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Abstract

The human ability for forming analogies – the ability to see one thing as another –
is believed to be a key component of many human cognitive capacities, such as lan-
guage, learning and reasoning. Humans are very good at forming analogies, yet it is
non-trivial to explain how they achieve this given that the computations appear to
be quite time consuming. For instance, one of the most influential theories of anal-
ogy derivation, Structure-Mapping Theory (SMT) (Gentner, 1983) characterizes
analogies as optimally systematic mappings from one representation to another.
This theory has been previously proven to be intractable (formally, NP-hard),
meaning that computing SMT analogies requires unrealistic amounts of time for
all but trivially small representations. However, a large body of empirical research
supports the optimality assumption of SMT. This poses the question: If SMT is
indeed descriptive of human performance, then how can we explain that humans
are able to derive optimal analogies in feasible time? A standard explanation is that
humans use a heuristic, which has also been proposed in the literature. A novel
explanation is that humans exploit representational parameters to achieve efficient
computation.

This thesis provides the first systematic controlled test of the heuristic expla-
nation and a systematic comparison of its performance with that of the parameter
explanation. The results establish two main findings: (1) The extent to which the
heuristic is capable of computing (close to) optimal analogies is considerably worse
than what was previously believed; and (2) an exact algorithm exploiting a key
parameter of SMT can compute optimal analogies in a time that matches that of
the heuristic. Based on these results we conclude that, in its current form, the
heuristic explanation is lacking validity, and the parameter explanation provides
a viable alternative which motivates new experimental investigations of analogy
derivation.
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1 Introduction

“The ships hung in the sky in much the same way that bricks don’t.”

(Douglas Adams (1979): The Hitchhikers Guide to the Galaxy)

The above is an example of an analogy between ships and bricks (describing a very
complex relation between the two). Humans are very good at understanding and
forming such analogies (and simpler ones such as “school is like a prison” or “my
father is like a rock”), and we use them in everyday life, even implicitly.

The ability to derive analogies is believed to be a key factor for human in-
telligence, underlying many cognitive functions like language (e.g. the use of
metaphors), learning (e.g. generalization), reasoning (e.g. case-based reasoning)
and other high level cognitive skills that make humans so smart (Gentner, Holyoak,
& Kokinov, 2001; Gentner, 2003; Hofstadter, 2001; Kurtz, Gentner, & Gunn, 1999;
Penn, Holyoak, & Povinelli, 2008). It is argued that analogy derivation also plays
a part in low level processes like representation (Blanchette & Dunbar, 2002) and
language comprehension (Day & Gentner, 2007). For example, there is support for
analogy in similarity judgement (Gentner & Markman, 1997) and spatial learning
(Smith & Gentner, 2012). In the case of language comprehension, people seem to
focus on relational matches when comparing sentences (Gentner & Kurtz, 2006;
Gentner & Christie, 2008; Rasmussen & Shalin, 2007). Analogies are used in cre-
ative processes, like scientific reasoning and problem solving, which use an analogy
between the unknown and previously encountered situations to transfer knowledge
about the known situation to the new situation (Blanchette & Dunbar, 2001; Dun-
bar, 1995; Gentner, 1983; Gick & Holyoak, 1980; Holyoak & Thagard, 1996).

It is however hard to explain how humans are so good at the non-trivial task of
making analogies. For example, one of the most influential theories of human anal-
ogising, Structure-Mapping Theory (SMT) (Gentner, 1983), characterizes analogy
derivation as finding the most systematic common structure between two repre-
sentations. Computational complexity analyses have shown that SMT is computa-
tionally intractable, which implies that there can not exist a method that derives
optimal analogies in feasible time for all representations. Humans, however, seem
able to make analogies very quickly, and these analogies fit the optimal systematic
analogies described by SMT (Clement and Gentner (1991); see also Section 2.3 of
Gentner and Colhoun (2010)). This seems to contradict the intractability of SMT,
assuming that human cognition is bound by computational resources.

Two explanations have been proposed to deal with this question of how humans
are able to compute optimal solutions in feasible time. The first claims that humans
are deriving close-to optimal analogies by using heuristics (Gentner & Markman,
1997). This is a standard explanation in cognitive science (Chater, Tenenbaum,
& Yuille, 2006; Gigerenzer, 2008). A novel explanation argues that humans are
only fast (and optimal) when the analogy has certain characteristics (van Rooij,
Evans, Müller, Gedge, & Wareham, 2008). To date, there have been no controlled
studies (outside of a limited test of the heuristic implementation of SMT (Forbus
& Oblinger, 1990)) which compare the differences between these proposed expla-
nations. This study aims to assess the viability of these explanations for dealing
with the intractability of analogy derivation under SMT by means of a systematic
comparison of the performance of the proposed methods.

1



This thesis is organized as follows: Chapter 2 describes SMT, computational
complexity and the two explanations in more detail. Chapter 3 begins by specify-
ing the hypothesis and research questions of this study more formally, and describes
the methodology used in order to assess the viability of the two explanations. The
results of our study are presented in Chapter 4. Finally, Chapter 5 discusses how
the interpretations, implications and limitations of these results lead to the con-
clusion that the heuristic explanation in its current form lacks validity and that a
parameterized exact algorithm provides a viable alternative.

2



2 Background

This chapter introduces the key concepts used in this thesis, starting with Structure-
Mapping Theory and then moving in to complexity theory, its use in cognitive
science and its applications for Structure-Mapping Theory. Finally the two methods
of explaining how humans could be making optimal analogies in Structure-Mapping
Theory are more formally described.

2.1 Structure Mapping Theory

According to one of the most influential theories of analogy derivation, Structure-
Mapping Theory (SMT), analogy derivation involves finding maximal mappings
between representations (Gentner, 1983, 1989). SMT describes the analogical pro-
cess in three steps:

1. Retrieval

2. Mapping

3. Inference

When trying to make analogies, the first step is to scan long-term memory for
candidate structures. The second step, mapping, is the process of aligning two
structures in a maximal way (deriving the analogy). Given a mapping, it is then
possible to make inferences (the third step) by projecting relations from one struc-
ture to another.

The most studied process is mapping, and this will also be the focus of this
thesis. The analogy derivation process will now be introduced using the example in
Figures 1 & 2. For more details and a complete overview of the other two steps, the
reader is referred to Gentner and Colhoun (2010) and Gentner and Smith (2012).

Mapping involves the aligning of predicate structures, collections of statements
about the world which are commonly used in knowledge or language representation.
For example, the fact that a planet orbits the sun can be expressed in a predicate
structure:

• Attracts(sun, planet)

Here, sun and planet are objects, physical entities in the world. Note that objects
can represent many things, e.g. situations or concepts. Attracts is a predicate
describing the relation between the two (the sun attracts the planet). The predicate
has two arguments (in other words, the arity of the predicate is two), planet and
sun, which themselves have no arguments. Predicates can be ordered or unordered
depending on whether or not argument order matters, e.g., greater is ordered
(“X is greater than Y” means something different as “Y is greater than X”), but
and is unordered (“X and Y” means the same as “Y and X”). Arity-1 predicates
are called attributes and can be used to describe specific attributes of the objects,
for example:

• Mass(sun)

The mass predicate represents the mass of its argument and is a special kind of
attribute, a function, as it has a resulting value. Adding more knowledge to this
structure, more complex relations can be symbolized:

3



(a) Solar system (b) Atom

Sun Planet

Mass Mass

Gravity Greater Attracts Revolves

Cause And

Cause

(c) Solar system

Nucleus Electron

Charge Charge

Opposite Greater Attracts Revolves

(d) Atom

Figure 1: Example of predicate-structure representations of the solar
system and an atom:
(a) Simplified model of the Solar system, with planets orbiting the sun
(b) Simplified model of an atom, with electrons orbiting a nucleus
(c) Predicate structure representation of the Solar system
(d) Predicate structure representation of an atom

• Cause(
And( Greater(Mass(sun), Mass(planet) ), Attracts(sun,planet) ),
Revolves(planet,sun)
)

Such structures can be visualized using directed graphs, where predicates, at-
tributes, functions and objects are nodes (objects are leaves) and arcs between
nodes indicate predicate arguments. The complete sun and planet example is illus-
trated as predicate structures in Figure 1.

Given the two predicate structures like the ones in Figure 1, SMT defines an
analogy to be a mapping from nodes in the base (solar system) to the nodes in the
target (atom) structure (Figure 2a). Both base and target in this example have two
objects, which have functions and relations. In the example, sun, planet, nucleus
and electron are all objects, and mass and charge are examples of functions.
Note that relations can be defined on all nodes in the structure (objects, attributes

4



Sun Planet

Mass Mass

Greater Attracts Revolves

Nucleus Electron

Charge Charge

Greater Attracts Revolves

(a) Analogy

Sun Planet

Mass Mass

Gravity Greater Attracts Revolves

Cause And

Cause

Nucleus Electron

Charge Charge

Opposite Greater Attracts Revolves

And

Cause

(b) Inference

Figure 2: Example of an analogy between the solar system and an atom.
(a) The analogy (dashed line) between the representations of the solar
system (base) to the atom (target). (b) How the analogy from (a) can
be used to project relations from one predicate structure to another
(e.g. the cause relation).
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or other relations); this way, high-level knowledge structures can be represented.
The goal of analogy derivation is to find the mapping between base and target,

connecting objects in the base with objects in the target, and connecting the rel-
evant predicates and attributes. Predicates and attributes can only map to other
predicates and attributes of the same type (e.g. greater can map to greater,
but not to attracts). In the example, sun is mapped to nucleus and planet
to electron. Their common predicates are mapped (revolves and attracts),
as well as their attributes mass and charge. Note that functions, like mass and
charge, can map to other functions of different types. A mapping is a valid anal-
ogy when it is consistent (it contains no many to one mappings), and supported
(if predicate A in base maps to predicate B in target, all arguments of A must
map to the corresponding arguments of B as well.). Gentner (1989) refers to these
constraints as “one-to-one correspondence”, and “parallel connectivity”. Whether
the arguments must match in the same order differs per type: When matching two
ordered predicates (e.g. greater), their arguments must match in the same order,
i.e. the first argument of greater in the base must match to the first argument
of greater in the target. When matching two unordered predicates (e.g. and),
their arguments may match in any order.

Many possible mappings can be created, and according to the systematicity prin-
ciple humans prefer mappings with many high-level connections (Gentner, 1983).
Structural Evaluation Score (SES) is a measure to score the quality (systematicity)
of analogies by rewarding the interconnectivity and deepness of the analogy. SES
works by giving a value (e.g. 1, although different values can be assigned for e.g.
functions or objects) to each match in an analogy, and then this value is passed on
down to the arguments of the match (adding it to their value). The score of an
analogy is the sum of the scores of all its matches (e.g the analogy in Figure 2a has
a SES of 17). This mechanism results in deep, interconnected analogies having a
higher SES than for example flat structures with few connections (Forbus & Gen-
tner, 1989). For example, the analogy “my father is like a rock” would have deeper
structure than e.g. “my father is like the Eiffel Tower”. This method of scoring has
been shown to fit human data very well. For example, Clement and Gentner (1991)
and Gentner and Toupin (1986) found that people prefer larger shared systematic
structures when making analogies.

