represent all legal rules in the correct
manner. Propositional Deontic Logic PDeL, however, can deal with Ought-
to-do statements. Therefore SDL will be used for Ought-to-be statements
and PDeL will be used for Ought-to-do statements. Below SLD and PDeL
are elaborated on.
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Standard Deontic Logic

The most studied system of deontic logic is Standard Deontic Logic (SDL) [19].
SDL builds upon propositional logic, and it uses the three deontic opera-
tors given before (O,P and F) [22]. Normative judgements can be formed
from combining propositions and the operators, these are called well-formed
formulas (wff’s) of the system. SDL is the logic D added with suggestive
notation to express the intended interpretation [19]. SDL is axiomatised by
the rule of inference, p and q are propositions [22]:

OB-RE: p↔q
O(p)↔O(q)

RE is the rule of inference for equivalence, it states that equivalent proposi-
tions are equally necessary:

RE: p↔q
�p↔�q

OB-RE is the rule of inference for equivalence (RE) applied in the logic
D with the operator for obligation (O()).OB-RE states that if p ↔ q is a
formula, then so is O(p) ↔ O(q). This roughly states that if two formulas
are provably equivalent then the results of prefixing them with O is too [19].
SDL has the following axiom schema:

Axiom 2.2.1.

1. OB-M: (O(p) ∧O(q))→ O(p ∧ q)

2. ON: O(p ∨ ¬p)

3. OD: ¬O(p ∧ ¬p)

4. Df.P: P (p) ≡ ¬O(¬p)

OB-M is similar to the distribution axiom, it states that if it is obligatory
that p and it is obligatory that q then it is obligatory that p and q. ON states
that it is obligatory that p or not p, which is intuitive, since it is obligatory
for something to be true or not true. Following ON, OD states that it is
not obligatory that p and not p. ON and OD together make it that some-
thing is either obligatory or not, not both. Df.P is a definition that shows
the similarity of “it is permitted that p” and “it is not obligatory that not p”.

With SDL, standard Kripke-style possible world semantics are used. The
following model structure is used: M = (W,R, V ).

1. W = {w1, w2, ...}
The set of possible worlds.

2. R(w)→ P(W )
The accessibility function R ∈ R, it takes a world w and returns a
subset of W .
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3. V (w, p)→{true, false} with p being an atomic proposition and w ∈W .
A valuation function which assigns true or false to a proposition p at
a world in W .

The accessibility function R yields the deontically ideal worlds relative to
a given world. A deontically ideal world is a world where every obligation
is never neglected and everything permissible is the case sometimes [29].
Following these axioms and the semantics, truth conditions for both O and
P can be defined. The function: JK ∈ L→ 2W is used. L is the set of all wff’s
in propositional logic.

(1) M, w ` O(p) iff R(w) ⊆ JpK

O(p) holds in w iff p is true in all ideal worlds with respect to w.

(2) M, w ` P (p) iff R(w) ∩ JpK 6= ∅

P (p) holds in w iff p is true in at least one ideal world with respect to w.

SDL with actors: In SDL obligation and permission is currently only
focused on one actor and its obligations and permissions. We cannot say
that acts are obligatory for one particular individual or a particular group of
individuals and not for others. It also cannot be said that an act is obligatory
for some, but not all members of a group of individuals. The first step in
adding actors to SDL is being able to say: “It is obligatory for i that p”. This
is done by the revitalised obligation: Oi(p), this is a personal obligation. The
personal permission being Pi(p). There are three sorts of obligations that
bind an individual:

1. Personal obligation: obligation for a specific individual.

2. General obligation: obligation for every individual.

3. Unspecific obligation: obligation for some individuals.

The following model structure is used:M = (W, I,R, V ). It is an exten-
sion of the model structure given for SDL before.

1. W = {w1, w2, . . . }
The set of possible worlds.

2. I = {i1, i2, . . . }
The set of individuals.

3. R = {Ri|i ∈ I}
Given a world Ri : W → 2W , the function Ri ∈ R on W returns the
deontically ideal worlds for individual i.
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4. V (w, p) → {true, false} with w ∈ W and p being an atomic proposi-
tion. A valuation function which assigns true or false to a proposition
at a world in W .

The truth conditions can again be defined:

(1) M, w ` Oi(p) iff Ri(w) ⊆ JpK

(2) M, w ` Pi(p) iff Ri(w) ∩ JpK 6= ∅

The following restraint also needs to be added:

Ri(w) 6= ∅, for all Ri ∈ R and for all w ∈W .

Now we can define general obligation, general permission, unspecific obliga-
tion and unspecific permission as follows:

• The general obligation: ∀i∈IOi(p) ≡ O+(p);

• The general permission: ∀i∈IPi(p) ≡ P−(p);

• The unspecific obligation: ∃i∈IOi(p) ≡ O−(p);

• The unspecific permission: ∃i∈IPi(p) ≡ P+(p).

The following principles are valid:

• O+(p)→ O−(p)
General obligation implies unspecific obligation;

• P−(p)→ P+(p)
Unspecific permission implies general permission;

• O+(p)→ P−(p)
General obligation implies unspecific permission;

• O−(p)→ P+(p)
Unspecific obligation implies general permission;

• O−(p)→ Pi(p)
Unspecific obligation implies personal permission;

• Oi(p)→ P−(p)
Personal obligation implies unspecific permission.

The last addition we make to SDL in this thesis is directed obligation.
The model structure that is used is:M = (w,P+(I),R′I , V ). It is an exten-
sion of the model structure given for SDL before.

1. W = {w1, w2, . . . }
The set of possible worlds.
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2. The powerset P+(I) of the set I = {i1, i2, . . . }

3. R′I = {RX,Y |X,Y ∈ P+(I)}.
The function RX,Y ∈ R′I on W returns the deontically ideal worlds
for X towards Y given a world: RX,Y : W → 2W .

4. V (w, p)→ {true, false}
A valuation function which assigns true or false to a proposition p to
w ∈W .

The truth condition can be defined as follows:

(1) M, w ` YOX(p) iff RX,Y (w) ⊆ JpK

The following restraint again needs to be added (after adjustment):

RX,Y (w) 6= ∅, for all RX,Y ∈ R′I and for all w ∈W .

Directed obligation is the obligation someone has to someone else, also
called duty. “it is obligatory for X towards Y that p” is denoted as: YOX(p)
with X,Y ∈ P+(I).

Propositional Deontic Logic

The basis of PDeL is the logic framework of (propositional) dynamic logic.
Dynamic logic is logic extended to reason about more complex behaviour, for
example the behaviour of agents and actions which we need for Ought-to-do
statements.

To reduce deontic operators to dynamic operators, a violation atom V is
used, it indicates that an action took place that violated one of the deontic
constraints. This means that the performance of a forbidden action leads
to a bad state of affairs, e.g. a sanction. Several interpretations of V are
possible, the interpretation that is used in Royakkers his doctoral thesis [22]
and which will be used in this thesis is: V equals the situation that is in
contravention of the law, or stated in other words: V equals the situation
that breaches the law. Whether it leads to a sanction and which sanction
is given is left aside. In PDeL propositional language is extended with a
modal operator: [β] for every action β in the language. [β]Φ means that
after β is performed, assertion Φ holds. Now since deontic logic is described
as a variant of dynamic logic, actions and assertions can be described strictly
separated.

