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Abstract

Many animals and humans live in diverse populations in wisjpcialized individuals help each other.
From an evolutionary point of view this is puzzling: why shbindividuals help others if this lowers
the chance that they themselves are fittest and survive?utiovmdry biologists assume that coopera-
tion mechanisms are at work. This study investigates thetiwgsis that cooperation mechanisms can
cause the evolution of a cooperative and diverse populafibis is done by means of simulations with
an evolutionary algorithm. The results indicate that coaflen mechanisms can indeed, under certain
circumstances, serve as an explanation for the evoluti@o@berating and specialized individuals. The
implications of these results for three different domaiBsology, Society and Robotics - are discussed.
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1 Introduction

Everywhere around us we can observe that people or aninlpls&eh other and solve tasks in cooperation.
There is great diversity in a population with individualesfalised on different skills. Often the individuals
involved in a cooperative act can combine their strengtliscam accomplish tasks more efficiently in this
way.

From an evolutionary perspective however there is competitetween all individuals. Only the fittest
survive. Someone who helps others would lower the chandehthhimself is fittest. So why would an
organism help somebody? Why should he specialize on onéfgkihit means he is dependent on the help
of others? This should theoretically lead to a homogenodsiacgooperative society. The question which
arises then is: How could a diverse population have evolwachich individuals help each other?

Evolutionary biologists like for example Sachs et Al. [1@lsdribe that cooperation can evolve because
there are certain cooperation mechanisms at work. Suchanerhs make sure that an individual who has
costs by helping another individual gets something baclt fam the long run. A mechanism could be for
example: ‘If | help you now, you help me later’. Another megtsan is that the helper directly gets part of
the task reward. Can these mechanisms indeed explain the&iewoof cooperation? Moreover, does the
presence of cooperation mechanisms also lead to the emohitia heterogeneous population?

Nowak [14] states the idea behind helping is that it is lestlgdor the donor than it is beneficial for the
recipient. This is especially true when a specialist halpiving part of a task where the individual itself
is not skilled. Moreover the biologists Anderson and Frg@ksxplain that solving tasks in teamwork ‘may
well favor individual differences and constancy in tacglihose subtasks for which the individuals are par-
ticularly well-suited.” (p. 24). This indicates that thegsibility to cooperate may cause that specialization
evolves.

Certainly the task type also has some influence on the diyeskia group. The utility of diversity
depends on the task [4, p. 1]. If all tasks are simple they easoived by individuals. If tasks get more
complex it can be more efficient if different individuals sfgdize on certain skills and then work together
to solve the task.

The research question | address in this paper is: To whatiesd® cooperation mechanisms (in combi-
nation with certain task types) explain the evolution of gexative and diverse populations? To investigate
this | used an evolutionary algorithm. In this way | simuth&olutionary processes and analysed the de-
velopment of the population. The results of this study giwerinsights in the underlying mechanisms of
cooperation and specialization and furthermore can ghieeésign of cooperative robots.

In the remainder of this section | will explain some thearaltbackground (Section 1.1), the cooperation
mechanism | am going to use (Section 1.2) and what exactly@ntéonary algorithm does (Section 1.3).
The structure of the rest of the article is as follows: In &ec? | will define the experimental method in
terms of the environment, the settings of the evolutionfggrithm and the fitness evaluation. Furthermore
I will outline the experimental conditions for the varioumsilations. In Section 3 the results of the simu-
lations will be presented and in Section 4 | will summarize thost important findings and will give some
interpretations. In Section 5 further implications of tlegjaired results will be discussed. Ideas for further
research will be given in Section 6. The paper will end with ¢lonclusions in Section 7.

1.1 Theoretical background

Bowles and Gintis [6] analysed the evolution of a populatidren a cooperation mechanism called ‘strong
reciprocity’ (also referred to as ‘altruistic punishméns at work. The result of their study is that indeed
high levels of cooperation could be sustained in the pofmdawvhen this mechanism is at work, which
means that all individuals worked to contribute to the glajmods.

In my research | do not only analyse if cooperation mechasicam lead to a cooperative population,
but | go one step further by also investigating if cooperatitechanisms can explain a diverse population.
This is a connection not made before. As method | used an odry algorithm instead of agent based
simulations. | started with a random initial population angestigated if discriminable groups of certain
specialization evolved. My cooperation mechanism waswag-byproduct benefits, which | will explain
next.



1.2 Cooperation mechanism

Sachs et Al. [16] give a framework for cooperation mechasis@ne of the cooperation mechanisms is
called ‘two way byproduct benefits’, which includes synengi ‘actions or coordinated behaviours that are
automatically more profitable when performed in groups’, [6 145]. In this setting everyone benefits
from working together. The idea is that each individual calves the part of the task where he or she is
skilled in. The helping individual gets part of the rewarcheTadvantage for the other individual is that
she does not have to do subtasks that she is not good at andalic be very costly. Indirectly both
individuals benefit each other (see Figure 1, right).

In my experiments | will compare these settings with coopenamechanisms with the setting where
no cooperation mechanisms are at work. In that case therfistidual gets the reward of the whole task.
The helping individual does not get any reward, which mehastie cannot improve his fitness. He will
end up with costs (see Figure 1, left).
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Figure 1: Left: No cooperation mechanism, right: Cooperathechanism: two-way byproduct benefits

1.3 Evolutionary Algorithms

An evolutionary algorithm is a computational program imegdiby natural evolution [7]. The basic idea
behind it is that the program should find a solution that béstsfime criteria. It does this by simulating
evolutionary processes. The basis is the evolutionaryegyansisting of the following steps: initialization,
parent selection, recombination, mutation, survivorc@e and finally termination (see Figure 2).

