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Investigating Location-specific Contextual Modulations of Object Processing. 
 

In our everyday surroundings, objects never appear in isolation, but they are integrated 
within a scene context. This context is able to facilitate object recognition. However, it 
is unknown what specific contextual cues are contributing to this facilitation effect. 
Here, we investigate the influence of an object’s estimated size, inferred from the 
viewing distance. In an fMRI experiment, participants viewed scenes in which the 
object’s location and size was manipulated, such that they were either congruently 
(e.g., near and large) or incongruently (e.g., far and large) presented. Decoding 
analyses showed that congruently presented objects were better represented in object-
selective areas than incongruently presented objects. This congruency effect was not 
found in early visual cortex. This indicates that an object’s estimated size, which can 
be inferred from the viewing distance, contributes to the neural representation of that 
object in the object-selective cortex.  
 
Keywords: Object perception, contextual feedback, fMRI, MVPA 

 
Humans are highly efficient at recognizing 

objects within a cluttered environment. 

Without much effort, you can find your coffee 

mug on a messy table, or the actual table 

where you have left the mug. To this day, 

visual search in natural scenes remains a 

task where humans consistently outperform 

computers (Borji & Itti, 2014). Only when 

expectations about visual information are 

violated, computers are able to surpass 

human performance (Eckstein et al., 2017). 

Nevertheless, a lifelong amount of 

experience prevents humans from making 

mistakes that are common in artificial object 

recognition. For instance, hackers are able to 

make a self-driving car slam the brakes by 

flashing an image of a stop sign on a billboard 

(Nassi et al., 2020). Humans, who are 

perfectly capable of discriminating between 

an actual stop sign and a stop sign presented 

on a billboard, would not make this error. 

What critical cues of the object or its 

surroundings are contributing to this 

difference between human and artificial 

agents? Understanding which cues are 

crucial in developing and acting upon 

expectations about visual information, may 

aid research in optimizing artificial object 

recognition. Perhaps of more importance, 

investigating the influence of certain 

contextual cues on the neural representation 

of objects in the brain contributes to our 

understanding of object recognition in 

humans.  

 

Expectations elicited by structural 

regularities 

One of the main assumptions in the field of 

visual object recognition is that it is supported 

by the generation of expectations 

(Summerfield & De Lange, 2014). These 

expectations are derived from the fact that 

visual information contains structural 

regularities: visual compositions that have 

appeared consistently in the past, will have a 

higher probability to appear in the future. 

Visual compositions are comprised of a 

scene and objects acting within that scene. 

Several regularities can be observed in the 

relationship between scenes and objects.  

First, a scene can elicit expectations 

about the identity of an object. A famous 

study demonstrates that recognizing a loaf of 

bread in a kitchen requires less effort than 

recognizing a drum or mailbox in this same 

context (Palmer, 1975). This is due to the fact 

that the loaf of bread matches the 

expectations that are elicited by the kitchen 
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context, while this is not the case for the drum 

and mailbox. Especially when an object is 

ambiguous (e.g., presented for a short 

amount of time, or degraded from obvious 

physical characteristics), contextual 

information derived from a scene can 

facilitate object recognition (Bar, 2004; Oliva 

& Torralba, 2007). 

Second, scenes can elicit expectations 

about the appearance of an object. For 

example, a source of light in a scene predicts 

the color, brightness and shadow of an 

object, while a specific angle of view predicts 

the shape of an object. Furthermore, the size 

of objects can be estimated by their position 

in the scene and by their position relative to 

other objects (Biederman et al., 1982): a 

coffee mug that is placed on a table nearby 

will have a larger retinal size (i.e., it will 

comprise a larger portion of the visual field) 

than a coffee mug placed on a table in the 

back. In reality of course, the mug’s real-

world size is the same. If these expectations 

about the relation between the scene and 

object are violated, observers are less likely 

to identify a target object. This was 

demonstrated in an experiment where human 

observers were more likely to miss a target 

object when its size was not compatible with 

the rest of the scene, even though the object 

was displayed as having a larger size than 

usual (Eckstein et al., 2017).  

 

Neural correlates of contextual 

facilitation   

Recent neuroimaging studies have expanded 

on the behavioral theories of contextual 

facilitation above, in order to identify the 

neural correlates of this effect. Using 

functional Magnetic Resonance Imaging 

(fMRI), Brandman & Peelen (2017) 

investigated the interaction between the 

neural mechanisms of object and scene 

processing. Here, multivariate pattern 

analysis (MVPA) (see Box 1) was employed 

to compare participant’s brain activity 

patterns during three conditions: 1) observing 

degraded (i.e., pixelated) objects in isolation, 

2) observing scenes in isolation, and 3) 

observing degraded objects within scenes. 

Critically, the degraded objects were 

ambiguous when presented in isolation, but 

could be categorized without difficulty when 

presented within their scene. The results 

showed that object classification improved 

significantly when the object was presented 

in a scene, compared to the classification of 

Box 1 | Multivariate pattern analysis – support 

vector machine 

A consequence of having access to powerful 

neuroimaging tools, is the by-product of an 

overwhelming amount of data. In fMRI, a common 

method to extract information and patterns from 

these large amounts of data is multivariate pattern 

analysis (MVPA). Where univariate approaches 

mainly provide information on whether brain areas 

show differences in mean activation across 

conditions, MVPA takes into account the systematic 

differences in multi-voxel activity patterns  across 

conditions. A technique frequently used in 

combination with MVPA is the linear support vector 

machine (SVM). This is a supervised machine 

learning algorithm that can be trained to distinguish 

between patterns of brain activity that are evoked by 

two sets of stimuli (e.g., clear images of animate or 

inanimate objects). These patterns can be derived 

from all brain voxels (whole-brain analysis) or from 

specific subsets of voxels (region-of-interest [ROI] 

analysis). Next, the algorithm is tested on a new set 

of patterns of brain activity that are evoked by a new 

stimuli set. This test returns an accuracy score that 

informs the user on how accurate the algorithm can 

classify the testing data according to the labels that 

were supplied by the training data. A higher accuracy 

score implies that the algorithm (or classifier) can 

more reliably decode certain patterns of activity from 

new data, on which the algorithm was not trained. 