A is the set of action symbols. a is an atomic action, an atomic action
is an action which cannot be interrupted while the action takes place [20].
From this it follows that A is the set of atomic actions. To form the set
of semantic elementary actions two symbols are added that are not in A:
skip and δ. The skip action expression is the action that has no effect, or the
empty action. The δ action expression is also denoted as fail, this is the action
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expression that expresses that that action always fails. After this action the
system stops. Furthermore in A are the following action expressions: β1∪β2,
β1 ∧ β2, β1;β2 , β̄, any and change.

• β1 ∪ β2 means the choice between β1 and β2.

• β1 ∧ β2 means the simultaneous performance of β1 and β2.

• β1;β2 means the sequential composition of β1 and β2.

• β̄ means the negation of action expression β

• any indicates that it does not matter which action is represented by
the action expression.

• change indicates that is does not matter which action is represented
by the action expression, as long as it is not the skip action.

This defines the following Backus-Naur form(BNF):

β ::= a|β1 ∪ β2|β1 ∧ β2|β1;β2|β̄| any | fail | skip | change

Now the language Act of PDeL can be discussed. Act consists of asser-
tions concerning action expressions, defined by the following BNF:

Φ ::= φ|Φ1 ∧ Φ2|Φ1 ∨ Φ2|Φ1 → Φ2|¬Φ|[β]Φ

φ is a propositional variable in L, which is the language of propositional
logic. Now the deontic operators can also be expressed using these notions:

• F (β) ≡ [β]V

• P (β) ≡ ¬[β]V

• O(β) ≡ [β̄]V

F (β) meaning it is forbidden to perform β, thus if β is performed you are
in violation. P (β) meaning that it is permissible to do β, thus you are not
in violation when β is performed. O(β) meaning that it is obliged that β is
performed, thus you are in violation when β is not performed.

Semantics for action expressions Synchronicity sets (s-sets) are sets
of sequences which give the semantics for action expressions.

Definition 2.2.1. A s-set denotes a set of elementary actions that are per-
formed simultaneously. Every non-empty subset of A is a synchronicity set,
as well as [δ] and [skip]. S, S1, S2, ... denote s-sets. S denotes the powerset
of s-sets with actions in A.
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[δ] and [skip] are not in an S since they cannot be performed simulta-
neously with actions in A since it is not possible to do nothing and perform
an action at the same time.

The course of performances of actions is denoted by a synchronicity
sequence (s-sequence), which is a sequence of s-sets. The definition of a
synchronicity sequence is:

Definition 2.2.2. A synchronicity sequence is a finite or infinite sequence
of S1S2 . . . Sn . . . of s-sets. Within a synchronicity sequence, ε stands for the
empty sequence. [δ] can only be the last s-set of an s-sequence. l(t) is the
number of s-sets in a s-sequence t.

Two s-sequences can be concatenated by the ◦ operator.

Definition 2.2.3. Let t = S1 . . . Sn and t′ = S′1 . . . S
′
m be two sequences,

then,

t ◦ t′ =

t, if Sn = [δ]

S1 . . . SnS
′
1 . . . S

′
m if Sn 6= [δ]

If t is an infinite s-sequence, then t ◦ t′ = t.
t ◦ ε = t
[δ] ◦ t = [δ]

T, T1, T2, . . . are used to denote sets of s-sequences. Since the language
of action expressions is non-deterministic, the sets of s-sequences have to
be considered as the semantics of an action expression. a, an atomic action,
indicates that there is a choice between all possible actions in which a is
at least performed. In such a set, each s-sequence is a possible choice. The
domain A is defined as follows:

Definition 2.2.4. A is the collection of sets T consisting of s-sequences.

To give the notation for all action expressions in Act, we need to define
the following operators: t,u and ∼. t resembles the ∪ of sets.

Definition 2.2.5. For T, T ′ ∈ A:

T u T ′ =

T ∩ T ′, if T ∩ T ′ 6= ∅

{[δ]}, otherwise

u resembles the ∩ of sets. Needed to define t is the following definition:

Definition 2.2.6. Let T be a set of s-sequences, then:

T δ =

T \ {[δ]}, if ∃S∈TS 6= [δ]

{[δ]}, otherwise
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The idea of this operator is that when there is a non-failing alternative,
failure is avoided. Now using definition 2.2.6, t can be defined:

Definition 2.2.7. For T, T ′ ∈ A :

T t T ′ = (T ∪ T ′)δ

The operator ∼ has two clauses, the first clause expresses that an s-set
S 6= [δ] is not involved, by considering all other s-sets in S, and any s-set is
possible when one does not fail. The second clause expresses that T̃ is the
negation of a set T by taking the u-intersection of the s-sets S in T . The
operator ∼ is defined as follows:

Definition 2.2.8.

1. For an s-set S,

S̃ = (S ∪ {[skip]}) \ S

2. For a non-empty set T ∈ A,

T̃ = u{S̃|S ∈ T}

Now the semantic function JK ∈ Act→ A can be defined:

Definition 2.2.9.

1. JaK = {S ∈ S|a ∈ S}

2. Jβ1 ∪ β2K = Jβ1K t Jβ2K

3. Jβ1 ∩ β2K = Jβ1K u Jβ2K

4. JβK = Jβ̃K

5. JskipK = {[skip]}

6. JfailK = {[δ]}

7. JanyK = S ∪ {[skip]}

8. JchangeK = S

The PDeL used in this thesis (as well as in the doctoral thesis by Roy-
akkers) is axiomatised by the following rules of inference:

(N) if ` Φ, then[β]Φ

(N) means that if an assertion can be derived from the system, then the
assertion cannot be revoked by any action.
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(S) β1 =A β2 ` [β1]Φ ≡ [β2]Φ

(S) is the notion that the equality of action expressions can be denoted in
terms of their semantics.

In PDeL the following axioms hold:

Axiom 2.2.2.

1. All tautologies of propositional logic

2. [β](Φ1 → Φ2)→ ([β] Φ1 → [β] Φ2)

3. [β1 ∪ β2] Φ ≡ [β1] Φ ∧ [β2] Φ

4. [β1] Φ ∨ [β2] Φ→ [β1 ∧ β2] Φ

5. [fail] Φ

6. [skip] Φ ≡ Φ

Since PDeL has its basis in propositional logic, the tautologies of propo-
sitional logic are also an axiom in PDeL.

Axiom 2.2.2.2 states that after the performance of action β, if assertion
Φ1 holds then assertion Φ2 holds, it is equivalent to: if Φ1 holds after action
β is performed then Φ2 holds after action β is performed.

Axiom 2.2.2.3 states that assertion Φ holds after the action you choose to
perform, either action β1 or β2, is performed. It is equivalent to performing
action β1 after which the assertion Φ holds and performing action β2 after
which the assertion Φ holds. The performance of either of the actions leads
to the same assertion.

Axiom 2.2.2.4 states that Φ holds after performing one of the actions β1
or β2, it is equivalent to Φ holding after performing both actions β1 and β2.
Performing both actions does not change assertion Φ.

Axiom 2.2.2.5 states that when one has to perform the impossible action,
there are no successor worlds and thus assertion Φ holds in all worlds.

Axiom 2.2.2.6 states that performing the action skip after which assertion
Φ holds is equivalent to Φ because the action skip has no effect on Φ.

The propositions of PDeL can be found in the appendix section: A.1. A
model M for PDeL is given by: M = (A,W, JβKR, π):

1. A = {β1, β2, . . . }
The set of actions.

2. W = {w1, w2, . . . }
The set of possible worlds.

3. JβKR is a function that associates with action β ∈ Act and world w, it
returns the set of possible worlds which the performance of β leads to.