Parent selection
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Figure 2: General scheme of an Evolutionary Algorithm (afitdnen and Smith [7])

The computer program starts with some random solutiongeccaldividuals, which form the initial
population. How ‘good’ an individual is can be determinedading to the so called fithess function. This
is a function which assigns a value to an individual, whictli¢gates how good he fits the requirements.
In each generation only the best individuals will createspfing. The genes from two parents can be
recombined to create new individuals. There also can betiontaf certain genes, which means that some
randomness can be added to the genes of new individualse loriy run only the best genes will survive.
In this way a population can be evolved which suites the goréaria (fithess function) best.

Several articles report the success of evolutionary algms for evolving cooperative behaviour. Ex-
periments by Suzuki and Arita [17] have shown that coopegdtiehaviour can evolve and that it is a
necessary requirement for teams to perform well, as thastithte for a simple form of robot soccer. Fur-
thermore Quinn et al. [15] report that artificial evolutioaswable to evolve a team in which robots maintain
functionally distinct roles in order to achieve a task.



One of the fundamental factors for evolving a cooperatienes the credit assignment or ‘how to
fairly split the fithess of a team to all of its participant8, [p. 23]. Should a helping individual also get
part of the task reward? And if yes, how much? As a study atentarcement learning indicates: When
the entire team is jointly rewarded, teams tend towardsrbgémeous behaviour [3, p. 7]. In this way
the group achievement is considered instead of single ichei performance and the team members are
encouraged to adapt to each other. Jointly rewarding theithchl and her helper could thus mean that a
diverse population evolves: the individuals might spezgabn different skills and trust on the help of other
specialized individuals to solve the tasks. The particfitaess evaluation used (which incorporates the
cooperation mechanism) is thus the most important part ofwojutionary algorithm.

2 Method

In this paragraph | will describe the fundamental aspecti®éxperimental method: The environment, the
evolutionary algorithm, the fithess evaluation and the expental conditions.

First | will explain the environment which is defined in terwisthe task, the population and the en-
counter (Section 2.1). Next the exact evolutionary alpomitsettings will be given (Section 2.2). The
fitness evaluation will be explained in terms of rewards avgtcassociated with the tasks and skill levels
(Section 2.3). Finally | will explain the experimental sgin terms of the different conditions (Section 2.4).

2.1 The environment
2.1.1 The task

Inspired by the article of Bowles and Gintis [6] | have chosekeep the task abstract. That means that
there is not one specific task, but a task is only defined bykitle ehich it requires to do it. For example
a task could require skill A and B, but not skill C, represenas (1 1 0). A task can be accomplished
alone or, probably more efficiently, by working together.eTdifferent skills can be fulfilled by different
individuals, thus the definition of a team task by Andersod Biigel [1] applies: ‘A team task requires
different subtasks to be performed concurrently for susfcésompletion. There is a division of labor
within a team.” (p. 534)

By keeping the task abstract, the experiment and the rem@tsot specific to one situation but apply to
all tasks that can be formulated in such a way. As illustratiwill give an example: Imagine the task is to
drive by car and read the map to find your way to an unknownmkgstin. The skills are map reading and
car driving. You might be good in map reading, but have noatsVlicense. You can ask someone to help
you to fulfil the task by driving. Maybe you have a driversditse and also have the skill of map reading.
But nevertheless it will probably be better and more efficterfulfil the task with a partner, so that one
person can focus on driving and the other on map reading.
| use the following task types in my simulations:

e There are be simple tasks that can be fulfilled by individa&ige:
— tasks where one skill is required (‘Simple tasks’): (A), (B3)
e Other tasks are more difficult and might be solved more efftbjavhen working together:

— tasks where different skills are required (‘Different ta3k(A B), (B C), (C A)
— tasks where the same skill is required more than once (‘Sasks™): (A A), (B B), (C C)

2.1.2 The population

As the tasks require different skills, the individuals ie fiopulation are defined by the degree to which they
posses these skills. There are 3 skills: A, B and C. Each ki associated with a number between 0.1
and 1, where 0.1 means being bad in the skill and 1 means benfgcp It is assumed that no individual
can totally lack a skill (skill level = 0). Being skilled mesithat doing this aspect of the task has a low cost.
To prohibit that all individuals just evolve towards ‘pecfén everything’ a maximum of 1 is imposed on
the sum of the skills. In nature there are also often suchtr@ingg trade-offs, for example an individual
specialized on prey A loses the ability to efficiently captprey B [5, p. 14]. A maximum of 1 means



that an improvement of one skill always is at the costs of roghéls. In the experiments | assume a total
skill potential which is identical for all individuals. Itowld be argued that some people have a higher skill
potential than others. But as this research is about diydtss more important how the skills are present
in relation in each individual than the total skill amountindividuals. So for simplicity reasons the total
skill potential is fixed at 1.

2.1.3 Encounters

For assessing the fitness of the individuals in a populatieretare encounters, which are described next.
There are tasks that need to be fulfilled. An individual iss#mand randomly assigned a task. The
individual may choose to fulfil the task alone or she may askép. When she asks for help N individuals
are randomly selected from which she can choose one as a&pdftnone of the individuals is suited she
can choose to fulfil the task alone. When she chooses a pénaeiulfil the task in team work. In this way
the teams are spontaneously formed as tasks demand it.sTihiBrie with what Anderson and Franks say
[2, p. 26].

After each individual in the population solved M tasks alonevith help the encounter is finished and
the fitness is determined. The exact manner of fithess assesdepends on the cooperation mechanism,
but generally a task has an associated reward and the indlgigvill have costs in performing the tasks,
depending on the degree to which they posses the skills. Tres$ will be the reward minus the costs
summed over the M tasks. Furthermore it is possible to gdiaditness. This can happen when an indi-
vidual acts as helper. More details about the fitness assighfollow in Section 2.3.

Some decisions had to be made about the exact course of thardacs. These details follow in the
next paragraphs.

When is cooperation possible? When a task has two subtasks it can be divided between twaidudils
and solved in cooperation. When the task only has one sultteaknot be divided, so cooperation is not
possible.