This then reflects to what extend certain information 

is reflected in the brain activity within a given brain 

area. 
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objects in presented in isolation or scenes in 

isolation. This contextual facilitation effect 

was observed in object-selective areas, but 

not in scene-selective areas. This implies that 

object-selective areas encompass a shaper 

object representation, elicited by the scene in 

which the object is presented.  

Later, this claim was causally 

supported by a study using Transcranial 

Magnetic Stimulation (TMS) (Wischnewski & 

Peelen, 2021). In a similar setup, participants 

observed objects in isolation and objects 

presented in scenes. For each stimulus, 

participants had to determine as fast as 

possible to which of eight categories the 

object belonged. After the stimulus was 

presented, two TMS pulses were delivered 

with various latencies after stimulus onset: 

60-100ms (early), 160-200ms (middle), and 

260-300ms (late). The targeted regions were 

the object-selective lateral occipital cortex 

(LOC), the scene-selective occipital place 

area (OPA), and the early visual cortex 

(EVC). The main results showed that object 

recognition in scenes was significantly 

impaired after stimulation of the OPA at the 

middle time window, and after stimulation of 

the LOC at the late time window. This 

demonstrates that the object-selective LOC 

receives feedback from the scene-selective 

OPA, suggesting that scene-context provides 

important information that is needed to 

disambiguate the identity of an object. 

 

The role of object size and inferred 

viewing distance 

Although the neural evidence for 

scene-contexts being able to facilitate object 

recognition is accumulating, it is unclear what 

specific contextual cues contribute to such 

facilitation effects. Previous work has 

demonstrated the important role of the 

expected object size, in which the distance 

between the object and observer acted as a 

contextual cue (Gayet & Peelen, 2022). Using 

an fMRI approach, a cue instructed 

participants to search for either a melon or a 

box, while simultaneously instructing 

participants on whether the object would 

appear nearby (in the bottom plane of the 

screen) or far away (in the top plane of the 

screen). Accordingly, this cue allowed 

participants to make a prediction about the 

upcoming object’s retinal size. In half of the 

trials, the cue was followed by a scene with 

the melon or box appearing at the location of 

the cue, while in the other half of the trials the 

cue was followed by a scene without objects. 

This allowed the researchers to measure 

neural responses evoked by search 

preparation. A classifier that was trained on 

brain activity patterns of participants 

observing intact melons and boxes was able 

to classify these objects above chance when 

tested on the brain activity patterns evoked by 

search preparation. This was the case for the 

object-selective LOC, but not for EVC. 

Critically, a second analysis revealed that 

classification accuracies were higher when 

the classifier was trained on object sizes that 

corresponded with the viewing distance: 

when the classifier was trained on brain 

activity patterns evoked by large objects,  

classification accuracies were higher when 

the classifier was tested on brain activity 

patterns evoked by preparatory search 

activity for objects nearby, than for objects far 

away. This reveals that observers make 

predictions about the object size of a search 

target, based on the distance between the 

observer and the object. 

The study by Gayet and Peelen (2022) 

demonstrates how the expected object 

location, and thus inferred distance from 

which the object is observed, can elicit 

predictions that are reflected in the neural 

representations about the upcoming object’s 

size: objects appearing in the top plane of the 
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screen will appear to be viewed from a larger 

distance, resulting in a smaller estimated 

object size, while objects appearing in the 

bottom plane of the screen will appear to be 

viewed from a smaller distance, resulting in a 

larger estimated object size. This contributes 

to the existing literature that indicates that 

object size is an important contextual cue in 

visual search (Eckstein et al., 2017).  

The point at issue in this study 

concerns the role of such size-distance cues 

in object recognition. Is the expected object 

size one of the important contextual cues that 

can facilitate the object’s neural 

representation in the visual cortex? 

Considering the findings that 1) contextual 

cues are able to facilitate object recognition 

(Palmer, 1975; Eckstein et al., 2017) and 

object representation in the object-selective 

cortex (Brandman & Peelen, 2017; Gayet & 

Peelen, 2022), and 2) observers make 

predictions about object size based on 

viewing distance (Gayet & Peelen, 2022), we 

will investigate the influence of facilitating 

contextual cues, specifically the expected 

object size, derived from the inferred viewing 

distance, on the representation of objects in 

the object-selective cortex. Specifically, we 

ask: are visual object representations in 

object-selective cortex modulated by inferred 

viewing distance?  

Here, we use fMRI to test whether the 

object’s representation is enhanced when the 

size and location of that object matches the 

expectations of the observer compared to 

when the object’s size and location are 

manipulated, such that they do not match the 

expectations of the observer. Additionally, we 

test whether these representations are 

enhanced in specific areas of the visual 

cortex compared to other areas. It is expected 

that objects that match the expectations of 

the observers are better represented in the 

visual cortex than objects that do not match 

the expectations. The analyses will be 

performed in the object-selective LOC and in 

the EVC, which are known to be involved in 

object size perception (Murray et al., 2006) 

and object recognition (Grill-Spector et al., 

2001). Additionally, the analyses will be 

performed in the intraparietal sulcus (IPS), 

which is involved in object-scene scale 

consistency. 