4. π : W × L→ {true, false}
The truth relation between world and sentences.
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PDeL with actors : Unlike SDL, in PDeL the distinction is not whether
it is a personal obligation or general obligation, but more whether it is an
action performed by one actor or an action performed by a group of actors.
In the cases we elaborate on in this thesis, only one actor performs the action
thus that is the part that is elaborated on.

For an actor i ∈ I and an action β ∈ Act, the atomic action is defined
as follows: i : β which states: i performed action β. Evt is the set of atomic
events, Evt is the set of all event expressions which is defined by the following
BNF, with α ∈ Evt:

α ::= i : β|α1 ∪∗ α2|α1 ∧∗ α2|α

• α1 ∪∗ α2 means the choice between α1 and α2.

• α1 ∧∗ α2 means the simultaneous performance of α1 and α2.

• ᾱ means the negation of action expression α

• {i : any} indicates that i performs a universal action.

• {i : change} indicates that i performs a universal action, that is not
the skip action.

• {i : skip} indicates that i performs an empty action, thus nothing
happens.

• {i : fail} indicates that i performs an action that fails, after this action
the system also stops.

The semantics of event expressions are similar to the semantics defined be-
fore, they are again expressed by synchronicity sets (s-sets). Here the s-sets
denote performances of packages of elementary actions that have to be per-
formed simultaneously by the same actor.

Definition 2.2.10. {δ}, {i : skip} and every pair of a non-empty subset of
A, with A being the set of actions, and an individual i in I, with I being
the set of individuals, are s-sets.

s-sets are denoted by S, S1, S2, . . . . The set of all s-sets, except {δ}, is
denoted by S∗.

Definition 2.2.11. Let I = {i1, i2, . . . , in}, then T is defined as the set
of elements of the indirect product of S∗i,1,S∗i,2, . . . ,S∗i,n, this is denoted as:
T =def ×i∈IS∗i . With the indirect product an i ∈ I is matched to only
one S∗, instead of each i ∈ I begin matched to every S∗i,1,S∗i,2, . . . ,S∗i,n (the
direct product). An element of T is called a step and denoted as: t. ti is the
set of actions in A, in the s-set t of actor i.
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t denotes the deterministic set of actions for all actors simultaneously.
Because of the skip operator it is possible for an individual to perform an
action with no outcome, this is needed because not all the time all actors
affect the situation. T, T1, T2, . . . are used to denote sets of steps. The domain
MT is defined as follows:

Definition 2.2.12. MT is the collection of sets T consisting of steps. MT
is the powerset of T .

Here the operators t∗,u∗ and ∼ are used as semantic counterparts for
the ∪∗,∧∗ and − syntactical operators defined in the BNF of Evt. t∗ is the
counterpart for ∪∗, u∗ is the counterpart for ∧∗ and ∼ is the counterpart
for −.

Definition 2.2.13. For T1, T2 ∈MT :

T1 u∗ T2 =

T1 ∩ T2, if T1 ∩ T2 6= ∅

{[δ]}, otherwise

Using definition 2.2.6, t∗ can be defined:

Definition 2.2.14. For T1, T2 ∈MT :

T1 t∗ T2 = (T1 ∪ T2)δ

The operator ∼∗ has like ∼ two clauses, the first clause expresses the
negation of t, by taking the set-theoretic complement of {t} with respect to
T . The set-theoretic complement are the elements of T that are not in {t}
The second clause expresses the negation of T , this is done by taking the
negation of each t in T , and then taking the intersection t∗ of that. The
operator ∼ is defined as follows:

Definition 2.2.15.

1. For an step t,

t∼
∗

= T \ t

2. For a non-empty set T ∈MT ,

T∼
∗

= u∗{t∼∗ |t ∈ T}

Now the semantic function JK ∈ Evt → MT , with a, βl, β2 ∈ Act, i ∈ I
and α, αl, α2 ∈ Evt , is given by:

1. Ji : aK = {t ∈ T |a ∈ ti};

2. Ji : β1 ∪ β2K = Ji : β1K t∗ Ji : β2K;
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3. Ji : β1 ∧ β2K = Ji : β1K u∗ Ji : β2K;

4. Ji : β1K = Ji : β̃1K

5. Jα1 ∪∗ α2K = Jα1K t∗ Jα2K;

6. Jα1 ∧∗ α2K = Jα1K u∗ Jα2K;

7. Jα1K = Jα1K∼
∗

8. Ji : failK = {[δ]};

9. Ji : anyK = T

10. Ji : skipK = {t ∈ T |ti = skip};

11. Ji : changeK = T \ Ji : skipK.

A model M for PDeL(Evt) is given by: M = (I, A,W, JαKR, π):

1. I = {i1, i2, . . . , in}
The set of actors.

2. A = {β1, β2, . . . }
The set of actions.

3. W = {w1, w2 . . . }
The set of possible worlds.

4. JαKR is a function that associates with event α ∈ Evt and world w, it
returns the set of possible worlds which the performance of α leads to.

5. π : WxL→ {true, false}
The truth relation between world and sentences.

Lastly, here too we add directed obligation: O(i : a(j)) which can be
read as: “i has a duty towards j”, the duty is a().

2.3 Reduction Graph representation

A reduction graph is a representation of subgoals that arise in the process
of constructing an inference path from the predicate to be established to the
facts that belong to the case [7].

A reduction graph is build like an AND/OR graph [6]. Both AND/OR
trees and AND/OR graphs exist. To represent the full variety of possible
situations that can occur in problem reduction an AND/OR graph is used.
In an AND/OR tree each node has at the most one parent, in an AND/OR
graph this is not the case. In an AND/OR graph reasoning proceeds back-
wards from the initial goal, which is the initial problem that is to be solved.
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Each node in an AND/OR graph represents a problem or a set of problems
that needs to be solved. At first an initial problem description is given, then
this problem is solved by a sequence of transformations that, in the end,
change into a set of subproblems whose solutions are immediate. All sub-
problems need to be solved to solve the initial problem. There are several
rules as to which the AND/OR graph is constructed:

1. Each node in the graph either represents a single problem or represents
a set of problems to be solved.

2. The graph contains a start node which is the original problem.

3. A terminal node is a node representing a primitive problem. A prim-
itive problem is a problem that can be solved immediate. A terminal
node has no descendants.

4. To transform a problem P into a set of subproblems an operator is
applied to P. This is shown in the graph as a directed arc from P to a
node representing the set of subproblems.

5. When a set of (sub)problems A can only be solved when all of its
members (B, C) can be solved it is called an AND-node. This is shown
by a horizontal line crossing through the arcs leading from an AND-
node to its successors. Figure 2.4 shows an example where A is a set
of subproblems and, B and C are the subproblems.

6. When a problem P can be solved by any of its successors, P is called an
OR-node. Figure 2.5 shows an example where P is a set of subproblems
and, Q and R are subproblems.

Figure 2.4: Example of an AND-node Figure 2.5: Example of an OR-node

Whether a node is an AND-node or an OR-node can be seen in the
formula, when it is a formula with a conjunction in it, it will be an AND-
node. If the formula has a disjunction, it will be an OR-node.

