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Abstract

Many animals and humans live in diverse populations in whichspecialized individuals help each other.
From an evolutionary point of view this is puzzling: why should individuals help others if this lowers
the chance that they themselves are fittest and survive? Evolutionary biologists assume that coopera-
tion mechanisms are at work. This study investigates the hypothesis that cooperation mechanisms can
cause the evolution of a cooperative and diverse population. This is done by means of simulations with
an evolutionary algorithm. The results indicate that cooperation mechanisms can indeed, under certain
circumstances, serve as an explanation for the evolution ofcooperating and specialized individuals. The
implications of these results for three different domains -Biology, Society and Robotics - are discussed.
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1 Introduction

Everywhere around us we can observe that people or animals help each other and solve tasks in cooperation.
There is great diversity in a population with individuals specialised on different skills. Often the individuals
involved in a cooperative act can combine their strengths and can accomplish tasks more efficiently in this
way.

From an evolutionary perspective however there is competition between all individuals. Only the fittest
survive. Someone who helps others would lower the chance that he himself is fittest. So why would an
organism help somebody? Why should he specialize on one skill if that means he is dependent on the help
of others? This should theoretically lead to a homogenous and uncooperative society. The question which
arises then is: How could a diverse population have evolved in which individuals help each other?

Evolutionary biologists like for example Sachs et Al. [16] describe that cooperation can evolve because
there are certain cooperation mechanisms at work. Such mechanisms make sure that an individual who has
costs by helping another individual gets something back forit, in the long run. A mechanism could be for
example: ‘If I help you now, you help me later’. Another mechanism is that the helper directly gets part of
the task reward. Can these mechanisms indeed explain the evolution of cooperation? Moreover, does the
presence of cooperation mechanisms also lead to the evolution of a heterogeneous population?

Nowak [14] states the idea behind helping is that it is less costly for the donor than it is beneficial for the
recipient. This is especially true when a specialist helps in solving part of a task where the individual itself
is not skilled. Moreover the biologists Anderson and Franks[2] explain that solving tasks in teamwork ‘may
well favor individual differences and constancy in tackling those subtasks for which the individuals are par-
ticularly well-suited.’ (p. 24). This indicates that the possibility to cooperate may cause that specialization
evolves.

Certainly the task type also has some influence on the diversity of a group. The utility of diversity
depends on the task [4, p. 1]. If all tasks are simple they can be solved by individuals. If tasks get more
complex it can be more efficient if different individuals specialize on certain skills and then work together
to solve the task.

The research question I address in this paper is: To what extent can cooperation mechanisms (in combi-
nation with certain task types) explain the evolution of cooperative and diverse populations? To investigate
this I used an evolutionary algorithm. In this way I simulated evolutionary processes and analysed the de-
velopment of the population. The results of this study give more insights in the underlying mechanisms of
cooperation and specialization and furthermore can guide the design of cooperative robots.

In the remainder of this section I will explain some theoretical background (Section 1.1), the cooperation
mechanism I am going to use (Section 1.2) and what exactly an evolutionary algorithm does (Section 1.3).
The structure of the rest of the article is as follows: In Section 2 I will define the experimental method in
terms of the environment, the settings of the evolutionary algorithm and the fitness evaluation. Furthermore
I will outline the experimental conditions for the various simulations. In Section 3 the results of the simu-
lations will be presented and in Section 4 I will summarize the most important findings and will give some
interpretations. In Section 5 further implications of the acquired results will be discussed. Ideas for further
research will be given in Section 6. The paper will end with the conclusions in Section 7.

1.1 Theoretical background

Bowles and Gintis [6] analysed the evolution of a populationwhen a cooperation mechanism called ‘strong
reciprocity’ (also referred to as ‘altruistic punishment’) is at work. The result of their study is that indeed
high levels of cooperation could be sustained in the population when this mechanism is at work, which
means that all individuals worked to contribute to the global goods.

In my research I do not only analyse if cooperation mechanisms can lead to a cooperative population,
but I go one step further by also investigating if cooperation mechanisms can explain a diverse population.
This is a connection not made before. As method I used an evolutionary algorithm instead of agent based
simulations. I started with a random initial population andinvestigated if discriminable groups of certain
specialization evolved. My cooperation mechanism was two-way byproduct benefits, which I will explain
next.
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1.2 Cooperation mechanism

Sachs et Al. [16] give a framework for cooperation mechanisms. One of the cooperation mechanisms is
called ‘two way byproduct benefits’, which includes synergism: ‘actions or coordinated behaviours that are
automatically more profitable when performed in groups’ [16, p. 145]. In this setting everyone benefits
from working together. The idea is that each individual can solve the part of the task where he or she is
skilled in. The helping individual gets part of the reward. The advantage for the other individual is that
she does not have to do subtasks that she is not good at and thuswould be very costly. Indirectly both
individuals benefit each other (see Figure 1, right).

In my experiments I will compare these settings with cooperation mechanisms with the setting where
no cooperation mechanisms are at work. In that case the first individual gets the reward of the whole task.
The helping individual does not get any reward, which means that he cannot improve his fitness. He will
end up with costs (see Figure 1, left).

Figure 1: Left: No cooperation mechanism, right: Cooperation mechanism: two-way byproduct benefits

1.3 Evolutionary Algorithms

An evolutionary algorithm is a computational program inspired by natural evolution [7]. The basic idea
behind it is that the program should find a solution that best fits some criteria. It does this by simulating
evolutionary processes. The basis is the evolutionary cycle, consisting of the following steps: initialization,
parent selection, recombination, mutation, survivor selection and finally termination (see Figure 2).