How is the task divided? If a task will be solved in teamwork the question arises haswtisk should be
divided. I will illustrate this with an example:

Assume the task requires skills B and C. The individual Hehses the skill pattern (0.1, 0.4, 0.5) and
the potential helper has the skill pattern (0.1, 0.1, 0.8her€ are different divisions possible: the first
individual could solve task C in which she is most skilledt this would mean that the helper must do skill
B in which he is very bad. Thus this would not be a very effextiioice.

In my experimental design | chose to divide the task as affeels possible, i.e. the task is divided such
that the overall costs are minimal. In the example the mdsttfe division is that the first individual does
B and the helper does C. It should be noted that this could rfedran individual might have to solve a
subtask for which his skill level is not highest.

How many individuals are chosen as potential helpers (N)? In most real world environments you will
have a limited number of people that are around to help yodight of this, choosing from the whole
population as potential helpers would not be realistic. &boer if the individuals are free to choose anyone
to help, this could lead to cases where always the same éhiVis chosen as helper, for example if the
skill A is rare. As a consequence the individual skilled in Auld have the chance to gain much extra
fitness as doing skill A is easy and cheap for him. A high fitmasans that he will have a lot of offspring.
This could cause the whole population to flip, which meansttiere would be too many individuals with
skill A and another skill might lack which would cause funttigs. No stable and analysable state could
be reached to answer my research question.

Directly assigning one individual as potential helper dalss not seem a good choice, because in that
case it is quite likely that a proposed helper cannot help ydaost ideally there must be some possibility
to choose a helper who is skilled in things you are not. It ssemeasonable to me to select 3 individuals
randomly as potential helpers. In the real world these miighthe persons around you. But there is no
reason not to choose 4 or 6 individuals. This is a choice | naael will keep this variable fixed at 3 for
reasons of simplicity. Small variations in the number ofsdindividuals showed to have no influence.



Which individual will she choose for helping her? The individual will choose the helper with whom
she will have the biggest fitness gain. She takes in mind ttmeiger will not help if his fitness gain is
negative. So the individual will check the following befaige makes her decision:

- What is my fitness gain if | solve the task alone?

- If I work together, given the best task division what is mydiss gain and what is the fithess gain of my
helper?

- If the fitness gain of my helper is negative then he will ndpheo there is no need to ask him.

- From the remaining helpers she will choose the one with whenown fitness gain is biggest; she might
as well decide to work alone if that yields the best fitnesa §ati her.

When does a chosen individual help? An individual is only asked when his fitness gain will be pisit
(helper threshold = 0), so a chosen individual always helps.

How many tasks must an individual solve (M)? If only one task would be used for fithess assessment,
the fitness would be very dependent on the randomly assigis&d An individual could have luck and be
perfectly suited for the assigned task. This would lead ghHitness, although the individual might be
bad in solving other tasks. To prevent this, each individhad to solve 10 tasks. In this way the general
potential of each individual is measured. Using more tagkslevmake the assessment even better, but also
computationally more intensive.

Must a task be accomplished? As most tasks in real life are obligatory, it seems most séalthat the
individuals must accomlplish their assigned task. Moredhe possibility to not accomplish a task at all
would unnecessarily complicate the experimental setffiog these reasons all tasks must be solved.

2.2 The Evolutionary Algorithm

In the following | describe the settings | chose for each efdtages in the evolutionary cycle (see Figure 2).
Table 1 provides an overview. All these settings are quéeddrd evolutionary settings [7]. | used ECJ 18,
a Java-based evolutionary computation research systemptement the evolutionary algorithm [12].

e The Representation: The individuals are represented &vakeed vectors. There are three genes
with values between 0.1 and 1 which are normalized suchhleatsum equals 1. These indicate the
skill levels for the three subtasks.

o Initialization: A population of 100 individuals is used. IAhdividuals are initialized randomly (a
uniform distribution between 0.1 and 1 is used). A normdiraprocedure ensures that the sum of
the three numbers is equal to 1. Normalization might in soases lead to values a bit smaller than
0.1, but this has no important consequences for the algorith

e Parent selection: The parent selection is tournament hagled tournament size of 3. That means
that 3 individuals are randomly selected and the individvitd the highest fithess value will be cho-
sen for reproduction. With this method 100 parents are t&lewho in total produce 100 individuals
offspring.

e Recombination: As recombination method one-point crossoan be used, but as the representations
are quite short, | chose not to use recombination, but onitation.

e Mutation: With a chance of 1/3 (= 1/genome length) mutat®mpplied to a gene. As mutation
operator non-uniform mutation is used. This means that asuatdrawn randomly from a Gaussian
distribution (N{, o) with . = 0,0 = 0.05) is added to a gene. It is ensured that no gene can be
lower than 0.1 and higher than 1. A normalization procedutieemsure that the sum of the three
numbers stays equal to 1.

e Survivor selection: There are different methods for swswaelection. For example one could choose
to let only the best individuals (parents or children) sueviln these experiments the survivor selec-
tion is generational, which means that all the generatecch@@ren survive.



e Termination: The individuals in the population will adapbra and more to the requirements defined
in the fitness function. In these experiments the evolutipatgorithm terminates after 200 gener-
ations. In pilot studies | observed that there is no greag$grimprovement after the first 10 to 20
generations, so by running 200 generations all important(term) effects could be observed.

Population size 100
Length of genome 3
Minimum value of genes 0.1
Maximum value of genes 1
Parent selection method Tournament selection with size 3
Recombination -
Mutation probability 1/3
Mutation type Gaussiany = 0,0 = 0.05
Termination After 200 generation$

Table 1: Evolutionary settings

2.3 The Fitness Evaluation

In contrast to the quite standard evolutionary algorithttirsgs explained above, the fitness evaluation is
specifically written for this experimental setting. As aldy mentioned the fithess of the individuals is
determined in an encounter, where each individual is ramglassigned 10 tasks, which it has to solve. Per
task some fitness can be gained. Moreover an individual ng@intextra fithess if he helps.

