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Abstract

One in eight women will get breast cancer in her lifetime and in 2008 it has
caused 458.503 deaths among the world [15]. Despite that technology has made
considerable improvements in the last decades, there is still room for more ad-
vances. A technique that possibly can contribute to this field is t-SNE [24]. The
aim of this thesis is to investigate whether t-SNE is able to present the breast cancer
data in an interpretable way and possibly improves the classification performances.
We employ two approaches to explore the applicability of t-SNE. In the first ap-
proach we compare the visualizations and in the second approach the classification
performances are compared. We found that classification on the original data per-
formed significantly better than on t-SNE data. This suggests that t-SNE is not
applicable to the breast cancer data set.

1 Introduction

According to the World Health Organization(WHO), one out of eight women will be
diagnosed with breast cancer [15]. It leads to breast cancer mortality to thousands of
women each year. Many factors have an impact on the high mortality rate. Which in
less developed countries are due to lack of diagnostic facilities, expertise and treatment.
In contrast to western countries these factors are obesity and longer life expectancy. De-
spite the considerable progressions in technology there is still room for more improvement.

One of the most common breast cancer screening method is mammography. The
mammograms are obtained by recording the transmission of X-ray through the breast.
These X-ray images are capable of detecting small tumors. By using computer-aided di-
agnosis(CAD) [7], the radiologist can be assisted to find suspicious regions and therefore
giving a diagnostic decision whether a region is malignant or benign. With this kind of
assistance, it could prevent that malignant masses remains undetected by the radiologist.
The occurrence that a malignant tissue will be overlooked is from 10 to 30 percent. And
also, benign lesions would not be sent for biopsy when abnormalities are found after the
examination of screening. This means that small tissue has to be removed for further
investigation. Several reasons can be addressed to the radiologists misjudgment, such as
subtle nature of the visual findings, poor image quality, fatigue, or oversight. By using
efficient computer algorithms for a diagnostic purpose can be less time consuming and
lead to more sensitive results.

In the field of Machine Learning has been done a lot of work to investigate dimension-
ality reduction methods and classification algorithms to address this problem. However,
a lot of the dimensionality reduction methods are not able to provide insightful visualiza-
tions due to the high number of features. However, a ”new” visualization technique has
been presented by van der Maaten. The student-t Stochastic Neighbor Embedding(t-
SNE) [24] has given promising results for the handwriting dataset, compared to other
dimensionality reduction techniques such as the Sammon mapping [19], Isomap [21],
LLE [18]. The intuitive idea of t-SNE is to map the high-dimensional points into a lower
dimension such that it preserves the local structure, which means that the nearest neigh-
bors of one point in the high-dimensional space should also be the same nearest neighbor
of that point in the low-dimensional space.
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1.1 Research question

The main question is to investigate whether useful information is extractable from the
breast cancer data set by using t-SNE. This research question will be divided into sub-
questions as following:

1. What are the characteristics of the resulting visualization? And will the resulting
visualization be presented in distinctive clusters? Did the resulting visualization
preserve the original structure?

2. If no useful information will be extracted, then the sub-research question will look
for the answer why this technique is not applicable on the data set. Are there any
properties of the t-SNE or data set that will lead to inapplicability? But did the
resulting visualization preserve the original structure?

1.2 Outline

In section 2, I will discuss the relevant work that has been done in this field. Furthermore
the methods that we used are discussed in section 3, such as the visualization algorithms,
classifier and the experimental setup. In section 4, we will present the results. Eventually,
the conclusion and discussion will be discussed in section 5.

2 Background

In this section, we will discuss the related work that has been done on visualizing data
using t-SNE. Despite t-SNE is a ”new” visualization technique, this technique has been
used for research in several domains, such as in cancer research [12], computer security
[6] and mostly in biology [3] [12].

2.1 Related work t-SNE

In the research of Jamieson et al. [13], they have investigated whether unlabeled data is
able to enhance the breast CADx performance. This study was performed by comparing
the dual-stage CADx schemes with a single-stage scheme. The dual-stage CADx schemes
is constructed such that for the first stage the dimensionality of the breast cancer data
is reduced which subsequently will be used in the second stage. The first stage employs
both labeled and unlabeled data. In the second stage the labeled data from the reduced
dimension embedding is used to train a classifier and eventually the performances will
be evaluated. The single-stage scheme combines the two stages, and uses therefore a
semi-supervised algorithm. They have find evidence that using unlabeled data in CADx
methods may improve the classifier performance.