To summarize, many possible mappings can be created between two structures,
and humans are very good at finding those mappings that are systematic analo-
gies. The following sections will describe how computational complexity theory
can be used to show how hard it is to find optimal analogies under SMT and the
implications of those results for SMT as a model of human cognition.

2.2 Computational Complexity

Computational complexity theory can be used to assess the inherent difficulty of
computational problems. This section will broadly introduce relevant definitions
used in complexity theory. For a more complete introduction to complexity theory,
refer to (Garey & Johnson, 1979), (Cormen, Leiserson, Rivest, & Stein, 2001) and
(Papadimitriou, 1993).

A computational problem is a specification of the input and the corresponding
output for this problem. An example would be the problem of sorting a list of
integers, where the input is a list of integers (L =< x1, x2, . . . , xn >) and the output

6



Amsterdam

Prague
Paris

Bern

Frankfurt

Milan

From To Distance
Amsterdam Paris 430
Amsterdam Frankfurt 360
Amsterdam Prague 700
Amsterdam Bern 630
Amsterdam Milan 830
Paris Frankfurt 480
Paris Prague 880
Paris Bern 430
Paris Milan 640
Frankfurt Prague 410
Frankfurt Bern 360
Frankfurt Milan 520
Prague Bern 620
Prague Milan 650
Bern Milan 210

Figure 3: Example of a TSP instance. Distances between cities listed
on the right. The goal is to find the shortest possible route (solid
line) visiting all cities exactly once. In this small example, already 360
possible routes exist and adding another city would cause 2520 possible
routes, illustrating that the amount of time required to check every
route increases exponentially with the input size.

is a permutation of L such that for all xi, xi+1 ∈ L, xi ≤ xi+1. A computational
problem can be solved by an algorithm (i.e. a finite sequence of steps relative to
some computer (e.g. a Turing machine)) if and only if this algorithm gives the
correct output for all possible inputs.

The difficulty of computational problems can be characterized by how the worst-
case required time (in terms of the number of performed steps) to solve the problem
grows with the input size of a problem. This is expressed using the Big-Oh notation,
which describes the upper bound of a function. Some problems can be solved
in polynomial time, meaning the worst-case required time grows as a polynomial
function of the input size (e.g. O(1), O(n) or O(n4), but not O(2n)). The class of
all problems that are computable in polynomial time is denoted by P.

Take, for example, the sorting problem introduced earlier. There exist algo-
rithms that sort lists in O(n log n) time (with n being the size of the list) in the
worst case, which means that the upper bound on the required time is a polynomial
function of the input size (Cormen et al., 2001). Therefore, sorting is in P.

Another class of problems is NP, which is the class of decision problems (i.e.
problems for which the output is either “yes” or “no”) for which “yes”-answers
are easy to check, meaning that verifying whether a candidate solution is a valid
solution to the problem can be done in polynomial time (Note that as this is the
case for all problems in P, P ⊆ NP).

An example of a problem for which its decision version is in NP is the classic
Travelling Salesperson problem (TSP) (see Figure 3 for an example instance of
TSP). TSP can be defined as follows:

7



• Given a list of cities and the distances between these cities, what is the shortest
route that visits all cities exactly once?

And its decision version:

• Given a list of cities and the distances between these cities and a value k, does
there exist a route that visits all cities exactly once and has a length of at
most k?

It is easy to see that checking whether a candidate solution (a route) is a valid
solution for the decision problem can be done in polynomial time, by verifying that
every city is part of the route, computing the sum over all distances in the route
and verifying that this sum ≤ k. Therefore, TSP is in NP.

In the case of TSP, to solve the decision problem, in the worst case all possible
routes have to be examined, of which there are (n−1)!

2 (with n being the number of
cities). The fastest algorithms for TSP also require exponential time (Cormen et al.,
2001; Woeginger, 2003), so it seems likely that there does not exist an algorithm
solving TSP in polynomial time (i.e. TSP is not in P). This is confirmed by
the result that TSP is so-called NP-complete (Garey, Graham, & Johnson, 1976;
Papadimitriou, 1977). To explain NP-completeness, first NP-hardness has to be
introduced:

For certain problems it can be proven that all problems in NP are polynomial
time reducible to it. A decision problem A is polynomial-time reducible to a decision
problem B if every instance of problem A can be transformed into an instance of
problem B such that this transformation runs in polynomial time and the answer
to the created instance of B is “yes” if and only if the answer the given instance
of A is “yes”. With such a transformation, any instance of A can be solved by

Computable functions

NP

NP-complete P

Figure 4: The relation between complexity classes within the domain
of all computable functions. Figure adapted from van Rooij (2008).

using the transformation and an algorithm for B. These problems are called NP-
hard (they are at least as hard as the hardest problems in NP). Problems that
are both in NP and NP-hard are called NP-complete. Figure 4 illustrates these
relations between the complexity classes. It is generally believed that P 6= NP, i.e.
there exist problems in NP for which no polynomial time algorithm exists (Garey
& Johnson, 1979; Fortnow, 2009). This implies that all NP-hard problems are
not in P. Returning to the TSP example; the finding that TSP is NP-complete
confirms that there does not (and cannot ever) exist an algorithm that solves TSP

8



in polynomial time (unless P = NP). How computational complexity theory and
these complexity classes are of interest to cognitive science will be explained in the
next section.

2.3 Computational Complexity and Cognition

Marr (1982) distinguishes three levels in the computational analysis and explanation
of cognitive functions. The computational level is the top level, describing what
a cognitive process does in terms of the high-level input-output mapping, i.e. a
function. Next is the algorithmic level, which specifies how the function converts
the input to the output (e.g. which sequences of steps it takes). Finally, on the
implementation level the physical realization of the algorithm is described (e.g.
neuronal activities).

Cognitive processes can thus be analysed at the computational level by treat-
ing the cognitive function as a computational problem, specifying the input and
the output of the function (defining what the function does). Computational com-
plexity theory can then in turn help in the process of creating or adapting such
computational level models of cognition. As human cognition is restricted by com-

Computable functions

NP

NP-complete
P

Cognitive functions

Figure 5: The relation between cognitive functions and the complexity
classes under the P-cognition thesis (Frixione, 2001). Figure adapted
from van Rooij (2008).

n n2 2n n!
1 1 2 1
5 25 32 120
10 100 1024 3628800
25 625 33554432 1.6× 1025

50 2500 1.1× 1015 3.0× 1064

100 10000 1.3× 1030 9.3× 10157

1000 1000000 1.1× 10301 4.0× 102567

Table 1: A comparison of example polynomial and exponential algo-
rithm runtimes. Listed are the number of steps needed for polynomial
(n,n2) and exponential (2n,n!) algorithms for input size n.

9



putational resources, it is important to know how hard computational models of
cognitive functions are. This has been formalized in the P-cognition thesis, which
states that all cognitive functions are in P (computable in polynomial time), and
therefore computational models of cognition should adhere to this limit (Frixione,
2001). The P-cognition thesis is illustrated in Figure 5.

When computational level theories of cognition are not in P, it is unlikely that,
as such, they characterize the cognitive process. The reason for this is illustrated
in Table 1. When exponential time is needed to compute a function, it is only
feasible for really small input and would take years to compute for slightly larger
input (even when thousands of steps can be performed per second).

Returning to SMT, complexity analyses have shown that SMT is NP-complete
(and thus not in P, unless P = NP) (Veale & Keane, 1997; van Rooij et al.,
2008). The finding that SMT is NP-complete means that there does not exist
an algorithm that derives optimal analogies under SMT in polynomial time for
all possible inputs (unless P = NP). This explains why the Structure-Mapping
Engine (SME), the implementation of SMT by Falkenhainer, Forbus, and Gentner
(1989), has a worst case complexity of O(n!) (where n is the total number of objects
and predicates), even though it uses many optimization techniques to reduce the
number of substructure matches that it considers.

2.4 Dealing with Intractability in Cognitive Models

The P-cognition thesis, together with the intractability of SMT, suggests that hu-
mans are not computing optimal analogies (as specified in SMT). On the other
hand, as stated in Section 1, SMT’s optimality assumption fits human performance
data very well. This contradiction has led to two explanations for how humans
could be forming optimal analogies so quickly: The standard explanation is that
humans use a heuristic to derive optimal, or otherwise close-to-optimal solutions
(Forbus, 2001; Markman & Gentner, 2000). A novel explanation is that humans
are only computing the optimal solution when the input has certain characteristics
(van Rooij et al., 2008; Wareham, Evans, & van Rooij, 2011). These explanations
for dealing with SMT’s intractability and their limitations will be described in the
next two sections.

2.4.1 Approximation: Heuristic SME

A commonly used method in computer science when faced with intractable prob-
lems is to use heuristics (Garey & Johnson, 1979). A heuristic is an algorithm
that in short (polynomial) time can come up with a solution that is often reason-
ably good, however, it does not guarantee the optimality of its solutions (Gonzalez,
2007). Heuristics are often used in the same way for explaining intractable cogni-
tive theories (van Rooij, Wright, & Wareham, 2012), such as SMT (Forbus, 2001;
Markman & Gentner, 2000).

In the case of SMT, Forbus and Oblinger (1990) implemented a heuristic for
SMT. This heuristic has been claimed to be very successful; it returned the optimal
solution in 90% of the cases and when it was not optimal, its solution was in the
worst case 67% of the optimal (see Table 2).

There are two criticisms to this approach: First, the empirical tests of the quality
of the heuristic have only been performed on a small set of 56 manually encoded
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Type of input Object Physical Systems Stories
Number of tests 8 20 28
Percentage of cases the heuristic is optimal 100% 85% 96%
Lowest ratio heuristic score / optimal score 100% 67% 91%

Table 2: Empirical results of the quality of the solutions returned by
the heuristic for SMT. Table adapted from Forbus & Oblinger (1990)

examples (See Table 2). One question that needs to be answered is whether these
examples are representative of the full input space of SMT. Second, Grootswagers,
Wareham, and van Rooij (2013) showed that SMT can not be approximated within
a fixed value from the optimal; more specifically, the authors demonstrated that:

• There cannot be a polynomial-time algorithm that returns analogies whose
systematicity is within an arbitrarily small specified additive factor from the
optimal analogy (unless P = NP).

• There cannot be a polynomial-time algorithm that returns analogies whose
systematicity is within an arbitrarily small specified multiplicative factor of
the optimal analogy (unless P = NP).

These results suggest that while the heuristic has been shown to be successful on
this subset, it can not be close to optimal (within a fixed factor of optimal) for all
inputs.