Figure 2: General scheme of an Evolutionary Algorithm (after Eiben and Smith [7])

The computer program starts with some random solutions, called individuals, which form the initial
population. How ‘good’ an individual is can be determined according to the so called fitness function. This
is a function which assigns a value to an individual, which indicates how good he fits the requirements.
In each generation only the best individuals will create offspring. The genes from two parents can be
recombined to create new individuals. There also can be mutation of certain genes, which means that some
randomness can be added to the genes of new individuals. In the long run only the best genes will survive.
In this way a population can be evolved which suites the givencriteria (fitness function) best.

Several articles report the success of evolutionary algorithms for evolving cooperative behaviour. Ex-
periments by Suzuki and Arita [17] have shown that cooperative behaviour can evolve and that it is a
necessary requirement for teams to perform well, as they illustrate for a simple form of robot soccer. Fur-
thermore Quinn et al. [15] report that artificial evolution was able to evolve a team in which robots maintain
functionally distinct roles in order to achieve a task.
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One of the fundamental factors for evolving a cooperative team is the credit assignment or ‘how to
fairly split the fitness of a team to all of its participants’ [9, p. 23]. Should a helping individual also get
part of the task reward? And if yes, how much? As a study about reinforcement learning indicates: When
the entire team is jointly rewarded, teams tend towards heterogeneous behaviour [3, p. 7]. In this way
the group achievement is considered instead of single individual performance and the team members are
encouraged to adapt to each other. Jointly rewarding the individual and her helper could thus mean that a
diverse population evolves: the individuals might specialize on different skills and trust on the help of other
specialized individuals to solve the tasks. The particularfitness evaluation used (which incorporates the
cooperation mechanism) is thus the most important part of myevolutionary algorithm.

2 Method

In this paragraph I will describe the fundamental aspects ofthe experimental method: The environment, the
evolutionary algorithm, the fitness evaluation and the experimental conditions.

First I will explain the environment which is defined in termsof the task, the population and the en-
counter (Section 2.1). Next the exact evolutionary algorithm settings will be given (Section 2.2). The
fitness evaluation will be explained in terms of rewards and costs associated with the tasks and skill levels
(Section 2.3). Finally I will explain the experimental setup in terms of the different conditions (Section 2.4).

2.1 The environment

2.1.1 The task

Inspired by the article of Bowles and Gintis [6] I have chosento keep the task abstract. That means that
there is not one specific task, but a task is only defined by the skills which it requires to do it. For example
a task could require skill A and B, but not skill C, represented as (1 1 0). A task can be accomplished
alone or, probably more efficiently, by working together. The different skills can be fulfilled by different
individuals, thus the definition of a team task by Anderson and Nigel [1] applies: ‘A team task requires
different subtasks to be performed concurrently for successful completion. There is a division of labor
within a team.’ (p. 534)

By keeping the task abstract, the experiment and the resultsare not specific to one situation but apply to
all tasks that can be formulated in such a way. As illustration I will give an example: Imagine the task is to
drive by car and read the map to find your way to an unknown destination. The skills are map reading and
car driving. You might be good in map reading, but have no drivers’ license. You can ask someone to help
you to fulfil the task by driving. Maybe you have a drivers’ license and also have the skill of map reading.
But nevertheless it will probably be better and more efficient to fulfil the task with a partner, so that one
person can focus on driving and the other on map reading.
I use the following task types in my simulations:

• There are be simple tasks that can be fulfilled by individualsalone:

– tasks where one skill is required (‘Simple tasks’): (A), (B), (C)

• Other tasks are more difficult and might be solved more efficiently when working together:

– tasks where different skills are required (‘Different tasks’): (A B), (B C), (C A)

– tasks where the same skill is required more than once (‘Same tasks’): (A A), (B B), (C C)

2.1.2 The population

As the tasks require different skills, the individuals in the population are defined by the degree to which they
posses these skills. There are 3 skills: A, B and C. Each skillgets associated with a number between 0.1
and 1, where 0.1 means being bad in the skill and 1 means being perfect. It is assumed that no individual
can totally lack a skill (skill level = 0). Being skilled means that doing this aspect of the task has a low cost.
To prohibit that all individuals just evolve towards ‘perfect in everything’ a maximum of 1 is imposed on
the sum of the skills. In nature there are also often such constraining trade-offs, for example an individual
specialized on prey A loses the ability to efficiently capture prey B [5, p. 14]. A maximum of 1 means
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that an improvement of one skill always is at the costs of other skills. In the experiments I assume a total
skill potential which is identical for all individuals. It could be argued that some people have a higher skill
potential than others. But as this research is about diversity it is more important how the skills are present
in relation in each individual than the total skill amount ofindividuals. So for simplicity reasons the total
skill potential is fixed at 1.

2.1.3 Encounters

For assessing the fitness of the individuals in a population there are encounters, which are described next.
There are tasks that need to be fulfilled. An individual is chosen and randomly assigned a task. The
individual may choose to fulfil the task alone or she may ask for help. When she asks for help N individuals
are randomly selected from which she can choose one as a partner. If none of the individuals is suited she
can choose to fulfil the task alone. When she chooses a partnerthey fulfil the task in team work. In this way
the teams are spontaneously formed as tasks demand it. This is in line with what Anderson and Franks say
[2, p. 26].

After each individual in the population solved M tasks aloneor with help the encounter is finished and
the fitness is determined. The exact manner of fitness assessment depends on the cooperation mechanism,
but generally a task has an associated reward and the individuals will have costs in performing the tasks,
depending on the degree to which they posses the skills. The fitness will be the reward minus the costs
summed over the M tasks. Furthermore it is possible to gain extra fitness. This can happen when an indi-
vidual acts as helper. More details about the fitness assignment follow in Section 2.3.

Some decisions had to be made about the exact course of the encounters. These details follow in the
next paragraphs.

When is cooperation possible? When a task has two subtasks it can be divided between two individuals
and solved in cooperation. When the task only has one subtaskit cannot be divided, so cooperation is not
possible.