Following the conclusions of Gayet & 

Peelen (2022) on the one hand, it is expected 

that the congruency effect will be more 

profound in the LOC compared to the EVC. 

For example, it might be the case that 

although the EVC is involved in object size 

perception, these perceived differences do 

not contribute to the ability to recognize or 

classify an object. Instead, these tasks might 

depend to a greater extent on higher-level 

visual areas (such as the LOC). On the other 

hand, a recent study that investigated the 

influence of TMS on the Ponzo illusion effect 

elicits contrasting expectations (Zeng et al., 

2020). In the Ponzo illusion, two horizontal 

lines are placed at different heights of two 

converging vertical lines (Ponzo, 1910). The 

upper line is estimated as longer, due to the 

sense of depth that is created by the 

converging lines. The authors revealed that, 

although TMS affected the strength of the 

Ponzo illusion effect after stimulation of both 

the EVC and LOC, strongest effects were 

found for stimulating  the EVC at a late time 

window. They described a possible scenario 

in which the EVC forwards low-level stimulus 

information to the LOC, while the LOC 

receives contextual information from scenes, 

which is subsequently fed back to the EVC. 

Following this line of thought, we might 

expect to observe a congruency effect in both 

the LOC as well as in the EVC. 

 

 

 



6 

 

Methods 

Participants 

A total of 35 participants (21 female, 

mean age = 24.8, SD = 3.92) were recruited 

via the Radboud University participant pool 

(SONA systems). Upon participation, 

participants received a monetary reward. The 

study was conducted in accordance with the 

institutional guidelines of the local ethical 

committee (CMO region Arnhem/Nijmegen, 

the Netherlands, Protocol CMO2014/288). 

One participant was removed from all 

analyses, since an initial analysis revealed 

that animacy information could not be reliably 

decoded from the participant’s brain activity.  

 

Apparatus 

Stimuli were presented on a BOLDscreen 32, 

MR-proof monitor, synchronized lag-free to a 

1920 x 1080 pixels @ 120 Hz video signal. 

Before the session, participants were guided 

into the MRI bore to adjust the mirror that was 

mounted on the head coil. When the stimulus 

screen was fully visible in this mirror, the 

experiment proceeded.  

 Participants used a handheld button 

box to carry out a 1-back task. The button box 

was held in the right hand, and operated with 

the index finger.  

 

General experimental procedure 

Participants registered for a time slot 

via SONA systems. Before entering the 

scanner facilities, participants received a 

short, verbal explanation of the tasks they 

were about to perform inside the scanner. 

Participants were instructed to pay close 

attention to the stimuli, because they had to 

answer a question concerning these stimuli at 

the end of the experiment. Inside the scanner, 

participants were able to practice the task 

during the five-minute anatomical scan. After 

every run, the experimenter checked if the 

participant was doing okay, or whether they 

needed a break.  

 The scanner session started with an 

anatomical scan, followed by 13 experimental 

runs: four so-called training runs, six so-

called testing runs, and three functional 

localizer runs. The order of the runs was 

balanced, such that consecutive runs were 

not the same. This was the same for every 

participant. Every run lasted approximately 

five minutes. Apart from the IPS localizer run, 

participants performed a 1-back task during 

every run. After the scanner session, the 

participants completed a separate behavioral 

task on a laptop, measuring the participant’s 

susceptibility to the Ponzo size illusion 

(Ponzo, 1910). 

 

Experimental design & stimuli 

Testing runs. The testing runs consisted of 

degraded objects presented within a scene. 

The objects were either animate (containing 

the categories: humans, dogs, kangaroos, 

boars, bears, apes and cows)  or inanimate 

(containing the categories: signs, tables, 

chairs, cars, motorcycles, suitcases, and 

wheelbarrows). The degradation of the 

objects was done by using the filter ‘Pixelate’ 

→ ‘Mosaic’ function of Photopea (an online, 

free version of Photoshop). A cell size of 5 or 

6 was chosen to make sure that the object 

would not be recognizable in isolation, but 

would be recognizable within a scene. The 

size of the object was either large or small, 

while the position of the object was either 

nearby or far away. This way, an object was 

either congruently located (e.g., a small 

object far away), or incongruently located 

(e.g., a small object nearby) within a scene. 

Stimuli were created using Photopea. 

Photographs of 64 unique scenes were 

selected from www.unsplash.com. The 

scenes elicited a clear sense of depth, did not 

contain other objects, and contained some 



7 

 

texture, such that the contrast between scene 

and object did not lead to an immediate 

saliency effect of the object. Every scene was 

able to contain all object categories with 

approximately equal probabilities, implying 

that the type of scene was not predictive of 

the type of object that was located within the 

scene. Photographs of 64 unique objects 

were selected from vhv.rs. The objects varied 

in orientation, color and posture, such that 

each category was broadly represented. 

Inanimate objects with bright colors such as 

red and green were avoided, since these 

colors are not common among animate 

objects, and are therefore more likely to be 

categorized as inanimate. Across all 

categories, animate and inanimate objects 

were selected to be comparable in real-world 

size and global shape, to increase the 

potential to be confused with another 

category. For examples of the testing run 

stimuli, see Figure 1. 