2.4.2 Parameterizing the input: Fixed-parameter tractable algo-
rithms

Section 2.2 explained the complexity classes P,NP,NP-hard andNP-complete for
computational problems. To further investigate what aspect of the problem makes
some problems NP-hard, parameterized complexity theory can be used to find so-
called sources of complexity. Parameterized complexity (Downey & Fellows, 1999;
Fellows, 2002; Flum & Grohe, 2006; Niedermeier, 2006) focuses on investigating

2k · n
n 2n k = 1 k = 5 k = 10
1 2 2 32 1024
5 32 10 160 5120
10 1024 20 320 10240
25 33554432 50 800 25600
50 1.1× 1015 100 1600 51200
100 1.3× 1030 200 3200 102400
1000 1.1× 10301 2000 32000 1024000

Table 3: A comparison of example polynomial, exponential, and fp-
tractable algorithm runtimes. Listed are the number of steps needed
for an fp-tractable algorithm with a complexity of 2k ·n relative to input
size n and parameter k for different values of k compared to the number
of steps needed for an exponential algorithm (2n).
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(a) 1 Inner point (b) 2 Inner points

Figure 6: Illustration of inner points in TSP. Inner points (squares) are
points that do not lie on the convex hull (solid line). The convex hull
is the smallest boundary that encapsulates all points.

the complexity of parameterized problems, problems for which the input has an
additional parameter set (a set of parameters describing some characteristics of the
input). For example in the case of TSP (introduced in section 2.2), the minimum,
maximum or average distance between cities in the graph or the number of cities
that have a close neighbor (e.g. with distance < 100) are all different parameters.

For some problems, it is possible to prove that for some parameter sets, the prob-
lem can be solved in time that is polynomial in the input size and non-polynomial in
those sets. The class of these problems is called FPT (Fixed-parameter tractable),
and algorithms for these problems are fixed-parameter (fp-) tractable algorithms,
as they are tractable with respect to input size per parameter slice (fixed values
for all parameters in the parameter set).1 More specifically, for a problem Q with
some parameter set k, {k}-Q is in FPT if (and only if) its runtime can be described
as a polynomial function of input size (n) multiplied by or added to some function
of k. For example, relative to parameter k, runtimes of O(2k · 2n3) or O(k! + 24n)
are fp-tractable but O(2k+n) and O(k + nk) are not. This shows that fp-tractable
algorithms can still need only a small number of steps when the input size (n) is
large, as long as the parameter (k) is small (see Table 3).

Fixed-parameter tractability can be illustrated using the TSP example. Let in-
ner points be the cities that do not lie on the boundary that encapsulates all cities
in the graph (the convex hull), as illustrated by Figure 6. The example TSP in-
stance from Figure 3 has two inner points (Frankfurt and Bern). If k is the number
of inner points, Deineko, Hoffmann, Okamoto, and Woeginger (2004) give an al-
gorithm for {k}-TSP that runs in time O(k!kn),2 and therefore {k}-TSP is in FPT.3

1Downey and Fellows (1999, p. 8) refer to this as “tractable by the slice”.
2Note that this result only holds for TSP in 2-dimensional Euclidean planes, as was the case in our

TSP example.
3Interestingly, this result was derived independently from earlier empirical results which indicated

that the number of inner points is also a factor in human performance on TSP (MacGregor & Ormerod,
1996).
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Similar to the P-Cognition thesis discussed earlier, the FPT-Cognition thesis
states that all cognitive functions are in FPT and the parameters in their parameter
set are small in practice (van Rooij, 2004; van Rooij, 2008). The FPT-Cognition
thesis can be viewed as a relaxation of the constraint that the P-cognition thesis
puts on models, as for all problems in P, their parameterized versions are in FPT.
However, both constrain the models in such a way that they must be computable
in feasible time with regards to the input size.

To date, two parameters have been identified for which SMT is fp-tractable,
namely o (the number of objects) and p (the number of predicates).4 The corre-
sponding algorithms {o}-SMT and {p}-SMT are described in van van Rooij et al.
(2008) and Wareham et al. (2011), respectively. These parameterized algorithms
allow SMT to be solved optimally in polynomial time for cases where the number
of objects or predicates is small. By showing that parameterizing SMT can lead
to tractable algorithms, the authors made the case that a parameterized version of
SMT can explain how humans could be fast and optimal, when these parameters
are small in practice. However, how small these parameters need to be for the
algorithms to have a feasible runtime is unclear, as the algorithms have never been
implemented and tested in practice.

To summarize, this chapter has introduced one of the most influential theories
of analogy derivation, namely, Structure Mapping Theory (SMT). While SMT’s
optimality assumption seems to fit human analogy making very well, it does not
explain how humans are deriving optimal analogies in feasible time, as computing
such analogies under SMT requires infeasible amounts of computational resources.
Two explanations have been proposed in the literature of how humans are able to
form optimal analogies in reasonable time: The standard explanation claims that
humans use heuristics, while a novel explanation argues that humans only make
analogies when the input has certain characteristics. The next chapter begins by
introducing the main goal of this thesis: to investigate which of these explanations
is the most viable. It then continues to describe the simulation experiments created
to answer this question.

4Note that {n}-SMT with n being the input size (o + p) is also in FPT, but this is trivial as all
problems parameterized by their input size are in FPT.
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3 Methods

With the concepts introduced in the previous chapter, the main hypothesis and
research questions of this study can be more formally described. This chapter then
continues by describing the methods and experiment set-ups used to answer these
questions.

3.1 Research question and hypothesis

As explained in Section 2.4.1, the standard heuristic implementation of SMT has
been evaluated only by using a small set of manually encoded predicate structures,
which explore only a small and possibly not representative subset of the possible
input space. The proposed fp-tractable algorithms for the novel explanation have
never been implemented and validated or compared to the heuristic. There have
been no controlled studies which analysed and compared differences between these
proposed explanations. This research aimed to fill this void by testing the following
hypothesis:

• FP-tractable algorithms can be a viable alternatives to the heuristic expla-
nation of how humans are making optimal analogies (as defined by SMT) in
feasible time.

The objectives of this study were to systematically compare the performance of the
standard (exhaustive and heuristic) implementations of SMT with the proposed
fp-tractable algorithms, in terms of runtime and quality of produced analogies us-
ing different inputs (e.g. randomly generated or manually encoded examples) and
parameters (e.g. number of objects or predicates in the predicate structures). In
particular, the main questions were:

Q1: How often (and under which conditions) does the heuristic find the optimal
solution, and how far off (in terms of systematicity score) are its solutions?

Q2: How do the running times of the heuristic and the exact algorithms compare
under varying conditions and how do these times differ from the projected
theoretical running times?

Q3: How do results for the first two questions differ between manually encoded
and randomly generated predicate structures?

For the purposes of this study, a predicate structure generator was created to pro-
vide a large set of examples for analogy derivation with specified characteristics.
This method allowed for making systematic comparisons between algorithms for
analogy derivation. Also, by varying parameters, the influence of single parameters
could be investigated. While many of these parameters (such as structure depth or
flatness (Falkenhainer et al., 1989)) have been conjectured to influence the speed
of the analogy derivation process, these conjectures have not yet been validated.

The approach for this study can be roughly described in three parts. The first
part deals with the implementation of algorithms for analogy derivation under SMT.
It will then go on to describe the random predicate structure generator. Finally,
the set-up that was used to investigate each research question is listed. These parts
are described below.
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3.2 Implementing Structure-mapping theory (SMT)

For this study, we considered and thus required implementations of the following
four algorithms for SMT:

1. SME-exhaustive (Falkenhainer et al., 1989)

2. Heuristic SME (Forbus & Oblinger, 1990)

3. {o}-SMT (van Rooij et al., 2008)

4. {p}-SMT (Wareham et al., 2011)

For the purposes of this study, all algorithms were (re-)implemented in python5 (van
Rossum & Drake Jr, 1995), which was chosen because it is modern, modular and
easily extendible. In addition, for graph and predicate structure functionality, the
networkx python library6 was used (Hagberg, Schult, & Swart, 2008). The following
two sections will describe the algorithms, starting with SME-exhaustive and the
heuristic.

3.2.1 SME (Exhaustive and heuristic)

The first implementation of SMT was SME-exhaustive, which uses a number of op-
timization strategies to reduce the number of combinations to check (Falkenhainer
et al., 1989). The algorithm for SME-exhaustive, in pseudo code, is listed in Algo-
rithm 1. The algorithm works by creating match hypotheses (mhs, matching a node
in base to a node in target) from all combinations of relations of the same type in
the base and target predicate structures, and creating mhs for objects, attributes
and functions that are arguments of these combinations of relations (lines 1-11).
SME-exhaustive then goes on to compute which mhs are inconsistent with each
other by mapping the same node in the base to different nodes in the target or
vice-versa. Then a collection of gmaps (collections of mhs with all mhs that map
their arguments) is created for all root mhs (mhs that are not arguments of other
mhs) that are supported (for all their arguments there exists mhs, recursing all the
way down to the objects) and internally consistent (no many-to-one mappings).
If (and only if) the root mhs is not supported or inconsistent, mhs that map its
arguments are recursively evaluated the same way and added to the collection of
gmaps (lines 12-21).

So far, all these steps are done in polynomial time, and results in a collection
of gmaps that map substructures of base to substructures of targets. Note that
each gmap on itself is an analogy between base and target. However, to achieve the
optimal solution, the gmaps need to be combined to create larger (more systematic)
analogies: The final step is to merge the collection of gmaps into one gmap, by
exhaustively combining all possible combinations of initial gmaps. The combination
of gmaps with the highest score (i.e. SES) that is internally consistent is the optimal
analogy match between the two predicate structures (lines 22-28). This final step
reflects the intractability of SMT, as its complexity is O(n!) (Falkenhainer et al.,
1989).

The only difference between SME-exhaustive and the heuristic, is the method
used to merge the gmaps in the final step (see Algorithm 2). Where, after initial

5http://python.org/
6http://networkx.github.io/
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Algorithm 1 The SME-exhaustive algorithm in pseudo code.

1: mhs = ∅
2: for all combinations x, y of relations in base and target do
3: if type(x) = type(y) then
4: add (x, y) to mhs
5: for all cx, cy ∈ Children(x, y) do
6: if cx and cy are both either functions, entities or attributes of the same type

then
7: add (cx, cy) to mhs
8: end if
9: end for

10: end if
11: end for
12: gmaps = ∅
13: roots = mh ∈ mhs if mh is not a child of any mh ∈ mhs
14: while roots 6= ∅ do
15: take one mh from roots
16: if consistent(mh) and supported(mh) then
17: add mh to gmaps
18: else
19: update roots with mh’s children that map relations
20: end if
21: end while
22: solution = ∅
23: for all gmapset ⊆ gmaps do
24: if gmapset is internally consistent and systematicity(gmapset) >

systematicity(solution) then
25: solution = gmapset
26: end if
27: end for
28: return solution

Algorithm 2 The heuristic merging in pseudo code. The initial gmaps are created using
steps 1-21 from SME-exhaustive (Algorithm 1).