If a task is solved alone the contribution to the total fitnekthe individual will be the reward of the
task minus the costs:

Fitnesscontribution;nq = Reward(task) — Cost(task, skills) (1)

When two individuals work together the task is split up i@ tsubtasks. The fitness contribution for each
individual depends on the proportion reward that the hefgts (pr). These formulas are comparable to
those used in [11].

Fitnesscontribution;nq = ((1 — pr) x Reward(task)) — Cost(subtaskinq, skillsinqd) (2)

Fitnesscontributionpeiper = (pr x Reward(task)) — Cost(subtaskneiper, Skillsheiper) 3)

I had to make a choice how much of the reward the helper exgetly, because this was not stated in the
model. | chose to use two settings: In the first setting thpdrejets 25% of the task reward (pr = 0.25),
which means that help is quite cheap. In the second settabelper gets 50% (pr = 0.5), which means
that help is expensive.

Reward The more skills a task requires the bigger is the reward. ddmsbe expressed by the function:
Reward(task) = 10 x Sum(subtasks) 4

For a difficult tasks which requires skills A and C this yield&ward((1,0,1)) = 10 x sum(1,0,1) = 20

Cost The more skilled an individual is the less does the subtaskide. There are different choices to
express this as a function. The function could for examplirtear, but | chose to use a concave function.
I made this choice, because this function reflects the ptiggesf a skill best: If you are very bad in a skill
it will cost you extreme much to use it. If you get better in gkl this will soon save you many costs, but
from being good to being perfect in a skill only a few costd Wé saved. Note that Bowles and Gintis [6]
also used a concave cost function in their experiments. Astion this can be expressed by (see Figure 3):

1

cskilllevel) = ——m—s
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Figure 3: Costfunction

The total cost for a task is determined according to the fatig function:

subtaskA n subtaskB n subtaskC
skilllevel A~ skilllevel B~ skilllevelC

If an individual chooses to solve a task alone there are exsts. This is because a task can be solved
less efficiently alone. This is implemented by multiplyingetcost by a factor. In a pilot study several
values between 1.1 and 1.7 were tested (for more detailAmeendix Section A). To avoid making the
experiments even more complex | decided to make this paearfieeéd. Choosing an intermediate value
seemed the best and also most realistic option, so this p&eaims the value 1.3.

To illustrate, for an individual with the skill levels (0.2,3, 0.5) who solves the task (1, O, 1) this yields:

Cost((1,0,1),(0.2,0.3,0.5)) x 1.3 = (g5 + o5 + 5) X 1.3=7x1.3=09.1

Cost(task, skills) = (6)

2.4 Conditions

In the experiment two variables are manipulated: The typtheftasks and the cooperation mechanism,
which is implemented as what proportion of the reward theéregets (pr). Each variable has 3 possible
values, which yields a 3 by 3 design. The levels of task tyge &mple (one skill required), Different
(two different skills required) and Same (two times the sakiét required). The levels of cooperation
mechanism are: none (pr=0%), two way by-product benefits2f¥o and pr=50%).

3 Results

In this section | describe and explain the most importantitesf the simulations. First of all, the hypothesis
that cooperation mechanisms actually lead to cooperatitweden the individuals requires verification.
Cooperation mechanisms make cooperation possible, tiddiea not automatically imply that individuals
actually do cooperate. After that | will turn to the questloow the population is spread at the end of the
evolutionary process. | will investigate if the populatisrhomogenous or heterogeneous and specialized.
Furthermore | will analyse the average group fitness to firtdrobow far solving all tasks in cooperation
in a diverse group is more efficient than solving all taskalm a heterogeneous group. Finally | will
analyse how stable the acquired results are across gamerati

The section is subdivided into the different measures uéetbunt of cooperation (Section 3.1), het-
erogeneity and specialization (Section 3.2), stabilityhaf results (Section 3.3) and average fitness (Sec-
tion 3.4).

3.1 Amount of cooperation

To investigate if cooperation mechanisms actually leadbtwperation the number of cases in which indi-
viduals solve tasks together is stored (see Figure 4). Eurtbre this measure could be used to investigate
if working together correlates with heterogeneity of theplation.

No cooperation mechanism In the case where the helper does not get any reward therevi®oriong
together at all. This is due to the fact that a potential helpauld only make costs in this setting. As
individuals only help if they benefit, no one will help, so nmoperation evolves.
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Figure 4: Amount of cooperation

Two way byproduct benefits When the helper gets 25% of the task reward, helping doegiake in
certain cases: For the simple tasks there is no working hegeT his is due to the fact that a simple task
only has one subtask, which means that it is not possible t& tegether. For the Different tasks the first
population already works together in 80% of the cases. Chefitst 20 generations this still improves
until a quite stable amount of above 90% working togethee#&hed. This value is the highest reached
over all simulations. The amount of working together for samsks is also highest in this setting. In the
first generation 40% of all individuals work together, whaphickly improves to above 60% in the first few
generations. After that the value stays quite stable.

In the next setting the helper gets half of the reward. Agairsimple tasks there is no working together
as this is not possible. For different tasks the amount okimgrtogether quickly reaches about 50 to 60%.
On same tasks only 20 to 30% of all individuals work together.

3.2 Heterogeneity and Specialization

The main dependent variables in the experiments are theeejheterogeneity and the amount of spe-
cialization of the group. This can be visualized by plottthg skill vectors of each individual. The more
they are spread, the more heterogeneous the group is. Toialsgaion can be measured by the amount
of clustering, i.e. the degree to which homogenous subgrag formed in the population. Interesting is
also the change in heterogeneity and specialization asrthggvolves, visualized as a movie (available
on request).

Figure 5 shows the begin population. On the x-axis skill Aligted and on the y-axis skill B is plotted.
As all three skills sum up to 1 the resulting skill level ofski can also be read from this plot: points at the
left bottom of the plot represent individuals with low sK#élels on A and B and thus a high skill level on
skill C. All individuals are initialized randomly which yids a very heterogeneous, but not specialized start
population. You can see that no individual can lie outsid#heftriangle, as the sum of all three skills must
be 1.
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Figure 5: Skill pattern of the first generation

In the plots of Figure 6 the population of the last generaisguictured.