The stimuli were selected from a 

previously conducted online study 

(unpublished), in which participants observed 

the objects for only 150ms, after which they 

had to categorize the object within the scene 

(either located in a congruent or incongruent 

location) as living or non-living. The 64 out of 

84 stimuli that showed the largest congruency 

effect (better performance for congruently 

located objects than incongruently located 

objects) were selected for the fMRI study. 

Participants had to press a button 

when they saw the exact same stimulus twice 

in a row. The six training runs each contained 

four mini blocks, in which a block of animate 

objects (16 stimuli) was followed by a block of 

inanimate objects (16 stimuli). Within a mini 

block, this pattern was repeated twice, such 

that every mini block consisted of 16 x 4 = 64 

consecutive image presentations, resulting in 

64 x 4 = 256 image presentations in total for 

each run.  

The runs were preceded by a 16s 

fixation cross. Every stimulus appeared on 

the screen for 150ms, with an 850ms interval 

between every stimulus. The training runs 

consisted of 4 mini blocks, with a longer 

fixation (16s) after every mini block.  

The testing runs were 

counterbalanced such that every participant 

was exposed to every scene, but only one 

variation of the object’s location and size 

(near-large, far-large, near-small or far-small) 

within that scene. This prevented participants 

from recognizing objects from an earlier trial 

with the same scene but a different condition. 

Across the whole experiment, all 16 

categories x 2 congruency conditions x 2 

distance conditions were counterbalanced. 

Additionally, the mini blocks were 

counterbalanced within-subjects, such that 

each mini block contained every condition 

(animate-congruent, inanimate-congruent, 

animate-incongruent and inanimate-

incongruent), and all eight categories within 

an animacy condition. 

 

Training runs. The training runs consisted of 

isolated (not including a background scene), 

large objects of high resolution, that were 

presented at fixation. These objects were 

novel exemplars from the same categories 

Note. Objects were either animate or inanimate, and the different 
combinations of sizes and locations of the object determined whether 
the object was congruently or incongruently located within its scene. 

Figure 1 

Examples of testing run stimuli 
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that were used in the testing runs. The 

training runs allowed for the extraction of 

optimal brain activation patterns in response 

to animate and inanimate objects. 

The task, timings, number of mini 

blocks and number of trials were similar to the 

testing runs.  

 

Functional localizer runs. Two localizer runs 

were used to define regions of interest (ROIs) 

at the individual subject level. The specifics 

on individual ROI selection are described 

later. 

The stimuli consisted of intact objects, 

scrambled objects, scenes, and faces. 

Participants had to press a button when they 

saw the exact same stimulus twice in a row. 

The stimulus appeared on the screen for 

300ms, followed by a fixation cross for 

450ms. Every localizer run contained 4 mini 

blocks, with the mini block consisting of 

separate blocks containing solely intact 

objects, scrambled objects, faces or scenes. 

Each block contained 20 trials, resulting in 20 

x 4 = 80 consecutive image presentations per 

mini block, and 80 x 4 = 320 image 

presentations in total for each run.  

 A third localizer run was used to 

identify the IPS (adopted from Welbourne et 

al., 2021). Welbourne and colleagues (2021) 

provided evidence for the involvement of the 

IPS in object-scene scale consistency. This 

was reflected in stronger BOLD responses to 

objects that were congruently located within a 

scene (object-scene scale consistent), than 

to objects that were incongruently located 

within a scene (object-scene scale 

inconsistent). To localize this region, 

Welbourne and colleagues (2021) describe a 

localizer task in which participants need to 

fixate on a fixation dot during alternating 

blocks lasting 20s, where the fixation dot was 

either moving or not moving. In blocks where 

the fixation dot is moving, the dot jumped to 

randomized positions along the horizontal 

axis of the screen, such that participants had 

to make saccades. The fixation dot stayed 

there for 500ms. In blocks where the fixation 

dot was not moving, the fixation dot remained 

in the center of the screen for 20s. The run 

contained 11 blocks of fixation, and 10 block 

of saccades.  

 Considering the IPS’s involvement in 

object-scene scale consistency, it is expected 

that a congruency effect will be observed in 

this area, implying enhanced object 

representation for congruently located 

objects, compared to incongruently located 

objects. 

 

Ponzo illusion task. As described earlier, the 

Ponzo illusion (Ponzo, 1910) is the visual 

illusion where two converging, vertical lines 

create the illusion of depth. When two 

parallel, horizontal lines of equal length are 

placed on top of the vertical lines, it appears 

as if the upper horizontal line is longer than 

the lower horizontal line, while in reality the 

lines are equally wide. It is expected that 

individual differences that will be observed in 

the main task, will mirror the individual 

differences in the Ponzo illusion task: the 

congruency effect in the main task would 

correlate with the degree to which objects in 

the top plane are estimated as larger than 

reality, compared to objects located in the 

bottom plane. It is hypothesized that 

participants who are strongly influenced by 

the implied distance in the Ponzo illusion, 

would be hindered in object representation by 

incongruently located objects (or helped by 

congruently located objects) in the testing 

runs. 

The (behavioral) task used here is 

similar as one of the tasks that was reported 

in Gayet & Peelen (2019). Participants first 

observed a fixation dot that was displayed for 

1s, after which a scene with a depth percept 
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appeared for 1s. The scene contained an 

object that was either located nearby or far 

away. Next, the same object was displayed in 

isolation, but with a different, randomized 

size. Participants were to adjust the size of 

the object, until it matched the size of the 

object they just observed within the scene. 

Participants completed two blocks of 

32 trials each, in which the location of the 

object (near or far) was balanced.  