1: solution = ∅
2: while gmaps 6= ∅ do
3: take gmap with highest systematicity from gmaps
4: if gmap is consistent with solution then
5: add gmap to solution
6: end if
7: end while
8: return solution
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gmap creation, SME-exhaustive checks every possible subset of gmaps, the heuris-
tic starts by selecting the gmap with the highest score. It then goes on to add the
next highest scoring gmap if it is consistent with the selection. This is repeated
for all gmaps, and is essentially a greedy merging strategy (Forbus & Oblinger,
1990). The result is a substantial increase in speed, as the algorithm now runs in
polynomial time (O(n2)). However, the solutions will not always be optimal, and
are not guaranteed to be within any distance from the optimal.

Even though SME-exhaustive is advertised as an optimal algorithm, there exist
two cases where it is not clear how SME-exhaustive (as described in (Falkenhainer
et al., 1989)) yields the optimal solution, which were discovered when comparing
the optimal solution returned by SME-exhaustive with the solution returned by
the fp-tractable algorithms. First, unordered predicates (where their arguments
may match in any order) do not appear to be dealt with correctly in the mapping
process. Second, SME-exhaustive does not consider all possible sub-structures,
while these sub-structures are needed to form the optimal solution. These two
cases are described in more detail in Appendix A. In this study, rather than making
unfounded assumptions about the algorithm, cases where the analogies derived by
SME-exhaustive are not optimal were excluded from the analyses.

3.2.2 Fixed-parameter tractable algorithms

A very different approach from SME is the parameterized method, which exploits
parameters from the input to achieve efficient computation using fp-tractable al-
gorithms. As mentioned in the Introduction, there exist two proposed fp-tractable
algorithms, one that proves that SMT is fp-tractable for parameter o (number of
objects), and another that proves that SMT is fp-tractable for parameter p (num-
ber of predicates). The first algorithm, using the number of objects, is given in
van Rooij et al. (2008). The algorithm in pseudo code is listed in Algorithm 3. In
short, {o}-SMT works by exhaustively considering all possible mappings of sets of
objects in the base to sets of objects of the same size in the target, and for each
such mapping, growing predicate matches upwards (lines 4-11) from the objects to
create maximal mappings.

The second algorithm is {p}-SMT (Wareham et al., 2011), which exhaustively
combines predicate sets in the base and target in maximal ways. {p}-SMT is listed
in pseudo code in Algorithm 4. For every consistent and supported maximal map-
ping between predicate-sets, a mapping for the relevant objects can be found (lines
5-8) in polynomial time.

Two problems were encountered when implementing these algorithms, the first
being that the algorithms allowed objects and attributes to match without a higher
order relation supporting or licensing this match. Such matching is not allowed
under SMT and the algorithms therefore were slightly adjusted by simply remov-
ing these unsupported matches (lines 9 & 12 in Algorithm 3 & 4, respectively)
from its solutions (this is done in polynomial time). The second problem was that
the description of {o}-SMT did not involve the matching of functions (recall that
functions are allowed to match to all other functions). This proved problematic
as it seems that the only way of dealing with this is to exhaustively combine all
possible function mappings as well, resulting in an additional parameter f (number
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of functions), i.e. {o, f}-SMT. Because function matching was not included in the
specification of {o}-SMT, predicate structures with functions were not included in
this study.

Algorithm 3 The {o}-SMT algorithm in pseudo code.

1: solutions = ∅
2: for all possible combinations obase, otarget of objects in base and target do
3: let map be the mapping from obase to otarget
4: let eval be the set of predicates in base that are not in map and have all their

children in map
5: while eval 6= ∅ do
6: take a predicate pbase from eval
7: if there exist a predicate ptarget ∈ target that is not in map and type(pbase) =

type(ptarget) then
8: add pbase → ptarget to map
9: update eval with parents from pbase that are not in map and have all their

children in map
10: end if
11: end while
12: remove objects, functions and attributes that are not children of a predicate in

map from map
13: add map to solutions
14: end for
15: return map in solutions with the highest SES score

Algorithm 4 The {p}-SMT algorithm in pseudo code.

1: solutions = ∅
2: for all possible combinations of subsets pbase, ptarget of predicates in base and target

do
3: let map be the mapping from pbase to ptarget
4: if map contains no many-to one mappings and for every predicate p ∈ map, all

children of p that are predicates are in map then
5: let L be the set of leaves in base that are a children of pbase in the mapping
6: let L′ be the set of leaves in target that are a children of the mappings of (pbase)
7: if L = L′ and the mapping L to L′ does not contain many-to-one mappings

then
8: extend map with the mapping L to L′

9: remove objects, functions and attributes that are not children of a predicate
in map from map

10: add map to solutions
11: end if
12: end if
13: end for
14: return map in solutions with the highest SES score
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x1 x2 x3

A B

(a) Creating base: Adding the first
layer of predicates (A & B), connect-
ing to objects (x1, x2 & x3).

x1 x2 x3

A B

C D

(b) Creating base: Adding a second
layer of predicates (C & D), connect-
ing to nodes from all layers below.

x1 x2 x3

A B

C D

(c) Removing predicates and objects
from the base, leaving the core.

x2 x3
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D
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(d) Creating target: adding new ob-
jects (x4) and predicates (E & F) to
the core

x1 x2 x3
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C D
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(e) The resulting pair with the analogy it contains.

Figure 7: Illustration of predicate structure pair generation. The gener-
ation parameters that resulted in this predicate structure pair are given
in Table 4.
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3.3 Generation of test inputs

Dimension Description Fig. 2 Fig. 7
predicates Number of predicates 9 4
objects Number of objects 2 3
height Longest path from predicate to object 4 2
types Number of predicate types 7 6
max arity Maximum predicate arity 2 2
chance function Chance of arity-1 predicates being functions - 0
preservation Percentage that is kept when extracting the core

analogy
- 0.6

decay The decay of the preservation parameter per layer - 0.0
scaling Size of the target predicate structure compared to

the base predicate structure
0.6 1.0

Table 4: Parameters for predicate structure generation. When possible,
the values of these parameters in the predicate structures of Figure 2
and Figure 7 are listed as illustration.

To systematically investigate algorithm performance on inputs with specific char-
acteristics, a predicate structure pair generator was created for this study. This
method allows control over predicate structure generation by various parameters,
which are listed in Table 4. Especially the ability to control the size difference
and similarity between predicate structures (by controlling how much is preserved
between predicate structures and how many new predicates are created), allowed
us to specify characteristics for predicate pairs, which could not be achieved using
existing single predicate structure or directed graph generators.

Note that not all combinations of parameters are possible; for example the
number of predicates must always be larger than the height of the structure and
there must be enough predicates to support all objects. Also, if the number of
types is too small, it might not be possible to fit enough different predicates in
the predicate structure. However, these constraints only apply to a limited number
of cases, and this method allows us to randomly create (infinitely) many different
predicate structure pairs.

The generation of predicate structure pairs can be described in the following
four steps (which are also illustrated in Figure 7):

1. Generate a pool of predicates: To create a pool of predicates, first a
pool of predicate types is created using the number of predicate types and
maximum predicate arity. For each type a random arity (up to the maximum
arity) is assigned, and it is added to the pool. The distribution of arity over
predicate types can be controlled by an optional parameter, for example, to
create more arity-1 predicates. Next, using the number of predicates and
total height of the structure, the number of predicates at each height level is
computed.7 Arity-1 predicates (i.e. functions and attributes) are only created

7Note that shape of the structure can be controlled by an optional shape parameter. For example,
predicate structures could be ‘square’-shaped, with the same number of predicates on each height, or
they could be ‘triangle’-shaped, with a decreasing the number of predicates per height level.
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at the first height layer (connecting only to objects), as specified in SMT
(Gentner, 1983).

2. Generate the base predicate structure: With these predicates, the base
predicate structure is grown layer by layer (of height), starting with the spec-
ified number of objects. Predicates are taken from the predicate pool and
connected randomly to nodes in the layers below. This is also described in
pseudo code in Algorithm 5 (See also Figures 7a & 7b).

3. Generate the core analogy: The process then continues to extract the
core analogy from the base (Figure 7c), using the preservation and decay
parameters. Extracting the core is done by deleting nodes from the base in
each layer starting at the objects, and deleting structure connecting to these
nodes in layers above. The preservation parameter defines the percentage of
nodes that are preserved in the bottom layer (objects), then for every layer,
the preservation parameter is multiplied by the decay parameter, to allow
control over how much structure is preserved in higher layers of the core.
This is also described in pseudo code in Algorithm 6.

4. Generate the target predicate structure: Finally, from the core, the
target is grown by adding other nodes from the predicate pool. For each layer
is computed (using the scaling parameter) how many predicates or objects
should be added (Figure 7d). This works in the same way as generating the
base, except that now there exists an initial structure to grow on. This is also
described in pseudo code in Algorithm 7. Scaling defines how large the target
structure should be relative to the base and allows to control size differences
in predicate structure pairs.

The steps are repeated until a connected (no unconnected substructures) base and
target predicate structure are found (i.e. first create a connected base structure,
then continue to create the core etc.).

Algorithm 5 Pseudo code for generating the base predicate structure.

1: let base be an empty predicate structure
2: add the specified (o) number of objects to base
3: for all height layers d, starting at one layer above the objects do
4: repeat
5: take a random predicate p from the predicate pool
6: let a be the arity of predicate p
7: let C = ∅
8: for all a-sized combinations of nodes in base do
9: if at least one of the nodes is at height layer d− 1 and all nodes are at height

< d and a predicate of the same type as p which connects to the nodes does
not already exist in base then

10: add this combination of nodes to C
11: end if
12: end for
13: randomly take one combination of nodes from C and connect p to these nodes
14: until the specified number of predicates in this layer has been reached
15: end for
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Algorithm 6 Pseudo code for extracting the core analogy structure.

1: let core be an empty predicate structure
2: for all layers d in base, starting at 0 (the objects) do
3: let C be the set of nodes in layer d in base that have all their successors in core
4: let x = |C| · (preservation− d · decay)
5: randomly take x nodes from C and add them to core (preserving their connections)
6: end for

Algorithm 7 Pseudo code for growing the target predicate structure.
1: target = core
2: n objects to target where n = scaling × |objectsbase|
3: for all layers d, starting at 1 (one layer above the objects) do
4: repeat
5: Take a random predicate p from the predicate pool
6: let a be the arity of predicate p
7: let C = ∅
8: for all a-sized combinations of nodes in target do
9: if at least one of the nodes is at height layer d− 1 and all nodes are at height

< d and a predicate of the same type as p which connects to the nodes does
not already exist in base or target then

10: add this combination of nodes to C
11: end if
12: end for
13: randomly take one combination of nodes from C and connect p to these nodes
14: until |predicatestarget| = scaling × |predicatesbase| for height level d
15: end for

3.4 Simulation

This section describes the simulation experiments that were performed in order
to answer the main questions (introduced in Section 3.1). For each question, the
parameters used for predicate structure pair generation are listed. In addition, the
measures used to compare the performance are described.