In another study for which t-SNE had been explored on Single Nucleotide Polymor-
phisms (SNPs). ”SNPs are one the largest sources of new data in biology.” [16] Usually
these are visualized by using PCA, however, Platzer proposed to use t-SNE and compare
the results with PCA in several ways. He has discovered that t-SNE performs better than
PCA in all of the proposed criteria for evaluating the visualizations. Besides of judging
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the visualizations visually which is rather a subjective measure, he also used measure-
ments for the structuredness of the data. Such measurements are the Dunn’s Validity
Index [5] and the Silhouette Validation Method [17].

3 Methods

3.1 Breast cancer data set

The breast cancer that we used is provided by the Diagnostic Image Analysis Group
from the UMC St Radboud. These are mammograms which are taken from different
views at different stages of screening. At screenings for the very first time, the person
will be screened from a medial lateral oblique (MLO) and cranio caudial(CC) view. The
first screening view is taken from an angled view, this is preferred over a 90 degrees
projection which is able to image more breast tissue [11]. The latter screening view takes
the image above the breast. For next screening session, only one view MLO will be used
for screening. But when there is an indication that taking an image from a CC view
would be beneficial to the process for detecting malignant masses, then a image from this
view will be obtained either.

Figure 1: Schematic overview of preprocessing and initial detection stage [9]

The breast cancer data consist of 455.396 regions, and is achieved by completing two
stages, respectively preprocessing and initial detection. The schematic overview is shown
in figure 1.

3.1.1 Preprocessing

Subsequently, the mammograms are digitized at a pixel resolution of 50 µm and are sam-
pled down to a resolution of 200 µm. After digitization of all mammograms, these will
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be preprocessed by performing three steps, namely segmentation into three areas (breast
region, background and pectoral muscle), pectoral equalization and peripheral enhance-
ment. Then, in order to detect candidate mass regions, an initial detection described by
Karssemeijer and te Brake has been performed [9] [14] [20]. This stage is based on image
features which are extracted locally. These image features are including two gradient
concentration measures, two spiculation measures and one measure indicating the scale
at which most spiculation is present. Then, an ensemble of 5 neural networks are used
to compute a likelihood score for each location on a regular grid, which all of these likeli-
hood scores together makes up a likelihood image. Furthermore, the likelihood image is
smoothed and each local maximum that exceeds a certain low threshold will be selected
as a candidate mass region. Subsequently, for each of the local maximum a candidate
mass region is segmented using a segmentation method based on dynamic programming.
Hence, when candidate masses will be interpreted, the outcome will be classified into
benign or malignant tissue. [9]

3.1.2 Features

Each segmented region consists of a set of 71 features for which can be divided into several
categories. These categories can be found in figure 2. ”One of the feature groups measure
the suspiciousness of normal tissue. These context features are described in Hupse and
Karssemeijer” [10]. Moreover, they have assigned 71 random values to each candidate
region for which these random values are referred as noise features. These noise features
were distributed uniformly between 0 and 1. The purpose to add these noise feature is
to investigate whether the feature selection algorithms were able to distinguish between
useful and non-useful features.

Figure 2: Features computed for each segmented region by Hupse [10]
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3.2 t-SNE

As mentioned in the introduction, the t-SNE will be used to visualizing the breast cancer
data. This method is implemented in MATLAB by van der Maaten [23] for which diff-
ferent versions are available, but for this project I have used the simple implementation.
Moreover, t-SNE is originated from Stochastic neighbor Embedding [8].

The algorithms works as following, first, for each pair of points in the high dimen-
sional space X = {x1, x2, x3, . . . , xn}, also called the H-space, the pairwise Euclidean
distances between data points will be converted into conditional probabilities, which is
the probability of data point xi picks data point xj as its nearest neighbor. As result
that, if the distance between these points is small, then the conditional probability should
be high. Once all pairwise conditional probabilities are computed, then these conditional
probabilities will be averaged using the following equation, pij = pi|j + pj|i/2n. This is
important due to the fact that pi|j and pj|i are not equal, which enables all data points
to make a significant contribution to the cost function.

pj|i =
exp(−‖xi − xj‖2)/2σ2

i∑
k 6=i exp(−‖xi − xk‖2)/2σ2

i

(1)

The conditional probabilities are dependent on both the Euclidean distances between
data points as well as the perplexity, which can be represented as the number of effective
nearest neighbors. This parameter is the value which has to be specified by the user, such
that the optimal number of effective neighbors can be found for all data points. This is
important due to sparse and dense regions in the data. Sparse regions requires a higher
variance while dense regions a lower variance. This is illustrated by figure 3. Thus, it
is necessary that each data point can find the optimal number of nearest neighbor, such
as outliers or distant points can be mapped near to one of its neighbors. Otherwise, the
visualization will consist of many outliers or data points that are widely spreaden out.