No cooperation mechanism In the first situation of Figure 6 the helper did not get anyasiv All
individuals converged to the middle. This means that alviddials are equally good in all three skills. The
population is very homogenous.

We already saw in Figure 4 that in this case there was no wgridgether at all, so this might be
the first indication that no cooperation leads to a homogsmaypulation without specialization. As an
individual cannot count on help he probably tries to be dgugldod in everything to best prepared to solve
any possible task.

Two way byproduct benefits The second plot shows the case where the helper gets 25% r&vthaed.
Here an interesting pattern of spreading of the populasorisible. In the case of simple tasks the indi-
viduals are again quite centred around the middle, but ttigigtuals for different tasks lie in the corners,
which means that they have specialized on solving one skibfdsee groups can be distinguished which
each specialize on a different skill. The individuals fomgatasks lie in between and thus show a weaker
form of specialization.

In Figure 4 we saw that for this setting the amount of workiogether was highest. Especially for
different tasks 90% of them where solved in teamwork. Thighthmean that when there is a high possi-
bility of solving a task together, the population is morednegeneous and different groups of individuals
specialize on different skills. For same tasks the percgntd cooperation was a bit lower, which might
explain why these individuals are less specialized.

For the third plot the setting is that the helper gets halheftask reward. A quite different pattern can
be seen in this case: The population for the simple tasksrliése middle again, but the population for
different and same tasks is pulled towards the axes. A pagtigbove the middle of the x-axis means that
this individual is very bad in skill B, but as good in skill A asskill C. So the individuals do not specialize
on one skill, but they seem to unlearn one skill. There is ffedince between different and same tasks in
this case. This is unexpected, as Figure 4 showed that thardgrabcooperation is different for different
and same tasks (ca. 50% and ca. 25% of the tasks are solvélddogespectively).

3.3 Stability of the results

As evolution is a dynamic process it is interesting to aralysw the process develops over generations.
The question that arises is: Is the analysed pattern of @pgtion for the last generation stable across
generations? And if this is the case: How long does it také tivi$ pattern evolves? To investigate this |
analysed videos of the development of the heterogeneitgpecialization of the population. It turned out
that the found pattern of specialization evolved after aiiput 10 to 20 generations. From that point on
the individuals in the population do shift a bit, but the el groups persist.
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Figure 6: Skill pattern of the last generation

3.4 Average fitness

To analyse the development of the population the programskeack of the average fithess of the popula-
tion per generation (see Figure 7).

No cooperation mechanism In the first case the helper does not get anything of the tasirce In the
plot you can see that already after the first few evolutioablstaverage fitness values are obtained. For
simple tasks this value is 61 and for different and same td&value is twice this value: 122. The reason
why the curve for simple tasks is lower, is that the assodiege/ard for simple tasks is only half the reward
as for different and same tasks (respectively 10 and 20)cémmputations see Appendix Section B. As we
know from Figure 4 there is no working together in this case tf8s condition can be seen as a baseline
for the average group fitness.

Two way byproduct benefits In the second plot the results for the case where the helpe2§8&6 of the
reward are shown. Also in this case the values settle vegktyuiFor simple tasks the average group fithess
is again 60, which can be explained by the fact that there @@ efficient way of solving simple tasks as
there cannot be any task division. Furthermore there is @nawement for as well different as same tasks
in this setting: Same tasks have an average group fithesoaf &85 and same tasks have a group fitness
of about 135. These values are the highest compared witlhal settings.

These results suggest that specializing on different sibtia a good way to improve the performance
of a population, given there is possibility to work togetheproportion reward of 25% for the helper seems
an optimal setting.

In the third case the helper gets 50% of the task reward. FRaplsitasks the average group fitness is
61 again for reasons just explained. For same tasks thegevgraup fitness is 122, as in the first, baseline
plot. For different tasks there is an improvement compaveti¢ baseline plot: The average fithess is 135
now. This is a quite interesting result: In Figure 6 it turmed that same and different tasks lead to the same
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Figure 7: Average fitness

pattern of specialization. Nevertheless the efficiency anproved for different tasks. This finding might
be connected to the fact that for different tasks there isermarking together. It seems that the evolved
pattern of specialization can only lead to more efficienogdmbination with a high amount of cooperation
and tasks requiring different skills.

4 Summary and interpretation of the results

In this section the acquired results are summarized ancpbirtied. The situations with and without coop-
eration mechanisms are addressed (Section 4.2 and Sedtjorrdrthermore the stability of the results is
explained (Section 4.3).

4.1 No cooperation mechanism

In the setting without cooperation mechanism, the indigidulid not work together at all. This indicates
that without cooperation mechanism no cooperation coutdvev Moreover the population plot showed
that all individuals converged to being equally good in eatthe skills, independent of the task type. As
expected each individual tried to be prepared for all pdsgdsks, as they could not count on help from
others. We can conclude from this: no cooperation mechainigties no cooperation, which in turn leads
to a homogenous population.

4.2 Two way byproduct benefits

Cooperation When there is a cooperation mechanism at work the individaetually work together in
many cases to solve the dividable tasks (different and saiif@} indicates that cooperation mechanism
can indeed cause that the population cooperates. The pegegmow often individuals exactly cooperate
depends on the task type and the proportion of the rewardhbdtelper gets.

Task type - In general there is more cooperation for different tasks tlom same tasks. The difference
in amount of cooperation can be explained as follows:
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o Fordifferenttasks different skills are required. In thése two individuals can combine their strength:
each individual solves the subtask he is good in. As he caosghivom 3 individuals an optimal task
division can be made. This makes working together much mffidemt than working alone as
an individual has a restricted total skill potential, thasot be good in everything. For a sample
calculation, see Appendix Section C.

e For same tasks two times the same skill is required. So irs#titng the first individual has to fulfil
the skill at least once. The potential gain by working togetles in choosing an individual which is
better in this skill to support him. When the first individisbad in the required skill there is much
gain if another individual can help, but when the first indival is herself good, she can easily solve
the task alone. For a sample calculation, see Appendix@e€i The chance that the individual
herself is good in the required skill is relatively large3)l Avhich explains why there is in total less
cooperation for same tasks.