3.4.1 Q1 set up: Quality of the heuristic

To systematically assess the quality of the heuristic, both the heuristic and the exact
algorithms were run on randomly generated pairs (Like the example in Figure 7e)
and their solutions were compared using two measures:

1. The total percentage of trials where the heuristic was optimal; and

2. The normalized distance from the optimal, defined as
SESoptimal−SESheuristic

SESoptimal
,

which is generally used for computing heuristic solution quality when the
optimal solution is known (Barr, Golden, Kelly, Resende, & Stewart Jr, 1995).

Pairs were randomly generated in the dimensions listed in Table 5. If it was possible
to generate a pair using the given parameter values (e.g. constraints like p > o were
satisfied), which was the case for 80% of the input (70866 pairs), the algorithms
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Dimension Values
predicates 5, 10, 15, 20, 25, 30, 35, 40, 60, 80, 120, 160
types 2, 10, 20
objects 2, 4, 6, 8, 10, 15, 20
height 2, 4, 6, 8, 10, 15, 20
chance function 0.0
preservation 0, 0.25, 0.5, 0.75, 1.0
max arity 2
preservationdecay 0.0
scaling 1.0

Table 5: The values used to assess the overall quality of the heuristic.
On each combination of values in the dimensions (8820 combinations),
10 pairs were randomly generated as input for the heuristic (88200
pairs).

were run on this pair. If (at least) one of the exact algorithms yielded a solution
in reasonable time (under 2 minutes on a 3.8 Ghz CPU) for this pair, the heuristic
could be compared on this pair. This was true for 78% of the cases, leaving 55249
trials.

While the first set-up gave an overview of the range of quality of the heuristics
solutions, specific dimensions were also explored. The set-up was similar, although
only the dimension of interest was varied and all other dimensions were to set to
fixed values, to see more specifically how this dimension influenced the quality.
The dimensions that were investigated were chosen based on conjectures about the
difficulty of SMT, some of which are mentioned at the beginning of this chapter
(Section 3.1). The following dimensions were individually manipulated:

• Closeness: To manipulate closeness, the preservation parameter was varied,
as this defines how much the pairs overlap, thus how similar they are.

• Height: To compare flat structures with deep structures, height was varied
while fixing the number of predicates and other parameters. The options here
were limited, as it is hard to generate deep structures with few predicates and
shallow structures with many predicates at the same time.

• Size (number of predicates), with the number of objects fixed at a low value
allowing to get the optimal solutions from {o}-SMT.

• Types: The number of possible different predicate types.

• Objects: The number of objects in the predicate structures.

The specific parameter settings for these manipulations are listed in Table 6

3.4.2 Q2 set up: Speed of the fp-tractable algorithms

The same individual manipulations used to investigate the quality of the heuristic
were used to investigate the effect of these dimensions on the runtimes of the al-
gorithms. Runtimes were measured by the time that the algorithms spent on the
CPU (in this study, a 3.8GHz AMD processor), to get an indication of the number
of instructions executed. Note that the CPU-time measure does not reflect human
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Dimension Closeness Height Predicates Types Objects
predicates 25 25 (20:200:20) 25 25
types 10 10 10 (2:20:2) 100
objects 5 5 5 5 (2:10:2)
height 5 (2:10:1) 5 5 5
chance function 0.0 0.0 0.0 0.0 0.0
preservation (0:1:0.25) 0.5 0.5 0.5 0.5
typeshape random random random random random
heightshape square square square square square
max arity 2 2 2 2 2
decay 0.0 0.0 0.0 0.0 0.0
scaling 1.0 1.0 1.0 1.0 1.0

Table 6: The values used to assess influence of individual dimensions
on quality and complexity. Value range is shown as (start:stop:step)

runtime, but it is used to compare the relative difference in speed between algo-
rithms. The CPU time was measured using the psutil library8 for python (Rondolà,
2013). Of the dimensions that were investigated, the number of objects and predi-
cates are of special interest for the fp-tractable algorithms, as they can be compared
to the theoretical projections. As SME-exhaustive was likely to be influenced by
the same parameters as the heuristic, they were also included to get a better idea
of the cases in which SME-exhaustive was faster. Besides the worst-case runtime of
the algorithms, the average runtimes of the algorithms was also computed, to get
an indication of how these differ.

As the runtime increases exponentially with the size of the predicate structures,
the sizes of their search spaces are computed before performing the exhaustive step
with the exact algorithms. If a search space is too large (larger than 105), computing
the optimal solution would become infeasible,9 and the search space size was used
as predictor for the runtimes. This allowed us to compare the runtimes of the
algorithms on larger structures as well, although caution must be applied when
interpreting those results.

3.4.3 Q3 set up: Comparing manually encoded predicate struc-
tures

To evaluate the difference between randomly generated and manually encoded
structure pairs, predicate structures from the THNET library10 (which was cre-
ated to evaluate connectionist analogy mapping engines) were used (Holyoak &
Thagard, 1989). Specifically, the plays and fables from this library were extracted
and parsed to the predicate structure format used in this study. Figure 8 shows
two examples of fables in predicate structure format and Figure 9 shows a part of
one play (as the plays are very large). Table 7 lists the properties of the manually
encoded predicate structures. Note that not all parameters that are controllable

8http://code.google.com/p/psutil/
9For the purpose of simulating many trials, runtimes in the order of minutes are still feasible. Larger

search spaces would already need hours (or even days) to compute.
10Available online: http://www.cs.cmu.edu/Groups/AI/areas/neural/systems/thnet/0.html
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in the random pair generator can be derived from the manually encoded input.
For both plays and fable categories, all (almost 10000) combinations of structures
were tested using all algorithms and algorithm runtime and heuristic quality were
reported.

Plays (253 pairs) Fables (9506 pairs) Combined (9759 pairs)
Dimension min max avg std min max avg std min max avg std

predicates 36 86 58.60 13.83 6 33 23.43 4.30 6 86 24.34 7.36
types 31 89 58.82 13.08 9 48 31.27 5.73 9 89 31.98 7.46
objects 9 24 16.29 3.92 3 14 9.15 1.90 3 24 9.34 2.28
height 2 5 3.75 0.80 1 5 3.21 0.74 1 5 3.23 0.75

Table 7: Details of the manually encoded predicate structures (Holyoak
& Thagard, 1989).

Hare Tortoise Race

SwifterSleepHare Win Tortoise Participate Participate Race

Cause Cause Argue

(a) The Tortoise and the Hare.

Crow Meat Fox Flattery

Crow Vain Sing Drop Get Desire Meat Want-from Say Fox Flattery

Cause Cause If If Cause

(b) The Crow and the Fox (Le Corbeau et Le Renard).

Figure 8: Examples of manually encoded predicate structures from the
fables category (Holyoak & Thagard, 1989).
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Romeo Juliet Mercutio Tybalt Montagues Capulets

Love LoveWoman Marry Kin Kill Kin Kill Hate Hate

Family FamilyMember Member MemberMember ManManMan

Conjoin-Event Cause Conjoin-Event

Cause Cause

Figure 9: Example of a manually encoded predicate structure from the
plays category (Shakespeare’s Romeo and Juliet). Note that only part
of the full structure is shown (Holyoak & Thagard, 1989).
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4 Results

In this chapter, the results of the simulations are described, split up for each research
question that was listed in Section 3.1

4.1 Quality of solutions (Optimality)

To assess the quality of the solutions returned by the heuristic, two investigations
were performed. The first tried to explore the performance of the heuristic on the
whole search space by combining many different values for dimensions (see Table 5).
The percentage of trials where the heuristic found the correct solution was 87.50%.
Of all trials where it was not optimal the normalized distance from optimal was
computed as

SESoptimal−SESheuristic

SESoptimal
, which has a value of 0 if the heuristic returns

an optimal analogy and 1 if the heuristic returns no analogy at all. On average
this ratio was 0.272, with a standard deviation of 0.158. The lowest ratio encoun-
tered was 0.009 (almost optimal), and the highest 0.934 (far from optimal). The
distribution of these distances, separated for small and large predicate structures,
is shown in Figure 10. Two observations can be made from these distributions: (1)
the distributions are spread very wide, with a large portion of the results between
0.0 (close to optimal) and 0.5 (half as good as optimal); and (2) the distributions
are similar for small and large predicate structures.

(a) Number of predicates smaller than 50. (b) Number of predicates between 50 and 200.

Figure 10: The distribution of normalized distance from optimal of the
heuristics non-optimal solutions over all inputs. The graphs are split
up for small (a) and large (b) predicate structures.

The second investigation looked at the influence of various dimensions on the
solution quality. For these dimensions (see Table 6 for the specific parameters), the
following results were found:

• Closeness (Figure 11): The performance of the heuristic is better on closer
predicate structures (predicate structures that are more similar). However,
non-optimal solutions are not guaranteed to be close to optimal. Note that
for closeness 1.0, the heuristic was optimal in 100% of the cases and therefore
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this value is not included in the graph showing the distance of non-optimal
scores.

• Height (Figure 12): Manipulating the number of height levels shows that
the heuristic performs better on deeper structures in terms of percentage of
correct trials. This was also reflected in the maximum distance of non-optimal
solutions.

• Predicates (Figure 13): These graphs show that the quality of the solutions
by the heuristic drop from being optimal on 93% of the trials on small pred-
icate structures (20 predicates), down to 24% of the trials on large predicate
structures. Interestingly, the average distance from optimal does not seem to
vary with the number of predicates.

• Types (Figure 14): Manipulating the number of types resulted in better per-
formance on predicate structures with more types in terms of percentage of
optimal solutions. However, the ratio of non-optimal solutions does not im-
prove in the same way.

• Objects (Figure 15): Manipulating the number of objects suggests that the
performance increases with more objects in terms of maximum distance of
non-optimal solutions. The percentage of optimal solutions does not seem to
change.

(a) Percentage of trials for which the heuristic
found the optimal solution. The average over
all trials (dashed line) was 89.0%. 1000 trials
were done per value (5000 total).

(b) Distance from optimal of the non-optimal
solutions. The number of trials the values are
based on are listed between brackets.

Figure 11: Heuristic solution quality when manipulating the closeness
with the preservation parameter.

28



(a) Percentage of trials for which the heuristic
found the optimal solution. The average over
all trials (dashed line) was 88.5%. 1000 trials
were done per value (9000 total).

(b) Distance from optimal of the non-optimal
solutions. The number of trials the values are
based on are listed between brackets.

Figure 12: Heuristic solution quality when manipulating the number of
height levels.

(a) Percentage of trials for which the heuristic
found the optimal solution. The average over
all trials (dashed line) was 53.1%. 1000 trials
were done per value (10000 total).

(b) Distance from optimal of the non-optimal
solutions. The number of trials the values are
based on are listed between brackets.

Figure 13: Heuristic solution quality when manipulating the number of
predicates.
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(a) Percentage of trials for which the heuristic
found the optimal solution. The average over
all trials (dashed line) was 87.7%. 1000 trials
were done per value (10000 total).