With only a constructed AND/OR graph the problem is not yet solved.
To find a solution for the initial problem an AND/OR graph with enough
nodes such that the start node can be solved. An AND/OR graph containing
only the nodes needed to solve the start node is called a solution graph. There
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are also several rules that determine if a node is solvable or not.
A node is solvable if:

• A node is a terminal node;

• A node is a non-terminal node that has AND-nodes as successors and
those successors are all solvable;

• A node is a non-terminal node that has OR-nodes as successors and
at least one of those successors is solvable.

From these rules the rules for a node that is not solvable can be derived. A
node is not solvable if:

• A node is non-terminal but also has no successors.

• A node is non-terminal and had AND-nodes as successors but at least
one of the successors is not solvable.

• A node is non-terminal and has OR-nodes as successors but all OR-
nodes are not solvable.

To use AND/OR graphs, or as they are sometimes called: reduction
graphs, for representing legal cases several aspects of the graph need to be
different. In a reduction graph representing a case, the reduction graph rep-
resents a justification of why a certain predicate is true or not. To construct
a reduction graph representing a case, legal rules (the law), legal precedents
and the facts of the case are used. A legal precedent is a past case in which a
court resolved a legal problem, there are also several general precedents like:
reasonable care, malice, activity in furtherance of employment. In the law
an important principle is Stare Decisis, this means that the court is obliged
to follow historical cases when making a ruling on a similar case [32]. A
reduction graph representing a legal case takes both the legal rules (laws)
and the legal precedents into account. In the law arguments can differ in
strength, thus a ranking is often needed. This means that an argument with
a higher strength will be higher in the ranking and thus be considered with
more weight to it. To construct a reduction graph concerning a legal case,
the following input is required:

1. A set of facts.

2. A collection of legal authorities:

• Warrants which occur as reduction-operators.

• Legal rules coming from sources other than from precedents.

• Additional knowledge.

3. A goal proposition which is the initial problem.
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4. An evaluation criteria such that the arguments can be ranked by
strength.

When this input is collected, two things need to be done:

1. Find each of the reduction graph presentations possible for goal propo-
sition and its negation.

2. Rank the reduction graphs on the basis of the evaluation criteria es-
tablished before.

Using an example from the paper by Branting [7] as a guideline, the
manner in which a reduction graph concerning a legal case is built is elabo-
rated on. The example is the fictional Adam v Baker case. A small summary
of the case:

Adam and Baker played a hockey game together. Adam intentionally
uses his hockey stick to hit Baker’s hockey stick to prevent Baker from hit-
ting the puck. Baker ended up spraining his thumb causing 1.000 dollars
in medical bills. Baker sued Adam for battery, which is unauthorised ap-
plication of force against another person’s body, which results in offensive
touching or actual physical injury [16].

The requirements to establish a claim for battery are (1) harmful or
offensive touching and (2) no consent. Which can also be shown as:

battery ↔ touching ∧¬ consent

Since a hockey player consents to contacts that are custom during a hockey
match, Adam is not liable to Baker for battery. Thus the judgement against
Adam is nullified. In figures 2.6 and 2.7 the reduction graph representations
of the case are shown.
First figure 2.6, the reduction graph claiming that battery is the case. In
this reduction graph battery is the original problem, the starting node. As
given before, for battery to be true both touching and not consent need to
be “solved”. Therefore battery is an AND-node with the nodes touching and
¬ consent as successors. Going down from touching : for touching to be true,
hitting hockey stick needs to be solved. This matches the facts in the case,
and thus ends in a terminal node with no descendants. However, when the
¬ consent node needs to be solved, this ends up being a non-terminal node
with no descendants. Thus we cannot solve this reduction graph.
Second, figure 2.7. In this reduction graph it can be seen that ¬battery is
the original problem, the starting node. As given before, for ¬battery to be
true either, both touching and consent need to be “solved” or ¬touching
and ¬consent need to be “solved”. It can be seen in the previous reduction
graph (figure 2.6) that touching can be solved. We thus will not try to solve
battery with a node ¬touching. The nodes touching and consent are used,
since they both need to be true, ¬battery is an AND-node with touching
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and consent being the successors. Going down from touching, for touching
to be true, hitting hockey stick needs to be solved. This matches the facts
in the case, and thus ends in a terminal node with no descendants. This arc
is therefore solved. Going down from consent, for consent to be true, sub-
problem set participating in hockey game needs to be solved. This arc can
then also be solved by the facts of the case, which again is a terminal node
with no descendants. Since both sides are true and ¬battery is an AND-node,
¬battery is true.

Figure 2.6: Reduction-graph representation of Adams v Bakker claiming
that battery is the case
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Figure 2.7: Reduction-graph representation of Adams v Bakker claiming
that battery is not the case

Now also from the reduction graph representation it can be seen that
battery cannot be claimed. Thus the outcome of the model matches the
outcome of the Adam v Bakker case.
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Chapter 3

The Logical Models

For this thesis two cases will be used to be able to compare both forms of
logical models, one case is taken from the paper by Branting [7]. This is the
Bourhill v Young case. The other case is taken from the doctoral thesis by
Royakkers [22]. This case has no specific name, but in this thesis this will be
called: HI’s case. These two cases are used because in the paper by Branting,
the Bourhill v Young case is already worked out using the reduction graph
representation. In the doctoral thesis by Royakkers, HI’s case is already
worked out using PDeL. Therefore we may assume that these are correct.
In this thesis the cases are explained and the models already worked out are
worked out again using the papers as guidance or example. For the cases
that are not worked out yet, the cases will be worked out in this thesis.

3.1 The cases used

3.1.1 HI’s case

HI’s case is a case that dates back to 1993. It is a case in which it is the
question which rules have the upper hand. Royakkers used this case on sev-
eral occasions [24, 22], there is however a citation mistake in both articles.
To be able to find this case the following ECLI number needs to be used:
ECLI:NL:HR:1993:ZC9571. Unfortunately, the High Court (Hoge Raad) in
the Netherlands could not find this case in their archives, thus we have to
use the facts stated in the articles by Royakkers [24, 22]. A small summary
of the case written by Royakkers:

“On a national route road A28, within the city limits of Zwolle, a lorry
from the firm H.I. drove at a speed of 96 km/h. H.I. was imposed an ad-
ministrative sanction on the ground of a lorry exceeding the speed limit by
15 to 20 km/h. An appeal was lodged with the public prosecutor and the
sub-district court judge, because H.I. was of the opinion that, on the road
in question, traffic signs indicating a speed limit of 100 km/h were in force,
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and that, therefore, no sanctionable act had been committed, for traffic signs
override traffic rules.”[22].

In the Netherlands lorries have a maximum speed limit of 80 km/h.
However, the Dutch traffic regulations state that traffic signs override traffic
rules, in as far as these rules are incompatible with the signs. The judge
ruled that according to the regulations there was no incompatibility. The
sign stating that the speed limit is 100 km/h is a regulatory sign and not
a sign that implies a higher speed for lorries. This can also be shown as a
simplified formula:

ticket for the driver ↔ ¬traffic rules override signs ∧ the driver is a lorry
driver ∧ lorries cannot drive faster than 80 km/h ∧ the driver drove 81

km/h or more

3.1.2 Bourhill v Young

Bourhill v Young is a relatively old case, it dates back to 1943. It is a well
known case because it established important boundaries on the scope of re-
covery for bystanders. This is a summary of the case written by Branting:

“Young, a motorcyclist, was killed because of his own negligence when
he passed a tram at excessive speed and collided with a car about 50 feet
beyond the tram. At the time of the accident, the tram was stopped and
Mrs. Bourhill was alighting. Mrs. Bourhill heard the collision and saw blood
on the road after the accident and as a result suffered a nervous shock.
Mrs. Bourhill was outside what Young ought to have contemplated as the
area of potential danger that would arise from his careless driving, since
she was alighting on the side of the tram opposite the side on which Young
passed.” [7].