 

Data acquisition and preprocessing 

The data was collected with a 3T Magnetom 

Skyra MR scanner (Siemens AG, Healthcare 

Sector, Erlangen, Germany), using a 32-

channel head coil. A T1-weighted anatomical 

scan was acquired, using an MPRAGE 

sequence (TR 2.3s, TE 3.03ms, flip angle: 8°, 

1mm isotropic voxels, 192 sagittal slices, 

FOV 256mm). Functional images were 

acquired by a T2*-weighted gradient echo 

EPI sequence (TR 1s, TE 34ms, flip angel: 

60°, 2mm isotropic voxels, 66 slices). 

 Preprocessing of fMRI data was 

carried out using SPM12. The data were field-

map corrected, unwarped, realigned, co-

registered with the participant’s anatomical 

data, segmented, normalized into MNI152 

space and smoothed with a 3mm full width 

half maximum Gaussian filter. 

 

ROI selection 

Object-selective cortex (OSC). Using a 

general linear model (GLM), the response 

evoked by participants observing intact 

objects vs scrambled objects during the 

functional localizer runs was modeled. The 

regressor of interest was derived from the 

individual mini blocks, of which a boxcar 

function was created. This was then 

convolved with the canonical hemodynamic 

response function (HRF). Six additional 

motion regressors and one run-based 

regressor were included as nuisance 

regressors. For each participant, voxels in 

pre-informed subregions were selected that 

significantly (puncorrected < .05) responded 

stronger to intact objects than to scrambled 

objects. The pre-informed subregions 

consisted a functional-defined mask of the 

LOC, retrieved from Julian et al. (2012). The 

LOC ROI size varied across participants and 

hemispheres (left hemisphere: M = 1364, SD 

= 657, min = 147, max = 2937; right 

hemisphere: M = 1143, SD = 615, min = 193, 

max = 2485).  

 

Early visual cortex (EVC). Early visual cortex 

regions of interest were identified in a similar 

manner as the object-selective cortex. The 

ROIs were acquired for each participant, by 

selecting voxels in pre-informed subregions 

that significantly (puncorrected < .05) responded 

stronger to stimuli (intact objects + scrambled 

objects + scenes + faces) than to no stimuli. 

The pre-informed subregions consisted of an 

anatomical mask of Brodmann’s Areas 17 

and 18, corresponding to the primary and 

secondary visual cortex. The EVC ROI size 

varied across participants and hemispheres 

(left hemisphere: M = 3387, SD = 617, min = 

2042, max = 4901; right hemisphere: M = 

3788, SD = 600, min = 2658, max = 5313).  

 The ROI selection procedure for 

scene- and face-selective regions have been 

reported in Supplement 1.  

 

Statistical analyses 

General Linear Model estimation – animacy. 

A GLM was used to model the evoked 

response of each individual participant for all 

four training runs. In these training runs, the 

regressors of interest were based on 

animacy, resulting in the regressors ‘object’ 

and ‘animal’. A boxcar function was created 

for each regressor, which was convolved with 

the canonical HRF. Six additional motion 
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regressors and one run-based regressor 

were included as nuisance regressors. 

 Similarly, a GLM was used to model 

the evoked response of each participant for 

all six testing runs. Here, the regressors of 

interest were based on animacy, as well as 

congruency, resulting in the regressors 

‘animal-congruent’, ‘object-congruent’, 

‘animal-incongruent’ and ‘object-

incongruent’. Six additional motion 

regressors and one run-based regressor 

were included as nuisance regressors.  

  

Multivariate Pattern Analysis. The 

multivariate pattern analyses were conducted 

by making use of The Decoding Toolbox 

(Hebart et al., 2015), using MATLAB. First, to 

verify whether the ROIs indeed contained 

animacy information, from which animate and 

inanimate objects could be classified, a 

within-participants leave-one-out cross-

validation approach was used. Here, the SVM 

was trained on the first training run, and 

tested on the remaining three training runs. 

This pattern was repeated for the other three 

training runs. In the same manner, a within-

participants leave-one-out cross-validation 

approach was applied to the testing runs. 

Since the testing runs did not only contain 

information about animacy, but also on 

congruency, the SVM’s classification 

accuracy for discriminating between animate 

and inanimate conditions was calculated 

separately for the two congruency conditions 

(by comparing congruent animate objects vs 

congruent inanimate objects, as well as 

incongruent animate objects vs incongruent 

inanimate objects). Provided that the SVM 

would be able to accurately decode animacy 

from the individual training and testing run 

data, this would imply that animacy 

information is indeed available in the tested 

ROIs. Under these terms, it is justifiable to 

continue with the main analyses. 

 Important to note is, that even though 

it is possible to calculate a congruency score 

from the testing run data above (by 

comparing animacy classification accuracies 

in congruent vs incongruent data), this does 

not disclose whether there is a disparity in the 

degree of  object representation between 

congruent and incongruent stimuli. After all, 

the classifier was trained and tested on the 

same type of data. A potential congruency 

effect in testing run data does not provide 

insight on what specific type of information is 

underlying this congruency effect. To make a 

statement about the difference in the degree 

of object representation between congruent 

and incongruent stimuli, the SVM needs to be 

trained on the isolated, intact, large objects 

presented at fixation. This way, the training 

data only provides information on whether an 

object is animate or inanimate. How well the 

classifier can make a distinction between 

animate and inanimate objects can then be 

tested for both congruent and incongruent 

objects in a scene. A potential difference in 

the classification accuracies between 

animate and inanimate objects is then purely 

driven by congruency, rather than other cues.  