The variance, for the data points in H-space, is distributed under a Gaussian distri-
bution, and can be found using the second equation.

Perp(Pi) = 2H(Pi) (2)

for which H(Pi) = −
∑
j

pj|i log2 pj|i (3)

After calculating all conditional probabilities the algorithm initializes a solution. This
solution is randomly generated under a Gaussian distribution and updates the cost func-
tion at each iteration.

Y (0) = {y1, y2, y3, . . . , yn} for which n is the size of the data set (4)

Subsequently, pairwise distances will be computed for data points in the lower di-
mension (V-space), for which the variance is distributed, in contrast to the data points
in H-space, under a student t-distribution. By using a student t-distribution with one
degree of freedom, which makes it heavier-tailed, as consequence that moderate distant
points will also be mapped close to its neighbors.

qij =
(1 + ‖yi − yj‖2)−1∑
k 6=l(1 + ‖yk − yl‖2)−1

(5)
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For each iteration, the positions of the data points in the lower dimension will be be
updated such that the gradient of the cost function is minimal. The update function is
as follows:

Y (t) = Y (t−1) + η
δC

δY
+ α(t)(Y (t−1) − Y (t−2)) (6)

for which the gradient of the cost function is
δC

δyi
= 4

∑
j

(pij − qij)(yi − yj)(1 + ‖yi − yj‖2)−1

(7)

i

j

variance σ under a 
gaussian distribution

p(j|i) is the probability that data point j 
will be picked by data point iH-space

i

variance σ under a 
student t-distribution

V-space

i

jH-space

i

j

V-space

Perplexity = 100           Perplexity  = 400

j

Figure 3: This figure illustrates the effect of a given perplexity value in data set for which the
points are distant or close to each other. This shows that a higher perplexity value produces a
higher variance, which enables that distant data points can also be mapped near to its nearest
neighbor.

3.3 Laplacian Eigenmaps

Another visualization method that we have used in order to compare the results with
t-SNE visualizations is Laplacian Eigenmaps [1]. This method has a similar purpose as
t-SNE which means that the local structure will be preserved and is relatively insensitive
to outliers and noise. The algorithm consist of a few steps, such as building a adjacency
graph for a set of points in high-dimensional space, choose the weight for edges, eigen-
decomposition of the graph and form the low-dimensional embedding.

Firstly, all data point in the high-dimensional space X = {x1, x2, x3, . . . , xn} will be
represented as nodes. The adjacency graph is constructed by connecting the nodes for
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which the nodes are close to each other. This can be done in two ways, either connecting
two nodes only if ‖xi−xj‖ < ε for which ε ∈ R. Or using n nearest neighbors to determine
which nodes has to be connected which means if node xi is of the n nearest neighbors of
node xj or xj is among the n nearest neighbor of node xi, then these two nodes will be
connected.

Secondly, weights have to be assigned to the connections. This can be achieved by
two variations as well. For the simple-minded variant, if and only if node xi and xj
are connected, then weight wij = 1, otherwise the weight wij = 0. Another variaton

called heat kernel calculates the weight as following wij = exp−
‖xi−xj‖

2

t if the nodes are
connected, otherwise wij is zero.

Thirdly, assume that graph G, which is constructed in the previous steps, is connected.
Otherwise, proceed with this step for each connected component. The eigenvalues and
eigenvectors are computed for the following eigenvector problem:

Ly = λDy (8)

where D is the diagonal weight matrix, its entries are column sums of W , Dii =
∑

j Wji,
L = D −W for which L is the Laplacian matrix. ”Laplacian is a symmetric, positive
semidefinite matrix that be thought of an operator on functions defined on vertices of
G.” Let y0, . . . , yk−1 be the solutions of equation 8, for which the solutions are ordered
according to their eigenvalues:

Lf0 = λ0Df0

Lf1 = λ1Df1

. . .

Lfk−1 = λk−1Dfk−1

0 = λ0 ≤ λ1 ≤ · · · ≤ λk−1.

The eigenvector f0 corresponding to eigenvalue 0 will be left out and the next m
eigenvectors are used for embedding in m-dimensional Euclidean space:

xi → (f1(i), . . . , fm(i)).