(b) Distance from optimal of the non-optimal
solutions. The number of trials the values are
based on are listed between brackets.

Figure 14: Heuristic solution quality when manipulating the number of
types.

(a) Percentage of trials for which the heuristic
found the optimal solution. The average over
all trials (dashed line) was 90.5%. 1000 trials
were done per value (5000 total).

(b) Distance from optimal of the non-optimal
solutions. The number of trials the values are
based on are listed between brackets.

Figure 15: Heuristic solution quality when manipulating the number of
objects.
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4.2 Runtime (Complexity)

The second research question was how the algorithms compare in terms of running
time. The following dimensions were investigated by running 1000 trials for each
value (see Table 6 for the specific parameters). The following results were found:

• Closeness (Figure 16): Interestingly, SME-exhaustive is slower on closer pred-
icate structures, while for the other algorithms closeness does not seem to
influence running time.

• Height (Figure 17): This indicates that SME-exhaustive is performing bet-
ter on structures as the number of layers increases, while algorithm {p}-
SMT seems to get slower with the number of layers.

• Predicates (Figure 18): This figure shows the exponential growth with regard
to the number of predicates for SME-exhaustive and {p}-SMT. The most
striking observation here is that {o}-SMT is performing in the same range as
the heuristic, and {o}-SMT’s runtime does not grow much with the increasing
number of predicates.

• Types (Figure 19): Except for {o}-SMT, all algorithms appear to bene-
fit from more types in the predicate structures. With many types, SME-
exhaustive seems to perform in the same range as the heuristic.

• Objects (Figure 20): While the other algorithms are not influenced by the
number of objects, {o}-SMTs search space and runtime increase exponentially
with the number of objects.

One striking general observation that can be made from these results is that the
average runtime is similar to the worst case runtime; The average lies within a
factor 103 of the worst-case, which is not that much when looking at ranges up to
1033.

(a) Max CPU time. (b) Average CPU time.

Figure 16: Algorithm runtime when manipulating the closeness with
the preservation parameter. Points above the dashed line depict search
space size instead of time.
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(a) Max CPU time. (b) Average CPU time.

Figure 17: Algorithm runtime when manipulating the number of height
levels. Points above the dashed line depict search space size instead of
time.

(a) Max CPU time. (b) Average CPU time.

Figure 18: Algorithm runtime when manipulating the number of pred-
icates. Points above the dashed line depict search space size instead of
time.
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(a) Max CPU time. (b) Average CPU time.

Figure 19: Algorithm runtime when manipulating the number of types.
Points above the dashed line depict search space size instead of time.

(a) Max CPU time. (b) Average CPU time.

Figure 20: Algorithm runtime when manipulating the number of ob-
jects. Points above the dashed line depict search space size instead of
time.
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4.3 Manually encoded input

From the 253 combinations of plays (see Table 7), an optimal solution could be
computed for 197 of them (others were too large). From these 197, the heuristic
gave the optimal solution in 122 trials (64.47%). For the 70 trials where it was not
optimal, the average quality (percentage of optimal solution) was 66.56% (standard-
deviation was 15.59%), and the minimum and maximum respectively 33.33% and
94.44%. The distribution of these scores are shown in Figure 21a, and show a
similar spread as was found for randomly generated input.

All 9506 combinations of fables were small enough to compute the optimal
solution. On these pairs, the heuristic was optimal in 9496 trials (99.89%). For
the 10 trials where it was not optimal, the average quality was 57.66% (standard-
deviation was 17.30%), and the minimum and maximum respectively 29.41% and
88.89%. The distribution of these scores are shown in Figure 21b, although not
much can be inferred from this, as the number of non-optimal solutions was very
low.

The small number of non-optimal solutions for the fables category is partly
caused by the observation that only 14% of the combinations contained an analogy,
leaving 1351 combinations with a non-zero solution. The heuristic still performed
very good on these non-zero cases, returning the optimal solution for all but 10
examples, which explains the small numbers in Figure 21b. Note that, on the other
hand, all combinations of plays contained a non-zero analogy.

(a) Plays (b) Fables

Figure 21: Distributions of the quality of non-optimal solutions for the
heuristic on manually encoded predicate structure pairs.

The influence of height, predicates, types and objects of manually encoded in-
put on the performance of the heuristic were also analysed. The results of these
dimensions are listed in Table 8 and showed similar results as was seen for randomly
generated input for objects and predicates, but different trends were observed for
the other two, as for depth levels performance didn’t vary and performance was
worse with more predicate types. The latter may be a result of the minimum num-
ber of types in the manually encoded cases being larger than the ones tested with
the randomly generated input, and the fact that this effect was not isolated. Fi-
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nally, the influence of these dimensions on the algorithm runtime were compared
to the results on the random graphs. These results are listed in Table 9. The al-
gorithms behave more wildly on these examples, as there was less control of input
parameters. The worst case runtimes show the expected exponential increase for
the fp-tractable algorithms, when their parameters increase.

Plays Fables Combined
H % opt min max avg std % opt min max avg std % opt min max avg std
1 - - - - - 100.00 - - - - 100.00 - - - -
2 90.91 0.26 0.26 0.26 0.00 98.83 1.00 1.00 1.00 0.00 98.76 0.26 1.00 0.95 0.18
3 57.14 0.08 0.67 0.35 0.15 97.90 0.11 1.00 0.97 0.14 97.54 0.08 1.00 0.87 0.27
4 60.58 0.06 0.62 0.33 0.16 97.84 0.50 1.00 0.98 0.10 96.06 0.06 1.00 0.67 0.35
5 78.79 0.10 0.58 0.33 0.17 96.57 1.00 1.00 1.00 0.00 95.57 0.10 1.00 0.82 0.31

(a) Structure height
Plays Fables Combined

P % opt min max avg std % opt min max avg std % opt min max avg std
0-10 - - - - - 100.00 - - - - 100.00 - - - -
10-20 - - - - - 98.99 1.00 1.00 1.00 0.00 98.99 1.00 1.00 1.00 0.00
20-30 - - - - - 97.77 0.11 1.00 0.97 0.13 97.77 0.11 1.00 0.97 0.13
30-40 76.92 0.21 0.58 0.39 0.15 97.36 1.00 1.00 1.00 0.00 96.90 0.21 1.00 0.90 0.24
40-50 73.13 0.08 0.50 0.34 0.13 - - - - - 73.13 0.08 0.50 0.34 0.13
50-60 68.18 0.10 0.67 0.37 0.17 - - - - - 68.18 0.10 0.67 0.37 0.17
60-70 48.72 0.06 0.58 0.33 0.15 - - - - - 48.72 0.06 0.58 0.33 0.15
70-80 56.52 0.06 0.58 0.28 0.18 - - - - - 56.52 0.06 0.58 0.28 0.18
80-90 54.55 0.17 0.44 0.33 0.12 - - - - - 54.55 0.17 0.44 0.33 0.12

(b) Number of predicates
Plays Fables Combined

T % opt min max avg std % opt min max avg std % opt min max avg std
0-10 - - - - - 100.00 - - - - 100.00 - - - -
10-20 - - - - - 98.45 1.00 1.00 1.00 0.00 98.45 1.00 1.00 1.00 0.00
20-30 - - - - - 98.18 0.44 1.00 0.99 0.08 98.18 0.44 1.00 0.99 0.08
30-40 66.67 0.21 0.58 0.41 0.12 97.82 0.11 1.00 0.97 0.15 97.71 0.11 1.00 0.94 0.19
40-50 68.97 0.08 0.50 0.31 0.12 97.35 1.00 1.00 1.00 0.00 96.25 0.08 1.00 0.78 0.33
50-60 72.06 0.10 0.67 0.37 0.16 - - - - - 72.06 0.10 0.67 0.37 0.16
60-70 63.64 0.08 0.62 0.32 0.14 - - - - - 63.64 0.08 0.62 0.32 0.14
70-80 43.75 0.06 0.58 0.32 0.17 - - - - - 43.75 0.06 0.58 0.32 0.17
80-90 66.67 0.12 0.20 0.16 0.04 - - - - - 66.67 0.12 0.20 0.16 0.04

(c) Number of types
Plays Fables Combined

O % opt min max avg std % opt min max avg std % opt min max avg std
0-5 - - - - - 100.00 - - - - 100.00 - - - -
5-10 100.00 - - - - 98.39 0.44 1.00 0.98 0.10 98.39 0.44 1.00 0.98 0.10
10-15 70.00 0.08 0.62 0.34 0.16 97.29 0.11 1.00 0.97 0.14 96.75 0.08 1.00 0.86 0.28
15-20 59.14 0.06 0.67 0.33 0.16 - - - - - 59.14 0.06 0.67 0.33 0.16
20-25 65.22 0.17 0.50 0.36 0.11 - - - - - 65.22 0.17 0.50 0.36 0.11

(d) Number of objects

Table 8: Heuristic solution quality on the manually encoded predicate
structure pairs. The table shows the percentage of optimal solutions
(% opt), and min,max,mean and standard deviation of the quality of
non-optimal solutions on different dimensions. Values that were not
present or could not be computed are depicted with a dash.
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Heuristic SME-exhaustive {o}-SMT {p}-SMT
H max avg std max avg std max avg std max avg std
1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 58.56 12.64 19.37 < 0.1 < 0.1 < 0.1
2 < 0.1 < 0.1 < 0.1 6 · 1014 5 · 1011 2 · 1013 3 · 1019 2 · 1016 8 · 1017 2 · 1009 3 · 1006 8 · 1007
3 0.11 < 0.1 < 0.1 7 · 1016 1 · 1013 1 · 1015 2 · 1026 3 · 1022 2 · 1024 7 · 1016 1 · 1013 9 · 1014
4 < 0.1 < 0.1 < 0.1 1 · 1011 1 · 1008 3 · 1009 7 · 1022 4 · 1019 1 · 1021 3 · 1019 1 · 1016 6 · 1017
5 < 0.1 < 0.1 < 0.1 1 · 1015 2 · 1012 5 · 1013 8 · 1020 2 · 1018 3 · 1019 3 · 1022 5 · 1019 1 · 1021