How is the task divided? If a task will be solved in teamwork the question arises how the task should be
divided. I will illustrate this with an example:

Assume the task requires skills B and C. The individual herself has the skill pattern (0.1, 0.4, 0.5) and
the potential helper has the skill pattern (0.1, 0.1, 0.8). There are different divisions possible: the first
individual could solve task C in which she is most skilled, but this would mean that the helper must do skill
B in which he is very bad. Thus this would not be a very effective choice.

In my experimental design I chose to divide the task as effective as possible, i.e. the task is divided such
that the overall costs are minimal. In the example the most effective division is that the first individual does
B and the helper does C. It should be noted that this could meanthat an individual might have to solve a
subtask for which his skill level is not highest.

How many individuals are chosen as potential helpers (N)? In most real world environments you will
have a limited number of people that are around to help you. Inlight of this, choosing from the whole
population as potential helpers would not be realistic. Moreover if the individuals are free to choose anyone
to help, this could lead to cases where always the same individual is chosen as helper, for example if the
skill A is rare. As a consequence the individual skilled in A would have the chance to gain much extra
fitness as doing skill A is easy and cheap for him. A high fitnessmeans that he will have a lot of offspring.
This could cause the whole population to flip, which means that there would be too many individuals with
skill A and another skill might lack which would cause further flips. No stable and analysable state could
be reached to answer my research question.

Directly assigning one individual as potential helper doesalso not seem a good choice, because in that
case it is quite likely that a proposed helper cannot help you. Most ideally there must be some possibility
to choose a helper who is skilled in things you are not. It seemed reasonable to me to select 3 individuals
randomly as potential helpers. In the real world these mightbe the persons around you. But there is no
reason not to choose 4 or 6 individuals. This is a choice I madeand I will keep this variable fixed at 3 for
reasons of simplicity. Small variations in the number of chosen individuals showed to have no influence.
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Which individual will she choose for helping her? The individual will choose the helper with whom
she will have the biggest fitness gain. She takes in mind that ahelper will not help if his fitness gain is
negative. So the individual will check the following beforeshe makes her decision:
- What is my fitness gain if I solve the task alone?
- If I work together, given the best task division what is my fitness gain and what is the fitness gain of my
helper?
- If the fitness gain of my helper is negative then he will not help, so there is no need to ask him.
- From the remaining helpers she will choose the one with whomher own fitness gain is biggest; she might
as well decide to work alone if that yields the best fitness gain for her.

When does a chosen individual help? An individual is only asked when his fitness gain will be positive
(helper threshold = 0), so a chosen individual always helps.

How many tasks must an individual solve (M)? If only one task would be used for fitness assessment,
the fitness would be very dependent on the randomly assigned task. An individual could have luck and be
perfectly suited for the assigned task. This would lead to high fitness, although the individual might be
bad in solving other tasks. To prevent this, each individualhas to solve 10 tasks. In this way the general
potential of each individual is measured. Using more tasks would make the assessment even better, but also
computationally more intensive.

Must a task be accomplished? As most tasks in real life are obligatory, it seems most realistic that the
individuals must accomlplish their assigned task. Moreover the possibility to not accomplish a task at all
would unnecessarily complicate the experimental setting.For these reasons all tasks must be solved.

2.2 The Evolutionary Algorithm

In the following I describe the settings I chose for each of the stages in the evolutionary cycle (see Figure 2).
Table 1 provides an overview. All these settings are quite standard evolutionary settings [7]. I used ECJ 18,
a Java-based evolutionary computation research system, toimplement the evolutionary algorithm [12].

• The Representation: The individuals are represented as real-valued vectors. There are three genes
with values between 0.1 and 1 which are normalized such that their sum equals 1. These indicate the
skill levels for the three subtasks.

• Initialization: A population of 100 individuals is used. All individuals are initialized randomly (a
uniform distribution between 0.1 and 1 is used). A normalization procedure ensures that the sum of
the three numbers is equal to 1. Normalization might in some cases lead to values a bit smaller than
0.1, but this has no important consequences for the algorithm.

• Parent selection: The parent selection is tournament basedwith a tournament size of 3. That means
that 3 individuals are randomly selected and the individualwith the highest fitness value will be cho-
sen for reproduction. With this method 100 parents are selected, who in total produce 100 individuals
offspring.

• Recombination: As recombination method one-point crossover can be used, but as the representations
are quite short, I chose not to use recombination, but only mutation.

• Mutation: With a chance of 1/3 (= 1/genome length) mutation is applied to a gene. As mutation
operator non-uniform mutation is used. This means that an amount drawn randomly from a Gaussian
distribution (N(µ, σ) with µ = 0, σ = 0.05) is added to a gene. It is ensured that no gene can be
lower than 0.1 and higher than 1. A normalization procedure will ensure that the sum of the three
numbers stays equal to 1.

• Survivor selection: There are different methods for survivor selection. For example one could choose
to let only the best individuals (parents or children) survive. In these experiments the survivor selec-
tion is generational, which means that all the generated 100children survive.
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• Termination: The individuals in the population will adapt more and more to the requirements defined
in the fitness function. In these experiments the evolutionary algorithm terminates after 200 gener-
ations. In pilot studies I observed that there is no great fitness improvement after the first 10 to 20
generations, so by running 200 generations all important (long term) effects could be observed.

Population size 100
Length of genome 3
Minimum value of genes 0.1
Maximum value of genes 1
Parent selection method Tournament selection with size 3
Recombination -
Mutation probability 1/3
Mutation type Gaussian,µ = 0, σ = 0.05
Termination After 200 generations

Table 1: Evolutionary settings

2.3 The Fitness Evaluation

In contrast to the quite standard evolutionary algorithm settings explained above, the fitness evaluation is
specifically written for this experimental setting. As already mentioned the fitness of the individuals is
determined in an encounter, where each individual is randomly assigned 10 tasks, which it has to solve. Per
task some fitness can be gained. Moreover an individual mightgain extra fitness if he helps.