In this case the question is whether the nervous shock from Mrs. Bourhill
can be recovered on Young having a duty of care while driving to the people
around him. Duty of care is a requirement that a person has towards others
and the public to act with watchfulness, attention, caution and prudence
that a reasonable person would use in the circumstances [15]. The case
from Mrs. Bourhill against Young was dismissed. Young was not held liable
because it was not foreseeable that Mrs. Bourhill would suffer harm because
of a traffic accident caused by Young and because Mrs. Bourhill was about
50 feet away from the accident, thus not sufficiently proximate to the crash
scene [18]. The requirements to establish a case negligence of duty of care
are: (1) duty is present, (2) the duty must be breached and (3) proximate
cause. This can be shown in the following formula:

negligence of duty of care ↔ duty ∧ breach of duty ∧ proximate cause
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3.2 Deontic logic representation of the cases

3.2.1 HI’s case

This case was originally worked out in the doctoral thesis by Royakkers [22].
The worked out case is used as a guideluine. For this case, some articles
from the Reglement Verkeersregels en Verkeerstekens 1990 (RVV 1990) are
needed. This is the Dutch regulation for traffic rules and traffic signs. The
articles relevant to HI’s case and thus needed are article 22 RVV 1990and
article 63 RVV 1990:

• Art. 22 RVV 1990 1:
Voor zover niet ingevolge andere artikelen een lagere maximumsnel-
heid geldt, gelden voor de volgende voertuigen de volgende bijzondere
maximumsnelheden:

a. voor vrachtauto’s, autobussen en motorvoertuigen met aanhang-
wagen 80 km per uur;

b. voor tractoren en zelfrijdende werktuigen 25 km per uur.

Which translates to:
As far as in other articles a lower speed limit is not in order, the
following maximum speed limits apply to vehicles:

a. for lorries, busses and motor vehicles with a trailer 80 km per
hour;

b. for tractors and self-driving work vehicles 25 km per hour.

• Art. 63 RVV 19902:
Verkeerstekens gaan boven verkeersregels, voor zover deze regels on-
verenigbaar zijn met deze tekens.
Which translates to:
Traffic signs overrule traffic rules, in as far as these rules are incom-
patible with the signs.

In the following subsection the following abbreviations are used:

• Q1(i) : i is on motorways

• ap: to drive p km/h, for p = 0,1,2,. . . ,200

• bp : ap+1 ∪ ap+2 ∪ · · · ∪ a200

1Artikel 22 Reglement verkeersregels en verkeerstekens 1990.
2Artikel 63 Reglement verkeersregels en verkeerstekens 1990.
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• M : The group of motor vehicle drivers.

• E1: The group of lorry drivers.

• E2: The group of bus drivers.

• E3: The group of motor vehicle with a trailer drivers.

• E4: The group of tractor drivers.

• E5: The group of self-driving work vehicle drivers.

First a formalisation for article 22 3 RVV 1990, which specifies separate
speed limits for vehicles, is needed. Article 22 RVV 1990 is formalised as
follows:

a. ∀i∈E1∪E2∪E3F (i : b80)

Every individual in the group of lorry drivers, bus drivers and motor vehicle
drivers with a trailer is forbidden to drive above 80 km/h.

b. ∀i∈E4∪E5F (i : b25)

Every individual in the group of tractor drivers and self-driving work vehicle
drivers is forbidden to drive above 25 km/h. For HI’s case we need part a. of
article 22 since the driver was a lorry driver. Article 63 4 of the RVV 1990
states that traffic signs override traffic rules, this is formalised as follows:

∀i∈MF (i : b100)

Note that this formalisation is already adjusted to HI’s case, since the sign
on the A28 depicts a maximum speed of 100 km/h. In other cases the formal-
isation would be different. The formalisation states that: every individual in
the group of motor vehicle drivers is forbidden to drive above 100 km/h.
With this formalisation we assume that the traffic sign overrules the traffic
rules, hence b100 . Now let i1 be the lorry driver from HI’s firm. The following
formalisation can be done:

F (i1 : b80) ∧ F (i1 : b100)

Since b80 ≡ a81 ∪ a82 ∪ · · · ∪ a200 and b100 ≡ a101 ∪ a102 ∪ · · · ∪ a200, the
formula is equivalent to:

F (i1 : a81 ∪ a82 ∪ · · · ∪ a200) ∧ F (i1 : a101 ∪ a102 ∪ · · · ∪ a200)

Now using proposition 7 of PDeL, which can be found in appendix A.1:
` F (β1 ∪ β2) ≡ F (β1) ∧ F (β2), we can further derive the formula:

3Artikel 22 Reglement verkeersregels en verkeerstekens 1990.
4Artikel 63 Reglement verkeersregels en verkeerstekens 1990.
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F (i1 : a81) ∧ F (i1 : a82) ∧ · · · ∧ F (i1 : a200) ∧ F (i1 : a101) ∧ F (i1 :
a102) ∧ · · · ∧ F (i1 : a200)

Using proposition 28 of PDeL, which can also be found in appendix A.1:
` F (β) ∧ F (β) ≡ F (β), duplicates can be removed.

F (i1 : a81) ∧ F (i1 : a82 ∧ · · · ∧ F (i1 : a200)

Now using proposition 7 of PDeL again but now the other way around, we
get:

F (i1 : a81 ∪ i1 : a82 ∪ · · · ∪ i1 : a200)

Since b80 ≡ a81 ∪ a82 ∪ · · · ∪ a200, the formula can now be formulated as
follows:

F (i1 : b80)

This indicates that the lorry driver is forbidden to drive at a speed
above 80km/h, it can be concluded that there is no incompatibility of the
traffic sign and the traffic rule. Therefore the ticket was correctly given. The
outcome of this model matches the outcome of the original ruling of the
judge.

3.2.2 Bourhill v Young

This case has, up to my knowledge, never been worked out in a paper, thus
the doctoral thesis by Royakkers [22] is used as a guideline. This case does
not have the clear rules HI’s case has. In HI’s case, the RVV 1990 gives clear
“rules” as to what is allowed and what is not. Here however, the requirements
are often subjective, making it harder to get a straight formula out of the
requirements. Three principles are needed to establish negligence of duty of
care: duty of care, breach of duty of care, and proximity.

Furthermore, the neighbour test or neighbour principle from the Donoghue
v Stevenson (1932) case can be used to help determine duty of care [8, 5].
Donoghue v Stevenson (1932) is a relatively small case, but the case has had
a wide influence in the law. Lord Atkin formulated a general principle (the
neighbour principle) in the case, he said:

“You must take reasonable care to avoid acts or omissions which you can
reasonably foresee would be likely to injure your neighbour. Who, then, in
law, is my neighbour? The answer seems to be persons who are so closely
and directly affected by my act that I ought reasonably to have them in
contemplation as being so affected when I am directing my mind to the

acts or omissions which are called in question” [5]
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As explained in section 2.3, an important principle in the law is Stare
Decisis. The neighbour principle is therefore often used in cases that occurred
after the Donoghue v Stevenson (1932) case, thus we use it for the Bourhill
v Young case which occurred in 1942.

To help decide the case, there are two principles that can be taken from
the neighbour principle. These principles need to be the case for duty of care
to be true:

1. Reasonable foresight: Reasonable foresight means that a person has
a degree of foresight of the consequences that his or her actions have
on others.