We can conclude from this that the simple presence of cotipemmechanisms does not guarantee coop-
eration by itself. The kind of tasks that should actually b/ed plays an important role. Especially in
environments were tasks require different skills the eloituof cooperation is likely.

Reward - Moreover there is more cooperation when the helper gets adowsrd than when the helper
gets a high reward. This can be explained as follows:

e A potential helper will be quite easy to find in both settinlgscause the helper does get part of the
task reward. By fulfilling a subtask in which he is skilled Feneasily gain some extra fithess. The
decision if cooperation actually takes place lies in thedsaof the first individual. She will only
decide to solve the task together, if this yields her a lafiegss gain than working alone. She has to
choose between doing all costly subtasks alone (plus easta éor working alone) or giving part of
the reward to a (specialized) helper.

¢ In the setting where 25% of the task reward goes to the hégitng someone else do things you are
not skilled in is a cheap option. So all in all as well the firdividual as the helper are better of by
working together. This is thus a very cooperation facilitatsetting.

e The reason that there is less cooperation in the settingentherhelper gets 50% of the task reward
lies in the fact that too much of the reward goes to the helpamany cases the first individual will
prefer to work alone, as help is too expensive.

We can conclude from this that just the fact that the helpsy gets part of the reward is not sufficient for
cooperation to take place in a high level. The exact amoutiteofeward plays an important role.

Heterogeneity and Specialization Furthermore there seems to be a connection between the awmfoun
cooperation and the degree of heterogeneity and spetiatizsf the population: If there is much coopera-
tion, the group is also more divers and specialized. Howthxtte specialization of the population looks
like depends on how much the helper gets. This can be explaméllows:

e Based on the fact the individual can choose from three patdmlpers, there is a high probability
that one of the potential helpers is specialized in a redwigéll. Combined with the fact that the
helper gets part of the task reward there is a high chancathadividual is actually willing to help.

e Specializing on one skill, with the consequence of unleaythe other two skills is a good strategy in
the setting where help is cheap: If the given task requires gpecialization you can solve it easily
and if an extra other skill is required there will probablydmmeone that helps you. As you yourself
get most of the task reward this case is ideal for you. Thismae¢hat more cooperation between
specialists can be expected in environments where helpiciy @her is cheap.

¢ Inthe setting where help is expensive being quite good ingiilts with the consequence of unlearn-
ing one skill is the best strategy. It would be too risky to@pkze on only one skill as needing a
helper is quite costly. So in environments where help is Bgpe less specialized and cooperative
individuals will be found.
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Average Fitness Moreover the experiments showed that higher average fitredass can be observed
in more cooperative populations. This means that helpihgroindividuals improves the fitness of the
whole group, which means that from an evolutionary persgecboperation is favorable, as a cooperative
population will outperform an uncooperative one. (This Intige the reason that cooperation mechanisms
evolved.)

Summary To summarize all these results: In general cooperation arésims can cause cooperation,
which in turn leads to a heterogeneous, specialized papuolafThe exact degree of cooperation and the
specific pattern of specialization depend on the task tygefdrelp is cheap or expensive.

4.3 Stability of the results

The experiments showed that distinguishable groups witkrdnt skill patterns were formed which per-
sisted over generations. Normally genetic drift causesahandividuals evolve towards one optimal solu-
tion. The question is then: which is the optimal solutiontiistsetting? Or is there more than one optimal
solution? The statement by Nettle [13] may be considereet hlBehavioural alternatives can be considered
as trade-offs, with a particular trait producing not ungdld advantage but a mixture of costs and benefits
such that the optimal value for fithness may depend on venyifsplacal circumstances.’ (p. 625). In these
experiments specializing on one skill means that the iddiai is worse in the other two skills, but whether
this particular specialization is fithess enhancing depamdthe other individuals, too, as cooperation can
take place. Imagine that all individuals specialize onlgkilThen no-one can easily help with solving tasks
which require other skills, which is bad for the fitness of Wele population. This indicates that the indi-
viduals must adjust their specializations to each othelEiden and Smith [7, p. 222] write: The fitness of
an organism is entirely determined by the environmentdlania which it lives. The characteristics of this
niche are predominantly determined by other organismsebBaipg on the skills of the other individuals a
particular own skill pattern is optimal. Hence there is cgatibn between the individuals in the population
and this can explain that an arrangement of three optimiisitterns could evolve and was maintained.

5 Discussion

The results indicate that cooperation mechanisms can dydeeler certain circumstances, serve as an
explanation for the evolution of cooperating and speaiindividuals. The experimental setting was kept
very simple, but importantly it shared essential featuriéls 8olving tasks in the real world. The encounter
mechanism was constructed to reflect natural, real worlgpexadion settings. Furthermore all tasks were
kept abstract and were only defined in terms of essentialgptieg. This set up has the advantage that the
results generalize to any environment in which individyadsses different skills and tasks require some
proper subset of these skills. These features hold for mealyworld situations. The implications of this
research span several different domains, including Bigl8gciety and Robotics. | will next discuss these
implications for each of the domains separately.

5.1 Biology

The simulated evolution in this study can be seen as cagtgsghection principles that may also be oper-
ational in biological evolution. The experiment showed tspecially for more complex tasks, requiring
the combination of several skills, much specialization emaperation evolved under the assumption of co-
operation mechanisms. The same phenomenon is also obsemedy insect societies, where individuals
cooperate to tackle difficult and complex tasks, such asmekting or overpowering prey. This indicates
the biological plausibility of the effect of cooperation af@nisms.