(a) Structure height
Heuristic SME-exhaustive {o}-SMT {p}-SMT

P max avg std max avg std max avg std max avg std
0-10 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 0.22 < 0.1 0.10 < 0.1 < 0.1 < 0.1
10-20 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 8 · 1008 5 · 1006 5 · 1007 < 0.1 < 0.1 < 0.1
20-30 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 7 · 1011 1 · 1009 2 · 1010 2 · 1006 2 · 1003 4 · 1004
30-40 < 0.1 < 0.1 < 0.1 2 · 1006 4 · 1003 9 · 1004 1 · 1011 1 · 1009 8 · 1009 5 · 1014 9 · 1011 2 · 1013
40-50 < 0.1 < 0.1 < 0.1 6 · 1014 7 · 1012 6 · 1013 3 · 1016 4 · 1014 3 · 1015 3 · 1014 8 · 1012 4 · 1013
50-60 < 0.1 < 0.1 < 0.1 2 · 1007 5 · 1005 3 · 1006 5 · 1015 3 · 1014 1 · 1015 2 · 1011 6 · 1009 3 · 1010
60-70 < 0.1 < 0.1 < 0.1 2 · 1015 4 · 1013 3 · 1014 2 · 1022 4 · 1020 3 · 1021 1 · 1015 3 · 1013 2 · 1014
70-80 < 0.1 < 0.1 < 0.1 1 · 1015 3 · 1013 2 · 1014 3 · 1020 7 · 1018 4 · 1019 3 · 1022 8 · 1020 5 · 1021
80-90 0.11 < 0.1 < 0.1 7 · 1016 4 · 1015 1 · 1016 2 · 1026 8 · 1024 4 · 1025 7 · 1016 3 · 1015 1 · 1016

(b) Number of predicates
Heuristic SME-exhaustive {o}-SMT {p}-SMT

T max avg std max avg std max avg std max avg std
0-10 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1
10-20 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 2 · 1005 2 · 1003 2 · 1004 < 0.1 < 0.1 < 0.1
20-30 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 1 · 1010 2 · 1007 3 · 1008 2 · 1006 3 · 1003 6 · 1004
30-40 < 0.1 < 0.1 < 0.1 6 · 1014 1 · 1011 8 · 1012 2 · 1012 1 · 1009 4 · 1010 5 · 1014 2 · 1011 9 · 1012
40-50 < 0.1 < 0.1 < 0.1 1 · 1008 2 · 1005 5 · 1006 3 · 1016 4 · 1013 1 · 1015 7 · 1013 1 · 1011 3 · 1012
50-60 < 0.1 < 0.1 < 0.1 1 · 1012 2 · 1010 1 · 1011 3 · 1020 4 · 1018 3 · 1019 7 · 1016 9 · 1014 8 · 1015
60-70 < 0.1 < 0.1 < 0.1 2 · 1015 6 · 1013 3 · 1014 3 · 1018 1 · 1017 5 · 1017 1 · 1015 2 · 1013 1 · 1014
70-80 < 0.1 < 0.1 < 0.1 7 · 1016 2 · 1015 1 · 1016 2 · 1022 4 · 1020 3 · 1021 3 · 1022 7 · 1020 5 · 1021
80-90 0.11 < 0.1 < 0.1 5 · 1015 6 · 1014 1 · 1015 2 · 1026 2 · 1025 5 · 1025 7 · 1016 7 · 1015 2 · 1016

(c) Number of types
Heuristic SME-exhaustive {o}-SMT {p}-SMT

O max avg std max avg std max avg std max avg std
0-5 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 0.11 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1
5-10 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 2 · 1007 1 · 1006 3 · 1006 9 · 1005 1 · 1003 3 · 1004
10-15 < 0.1 < 0.1 < 0.1 1 · 1015 4 · 1011 2 · 1013 4 · 1012 9 · 1009 1 · 1011 3 · 1015 1 · 1012 5 · 1013
15-20 < 0.1 < 0.1 < 0.1 2 · 1015 2 · 1013 2 · 1014 2 · 1018 5 · 1016 3 · 1017 3 · 1022 3 · 1020 3 · 1021
20-25 0.11 < 0.1 < 0.1 7 · 1016 2 · 1015 1 · 1016 2 · 1026 4 · 1024 3 · 1025 7 · 1016 2 · 1015 1 · 1016

(d) Number of objects

Table 9: Algorithm runtime on the manually encoded predicate struc-
ture pairs. The table shows the max,mean and standard deviation of
the runtimes on all combinations of manually handcoded inputs on dif-
ferent dimensions. The reported runtime is in CPU-seconds, values
larger than 105 reflect search space size.
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5 Discussion

In this research, the aim was to assess the validity of proposed explanations for
dealing with intractability of analogy derivation under SMT by means of systematic
simulation experiments. The proposed explanations were implemented and their
quality of solutions and time complexity were systematically tested using a random
predicate structure pair generator. The current section will discuss the results of
these experiments along with their implications and limitations.

5.1 Quality of solutions (Optimality)

The first goal in this research was to assess the quality of solutions given by the
heuristic. When evaluating the performance on a large number of cases, taken from
a large range of dimensions, the heuristic was optimal in 88% of the cases. This
number depends highly on the number of predicates in the predicate structure,
starting at 93% correct on small predicate structures (20 predicates), but dropping
to being optimal only 24% on predicate structures with 200 predicates (see Figure
13). Results also showed that there is no guarantee of near-optimal solutions with
the heuristic. For all non-optimal solutions, the average distance from the optimal
was around 0.27 with a high standard deviation (0.16). While the majority of non-
optimal solutions were less than 0.50 away from the optimal, cases were encountered
where the solution was as far off as 0.93 of the optimal (Figure 10). These results
show that the heuristic did not perform as well as previously suggested in Forbus
and Oblinger (1990), where the algorithm was optimal between 85% and 96% of the
cases and close-to-optimal in the other cases (see also Table 2 in the Introduction).
While for small predicate structures the heuristic finds the optimal in most cases,
this number drops very quickly with larger structures. The distance from the
optimal solution was found to be anywhere between 0.0 and 0.93, which is much
worse than was believed. It is interesting that while the number of optimal solutions
drops with the number of predicates, the average quality of non-optimal solution
did not change (as seen in Figure 13). This could be caused by a property of
the input, if the minimum possible score increases with the size of the predicate
structures as well as the maximum score.

Some dimensions appeared to affect the quality of the solutions as well, with the
solution quality being better on close, deep structures with more types (Figures 11,
12 & 14). The reason for this is not exactly clear but it may have something to do
with deeper structures having fewer root predicates than shallow structures, and in
close pairs (and pairs with more predicate types) there are fewer possible consistent
and supported combinations of root predicates, resulting in fewer structures to
merge. It must be taken into account that the number of predicates was kept
constant in this run; structures with more levels also had less predicates per level,
the same holds for number of types, where more predicate types also implied less
predicates of the same type in the predicate structures. The number of predicates
of the same type directly influence the number of initial predicate combinations
that can be made, from which later on gmaps are formed. With more layers of
predicates, the chance of initial combinations of predicates on the same height level
is smaller, and it is less likely that these combinations have matching arguments all
the way down to the objects. Closeness influences the chance of initial combinations
resulting in supported gmaps as well, with closer predicate structures allowing for
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less possibilities. The number of initial gmaps is directly related to the combinations
in the exhaustive (exponential) merging step, which the heuristic solves by greedy
merging. Fewer gmaps means that fewer decisions have to be made in the greedy
merging, thus in that case it is less likely that the wrong gmaps are chosen for
merging.

These findings suggest that in general the heuristic returns many optimal so-
lutions in small predicate structures and few in large predicate structures. Ad-
ditionally, the returned solution can be anywhere between the optimal value and
very far from the optimal, with the closeness, height and number of predicate types
influencing the quality of the solutions.

One important limitation of this quality analysis is that the heuristic and ex-
act solutions were only compared by values (systematicity), and not on structural
similarity (van Rooij & Wareham, 2012). It is unknown how far of the heuristic
is in terms of structure, as a distance of e.g. 0.10 from the optimal value does
not necessarily imply that the structure of the solution is close to the structure of
the optimal analogy. On the other hand, when the value is far off, it can be the
case that the structure is rather similar (e.g. by just missing one deeply connected
predicate in the solution). Evaluation of structure approximation performance was
left out in this study for two reasons: First, for at least some cognitive processes,
the value of the solutions is all that is important. Judging similarity is a good
example of this (Gentner & Markman, 1997). Furthermore, it is not clear how to
measure predicate structure similarity, as there are many different methods (Bunke,
2000) and no consensus exists on which would be the best for SMT. Future research
could therefore focus on investigating the structural approximation capabilities of
heuristics for analogy derivation under SMT (using various measures), for a more
complete understanding of the solution quality of the heuristic.

Another limitation lies in the fact that while this study investigated a large
range of values for the parameters, optimal solutions can still not be derived for the
whole possible input space, thus restricting the examples for which the heuristic
can be assessed, as predicate structures with a large number of objects and a large
number of predicates, the exact algorithms would take too long to compute the
optimal solution. A solution to this problem might be to modify the generator
in a way to make sure that the core structure that the base and target predicate
structure have in common also the most optimal analogy. However, to which extent
this is possible is currently unknown.

5.2 Runtime (Complexity)

On the question of runtime of the algorithms, this study found that the fp-algorithms
behave as expected (as seen in Figures 18 & 20), with their runtimes increasing
exponentially with higher values for their respective parameters. It is somewhat
surprising that {p}-SMT algorithm is generally very slow, even for small numbers
of predicates. This is not helped by the fact that restricting predicates is very
hard to do as larger and deeper predicate structures automatically have more pred-
icates. SME-exhaustive on the other hand behaves wildly different per example,
and shows a wide fluctuation in runtimes, being faster on deep structures (Figure
16) with few types (Figure 19). It is interesting to note that both the heuristic
and SME-exhaustive perform better on the same dimensions, and worse on oth-
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ers. This finding raises questions about the practical benefits of the heuristic, as in
those cases where it is known to perform better (high structures with few types),
SME-exhaustive will be fast (and optimal). However, one important difference was
that the heuristic seems to perform better on close predicate structures, while SME-
exhaustive becomes slower when the closeness increases. One reason for this could
be that close predicate structures could still have many possible substructures to
merge, but the greedy merging picks the best order of merging with a higher chance.
For example, the largest initial gmap already contains most of the final analogy on
closer predicate structures, which benefits the heuristic but there can still be many
smaller gmaps that need to be exhaustively combined by SME-exhaustive.

The most interesting finding was that {o}-SMT performs very well on larger
predicate structures with a small number of objects and is comparable in speed to
the heuristic (with many predicates, it even performs on-par, see Figure 18), mak-
ing {o}-SMT a strong competitor for the heuristic in terms of the trade-off between
quality of solutions and speed.

It must be noted that it is highly likely that {o}-SMT and {p}-SMT can be
improved upon to gain more speed, as the proposed versions of the algorithms were
only used to prove the fixed-parameter tractability of SMT. Various techniques from
parameterized algorithm design could possibly be applied to improve (parameter-
ized) algorithms for SMT. To illustrate, the worst case runtime of algorithms for the
Vertex Cover problem has seen dramatic improvements (Balasubramanian, Fellows,
& Raman, 1998; Chen, Kanj, & Jia, 2001; Chen, Kanj, & Xia, 2010) since the first
FPT results by Buss and Goldsmith (1993). Such improvements have been made
for other problems in FPT as well, and are called FPT-races11. It seems therefore
likely that the runtimes of fp-tractable algorithms for SMT can be improved to a
great extent as well.