2. Proximity: Duty of care is not owned to everybody that you foresee
harm too, only those who are closely and directly affected by an action.

In the Bourhill v Young case the two principles can be depicted as follows:

1. When looking at the case facts it is not reasonably foreseeable that
Young crashing his motorcycle would harm Mrs. Bourhill who was
alighting the tram.

2. Proximity does not necessarily mean physical closeness, but it also
means any form of relation between the parties. Here there is no form
of relation (family, friends, etc) between Mrs. Bourhill and Young.
There is however, 50 feet between them. Thus we can say that it is
acceptable to say that Mrs. Bourhill was not sufficiently proximate to
the accident.

In 1990, the three-state test from Caparo v Dickman came as an exten-
sion to the neighbour principle. Which, since then, is used to determine duty
of care [8]. With this test the court has to ask the following three questions
to determine duty:

1. Was the risk of injury or harm to the claimant reasonably foreseeable?

2. Was there sufficient proximity between the parties?

3. Is it fair, just and reasonable, on public policy grounds, to impose a
duty of care?

If the answer to all these three questions is: yes, duty of care can be estab-
lished. This can be seen as an elaboration of the neighbour principle. Since
the three-state test dates back to 1990 it cannot be used to help determine
duty of care in the Bourhill v Young case which occurred in 1942.

In the following subsection these abbreviations are used:

• rf i: to have reasonable foresight of harm for i.
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• bri : to breach the duty of care you have for i.

• p: to be sufficiently proximate.

• M : The group of motor vehicle drivers.

• B: The group bystanders.

Firstly, the principle of duty of care needs to be formalised. The neigh-
bour principle is used to formalise this:

∀i∈M∀j∈B(O(i : rf j) ∧ iOj(p))

Every motor vehicle driver is obliged to have reasonable foresight of harm
to every bystander and it is obligatory for every bystander towards motor
vehicle driver to be sufficiently proximate to harm. The motor vehicle driver
needs to have reasonable foresight and the bystanders needs to be sufficiently
proximate to the harm. Secondly, the principle of breach of duty of care is
given by:

∀i∈M∀j∈BO(i : brj)

Every motor vehicle driver breaches the duty of care to every bystander.
Lastly, the principle of proximity is given by:

∀i∈M∀j∈BiOj(p)

It is obligatory for every bystander towards motor vehicle driver to be suf-
ficiently proximate to harm.

Let i1 be a motor vehicle driver and j1 be a bystander. The formalisation
for negligence of duty of care is as follows:

(O(i1 : rf j1) ∧ i1Oj1(p)) ∧O(i1 : brj1) ∧ i1Oj1(p)

Using proposition 12 of PDeL which can be found in appendix A.1: ` O(β1∧
β2)→ O(β1) ∧O(β2);, this can also be formalised as:

O(i1 : rf i1) ∧ i1Oj1(p) ∧O(i1 : brj1) ∧ i1Oj1(p)

Using proposition 29 of PDeL, which can also be found in appendix A.1:
` O(β) ∧O(β) ≡ O(β), duplicates can be removed.

O(i1 : rf j1) ∧ i1Oj1(p) ∧O(i1 : brj1)

Now let i2 be Young and let j2 be Mrs. Bourhill. As can be seen from
the neighbour principle, the two principles of duty of care (reasonable fore-
sight and proximity) cannot be established in the Bourhill v Young case.
Since Young did cause an accident, he did breach the duty. Since proximity
could not be established for duty of care, it can also not be established for
negligence of duty of care because the proximity does not differ. The full
formalisation for the Bourhill v Young case:
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(¬O(i2 : rf j2) ∧ ¬i2Oj2(p)) ∧O(i2 : brj2) ∧ ¬i2Oj2(p)

Using proposition 12 of PDeL which can be found in appendix A.1: ` O(β1∧
β2)→ O(β1) ∧O(β2);, this can also be formalised as:

¬O(i2 : rf j2) ∧ ¬i2Oj2(p) ∧O(i2 : brj2) ∧ ¬i2Oj2(p)

Using proposition 29 of PDeL, which can also be found in appendix A.1:
` O(β) ∧O(β) ≡ O(β), duplicates can be removed.

¬O(i2 : rf i2) ∧ ¬i2Oj2(p) ∧O(i2 : brj2)

This indicates that reasonable foresight and proximity cannot be established,
breach of duty can be established. Since the formula of the Bourhill v Young
case does not match the formula of negligence of duty of care, negligence
of duty of care cannot be established. The outcome of the model for the
Bourhill v Young case matches the outcome of the original ruling of the
judge.

3.3 Reduction graph representation of the cases

Below, the reduction graph representations of the two cases can be found.

3.3.1 HI’s case

This case has, up to my knowledge, never been worked out in a paper, thus
the paper by Branting [7], and book by Barr [6] are used as guidelines. Again,
before creating the reduction graph, we first need the input. The formula for
the ticket for the driver was already shown before, now shown for reference:

ticket for the driver ↔ ¬traffic rules override signs ∧ the driver is a lorry
driver ∧ lorries cannot drive faster than 80 km/h ∧ the driver drove 81

km/h or more

The following facts are known:

• The driver from HI’s firm is a lorry driver.

• The driver drove 96 km/h on the A28.

• The traffic sign on the A28 depicts 100 km/h.

The following rules come from legal authorities, already shown in section
3.2.1, they are now shown for reference:

• Article 22 RVV 19905:
Voor zover niet ingevolge andere artikelen een lagere maximumsnel-
heid geldt, gelden voor de volgende voertuigen de volgende bijzondere
maximumsnelheden:

5Artikel 22 Reglement verkeersregels en verkeerstekens 1990.
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a. voor vrachtauto’s, autobussen en motorvoertuigen met aanhang-
wagen 80 km per uur;

b. voor tractoren en zelfrijdende werktuigen 25 km per uur.

Which translates to:
As far as in other articles a lower speed limit is not in order, the
following maximum speed limits apply to vehicles:

a. for lorry’s, busses and motor vehicles with a trailer 80 km per
hour;

b. for tractors and self-driving work vehicles 25 km per hour.

• Article 63 RVV 19906:
Verkeerstekens gaan boven verkeersregels, voor zover deze regels on-
verenigbaar zijn met deze tekens.
Which translates to:
Traffic signs overrule traffic rules, in as far as these rules are incom-
patible with the signs.

In this case there is an evaluation criterion needed, this because in article
63 RVV 19907 it states: in as far as these rules are incompatible with the
signs. This can be read with several interpretations:

• When there is a sign, the sign overrules the traffic rules [22].

• When the sign states something it is only the case when it is in conflict
with the rule.

The criterion used in this thesis: When there is a possibility to adhere to
both the traffic rules and sign this needs to be done.

Two reduction graphs have to be made, one where ticket for the driver
is the initial problem, the other where ¬ticket for the driver is the initial
problem. The full scale images of the reduction graphs can be found in
appendix section: A.2.

Firstly the reduction graph where the ticket for the driver is the ini-
tial problem. This reduction graph can be seen in figure 3.1. “Ticket for
the driver” is the initial problem, it is also an AND-node. It has four sub-
problems that each need to be solved. As can be seen in the reduction graph
all four nodes end as a terminal node. The graph is therefore solvable.