According to Anderson and Franks [1], insects exploit a neyanizational method. They form highly
cooperative and relatively unselfish groups of individwett® are together able to tackle tasks far beyond
the abilities of the individuals alone (p. 534). The simigiatresearch can give us insights in the interrela-
tions in biological evolution: cooperation mechanisms borad with the fact that the insects face complex
tasks could be the basis of the evolution of this new orgdioizal structure.

Furthermore Anderson and Franks [1] state: ‘Specialimatiearning, and overall enhanced perfor-
mance efficiency will enhance the ergonomic efficiency ofarté (p. 538). This means when work is
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done in a team, different individuals can focus on certabtasks, which they will perform more and more
efficiently due to learning. This leads to specializatiorited individuals on the long run. The adapta-
tion of the individuals observed in the simulation mightgmot only be equalled with the adaptation by
inheritance of favourable properties but also with the #atégn by learning processes. On the basis of
cooperation mechanisms adaptation does not only take plageseveral generations but also within one
generation.

All'in all this research was able to yield a better undersit@gndf biological phenomena.

5.2 Developments in the society

Often, the word ‘evolution’ refers to biological evolutiaf species under selection pressures for procre-
ation. However, many things can evolve, among them sosi@tiecultural habits and skills. In a more
abstract sense evolutionary processes of selection ar@pégational in societal evolution. Instead of in-
heritance of properties, favourable properties prevaiblose people adapt their behaviour: If one sees that
a particular property or skill leads to success one miglatialgest in this skill. In this sense the best skills or
properties still survive in the population, albeit it nosgang on of genetic materials but instead by adapted
or learned skills.

Moreover, as in biological evolution, some coadaption baske place in society as well: People have
to adapt to their social environment, which consists of ople@ple adapting to that same environment. How
favourable some property is also depends on the propeftiethers. Hence, from this point of view the
evolutionary processes studied in the simulation experieean be compared with evolutionary processes
in society.

Societies existing centuries ago were most often very sirptl small. People lived togetherin a village
and there was a small degree of specialization and cooperaliver time the society circles went bigger
and bigger: People band together in cities, countries aaed ever the whole world. The tasks encountered
by individuals nowadays are very complex, i.e. requiringnaubtasks and different skills. Take for
example the production of a car: You need a designer, a teghaipert, workers and many more. Also the
range of possibilities for cooperation is large. For insgrtechnological developments made it possible
to even cooperate with people at the other side of the worldhis way productions from China can be
combined with parts from Germany and so on. This yields muctemossibilities. People over the whole
world can specialize on things they are good in and coopevititeeach other. By this organization on a
higher level much more can be accomplished and progressecarade. One of the fundamental factors
is the possibility to cooperate, as the experiments indicambagine you would not be able to cooperate in
today’s society. On your own you would never be able to reach s high living standard. Cooperation
is thus a very strong mechanism to combine strengths to ra@dggher level of living. As Nowak [14]
states: cooperation makes evolution constructive anduss tie secret behind the open-endedness of the
evolutionary process.

Besides the specialization on certain skills even diffectasses developed in the society: e.g. workers
and academics. Henrich and Boyd [10] speak of stratifiedesiesi with more economic specialization.
They say that stratified human societies are more like anystars in which different, partially isolated
cultural groups evolve mutualism as different species dike lin the experiments, there is cooperation
between groups with different properties, which need edfobroHenrich and Boyd [10, p. 15] further state
that more stratification will lead to higher average proéhrcthan in egalitarian societies. In light of the
experiments this can be explained, as a stratified societgaar reach more by the cooperation of groups
with different skills.

The development towards more divers and specialized $exiist also reflected in the development
of an individual in his lifetime. First education is very geal, but over time individuals are encouraged
to specialize and advance their talents, as cooperationsisitde and consequently it is not required that
everybody is good in everything. This specialization iraplthat you must trust on the help of others. As
the cooperation networks get bigger and bigger nowadaysi@edi over the world depend on each other.
As long as the situation stays stable there is no problemryewe needs others to survive, so cooperation
is sustained as a consequence of this coadaption.

As a conclusion we can state that the results of the expetinyéld a better understanding and more
insights in the development of the society.
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5.3 Robotics

The end state of the population in the experiments can be agdine optimal population given certain
environmental constraints. The insights gained in the expnts can be used in the design of multi-
agent systems. Some important conclusions are the folipwifor tasks requiring only one basic skill
(what we called ‘simple tasks’) homogenous teams perforst, libeit when the tasks have more subtasks
and especially when they require different skills, hetermpus and cooperating teams perform best. This
relation between task complexity and heterogeneity of gsauvas also conjectured by Balch [4]. In settings
were robot teams are required to solve complex tasks, catiperand specialization of the robots can be
facilitated by implementing a cooperation mechanism, drah tevolving their control structures under
selection pressures on task performance. The abiligvtivespecialized control structures for robots is
very advantageous. In this way human designers need noedbérspecific behaviours of the robots for
each problem [17]. The way | set up the simulated evoluti@atess can thus inform, and supplies a method
for, multi agent design.

6 Further research

The experiment makes the assumption that the environmestrdzt change in the course of evolution. The
type of tasks that must be solved stays stable. If you canarlguch a stable environment it is a good
strategy to specialize on some skill. Biological studiesfitm this (eg. [8]). In the real world however the
environment does change. In that case less specializaiigin tve advantageous, as specialization would
make you very vulnerable to sudden environmental changdsirther research the effects of an unstable,
changing environment on the degree of specialization doaldnalysed.

Another simplifying assumption in the simulations was tihindividuals only help when they can gain
some fitness (helper threshold = 0). In the real world howsweene individuals seem more cooperative
than others, so each individual might have his own helpestiwld. In further research the evolution of
this threshold could be investigated in combination with tkoperation mechanism ‘partner choice’ [16]:
Individuals who are more cooperative, i.e. are even willimgnake costs by helping, are preferred. This
implementation might lead to an even more realistic settidg the one hand this setting could cause that
selfish individuals survive because they do not lose fithessuse of making costs by helping. But on
the long run, no other individuals would be willing to helpchuselfish individuals. So after all a helpful
attitude (low, even negative helper threshold) might beettmved strategy: If | help now, | will get help
later. These investigations might explain situations wtaar individual makes cost by helping, which occur
often in the real world.