If a task is solved alone the contribution to the total fitnessof the individual will be the reward of the
task minus the costs:

Fitnesscontributionind = Reward(task) − Cost(task, skills) (1)

When two individuals work together the task is split up into two subtasks. The fitness contribution for each
individual depends on the proportion reward that the helpergets (pr). These formulas are comparable to
those used in [11].

Fitnesscontributionind = ((1 − pr) × Reward(task)) − Cost(subtaskind, skillsind) (2)

Fitnesscontributionhelper = (pr × Reward(task)) − Cost(subtaskhelper , skillshelper) (3)

I had to make a choice how much of the reward the helper exactlygets, because this was not stated in the
model. I chose to use two settings: In the first setting the helper gets 25% of the task reward (pr = 0.25),
which means that help is quite cheap. In the second setting the helper gets 50% (pr = 0.5), which means
that help is expensive.

Reward The more skills a task requires the bigger is the reward. Thiscan be expressed by the function:

Reward(task) = 10 × Sum(subtasks) (4)

For a difficult tasks which requires skills A and C this yields: Reward((1, 0, 1)) = 10×sum(1, 0, 1) = 20

Cost The more skilled an individual is the less does the subtask cost him. There are different choices to
express this as a function. The function could for example belinear, but I chose to use a concave function.
I made this choice, because this function reflects the properties of a skill best: If you are very bad in a skill
it will cost you extreme much to use it. If you get better in theskill this will soon save you many costs, but
from being good to being perfect in a skill only a few costs will be saved. Note that Bowles and Gintis [6]
also used a concave cost function in their experiments. As function this can be expressed by (see Figure 3):

c(skilllevel) =
1

skilllevel
(5)
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The total cost for a task is determined according to the following function:

Cost(task, skills) =
subtaskA

skilllevelA
+

subtaskB

skilllevelB
+

subtaskC

skilllevelC
(6)

If an individual chooses to solve a task alone there are extracosts. This is because a task can be solved
less efficiently alone. This is implemented by multiplying the cost by a factor. In a pilot study several
values between 1.1 and 1.7 were tested (for more details, seeAppendix Section A). To avoid making the
experiments even more complex I decided to make this parameter fixed. Choosing an intermediate value
seemed the best and also most realistic option, so this parameter has the value 1.3.

To illustrate, for an individual with the skill levels (0.2,0.3, 0.5) who solves the task (1, 0, 1) this yields:
Cost((1, 0, 1), (0.2, 0.3, 0.5))× 1.3 = ( 1

0.2
+ 0

0.3
+ 1

0.5
) × 1.3 = 7 × 1.3 = 9.1

2.4 Conditions

In the experiment two variables are manipulated: The type ofthe tasks and the cooperation mechanism,
which is implemented as what proportion of the reward the helper gets (pr). Each variable has 3 possible
values, which yields a 3 by 3 design. The levels of task type are: Simple (one skill required), Different
(two different skills required) and Same (two times the sameskill required). The levels of cooperation
mechanism are: none (pr=0%), two way by-product benefits (pr=25% and pr=50%).

3 Results

In this section I describe and explain the most important results of the simulations. First of all, the hypothesis
that cooperation mechanisms actually lead to cooperation between the individuals requires verification.
Cooperation mechanisms make cooperation possible, but that does not automatically imply that individuals
actually do cooperate. After that I will turn to the questionhow the population is spread at the end of the
evolutionary process. I will investigate if the populationis homogenous or heterogeneous and specialized.
Furthermore I will analyse the average group fitness to find out in how far solving all tasks in cooperation
in a diverse group is more efficient than solving all tasks alone in a heterogeneous group. Finally I will
analyse how stable the acquired results are across generations.

The section is subdivided into the different measures used:Amount of cooperation (Section 3.1), het-
erogeneity and specialization (Section 3.2), stability ofthe results (Section 3.3) and average fitness (Sec-
tion 3.4).

3.1 Amount of cooperation

To investigate if cooperation mechanisms actually lead to cooperation the number of cases in which indi-
viduals solve tasks together is stored (see Figure 4). Furthermore this measure could be used to investigate
if working together correlates with heterogeneity of the population.

No cooperation mechanism In the case where the helper does not get any reward there is noworking
together at all. This is due to the fact that a potential helper would only make costs in this setting. As
individuals only help if they benefit, no one will help, so no cooperation evolves.
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Figure 4: Amount of cooperation

Two way byproduct benefits When the helper gets 25% of the task reward, helping does takeplace in
certain cases: For the simple tasks there is no working together. This is due to the fact that a simple task
only has one subtask, which means that it is not possible to work together. For the Different tasks the first
population already works together in 80% of the cases. Over the first 20 generations this still improves
until a quite stable amount of above 90% working together is reached. This value is the highest reached
over all simulations. The amount of working together for same tasks is also highest in this setting. In the
first generation 40% of all individuals work together, whichquickly improves to above 60% in the first few
generations. After that the value stays quite stable.

In the next setting the helper gets half of the reward. Again for simple tasks there is no working together
as this is not possible. For different tasks the amount of working together quickly reaches about 50 to 60%.
On same tasks only 20 to 30% of all individuals work together.

3.2 Heterogeneity and Specialization

The main dependent variables in the experiments are the degree of heterogeneity and the amount of spe-
cialization of the group. This can be visualized by plottingthe skill vectors of each individual. The more
they are spread, the more heterogeneous the group is. The specialization can be measured by the amount
of clustering, i.e. the degree to which homogenous subgroups are formed in the population. Interesting is
also the change in heterogeneity and specialization as the group evolves, visualized as a movie (available
on request).