This algorithm is also implemented by van der Maaten in MATLAB. [22] As explained,
the algorithm consist of multiple variations, therefore step 1 (constructing graph) is im-
plemented by using n nearest neighbors for which the default value is 12. The advantages
of using this method are: it simplifies choosing the to be connected nodes and it prevents
that disconnected graphs will occur. However, the disadvantage of this method is that
the geometrical intuitions are less obvious. Moreover, step 2 (choosing weights) can also
be done in two ways. For this step, weights are based on heat kernel for which parameter
t is set to 1. [2]

3.4 Experimental Setup

In order to investigate whether t-SNE is an applicable method for the breast cancer data
set, we will employ two approaches. One approach will investigate the visualizations by
t-SNE and therefore we use Laplacian Eigenmaps for comparison. The second approach
that we use is to compare the classification performances of t-SNE with the performances
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of Laplacian Eigenmaps and the original data. The second approach is illustrated by
figure 4.

In table 1, all t-SNE parameters are listed, most of these parameter values are set to
default, except for perplexity. Each experiment for which it involved t-SNE or Laplacian
Eigenmaps, the dimension of the data will initially be reduced to the initial dimensions
parameter value. This is proposed by van der Maaten in order to accelerate the compu-
tation. Furthermore, as listed in table 1, the list consist of two momentum parameters.
The final momentum is greater than the initial momentum which ensures the solution to
find a global optimum rather than a local minimum. Another important parameter is the
iteration number for which the algorithm has to stop ”lying” about the P-values. This
parameter is responsible for creating more spacings between clusters such that clusters
are able to move around easier in order to find a better global solution. In their paper it
is called ”early exaggeration”.

Parameter Value Description
perplexity 500 the number of effective neighbors
initial dimensions 30 PCA reduces the data to initial number of dimensions
max iter 1000 maximum number of iterations T
epsilon 500 learning rate η

momentum 0.2 initial momentum α(t)
final momentum α 0.8 final momentum α(t)
min gain 0.01 minimum gain
mom switch iter 250 iteration at which momentum is changed
stop lying iter 100 iteration at which lying about P-values is stopped

Table 1: Cost and optimization function parameter settings for the experiments

3.5 Evaluation methods

The breast cancer data set contains only 0.09% of cancerous regions. Due to the highly
skewed data set, the data set has to be transformed such that each train and test set
contains enough malignant as benign cases. This prevents that the classification algorithm
is either trained on benign or malignant examples. The data set is divided into 5 subsets
with the notion that all region from one person should be in either one of the subsets. The
five training and test sets are generated as follows. First, all of the malignant regions were
selected and are transferred into a new set. Then, for each of the malignant region the
similarity to each benign region was computed, this is done by calculating the Euclidean
distances between these two regions. As result, that the two most similar malignant and
non-malignant regions are found. These two regions are transferred to a new training
set. For each training set, an internal cross validation had been used to find the best
parameters C and γ [4] to test the testing data. Moreover, a weight has been attached
to each class, such that mistakes on malignant cases are penalized much heavier than
benign cases.

According to the first approach, t-SNE will be compared with the Laplacian Eigen-
maps visualizations. In order to gain insight whether visualizing data is more useful than
classifying the data without reducing the dimensionality, we will compare the performance
measures obtained from SVM classification of all three methods. The performance mea-
sures that we employ are:
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t-SNE mapping laplacian eigenmaps  
mapping

SVM classi�cation

Performance evaluation

Figure 4: work flow outline of the second approach : the black arrows represents the data that
first will be visualized and then be classified. For the grey colored arrow the data which will be
classified without reducing the dimensionality. By performing these three experiments for each
training and test set, we can compare the results and see whether visualizing the data has a
positive contribution to the performance

• sensitivity = TP
TP+FN

• specificity = TN
TN+FP

• accuracy = TP+TN
TP+TN+FP+FN

4 Results

4.1 Visualizations by t-SNE

In this section, the results will be shown and described. In figure 5 visualizations t-SNE
with different perplexity values are presented. According to the paper by van der Maaten,
the perplexity value should be between 5 and 50. In this figure, the two visualizations by
t-SNE with perplexity value of respectively 15 and 35 represented in 3-dimensional space.
Reducing the data set to 3 dimensions leads to more insightful visualizations than in 2-
dimensional space. This becomes helpful when a lot of data points are covered by other
data points. However, as shown figure 5a the data points are still hardly separated in
contrast to figure 5b for which the perplexity has increased, as result that data points are
more separated from each other. In figure 6a, the visualization by t-SNE with perplexity
value of 50 is shown in 2 dimensions which makes it easier to interpret the visualization.
Although increasing the perplexity value leads to better visualizations, the malignant and
benign cases are still not clustered well. As mentioned, increasing the perplexity value
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is able to separate the data points which are extremely similar, moreover, this leads to
bigger groups of data points shown in figure 6b which is clearly not the case in when the
data set is visualized with a perplexity value of 50.