When comparing the average and worst runtimes of the algorithms, only small
differences (‘only’ a factor 1000, which is small in the range of 1030) can be observed,
indicating that the average runtime is well estimated by the worst case runtime.
Even if the worst case runtime would never occur in practice, the average still
approaches this scenario. This finding provides support for the tractable cognition
thesis, as it is sometimes argued that instead of analysing worst case scenarios of
computational level models of cognition, average case scenarios that are more likely
to occur in practice should be targeted.12

5.3 Manually encoded input

The third question in this research was how results for randomly generated input
differ from manually encoded examples. The percentage of heuristic solutions that
are optimal is very high (99%) for the fables category; this is likely due to the rela-
tively small number of predicates in the predicate structures (refer to Table 7), as it
was earlier shown that the quality of the heuristic is better on predicate structures
with few predicates. For the other category (plays), the average number of predi-

11Refer to the parameterized complexity wiki (http://fpt.wikidot.com/fpt-races) for an overview
of FPT-races (Parameterized Complexity Community, 2013)

12Note that this argument already contradicts itself as the definition of a computational level theory
of cognition should limit its input description to match the worst case input encountered in practice (van
Rooij, 2008)
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cates was higher, which was also reflected in the results, dropping the percentage
of heuristic optimal solutions to 64%. The quality of non-optimal solutions was
similar for both categories (Figure 21), compared to the results on randomly gener-
ated pairs presented in Figure 10. However, with the small number of non-optimal
solutions for the manually encoded input, this statement must be interpreted with
caution. There are also no surprising differences when comparing the trends of
the different dimensions (Table 8 and 9), except for the effect of the number of
predicate types on heuristic solution quality. The number of types was generally
large in manually encoded predicate structures, and larger than the largest number
of types in randomly generated predicate structures. Note that these results also
do not reflect the effect in isolation, as was the case with the randomly generated
predicate structures. It is likely that the manually encoded predicate structures
with many types also had more predicates and this would cause a drop in heuristic
performance, as observed with the randomly generated predicate structures. To-
gether, these findings indicate that the randomly generated predicate structures are
not very different from manually encoded predicate structures in terms of structure,
resulting in more support for our interpretation of our findings.

One question that remains is how representative the manually encoded and
random examples are for the actual input space that humans are dealing with.
While a large space of possible inputs was examined, it is likely that, in practice,
only a subset of this space is encountered. In line with the parameterized approach,
this study did illustrate that the dimensions of real world examples are of high
importance to the complexity of the problem, and investigating these dimensions
should therefore be the target of future research.

5.4 Future work

This research has raised many questions in need of further investigation. Most
importantly, as mentioned before, future research should focus on validating the
results of this study against human performance in analogy derivation. For instance,
investigating whether the input encountered by humans in practice generally has
few objects would validate the use of the {o}-SMT algorithm to model human
analogy derivation. It would also be of interest to analyse whether humans perform
better (faster) when the input has few objects.

Future studies could investigate the effect of dimensions that were not included
in this study on the quality and complexity of the algorithms, for example the
influence of functions or the number of ordered predicates. However, this study
raised some issues regarding the exact algorithms which first need to be addressed
(see Appendix A). Additionally, as was mentioned in the previous section, various
measures of structural solution quality could be included in the analysis, for a
more complete understanding of the distance of the heuristic solutions from the
optimal solutions (van Rooij & Wareham, 2012). It is also possible to explore
different measures for solution quality, for example the distance in value from a
random search solution could be used (Barr et al., 1995). As for this measure
the optimal solution is not needed, the heuristic could be assessed on even larger
predicate structures than the ones used in this study. Besides different measures for
solution quality, different measures for complexity could also be applied. This study
considered time-complexity, while humans are also likely to be constrained by space
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(memory). However, no theoretical results of the space complexity of SMT have
been found in the literature. Additionally, while the memory usage of the algorithms
could be monitored, memory usage depends highly on the implementation and
characteristics of the programming language.

Finally, the methods used in this study can be applied to other (heuristic) al-
gorithms used for analogy derivation, and provides a platform to systematically
compare new methods against SME-exhaustive and the heuristic, which are some
of the most influential algorithmic level implementations for SMT. For example,
as closeness was found to highly influence the performance of the heuristic and
SME-exhaustive, it would be interesting to investigate more specifically what role
closeness plays in the complexity of SMT, and how this could be exploited by a
possible fp-tractable algorithm. As pointed out in the previous section, there is
much room for improvement of the algorithms. For example, the heuristic can be
improved by adding other greedy searches, starting with different gmaps, which
would likely increase its performance (while only making it a little slower). Fur-
thermore, the fp-tractable algorithms implemented in our study were only proposed
to prove fixed-parameter tractability, and can be optimized further (e.g. by adding
search pruning methods), to make the handling of slightly larger input more feasi-
ble.

5.4.1 Artificial Intelligence

Besides the insights into explanations in Cognitive Science, this thesis makes sev-
eral noteworthy contributions to the field of (Cognitive) Artificial Intelligence (AI).
First, analogy derivation as described by SMT is often used in AI systems (see
Gentner and Forbus (2011) for an overview), and the results of this study pro-
vide a systematic analysis of the performance of SME, which is one of the most
influential algorithms for analogy derivation. Another important contribution for
future research on SMT is the implementation of (heuristic) SME, the novel fp-
tractable algorithms, and the predicate structure pair generator in a modern and
popular programming language. The software is made available online under an
open-source license (GPL) to allow and promote further research on this topic.13

Second, the findings of this study showed the importance of rigorous tests of algo-
rithm performance. For example, these tests showed that the popular heuristic was
not as good as was believed, and we discovered cases that are not handled correctly
by the exact algorithms, which could possibly be overlooked in the design of such
algorithms. Finally, we showed that the parameterized complexity approach to in-
tractable models of human cognition can result in algorithms that are both fast
(like heuristics) and optimal, promoting the use of such algorithms for AI systems,
where speed and optimality are often important factors as well.

13https://github.com/Tijl/ANASIME

41



5.5 Conclusion

This study has shown that {o}-SMT outperforms the heuristic in terms of speed
versus solution quality when restricting the number of objects. Returning to the
question posed in the beginning of this study, the findings support the idea that
restricting the input space (i.e. limiting the number of objects) is a viable ex-
planation of how humans could be both fast and optimal when deriving analogies.
Besides analogy derivation, the findings presented in this study can be extrapolated
to explanations in cognitive science in general, as speed and optimality are a factor
in many theories of cognitive functions and heuristics are often used as standard
explanations (van Rooij et al., 2012). The same holds for the simulation approach,
as this method allowed us to gain specific insights into algorithm performance. Ad-
ditionally, the benefit of rigorous testing of performance can point out issues with
the algorithms that may have been overlooked in the design of these algorithms, for
example the cases where the exhaustive algorithms did not return optimal solutions
(see Appendix A).

In conclusion, this thesis makes three main contributions. First, this study
contributes to a better understanding of the range of options for dealing with in-
tractability of SMT in particular, and explanations in cognitive science in general.
Second, the simulation approach taken in this thesis has revealed that many impor-
tant insights can be achieved only through rigorous tests of algorithm performance.
Finally, it has produced a software framework that can be used by other researchers
to perform novel tests of algorithms for analogy derivation under SMT, for purposes
of both psychological explanation and cognitive engineering.
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45



(Eds.), Analogies: Integrating Multiple Cognitive Abilities (Vol. 5, pp.
57–62).
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A SME and non-optimal solutions

During the process of implementing the algorithms, it was found that the descrip-
tion of the handling of unordered predicates by SME-exhaustive, as described in
Falkenhainer et al. (1989), does not seem to work in practice, which is illustrated
with an example in Appendix A.1. Furthermore, while comparing the solutions re-
turned by SME-exhaustive with the solutions from the other exact algorithms, dif-
ferences were found in the optimal solution (the solution from SME-exhaustive had
a lower score than the optimal). It seems that the reason for these differences is
that SME-exhaustive does not consider enough sub-structures. This case is also
illustrated with an example in Appendix A.2.

A.1 Unordered predicates

x1 x2 y1 y2

A1 A2

Figure 22: Predicate structure pair illustrating a case with unordered
relations. SME-exhaustive is not able to deal with structures containing
unordered relations of the same type (In this example, A1 and A2 are
both unordered relations of the same type).

SME-exhaustive, as described in (Falkenhainer et al., 1989), does not appear to
handle unordered predicates correctly, and it is not clear how the optimal solution
would be achieved when predicate structures contain unordered predicates. This
is illustrated by the example from Figure 22. Following the description of SME-
exhaustive, one initial mhs (A1, A2) will be created with the following mappings,
where emaps are the mappings between leaves/objects:

mh : {root = (A1, A2); emaps = {(x1, y1), (x1, y2), (x2, y1), (x2, y2)}}

Computing the conflicting sets (the set of mhs that is inconsistent with a mhs) for
this mhs gives:

• Conflicting(x1, y1) = {(x1, y2), (x2, y1)}
• Conflicting(x1, y2) = {(x1, y1), (x2, y2)}
• Conflicting(x2, y1) = {(x2, y2), (x1, y1)}
• Conflicting(x2, y2) = {(x2, y2), (x1, y2)}

It is clear that the emaps are always conflicting within this structure, and therefore
no consistent solution is possible according to the algorithm as given in Falkenhainer
et al. (1989). One way of correctly dealing with this problem is to create different
match hypotheses for all possible pairings of the arguments when mapping two un-
ordered relations. This would greatly increase the number of initial gmaps though,
which would lead to more combinations to check in the exhaustive combining pro-
cess.
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A.2 Important sub-structures

x1 x2 x3 x4

A1

B1

C1

D1

y1 y2 y3 y4

A2

B2

C2

D2

Figure 23: Predicate structure pair illustrating a case with important
subgraphs. SME-exhaustive does not consider smaller subgraphs when
combining gmaps, leading to a sub-optimal solution.

The second case where SME-exhaustive does not appear to give the optimal solu-
tion is a case where it does not consider all possible sub-structures. Consider the
predicate structures in Figure 23. Now, SME-exhaustive creates two initial gmaps
which conflict with each other as they map object x2 to different objects in the
target:

• gmap1 : (B1, B2),mhs = {(A1, A2), (x1, y1), (x2, y2)}, conflicting = {(x2, y1)}
• gmap2 : (D1, D2),mhs = {(C1, C2), (x2, y1), (x3, y3), (x4, y4)}, conflicting =
{(x1, y1), (x2, y2)}

As these gmaps conflict, only one can be given as solution, while the optimal solution
combines gmap1 with a substructure of gmaps:

Optimal = {(A1, A2), (B1, B2), (C1, C2), (x1, y1), (x2, y2), (x3, y3), (x4, y4)}

(C1, C2) is not considered as an initial gmap as it is a child of (D1, D2) and only
the largest structure is used as initial gmap if it is supported and consistent, which
is the case for (D1, D2). To deal with cases like this, SME-exhaustive would have
to recurse on all children of consistent roots and consider them all as initial gmap in
the merging process, which would again lead to much more combinations to check
when exhaustively combining gmaps.
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