Figure 5 shows the begin population. On the x-axis skill A is plotted and on the y-axis skill B is plotted.
As all three skills sum up to 1 the resulting skill level of skill C can also be read from this plot: points at the
left bottom of the plot represent individuals with low skilllevels on A and B and thus a high skill level on
skill C. All individuals are initialized randomly which yields a very heterogeneous, but not specialized start
population. You can see that no individual can lie outside ofthe triangle, as the sum of all three skills must
be 1.
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In the plots of Figure 6 the population of the last generationis pictured.

No cooperation mechanism In the first situation of Figure 6 the helper did not get any reward. All
individuals converged to the middle. This means that all individuals are equally good in all three skills. The
population is very homogenous.

We already saw in Figure 4 that in this case there was no working together at all, so this might be
the first indication that no cooperation leads to a homogenous population without specialization. As an
individual cannot count on help he probably tries to be equally good in everything to best prepared to solve
any possible task.

Two way byproduct benefits The second plot shows the case where the helper gets 25% of thereward.
Here an interesting pattern of spreading of the population is visible. In the case of simple tasks the indi-
viduals are again quite centred around the middle, but the individuals for different tasks lie in the corners,
which means that they have specialized on solving one subtask. Three groups can be distinguished which
each specialize on a different skill. The individuals for same tasks lie in between and thus show a weaker
form of specialization.

In Figure 4 we saw that for this setting the amount of working together was highest. Especially for
different tasks 90% of them where solved in teamwork. This might mean that when there is a high possi-
bility of solving a task together, the population is more heterogeneous and different groups of individuals
specialize on different skills. For same tasks the percentage of cooperation was a bit lower, which might
explain why these individuals are less specialized.

For the third plot the setting is that the helper gets half of the task reward. A quite different pattern can
be seen in this case: The population for the simple tasks liesin the middle again, but the population for
different and same tasks is pulled towards the axes. A point just above the middle of the x-axis means that
this individual is very bad in skill B, but as good in skill A asin skill C. So the individuals do not specialize
on one skill, but they seem to unlearn one skill. There is no difference between different and same tasks in
this case. This is unexpected, as Figure 4 showed that the amount of cooperation is different for different
and same tasks (ca. 50% and ca. 25% of the tasks are solved together respectively).

3.3 Stability of the results

As evolution is a dynamic process it is interesting to analyse how the process develops over generations.
The question that arises is: Is the analysed pattern of specialization for the last generation stable across
generations? And if this is the case: How long does it take until this pattern evolves? To investigate this I
analysed videos of the development of the heterogeneity andspecialization of the population. It turned out
that the found pattern of specialization evolved after onlyabout 10 to 20 generations. From that point on
the individuals in the population do shift a bit, but the evolved groups persist.
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Figure 6: Skill pattern of the last generation

3.4 Average fitness

To analyse the development of the population the program keeps track of the average fitness of the popula-
tion per generation (see Figure 7).

No cooperation mechanism In the first case the helper does not get anything of the task reward. In the
plot you can see that already after the first few evolutions stable average fitness values are obtained. For
simple tasks this value is 61 and for different and same tasksthis value is twice this value: 122. The reason
why the curve for simple tasks is lower, is that the associated reward for simple tasks is only half the reward
as for different and same tasks (respectively 10 and 20). Forcomputations see Appendix Section B. As we
know from Figure 4 there is no working together in this case. So this condition can be seen as a baseline
for the average group fitness.

Two way byproduct benefits In the second plot the results for the case where the helper gets 25% of the
reward are shown. Also in this case the values settle very quickly. For simple tasks the average group fitness
is again 60, which can be explained by the fact that there is nomore efficient way of solving simple tasks as
there cannot be any task division. Furthermore there is an improvement for as well different as same tasks
in this setting: Same tasks have an average group fitness of about 145 and same tasks have a group fitness
of about 135. These values are the highest compared with all other settings.

These results suggest that specializing on different subtasks is a good way to improve the performance
of a population, given there is possibility to work together. A proportion reward of 25% for the helper seems
an optimal setting.

In the third case the helper gets 50% of the task reward. For simple tasks the average group fitness is
61 again for reasons just explained. For same tasks the average group fitness is 122, as in the first, baseline
plot. For different tasks there is an improvement compared to the baseline plot: The average fitness is 135
now. This is a quite interesting result: In Figure 6 it turnedout that same and different tasks lead to the same
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pattern of specialization. Nevertheless the efficiency only improved for different tasks. This finding might
be connected to the fact that for different tasks there is more working together. It seems that the evolved
pattern of specialization can only lead to more efficiency incombination with a high amount of cooperation
and tasks requiring different skills.

4 Summary and interpretation of the results

In this section the acquired results are summarized and interpreted. The situations with and without coop-
eration mechanisms are addressed (Section 4.2 and Section 4.1). Furthermore the stability of the results is
explained (Section 4.3).

4.1 No cooperation mechanism

In the setting without cooperation mechanism, the individuals did not work together at all. This indicates
that without cooperation mechanism no cooperation could evolve. Moreover the population plot showed
that all individuals converged to being equally good in eachof the skills, independent of the task type. As
expected each individual tried to be prepared for all possible tasks, as they could not count on help from
others. We can conclude from this: no cooperation mechanismimplies no cooperation, which in turn leads
to a homogenous population.

4.2 Two way byproduct benefits

Cooperation When there is a cooperation mechanism at work the individuals actually work together in
many cases to solve the dividable tasks (different and same). This indicates that cooperation mechanism
can indeed cause that the population cooperates. The percentage how often individuals exactly cooperate
depends on the task type and the proportion of the reward thatthe helper gets.

Task type - In general there is more cooperation for different tasks than for same tasks. The difference
in amount of cooperation can be explained as follows:
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• For different tasks different skills are required. In this case two individuals can combine their strength:
each individual solves the subtask he is good in. As he can choose from 3 individuals an optimal task
division can be made. This makes working together much more efficient than working alone as
an individual has a restricted total skill potential, thus cannot be good in everything. For a sample
calculation, see Appendix Section C.