This is precisely what was being 

investigated in the cross-classification 

analysis. Here, the SVM was trained on 

training run data and tested on testing run 

data. This way, the SVM learned to 

distinguish between patterns of brain activity 

based on animacy (animacy classifier), and 

was then tested on the ability to generalize 

this information to a different dataset that was 

until then unfamiliar.  

The analyses above were carried out 

for the object-selective LOC, the IPS and the 

EVC. The degree of accuracy was reported 

using z-score averaged distance to bound, 

scaled as such that -1 equaled minimal 

performance, and 1 equaled maximum 
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performance. A score of zero corresponded 

to chance level performance.  

 

Ponzo illusion task. The main result of the 

Ponzo illusion task comprised the difference 

in the estimated size for objects located 

nearby and objects located far away. This 

was accomplished by calculating the average 

overestimation in size, for both conditions 

(near and far), for each participant. To test 

whether these averages were different from 

zero, two one-sample t-tests were conducted. 

Next, the difference between these averages 

was computed, after which a one-sample t-

test was used to test whether this difference 

was different from zero.  

Thereafter, the correlation between 

the congruency effect on the one hand, and 

the performance on the Ponzo illusion task on 

the other hand was calculated. This analysis 

was  carried out for the object-selective LOC, 

IPS and EVC, provided that a significant 

congruency effect was found here.                                                                                           

Kendall’s τ correlations are reported because 

of the violated assumption of normality.   

 

Results 

Within run type-classification – training. 

Before investigating whether animacy 

information can be decoded directly from the 

data, it is required to verify that the ROIs on 

which the SVMs are trained and tested 

actually contain animacy information. This 

was done by training an SVM according a 

leave-one-out cross-validation approach, in 

which the SVM was trained and tested on 

training data (consisting of isolated, intact, 

large objects presented at fixation). As can be 

seen in Figure 2A, results showed that 

animacy information could reliably be 

decoded in the LOC (M = .86, p = <.001, 95% 

CI = [.84, .88]), the IPS (M = .34, p = <.001, 

95% CI = [.27, .41]), and the EVC (M = .63, p 

= <.001, 95% CI = [.56, .70]). This suggests 

that activity in these ROIs contains 

information that allows for distinguishing 

between animacy conditions.  

 

Within run type-classification – testing. 

Similarly, an SVM was trained and tested on 

testing run data (consisting of objects in 

scenes). Figure 2B displays the results which 

reveal that animacy information could reliably 

be decoded in the LOC. This was the case for 

congruent objects (M = .66, p = <.001, 95% 

CI = [.60, .73]), as well as incongruent objects 

(M = .50, p = <.001, 95% CI = [.43, .58]). The 

difference in classification accuracy between 

congruent and incongruent objects was 

significant (M = .16, p = <.001, 95% CI = 

[.11, .21]), indicating that in the LOC, the 

classifier’s ability to classify an object as 

animate or inanimate is improved when 

objects are congruently located within a 

scene, compared to when objects are 

incongruently located within a scene.  

 Different results were found for the IPS 

and EVC. Animacy information could reliably 

be decoded for congruent objects (IPS: M 

= .09, p = .041, 95% CI = [.00, .18]; EVC: M 

= .31, p = <.001, 95% CI = [.23, .39]) as well 

as incongruent objects (IPS: M = .15, p = 

<.001, 95% CI = [.09, .22]; EVC: M = .33, p = 

<.001, 95% CI = [.26, .40]). Critically, 

however, the classification accuracy between 

congruent and incongruent objects was not 

significant (IPS: M = -.06, p = .203, 95% CI = 

[.-.16, .04]; EVC: M = -.02, p = .624, 95% CI 

= [.-.13, .08]). This indicates that in the IPS  

and EVC, the classifier’s ability to categorize 

an object as animate or inanimate is not 

affected by the object being congruently or 

incongruently located within the scene.   
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Cross-classification. For the main analysis in 

this study, an SVM was trained on training run 

data, and tested on testing run data. The 

results are displayed in Figure 3. Animacy 

information could reliably be decoded in the 

LOC and IPS for congruent objects (LOC: M 

= .67, p = <.001, 95% CI = [.62, .73]; IPS: M 

= .19, p = <.001, 95% CI = [.11, .26]), as well 

as incongruent objects (LOC: M = .49, p = 

<.001, 95% CI = [.41, .56]; IPS: M = .10, p 

= .009, 95% CI = [.03, .18]). The difference in 

classification accuracy between congruent 

and incongruent objects was significant 

(LOC: M = .19, p = <.001, 95% CI = [.12, .26]; 

IPS: M = .09, p = .048, 95% CI = [.00, .17]), 

indicating that in both the LOC and the IPS, 

the classifier’s ability to classify an object as 

animate or inanimate is improved when 

objects are congruently located within a 

scene, compared to when objects are 

incongruently located within a scene.  

 In the EVC, the classifier could reliably 

make a distinction between animate and 

inanimate objects for congruent objects (M 

= .28, p = <.001, 95% CI = [.20, .36]) as well 

as for incongruent objects (M = .22, p = <.001, 

95% CI = [.12, .31]). Again, the critical 

difference between the classification 

accuracies of congruent and incongruent 

objects did not reveal the congruency effect 

that was observed for the LOC and the IPS 

(M = .06, p = .284, 95% CI = [-.06, .18]). 

Ultimately, this reveals a gain in classification 

accuracy when objects are congruently 

located in a scene for the LOC and IPS, but 

not for the EVC. 