Secondly the reduction graph where the ¬ticket for the driver is the
initial problem. This reduction graph can be seen in figure 3.2. Like in the
Bourhill v Young case, the formula needs to be changed since there is a
different interpretation:

6Artikel 63 Reglement verkeersregels en verkeerstekens 1990.
7Artikel 63 Reglement verkeersregels en verkeerstekens 1990.
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¬ticket for the driver ↔ when there is a sign, it overrules the traffic rules ∧
the driver is a lorry driver ∧ lorries cannot drive faster than 80 km/h ∧ the

driver drove 81 km/h or more

Here ¬ticket for the driver is also an AND-node. It still has four sub-
problems to be solved. Since the law in article 63 RVV 1990 is ambiguous,
here also the four sub-problems end in terminal nodes. Thus this reduction
graph is also solvable.

Above we gave an evaluation criterion: when there is a possibility to
adhere to both the traffic rules and sign this needs to be done. Now the two
reduction graphs can be evaluated using this evaluation criterion. For HI’s
case, the first reduction graph (figure 3.1) will be ranked higher because
the sign states that the speed limit is 100 km/h but not that every vehicle
needs to drive 100 km/h. Therefore the traffic rule and traffic sign are not
necessarily incompatible. The outcome of the model matches the outcome
of the original case.

Figure 3.1: Reduction-graph representation of HI’s case with ticket for the
driver as the initial node.
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Figure 3.2: Reduction-graph representation of HI’s case with ¬ ticket for the
driver as the initial node.

3.3.2 Bourhill v Young

This case was originally worked out in the paper by Branting [7]. The worked
out case is used as a guideline. Before creating the reduction graph, we first
need the input. We want to know whether Young has neglected his duty of
care or not. The formula for negligence of duty of care was already shown
before, now shown again for reference:

negligence of duty of care ↔ duty ∧ breach of duty ∧ proximate cause

The following facts are known:

• Young caused an accident when a tram was stopped near by.

• The tram was stopped about 50 feet before the accident.

• Mrs. Bourhill was alighting from the stopped tram.

• Mrs. Bourhill suffered a nervous shock from seeing blood on the road.

The neighbour test or neighbour principle from the Donoghue v Stevenson
(1932) case, discussed in section 3.2.2 is again used to help determine duty
of care [8, 5]. For reference the two principles and their application to the
Bourhill v Young case are shown again. These principles need to be the case
for duty of care to be true:
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1. Reasonable foresight: Reasonable foresight means that a person has
a degree of foresight of the consequences that his or her actions have
on others.

2. Proximity: Duty of care is not owned to everybody that you foresee
harm too, only those who are closely and directly affected by an action.

In the Bourhill v Young case the two principles can be depicted as follows:

1. When looking at the case facts it is not reasonably foreseeable that
Young crashing his motorcycle would harm Mrs. Bourhill who was
alighting the tram.

2. Proximity does not necessarily mean physical closeness, but it also
means any form of relation between the parties. Here there is no form
of relation (family, friends, etc) between Mrs. Bourhill and Young.
There is however, 50 feet between them. Thus we can say that it is
acceptable to say that Mrs. Bourhill was not sufficiently proximate to
the accident.

The neighbour principle can be put into the following formula:

duty of care ↔ reasonable foresight ∧ proximity

In this case there are no arguments stronger or weaker, thus an evaluation
criterion is not needed.

The initial problem that has to be solved is: did Young neglect his duty
of care. Therefore two reduction graphs are made: one where the initial
problem is neglect of duty of care, and the other where the initial problem
is ¬neglect of duty of care. The full scale images of the reduction graphs can
be found in appendix section: A.2.

First, the reduction graph when the initial problem is neglect of duty of
care. This reduction graph can be seen in figure 3.3. Firstly, the formula of
neglect of duty of care is followed, which creates three sub-problems: duty,
breach of duty and proximate cause. Neglect of duty of care is an AND-
node and all sub-problems need to be solved. Duty is also an AND-node,
its sub-problems are Reasonable foresight and Proximity. As can be seen
above, these are non-terminal nodes with no descendants and thus cannot
be solved. We thus cannot solve the sub-problem and ultimately we cannot
solve the initial problem. The same goes for Proximate cause, which also
is a non-terminal node that has no descendants. The only solvable node is
Breach of duty, because Young did cause a loud accident. Since the initial
node is an AND-node, this reduction graph is not solvable.

Secondly the reduction graph when the initial problem is ¬Neglect of
duty of care. Since now the negation of the previous used neglect of duty of
care is used, the formula is a bit different:
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¬neglect of duty of care ↔ ¬duty ∨¬breach of duty ∨¬proximate cause

This is because for ç to be true, duty and breach of duty and proximate
cause need to be true. Thus if the negation of neglect of duty of care is true,
duty or breach of duty or proximate cause needs not to be true. This makes
the initial node an OR-node. The same goes for the duty sub-problem. This
formula can be changed to:

¬duty ↔ ¬reasonable foresight ∨¬proximity

For the sake of completeness, the full reduction graph is shown. Since the
initial node is an OR-node only one of the arcs needs to be solved for the
graph to be solvable. The reduction graph is shown in figure 3.4. It can be
seen that in this version of the reduction graph two of the three subproblems
of ¬neglect of duty of care are terminal nodes and thus are solved. Because
the initial node is an OR-node, this makes it a solvable graph.

This outcome of this model matches the outcome of the original case.

Figure 3.3: Reduction-graph representation of Bourhill v Young with Neglect
of duty of care as the initial node.
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Figure 3.4: Reduction-graph representation of Bourhill v Young with ¬ Ne-
glect of duty of care as the initial node.
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Chapter 4

Discussion of the Logical
Models

To compare the two logical models, multiple criteria are needed. The models
will be compared on the following criteria :

• Correctness of the judgement: This means asking the question, is
the outcome of the models the same as the judge originally ruled?

• Complexity of the model: How complex it is to get to the final
model.

• Readability of the model: How easy it is to understand the model
with limited knowledge of the logic behind the model.

• Usability in law: Is the model usable in more cases than the cases
used in this thesis?

Correctness of the judgement: With all the models presented above
the outcomes of the model were equal to the judgement of the judge. This,
however, raises the question if the judgement of the case is the final judge-
ment. In America around 20 percent of the cases are appealed [10]. An ap-
pealed case is a case that will be reviewed by a higher court in the hope that
the decision made by a lower court might be reversed or changed [2]. In this
thesis, for both the Bourhill v Young case and HI’s case, the judgement of
the original case is used to compare the outcome of the model to the judge-
ment. However, in HI’s case there was an appeal to the court of cassation.
The High Court (Hoge Raad) issued the following statement: “Verweer is
terecht en op goede gronden verworpen”1 (The defence is rejected justly and
on good grounds), thus not reversing or changing the original judgement.
To my knowledge, there was no appeal in the Bourhill v Young case. Thus it

1DD 94.137 [1]
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is assumed that the judgements used in this thesis are the final judgements,
and thus the outcome of the models matches the outcome of the cases.

Complexity of the model: Both deontic logic and the reduction graph
representation have a basis in propositional logic, they both use this in
a very different manner. Deontic logic adds an axiom to the logic K to
get to the logic D. From the logic D, SDL and PDeL are added, these
additions are quite complex and need a relatively large time investment if
one is not familiar with these logics. For the reduction graph representation
on the other hand, the only addition made is the AND/OR nodes that
need to be understood. Once the rules of the AND/OR graph are known,
it is relatively easy to construct an reduction graph from the formula of the
claim and the case facts. This deontic model, compared to the reduction
graph representation, can thus seen as a relatively complex model.