• For same tasks two times the same skill is required. So in thissetting the first individual has to fulfil
the skill at least once. The potential gain by working together lies in choosing an individual which is
better in this skill to support him. When the first individualis bad in the required skill there is much
gain if another individual can help, but when the first individual is herself good, she can easily solve
the task alone. For a sample calculation, see Appendix Section C. The chance that the individual
herself is good in the required skill is relatively large (1/3), which explains why there is in total less
cooperation for same tasks.

We can conclude from this that the simple presence of cooperation mechanisms does not guarantee coop-
eration by itself. The kind of tasks that should actually be solved plays an important role. Especially in
environments were tasks require different skills the evolution of cooperation is likely.

Reward - Moreover there is more cooperation when the helper gets a lowreward than when the helper
gets a high reward. This can be explained as follows:

• A potential helper will be quite easy to find in both settings,because the helper does get part of the
task reward. By fulfilling a subtask in which he is skilled he can easily gain some extra fitness. The
decision if cooperation actually takes place lies in the hands of the first individual. She will only
decide to solve the task together, if this yields her a largerfitness gain than working alone. She has to
choose between doing all costly subtasks alone (plus extra costs for working alone) or giving part of
the reward to a (specialized) helper.

• In the setting where 25% of the task reward goes to the helper,letting someone else do things you are
not skilled in is a cheap option. So all in all as well the first individual as the helper are better of by
working together. This is thus a very cooperation facilitating setting.

• The reason that there is less cooperation in the setting where the helper gets 50% of the task reward
lies in the fact that too much of the reward goes to the helper.In many cases the first individual will
prefer to work alone, as help is too expensive.

We can conclude from this that just the fact that the helper also gets part of the reward is not sufficient for
cooperation to take place in a high level. The exact amount ofthe reward plays an important role.

Heterogeneity and Specialization Furthermore there seems to be a connection between the amount of
cooperation and the degree of heterogeneity and specialization of the population: If there is much coopera-
tion, the group is also more divers and specialized. How exactly the specialization of the population looks
like depends on how much the helper gets. This can be explained as follows:

• Based on the fact the individual can choose from three potential helpers, there is a high probability
that one of the potential helpers is specialized in a required skill. Combined with the fact that the
helper gets part of the task reward there is a high chance thatan individual is actually willing to help.

• Specializing on one skill, with the consequence of unlearning the other two skills is a good strategy in
the setting where help is cheap: If the given task requires your specialization you can solve it easily
and if an extra other skill is required there will probably besomeone that helps you. As you yourself
get most of the task reward this case is ideal for you. This means that more cooperation between
specialists can be expected in environments where helping each other is cheap.

• In the setting where help is expensive being quite good in twoskills with the consequence of unlearn-
ing one skill is the best strategy. It would be too risky to specialize on only one skill as needing a
helper is quite costly. So in environments where help is expensive less specialized and cooperative
individuals will be found.
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Average Fitness Moreover the experiments showed that higher average fitnessvalues can be observed
in more cooperative populations. This means that helping other individuals improves the fitness of the
whole group, which means that from an evolutionary perspective cooperation is favorable, as a cooperative
population will outperform an uncooperative one. (This might be the reason that cooperation mechanisms
evolved.)

Summary To summarize all these results: In general cooperation mechanisms can cause cooperation,
which in turn leads to a heterogeneous, specialized population. The exact degree of cooperation and the
specific pattern of specialization depend on the task type and if help is cheap or expensive.

4.3 Stability of the results

The experiments showed that distinguishable groups with different skill patterns were formed which per-
sisted over generations. Normally genetic drift causes that all individuals evolve towards one optimal solu-
tion. The question is then: which is the optimal solution in this setting? Or is there more than one optimal
solution? The statement by Nettle [13] may be considered here: ‘Behavioural alternatives can be considered
as trade-offs, with a particular trait producing not unalloyed advantage but a mixture of costs and benefits
such that the optimal value for fitness may depend on very specific local circumstances.’ (p. 625). In these
experiments specializing on one skill means that the individual is worse in the other two skills, but whether
this particular specialization is fitness enhancing depends on the other individuals, too, as cooperation can
take place. Imagine that all individuals specialize on skill A. Then no-one can easily help with solving tasks
which require other skills, which is bad for the fitness of thewhole population. This indicates that the indi-
viduals must adjust their specializations to each other. AsEiben and Smith [7, p. 222] write: The fitness of
an organism is entirely determined by the environmental niche in which it lives. The characteristics of this
niche are predominantly determined by other organisms. Depending on the skills of the other individuals a
particular own skill pattern is optimal. Hence there is coadaption between the individuals in the population
and this can explain that an arrangement of three optimal skill patterns could evolve and was maintained.

5 Discussion

The results indicate that cooperation mechanisms can indeed, under certain circumstances, serve as an
explanation for the evolution of cooperating and specialized individuals. The experimental setting was kept
very simple, but importantly it shared essential features with solving tasks in the real world. The encounter
mechanism was constructed to reflect natural, real world cooperation settings. Furthermore all tasks were
kept abstract and were only defined in terms of essential properties. This set up has the advantage that the
results generalize to any environment in which individualsposses different skills and tasks require some
proper subset of these skills. These features hold for many real world situations. The implications of this
research span several different domains, including Biology, Society and Robotics. I will next discuss these
implications for each of the domains separately.

5.1 Biology

The simulated evolution in this study can be seen as capturing selection principles that may also be oper-
ational in biological evolution. The experiment showed that especially for more complex tasks, requiring
the combination of several skills, much specialization andcooperation evolved under the assumption of co-
operation mechanisms. The same phenomenon is also observedin many insect societies, where individuals
cooperate to tackle difficult and complex tasks, such as nestbuilding or overpowering prey. This indicates
the biological plausibility of the effect of cooperation mechanisms.