 Critically, when comparing the 

congruency effect between LOC and EVC, it 

is revealed that they differ significantly (t(33) 

= 2.31, SD = 0.32, p  = .03, 95% CI = 

[.01, .24]). This, however, is not the case for 

IPS and EVC (t(33) = 0.32, SD = 0.40, p  

= .754, 95% CI = [-.12, .16]). 

Note. (A) Within run-type validation – training runs. An algorithm 
was trained on training runs, and tested on a different run from the 
same data type. (B) Within run-type validation – testing runs. An 
algorithm was trained on testing runs, and tested on a different run 
from the same data type. *p < .05, ***p < .0005. Error bars reflect 
95% CI of the mean. 

Figure 2 

Within run-type validation for training and testing runs 
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Ponzo illusion task. Two one-sample t-tests 

were conducted to test whether the average 

estimation of object sizes in both conditions 

were different from zero. For objects located 

far away, participants were inclined to 

overestimate its size (M = 0.12, t(33) = 5.55, 

SD = 0.12, p  = < .001, 95% CI = [.08, .16]). 

For objects located nearby, participant were 

not inclined to over- or underestimate its size 

(M = 0.04, t(33) = 1.80, SD = 0.12, p  = .081, 

95% CI = [< .01, .08]). The one-sample t-test 

confirmed that the difference in average 

estimated size between objects nearby and 

objects far away was different from zero (t(33) 

= 2.83, SD = 0.17, p  = .008, 95% CI = 

[.02, .14]. This indicates that participant are 

inclined to overestimate the object sizes of 

objects located far away, compared to the 

object sizes of objects located nearby. This is 

in line with the classic results from the Ponzo 

illusion, which refers to the tendency to 

overestimate the size of an object in the top 

plane of a depth-inducing scene, in 

comparison to the size of an object in the 

bottom plane of a scene.  

No correlations were found, however, 

between the congruency effect and the 

magnitude of the Ponzo illusion across 

participants. This was the case for both for 

the LOC (τ = .05, p = .680) and the IPS (τ = 

-.05, p = .702). This indicates that there is no 

relation between the extent to which object 

congruency influences object representation 

in the brain, and size estimation of an object. 

The analysis was not performed in the EVC, 

since no significant congruency effect was 

found in this ROI. 

  

Discussion 

In the present study we investigated how the 

size and location of an object in a scene 

modulates its representation in different brain 

areas. We predicted that objects that were 

congruently  located within a scene (i.e., 

Figure 3 

Cross-classification 

Note. Cross classification. An algorithm 
was trained on training run data and tested 
on testing run data. *p < .05, ***p < .0005. 
Error bars reflect 95% CI of the mean. 
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when the inferred viewing distance matched 

the size of the object), evoked sharper 

representations in the visual cortex than 

objects that were incongruently  located 

within a scene (i.e., when the inferred viewing 

distance did not match the size of the object).  

Specifically, we expected an enhanced 

representation in the LOC and IPS. For the 

EVC, separate scenarios were composed. 

The results confirm a sharper object 

representation in LOC and IPS, but not in 

EVC. What is notable, is that animacy 

information, whether it is congruently or 

incongruently presented, is available in all 

ROIs: a classifier was able to reliably make a 

distinction between animate and inanimate 

objects, independent on their size and 

location within the scene. However, when we 

inspect the difference in animacy 

classification accuracies between congruent 

and incongruent objects, we notice a 

significant congruency effect in the LOC and 

IPS, but not in the EVC. This suggest that, 

although the EVC is reported to be involved 

in object size perception (Murray et al., 2006), 

these perceived differences in EVC do not 

play a role in object classification. Instead, 

this role is reserved for higher-level visual 

areas such as the LOC and IPS.  

Furthermore, no significant relation 

was found between the magnitude of the 

congruency effect and the magnitude of the 

Ponzo illusion effect. In contrast to the 

hypothesis, participants who were strongly 

influenced by the implied distance in the 

Ponzo illusion do not seem to be hindered in 

object representation by incongruently 

located objects (or helped by congruently 

located objects) in the testing runs.  

Based on the current data alone, we 

cannot be sure that the congruency effect 

resulted from the extraction of distance-

related information from the scene. 

Alternatively, it might reflect that visual cortex 

is more sensitive to discriminating smaller 

objects in the upper visual hemifield and 

larger objects in the lower visual hemifield, as 

this is how objects typically appear in real-life. 

A previously conducted online study revealed 

that this is probably partially the case. In a 

first behavioral experiment, participants 

performed a classifying task (animate vs 

inanimate) on the stimuli from the testing 

runs. As expected, a clear congruency effect 

was observed. In a second experiment, a new 

set of participants performed the same task 

on the same stimuli, except for the fact that 

the objects were placed on a mean luminance 

background, rather than a depth-inducing 

scene. Although a congruency effect was 

observed from the data, the strength of the 

effect was half the size of the first experiment. 

This suggests that the size of an object as a 

function of its position is important, but adding 

a depth-inducing scene substantially 

contributes to the congruency effect. 

A factor that might have hindered the 

aim of the study, was the fact that due to the 

unexpected locations of incongruent objects, 

it is no guarantee that all objects were 

observed. This could have been prevented by 

presenting the objects at fixation, causing the 

scene to shift from its central position. This 

might have strengthened the effects we 

found. Additionally, despite our best efforts, it 

might have been possible that the objects 

used in this experiment did not only differ in 

animacy, but also in shape, color, or the ratio 

between straight vs round edges. However, 

this does not affect the interpretation of the 

results: although the objects in the training 

runs were novel, and different from the 

objects in the testing runs, they were selected 

to be of the same categories as in the testing 

runs. Therefore, the training run stimuli can 

be generalized to the testing run stimuli. The 

classifier is thus tested on object features that 

were also included in the intact isolated 
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objects, causing the classifier’s performance 

to be influenced only by the congruency of the 

objects. 