(a) cost function parameter perplexity is set to 15

(b) cost function parameter perplexity is set to 35

Figure 5: The breast cancer data set is reduced to 3 dimensions

12



(a) cost function parameter perplexity is set to 50

(b) cost function parameter perplexity is set to 500

Figure 6: The breast cancer data set is reduced to 2 dimensions
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4.2 Comparison with Laplacian Eigenmaps visualizations

In figure 7, the visualization by Laplacian Eigenmaps are shown with default value 12 for
k nearest neighbors. The visualizations are not well clustered either. And the Laplacian
eigenmaps visualizations consist of bigger clusters for which the benign and malignant
cases mixed together.

Figure 7: k nearest neighbors set to 12
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4.3 Local structure

The main purpose of this visualization technique is reduce the dimensionality such that
the global as well as the local structures are preserved. This means that the first nearest
neighbor for a data point in the high dimensional space should also be modeled as the first
nearest neighbor for that data point in the lower dimension, the second nearest neighbor
in the dimension as the second nearest neighbor in the lower dimension, etc. Figure 8
shows the number of correct neighbors for the first five nearest neighbors .

(a) the number of correct neighbors for each train set

(b) the number of correct neighbors for each train set

Figure 8: Compare t-SNE with Laplacian Eigenmaps in sense of preserving the local structure

The figure clearly shows that t-SNE is able to preserve the local structure much better
than the Laplacian Eigenmaps. Moreover, the differences between data sets are also larger
for the Laplacian eigemaps visualizations which can be due to the nearest neighbors that
are selected using the k nearest neighbor algorithm is more affected by the distances
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between data points, while in contrast, the perplexity value that has been used by t-SNE
shows more consistency.
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4.4 SVM classification

As mentioned in the previous section, three performance measures are used for comparing
the SVM classifications. The classification results of both Laplacian Eigenmaps and the
unvisualized data are better than on t-SNE test data.

(a) SVM classification on t-SNE data

(b) SVM classification on unvisualized data

(c) SVM classification on Laplacian Eigenmaps data

Figure 9: SVM classification
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sensitivity specificity accuracy
t-SNE 0.576 0.251 0.359
Original data 0.625 0.287 0.397
Laplacian Eigenmaps 0.643 0.245 0.378

Table 2: Averages across the five data sets

For the second approach, the results are shown in table 2. The average across the
five data sets for each performance measure is calculated. As result that statistically
significant differences in the average were found for specificity, sensitivity and accuracy
between t-SNE classification performances and the original data with a 95% confidence
intervals. This means that visualizing data using t-SNE does not perform better than
classification without the data being visualized. Significant differences were also found
for sensitivity and accuracy between the t-SNE and Laplacian Eigenmaps visualization.
Thus, no significant difference for specificity was found. In the sense of medical diagnos-
tics, using t-SNE might lead to more healthy people be correctly classified as not having
breast cancer than using Laplacian Eigenmaps.
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5 Conclusion and Discussion

The research question is that we want to know whether using t-SNE visualization tech-
nique is able to give useful information from the breast cancer data set. We have used
two approaches to explore the applicability of t-SNE. For the first approach we com-
pared the visualization by t-SNE with Laplacian Eigenmaps. Both visualization methods
were not able to separate the two categories in an interpretable way. However, the lo-
cal structure of the data was preserved better by using t-SNE than Laplacian Eigenmaps.

For the second approach, we have compared the classification performances of t-SNE
with Laplacian Eigenmaps and original data. Both Laplacian Eigenmaps and the origi-
nal data performed significantly better on the classification task. Significant differences
were found for sensitivity and accuracy. Thus, visualizing the data does not improve the
classification performances.

These differences can be caused by the SVM parameters C and γ which are not ob-
tained from the internal cross-validation, but these parameter values are finally manually
chosen. The reason to choose the values manually is because of the problems that we
have encountered.

Several reasons may have caused the failure of visualizing the breast cancer data using
t-SNE in an interpretable way. Firstly, the data set consist of very few number of malig-
nant cases which makes it difficult to train the classifier well, which may be the reason
why the unvisualized data did perform poorly either. Secondly, not all data has been
used to training and testing, moreover the employed benign and malignant are really
similar, which can be defined as the ”hard” cases.

The results from the experiments did not show that t-SNE is an applicable technique
for the breast cancer data set. Neither the visualization contained well separated clusters
nor the performances of the SVM classification on the test data were promising.
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