According to Anderson and Franks [1], insects exploit a new organizational method. They form highly
cooperative and relatively unselfish groups of individualswho are together able to tackle tasks far beyond
the abilities of the individuals alone (p. 534). The simulation research can give us insights in the interrela-
tions in biological evolution: cooperation mechanisms combined with the fact that the insects face complex
tasks could be the basis of the evolution of this new organizational structure.

Furthermore Anderson and Franks [1] state: ‘Specialization, learning, and overall enhanced perfor-
mance efficiency will enhance the ergonomic efficiency of a team.’ (p. 538). This means when work is
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done in a team, different individuals can focus on certain subtasks, which they will perform more and more
efficiently due to learning. This leads to specialization ofthe individuals on the long run. The adapta-
tion of the individuals observed in the simulation might thus not only be equalled with the adaptation by
inheritance of favourable properties but also with the adaptation by learning processes. On the basis of
cooperation mechanisms adaptation does not only take placeover several generations but also within one
generation.

All in all this research was able to yield a better understanding of biological phenomena.

5.2 Developments in the society

Often, the word ‘evolution’ refers to biological evolutionof species under selection pressures for procre-
ation. However, many things can evolve, among them societies of cultural habits and skills. In a more
abstract sense evolutionary processes of selection are also operational in societal evolution. Instead of in-
heritance of properties, favourable properties prevail because people adapt their behaviour: If one sees that
a particular property or skill leads to success one might also invest in this skill. In this sense the best skills or
properties still survive in the population, albeit it not passing on of genetic materials but instead by adapted
or learned skills.

Moreover, as in biological evolution, some coadaption has to take place in society as well: People have
to adapt to their social environment, which consists of other people adapting to that same environment. How
favourable some property is also depends on the properties of others. Hence, from this point of view the
evolutionary processes studied in the simulation experiments can be compared with evolutionary processes
in society.

Societies existing centuries ago were most often very simple and small. People lived together in a village
and there was a small degree of specialization and cooperation. Over time the society circles went bigger
and bigger: People band together in cities, countries and even over the whole world. The tasks encountered
by individuals nowadays are very complex, i.e. requiring many subtasks and different skills. Take for
example the production of a car: You need a designer, a technical expert, workers and many more. Also the
range of possibilities for cooperation is large. For instance, technological developments made it possible
to even cooperate with people at the other side of the world. In this way productions from China can be
combined with parts from Germany and so on. This yields much more possibilities. People over the whole
world can specialize on things they are good in and cooperatewith each other. By this organization on a
higher level much more can be accomplished and progress can be made. One of the fundamental factors
is the possibility to cooperate, as the experiments indicate. Imagine you would not be able to cooperate in
today’s society. On your own you would never be able to reach such a high living standard. Cooperation
is thus a very strong mechanism to combine strengths to reacha higher level of living. As Nowak [14]
states: cooperation makes evolution constructive and is thus the secret behind the open-endedness of the
evolutionary process.

Besides the specialization on certain skills even different classes developed in the society: e.g. workers
and academics. Henrich and Boyd [10] speak of stratified societies with more economic specialization.
They say that stratified human societies are more like an ecosystem in which different, partially isolated
cultural groups evolve mutualism as different species do. Like in the experiments, there is cooperation
between groups with different properties, which need each other. Henrich and Boyd [10, p. 15] further state
that more stratification will lead to higher average production than in egalitarian societies. In light of the
experiments this can be explained, as a stratified society can do or reach more by the cooperation of groups
with different skills.

The development towards more divers and specialized societies is also reflected in the development
of an individual in his lifetime. First education is very general, but over time individuals are encouraged
to specialize and advance their talents, as cooperation is possible and consequently it is not required that
everybody is good in everything. This specialization implies that you must trust on the help of others. As
the cooperation networks get bigger and bigger nowadays people all over the world depend on each other.
As long as the situation stays stable there is no problem: Everyone needs others to survive, so cooperation
is sustained as a consequence of this coadaption.

As a conclusion we can state that the results of the experiments yield a better understanding and more
insights in the development of the society.
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5.3 Robotics

The end state of the population in the experiments can be seenas the optimal population given certain
environmental constraints. The insights gained in the experiments can be used in the design of multi-
agent systems. Some important conclusions are the following. For tasks requiring only one basic skill
(what we called ‘simple tasks’) homogenous teams perform best, but when the tasks have more subtasks
and especially when they require different skills, heterogeneous and cooperating teams perform best. This
relation between task complexity and heterogeneity of groups was also conjectured by Balch [4]. In settings
were robot teams are required to solve complex tasks, cooperation and specialization of the robots can be
facilitated by implementing a cooperation mechanism, and then evolving their control structures under
selection pressures on task performance. The ability toevolvespecialized control structures for robots is
very advantageous. In this way human designers need not define the specific behaviours of the robots for
each problem [17]. The way I set up the simulated evolution process can thus inform, and supplies a method
for, multi agent design.

6 Further research

The experiment makes the assumption that the environment does not change in the course of evolution. The
type of tasks that must be solved stays stable. If you can relyon such a stable environment it is a good
strategy to specialize on some skill. Biological studies confirm this (eg. [8]). In the real world however the
environment does change. In that case less specialization might be advantageous, as specialization would
make you very vulnerable to sudden environmental changes. In further research the effects of an unstable,
changing environment on the degree of specialization couldbe analysed.

Another simplifying assumption in the simulations was thatall individuals only help when they can gain
some fitness (helper threshold = 0). In the real world howeversome individuals seem more cooperative
than others, so each individual might have his own helper threshold. In further research the evolution of
this threshold could be investigated in combination with the cooperation mechanism ‘partner choice’ [16]:
Individuals who are more cooperative, i.e. are even willingto make costs by helping, are preferred. This
implementation might lead to an even more realistic setting. On the one hand this setting could cause that
selfish individuals survive because they do not lose fitness because of making costs by helping. But on
the long run, no other individuals would be willing to help such selfish individuals. So after all a helpful
attitude (low, even negative helper threshold) might be theevolved strategy: If I help now, I will get help
later. These investigations might explain situations where an individual makes cost by helping, which occur
often in the real world.