Readability of the model: Deontic logic and the reduction graph rep-
resentation have a very different way of showing the case facts and the
outcome of the model. The deontic model shows the outcome of the model
in the form of a logical formula. The reduction graph representation shows
the outcome of the model in several reduction graphs, ranked on criteria
if needed. The reduction graph representation provides a rather visual out-
come. When having limited knowledge of logic, often a visual representation
can make it easier to comprehend the logic used. When a model is made for
a legal case, it most of the time has to be interpreted by a jurist. Since the
reduction graph representation has both the visual aspect and less prereq-
uisite logical knowledge than the deontic model, this would be easier to use
for someone with a limited logical knowledge.

Usability in law: Both models are not a self-contained manner of working
with legal cases, they still need to be presented to a jurist for a review. This
mostly has to do with the complexity of law. As said before, the law is not
only about strict rules, but also about “common sense”. The deontic logic
approach is, however, more suited for cases involving rules and laws that do
not need a subjective judgement. As can be seen in HI’s case, the case is
mostly about following the rules of the RVV 1990, which works very well in
deontic logic. In the Bourhill v Young case a more subjective approach is
needed since there are no strict boundaries on what for example reasonable
foresight and proximity are. In deontic logic, the Bourhill v Young case was
therefore not as straightforward to model as HI’s case. The reduction graph
representation has more room for subjective reasoning. Therefore using a
reduction graph representation it is relatively easier to model an case where
a more subjective reasoning is needed. Both deontic logic and the reduction
graph representation can be used in a wide variety of cases. When looking at
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the cases in this thesis, deontic logic is more suited for cases with relatively
strict rules and the reduction graph representation is suited for both cases
using relatively strict rules and cases needing a subjective approach.
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Chapter 5

Conclusions

This thesis aimed to answer the question whether modal logic is an advan-
tage over not using modal logic in logical models for solving legal problems.
To get a better insight in this problem, two separate legal cases were used:
the Bourhill v Young case and HI’s case. To answer the research question,
the logics used in this thesis needed to be introduced. Both deontic logic and
the reduction graph representation were elaborated on to the extent needed
for the two cases. After introducing deontic logic and reduction graph rep-
resentation, the models were created using both these logics.

After comparing the models, it became clear that both deontic logic and
the reduction graph representation were suited for solving the two cases used
in this thesis. Both models had outcomes that matched the judgement of the
original cases. Taking also the complexity of the model and the usability in
the law into account, the reduction graph representation worked, relatively
and based on the two cases used, more intuitively and therefore better.
Since this thesis only covers a small portion of the logic used in law, there
is no general answer to the research question. What can be said is that,
when representing legal cases similar to the Bourhill v Young case and HI’s
case, using deontic logic is not an advantage over using the reduction graph
representation due to the complexity and readability of the deotic logic
models.

5.1 Future work

This thesis only shows a tip of the iceberg on both logic in law but also
deontic logic and reduction graphs in law. There are many possibilities to
further expand this research.

1. Firstly, within this thesis the models are purely made by hand. For
both the deontic logic and the reduction graph representation, it would
be an advantage to implement them in a knowledge based system.
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Branting already showed in his paper that it is possible to implement
a reduction graph in GREBE [7]. Royakkers also suggested that it
would be possible to implement the theories of both SDL and PDeL
in a knowledge based system [22].

• Royakkers already discussed this in the adaptation of his doctoral
thesis: Beth-tableau’s can be used to check if a certain formula is
valid [23]. This could then also be incorporated in the knowledge
based systems.

• Branting used GREBE in his paper to show that the reduction
graph representation could be implemented [7]. Since the visual
representation proved helpful, the GREBE system could also be
expanded by implementing such a visual representation that is
used within this thesis.

2. Secondly, within this thesis only two legal cases are made in both
models. This does not give an accurate representation of how both
models can be used in a wide variety of cases. Therefore, it would
be good if the models are worked out for more cases with a different
origin.

• Within this thesis, the outcome of the case was already known
when creating the models. This causes a slight bias when con-
structing the model. This can be prevented by constructing the
models without knowing the outcome of the case beforehand.

3. Lastly, as said before, this thesis only covered a small portion of the
possible logical modals that could be used within the law. Therefore
more logical modals already used within the law can be explored fur-
ther. Looking at expanding logical models currently not used in the
law to suit the law is also worth looking at. It might provide new
insights to how logic is used in the law.
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Appendix A

Appendix

A.1 Propositions of PDeL

1. ` [β] true

2. ` [β] (Φ1 ∧ Φ2) ≡ [β] Φ1 ∧ [β] Φ2;

3. ` [β] Φ1 ∨ [β] Φ2 → [β] (Φ1 ∨ Φ2);

4. ` [βl] Φ1 ∧ [β2] Φ2 → [β1 ∧ β2] (Φ1 ∧ Φ2);

5. ` [β1] Φ1 ∧ [β2] Φ2→ [β1 ∪ β2] (Φ1 ∨ Φ2);

6. ` [β1 ∪ β2 ∪ (β1 ∧ β2)] Φ ≡ [β1 ∪ β2] Φ;

7. ` F (β1 ∪ β2) ≡ F (β1) ∧ F (β2);

8. ` F (β1) ∨ F (β2)→ F (β1 ∧ β2);

9. ` F (β1;β2) ≡ [β1]F (β2);

10. ` O(β1;β2) ≡ O(β1) ∧ [β1]O(β2);

11. ` O(β1) ∨O(β2)→ O(β1 ∪ β2);

12. ` O(β1 ∧ β2)→ O(β1) ∧O(β2);

13. ` O(β1) ∧O(β2)→ O(β1 ∧ β2);

14. ` P (β1 ∪ β2) ≡ P (β1) ∨ P (β2);

15. ` P (β1 ∧ β2)→ P (β1) ∧ P (β2);

16. ` P (β1;β2) ≡< β1 > P (β2);

17. ` F (β) ≡< β > ¬V ;

18. ` P (β) ≡ ¬O(β);
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19. ` F (β1)→ F (β1 ∧ β2);

20. ` O(β1 ∧ β2)→ O(β1);

21. ` O(β1)→ O(β1 ∪ β2);

22. ` O(β1 ∪ β2) ∧ F (β1)→ O(β2);

23. ` F (β1 ∧ β2) ∧O(β1) ≡ F (β2) ∧O(β1);

24. ` F (β1 ∧ (β1;β2)) ≡ F (β1;β2);

25. ` F (β1 ∪ (β1 ∧ β2)) ≡ F (β1) ∧ F (β2);

26. ` O(β1 ∧ β) ≡ O(β1);

27. ` O(β1 ∪ β1) ≡ [fail]V ≡ true

28. ` F (β) ∧ F (β) ≡ F (β)

29. ` O(β) ∧O(β) ≡ O(β)

30. ` P (β) ∧ P (β) ≡ P (β)

A.2 Reduction graph representations full scale

Below the full scale figures of the Bourhill v Young case and HI’s case can
be found.

1. Figure A.1 is the reduction graph of Bourhill v Young with neglect of
duty of care as initial node;

2. Figure A.2 is the reduction graph of Bourhill v Young with ¬neglect
of duty of care as initial node;

3. Figure A.3 is the reduction graph of HI’s case with ticket for the driver
as initial node;

4. Figure A.4 is the reduction graph of HI’s case with ¬ticket for the
driver as initial node.
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