The current results pave the way for an 

interesting follow-up study. According to 

previous and current literature, scene-context 

provides information that is important to 

disambiguate the identity of an object 

(Palmer, 1975; Bar, 2004; Oliva & Torralba, 

2007). This was complemented by 

neuroimaging studies, revealing that 

contextual information enhances object 

representation in the object-selective cortex. 

More specifically, Wischnewski & Peelen 

(2021)  provide evidence that the object-

selective LOC receives this contextual 

feedback from the scene-selective OPA at an 

intermediate time window of 160-200ms. In 

this study, we extracted one type of 

contextual information, and showed that the 

expected object size is one of the important 

contextual cues that can facilitate object 

recognition. The next step is to investigate 

whether the congruency effect that was found 

here, is caused by projections from the 

scene-selective  OPA to the object-selective 

LOC.  

This can be explored by a TMS study 

following a similar design as the study by 

Wischnewski & Peelen (2021). However, 

rather than presenting participants with 

isolated, intact objects and degraded objects 

in scenes, we would use the congruent and 

incongruent images from this study’s testing 

run stimuli.  For congruent stimuli, it is then 

likely that the feedback which is projected 

from the OPA to the LOC contains useful 

information, which will help object 

recognition. However, for incongruent stimuli, 

the contextual information does not match 

prior expectations. Therefore, it is likely that 

the feedback that is projected from the OPA 

to the LOC will hinder object recognition.   

Considering that these feedback projections 

are occurring at an intermediate time window, 

it is expected that stimulation of the OPA 

during this time window will decrease 

participants’ classification performance for 

congruent trials,  therefore decreasing the 

congruency effect. Similarly, it is expected 

that when the feedback reaches the LOC, 

stimulation of the LOC at this later time 

window will decrease participants’ 

classification performance on congruent 

trials. 

The current study contributes to the 

accumulating evidence on contextual 

facilitation in object recognition. Where 

previous work has showed that this facilitation 

of object recognition is reflected in the neural 

correlates of the visual cortex, here, we 

narrowed down the importance of specific 

contextual cues. We conclude that the 

estimated object size, which can be inferred 

from the viewing distance is able to modulate 

the object’s representation in object-selective 

cortex. The findings fit in the framework that 

contextual facilitation is endorsed by 

expectations that are evoked by scene 

context (Bar, 2004, Summerfield & De Lange, 

2014). Additionally, the results help explain 

why humans still prevail in object recognition 

tasks in natural scenes, compared to artificial 

agents (Borji & Itti, 2014). 

Besides size-distance relations, there 

are more specific contextual cues that might 

contribute to enhanced object recognition or 

object representations in visual cortex. It is 

worth investigating whether a similar role is 

reserved for contextual cues such as the 

source of light in a scene, that can predict the 

color, brightness and shadow of an object, or 

the angle of view from which a scene is 

captured, that can predict the shape of an 

object.  
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Conclusion 

In the current study we investigated 

whether visual object representations in 

object-selective cortex are modulated by 

inferred viewing distance. The results reveal 

that object representations are substantially 

enhanced for size-congruent objects, 

compared to size-incongruent objects. This 

was the case for object-selective cortex, but 

not early visual cortex. Concluding, scene-

context can elicit expectations about the real-

world size of an object. These expectations 

are able to modulate the object’s 

representation in object-selective cortex. 
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Supplement 1 
 

ROI selection 

Scene- and face-selective areas. 

Scene- and face-selective regions of 

interest were identified in a similar 

manner as the object-selective cortex. 

Scene-selective ROIs were acquired for 

each participant, by selecting voxels in 

pre-informed subregions that 

significantly (puncorrected < .05) 

responded stronger to scenes than to 

intact and scrambled objects. The pre-

informed subregions consisted a 

functional-defined mask of the 

parahippocampal place area (PPA) (left 

hemisphere: M = 358, SD = 88, min = 

114, max = 564; right hemisphere: M = 

342, SD = 77, min = 109, max = 465), 

the retrosplenial cortex (RSC) (left 

hemisphere: M = 405, SD = 201, min = 

36, max = 815; right hemisphere: M = 

569, SD = 246, min = 73, max = 1238), 

the occipital place area (OPA) (left 

hemisphere: M = 92, SD = 34, min = 10, 

max = 130; right hemisphere: M = 184, 

SD = 49, min = 73, max = 250. Note that 

for two participants the alpha level was 

adjusted to .10 and .23) and the IPS (left 

hemisphere: M = 2533, SD = 1263, min 

= 163, max = 5271; right hemisphere: M 

= 2684, SD = 1506, min = 149, max = 

6764).  

 Face-selective ROIs were 

acquired for each participant, by 

selecting voxels in pre-informed 

subregions that significantly (puncorrected 

< .05) responded stronger to faces than 

to objects and scenes. The pre-

informed subregions consisted a 

functional-defined mask of the fusiform 

face area (FFA) left hemisphere: M = 

155, SD = 86, min = 34, max = 383; right 

hemisphere: M = 364, SD = 128, min = 

72, max = 606). All masks were 

retrieved from Julian et al. (2012). 
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