7 Conclusions

This paper addressed the discrepancy between cooperating and diverse populations on the one side and the
evolutionary principle which seemingly failed to explain this on the other side. The issue was addressed
by means of computer simulations, in which cooperation mechanisms, as have been postulated by evolu-
tionary biologists, were implemented to see if this could lead to the evolution of a cooperative and diverse
population. The results of the experiments showed that the availability of (innate) cooperation mechanisms
in a given population can indeed, in some situations, lead tothe evolution of a population of cooperating
individuals. Moreover, if there is a lot of cooperation between individuals, groups tend to become more
divers and individuals more specialized. In sum, the research establishes by means of computer simulation
that cooperation mechanisms can indeed serve as an explanation for the evolution of a diverse population
with specialized individuals.

Furthermore the results indicate that the possibility to establish cooperation is one of the fundamental
aspects of evolution. I agree with what Nowak [14] states: cooperation should be added as a third funda-
mental principle of evolution beside mutation and selection.
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Appendix

A Manipulation of the variable ‘ExtraCosts’
In a pilot study I manipulated the variable ‘ExtraCosts’. This variable indicates how much working alone on a task
costs extra. Several values between 1.1 and 1.7 (with pr = 0.5) were tested. The effect is that when there are less extra
costs there is less working together, especially on same tasks there is no working together at all. When there are high
extra costs there is much working together, as working aloneis very expensive (See Figure A-1). In the experiments
the variable ExtraCosts is set to 1.3.
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Figure A-1: Influence of the proportion of reward that the helper gets on the amount of cooperation. Top:
Different tasks, bottom: Same tasks

B Baseline and maximum values for average fitness
Different average fitness values could be observed for the setting without cooperation mechanisms, depending on the
task types. This difference in baseline values is due to the difference in the reward as can be seen in the computations:

Simple tasks (one subtask): Assuming an individual who is average in all skills (skill level = 0.33), working
alone:

Fitnesscontribution = Reward − (Cost ∗ 1.3) = 10 − ((1/0.33) ∗ 1.3) = 6.1
For 10 tasks this yields the baseline fitness value of 61.
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Different & Same tasks (two subtasks): Assuming an individual who is average in all skills, workingalone:
Fitnesscontribution = Reward − (Cost ∗ 1.3) = 20 − ((1/0.33 + 1/0.33) ∗ 1.3) = 12.2

For 10 tasks this yields the baseline fitness value of 122.

Maximal obtainable average fitness value for Different and Same tasks can be computed as follows.
Assuming two specialized individuals (skill level max. = 0.8), working together:

Fitnesscontribution = Reward − Cost
F itnesscontributionind = (20 − 5) − (1/0.8) = 13.75
Fitnesscontributionhelp = (20 − 15) − (1/0.8) = 3.75
Fitnesscontributionind+helper = 20 − (1/0.8 + 1/0.8) = 17.5

For 10 tasks this yields the maximal fitness value of 175.

C Gain of working together for different and same tasks
There is generally more gain of working together for different tasks than for same tasks. This can be illustrated with the
following examples. Assume the first individual has the skills (0.2, 0.2, 0.6) and the 3 potential helpers have the skills
(0.7, 0.2, 0.1), (0.2, 0.7, 0.1) and (0.1, 0.2, 0.7).

Different tasks Assume the task requires the skills A and C. For working alone, this yields:
Fitnesscontribution = Reward − (Cost ∗ 1.3) = 20 − ((1/0.2 + 1/0.6) ∗ 1.3) = 11.33

The most optimal choice for working together is with the firstpotential helper. This yields the following fitness:
Fitnesscontribution = Reward − Cost
F itnesscontributionind = (20 − 5) − (1/0.6) = 13.33
Fitnesscontributionhelp = (20 − 15) − (1/0.7) = 3.57

Fitness gain for the individual when working together:13.33 − 11.33 = +2
So solving the task together is the optimal choice.

Same tasks Assume the task requires two times skill C. For working alone, this yields:
Fitnesscontribution = Reward − (Cost ∗ 1.3) = 20 − ((1/0.6 + 1/0.6) ∗ 1.3) = 15.67

The most optimal choice for working together is with the lastpotential helper. This yields the following fitness:
Fitnesscontribution = Reward − Cost
F itnesscontributionind = (20 − 5) − (1/0.6) = 13.33
Fitnesscontributionhelp = (20 − 15) − (1/0.7) = 3.57

Fitness gain for the individual when working together:13.33 − 15.67 = −2.33
So solving the task alone is the optimal choice.

D Parameters
Several parameters were used in my evolutionary algorithm.As an overview I list all parameter settings here (see
Table D-1 and Table D-2).

From how many individuals a helper can be chosen NR HELPERS 3
When expected pay-off ¿ threshold a helper helpsHELPERTHRESHOLD 0
How much working alone costs extra EXTRA COSTS 1.3
Populationsize pop.subpop.0.size 100
Number of generations generations 200
Length of genome genome-size 3
Minimum value of genes min-gene 0.1
Maximum value of genes max-gene 1
Mutation probability mutation-prob 0.33
Mutation type mutation-type gauss
Standard deviation of Gaussian mutation-stdev 0.05
Selection method pipe.source.0 Tournament Selection
Tournament size select.tournament.size 3

Table D-1: Fixed parameters

ii



Task type PROPSIMPLE 100 0 0
(what proportion of tasks is PROPDIFFERENT 0 100 0
simple, different or same) PROPSAME 0 0 100
Proportion of the reward the helper gets PROPREWARD 0 0.25 0.5

Table D-2: Manipulated parameters
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