7 Conclusions

This paper addressed the discrepancy between cooperatirdj\eerse populations on the one side and the
evolutionary principle which seemingly failed to explaiig on the other side. The issue was addressed
by means of computer simulations, in which cooperation rapidms, as have been postulated by evolu-
tionary biologists, were implemented to see if this coultli¢éo the evolution of a cooperative and diverse
population. The results of the experiments showed thatthiedility of (innate) cooperation mechanisms
in a given population can indeed, in some situations, leatiécevolution of a population of cooperating
individuals. Moreover, if there is a lot of cooperation beem individuals, groups tend to become more
divers and individuals more specialized. In sum, the reseastablishes by means of computer simulation
that cooperation mechanisms can indeed serve as an exptafatthe evolution of a diverse population
with specialized individuals.

Furthermore the results indicate that the possibility talgsh cooperation is one of the fundamental
aspects of evolution. | agree with what Nowak [14] statespewation should be added as a third funda-
mental principle of evolution beside mutation and selectio
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Appendix

A Manipulation of the variable ‘ExtraCosts’

In a pilot study | manipulated the variable ‘ExtraCosts’. iSTtaariable indicates how much working alone on a task
costs extra. Several values between 1.1 and 1.7 (with pr)J=w@&ee tested. The effect is that when there are less extra
costs there is less working together, especially on sanks thsre is no working together at all. When there are high
extra costs there is much working together, as working aisvery expensive (See Figure A-1). In the experiments
the variable ExtraCosts is set to 1.3.

Different Tasks
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Figure A-1: Influence of the proportion of reward that thepeelgets on the amount of cooperation. Top:
Different tasks, bottom: Same tasks

B Baseline and maximum values for average fitness

Different average fithess values could be observed for ttimgavithout cooperation mechanisms, depending on the
task types. This difference in baseline values is due toiffereince in the reward as can be seen in the computations:

Simple tasks (one subtask): Assuming an individual who is average in all skills (skil/é& = 0.33), working
alone:

Fitnesscontribution = Reward — (Cost x 1.3) = 10 — ((1/0.33) x 1.3) = 6.1
For 10 tasks this yields the baseline fitness value of 61.



Different & Same tasks (two subtasks): Assuming an individual who is average in all skills, workiaigne:
Fitnesscontribution = Reward — (Cost * 1.3) =20 — ((1/0.33 +1/0.33) x 1.3) = 12.2
For 10 tasks this yields the baseline fithess value of 122.

Maximal obtainable average fitness value for Different and Same tasks can be computed as follows.
Assuming two specialized individuals (skill level max. 8)).working together:

Fitnesscontribution = Reward — Cost

Fitnesscontribution;nq = (20 — 5) — (1/0.8) = 13.75

Fitnesscontributionpe, = (20 — 15) — (1/0.8) = 3.75

Fitnesscontributionind+heiper = 20 — (1/0.8 +1/0.8) = 17.5
For 10 tasks this yields the maximal fithess value of 175.

C Gain of working together for different and same tasks

There is generally more gain of working together for différasks than for same tasks. This can be illustrated with the
following examples. Assume the first individual has thelsKi0.2, 0.2, 0.6) and the 3 potential helpers have the skills
(0.7,0.2,0.1), (0.2,0.7,0.1) and (0.1, 0.2, 0.7).

Different tasks Assume the task requires the skills A and C. For working altiis yields:
Fitnesscontribution = Reward — (Cost x 1.3) =20 — ((1/0.2 4+ 1/0.6) * 1.3) = 11.33

The most optimal choice for working together is with the figetential helper. This yields the following fitness:
Fitnesscontribution = Reward — Cost
Fitnesscontribution;nqg = (20 — 5) — (1/0.6) = 13.33
Fitnesscontributionper, = (20 — 15) — (1/0.7) = 3.57

Fitness gain for the individual when working togeth&s:33 — 11.33 = +2

So solving the task together is the optimal choice.

Same tasks Assume the task requires two times skill C. For working ajdhis yields:
Fitnesscontribution = Reward — (Cost x 1.3) = 20 — ((1/0.6 + 1/0.6) = 1.3) = 15.67
The most optimal choice for working together is with the [astential helper. This yields the following fitness:
Fitnesscontribution = Reward — Cost
Fitnesscontribution;nqg = (20 — 5) — (1/0.6) = 13.33
Fitnesscontributionpe, = (20 — 15) — (1/0.7) = 3.57
Fitness gain for the individual when working togeth&s:33 — 15.67 = —2.33
So solving the task alone is the optimal choice.

D Parameters

Several parameters were used in my evolutionary algoriti.an overview | list all parameter settings here (see
Table D-1 and Table D-2).

From how many individuals a helper can be chosen NR_HELPERS 3
When expected pay-off ¢, threshold a helper helpsHELPERTHRESHOLD 0
How much working alone costs extra EXTRA_COSTS 1.3
Populationsize pop.subpop.0.size 100
Number of generations generations 200
Length of genome genome-size 3
Minimum value of genes min-gene 0.1
Maximum value of genes max-gene 1
Mutation probability mutation-prob 0.33
Mutation type mutation-type gauss
Standard deviation of Gaussian mutation-stdev 0.05
Selection method pipe.source.0 Tournament Selection
Tournament size select.tournament.size 3

Table D-1: Fixed parameters



Task type

PROPSIMPLE 100 0 0
(what proportion of tasks is PROPDIFFERENT 0| 100 0
simple, different or same) PRORSAME 0 0| 100
Proportion of the reward the helper gets PRORREWARD 0] 0.25| 05

Table D-2: Manipulated parameters




