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Abstract 

As EEG based BCI systems that are expected to function in everyday situations are developed, the 

challenge to deal with noise due to the environment or the subject itself becomes more important. In 

this project it was explored whether the ‘weakly’ supervised learning techniques for movement onset 

detection with an EEG-based BCI used by Awwad Shiekh Hasan et al. might improve the classification 

accuracy in the experiment conducted by Verbaarschot et al. This experiment, in which participants 

played a self-paced BCI-game, was carried out during the InScience festival; a noise-rich ecologically 

valid environment. It was found that methods proposed by Awwad Shiekh Hasan et al. performed 

better than the linear classifier Verbaarschot et al. used however both were not very accurate in 

detecting movement onset. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Introduction 

A Brain-Computer Interface (BCI) is a way for a human to communicate with a device using nothing 

but brainwaves. BCIs generally can be divided into two classes based on how they work: synchronous 

and asynchronous. In synchronous BCIs it is known beforehand when the onset of some mental 

activity is going to take place and so the system can analyse the data in predetermined time intervals. 

An asynchronous BCI, often also called a ‘self-paced’ BCI, allows the user to take action when 

desired(Mohammadi, Mahloojifar, Chen, & Coyle, 2012). In this case the system needs to detect when 

the user is in the idle state and when he or she switches to taking action.  

When a person plans to move it is possible to detect certain brainwaves indicating this intention about 

1.5 seconds before this person reports being actually aware of having made the decision to 

move(Libet, Gleason, Wright, & Pearl, 1983). This suggests the brain has a certain preparatory phase 

before the onset of a movement. The brainwaves connected to this phenomenon are the readiness 

potential (RP)(Lew, Chavarriaga, Silvoni, & Millán, 2012) and the event-related-desynchronization 

(ERD) that are visible at 8-30Hz across the motor cortex(Pfurtscheller & Lopes da Silva, 1999). The 

goal of movement onset detection is to identify this preparatory phase in order to predict the presence 

of an intention to move.  

One of the challenges with EEG-based BCIs is that they are vulnerable to all kinds of electromagnetic 

noise caused internally or externally. Sources include devices we frequently use in our daily lives like 

smartphones and computer screens(Repovš, 2010) but also the blink of an eye or a distracted 

participant can disturb the EEG signal making it harder to detect a mental state. This is especially the 

case when this mental state is not time-locked. However, if we want to be able to use EEG-based BCIs 

in everyday life we need to build systems that are robust and can function under circumstances where 

noise from all kinds of sources is present. 

Applications of movement onset detection include hands-free input devices and BCI-games like 

Mattel’s Mindflex1. Furthermore, it may be used to improve the accuracy of neuroprosthetics(Müller-

Putz, Scherer, Pfurtscheller, & Rupp, 2005) and the recovery for stroke patients(Ang & Guan, 2013).  

One thing these applications all have in common is that they have to function in everyday situations 

and have to deal with the noise that comes with it. For this reason it is important to research BCI 

techniques in ecologically valid experiments.  

One of such experiments was conducted by Verbaarschot et al. during the InScience Festival2. Using 

an EEG-based BCI Verbaarschot et al. were able to predict movement onset in a game called ‘Flip-

that-Bucket’(Verbaarschot, Gerrits, Haselager, & Farquhar, 2019). In this game the goal of the 

participants is to beat the robot in a slime-bucket challenge. During the game slime is collected in a 

single bucket. Both the participant and the robot can push on a button that flips the bucket of slime 

over the opponent’s head. The goal is to spill as much slime over the other as possible. However, 

making use of the EEG data the robot is able to detect the player’s intention to push the button and it 

will try to press it earlier.   

To perform such predictions in self-paced BCI’s the system needs to know the transition onset from 

idle/baseline state to movement. This may be hard to detect online as the transition happens 

gradually(Awwad Shiekh Hasan & Gan, 2010). According to Awwad Shiekh Hasan et al. 

unsupervised learning may provide a possible answer to handle this lowly separable data. They 

proposed an “unsupervised” method that was able to improve the movement onset detection accuracy 

in an EEG-based BCI experiment. However, this “unsupervised” method turned out to be ‘weakly’ 

supervised in certain steps. This will be examined in more detail later. They compared this method 

                                                           
1 https://store.neurosky.com/products/mindflex  
2 https://www.insciencefestival.nl/en/  
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with a fully supervised variant in an experiment where 5 participants performed a hand movement on 

their own pace 40 times with at least 4 seconds between every movement. In this way a ‘clean’ dataset 

can be built with a clear distinction between the baseline and movement class. However, it is not so 

much an ecologically valid situation.  

In this research the ‘weakly’ supervised method proposed by Awwad Shiekh Hasan et al. was applied 

on the dataset collected by Verbaarschot et al. to find out whether the proposed method could improve 

movement onset detection in the (ecologically valid) BCI-game ‘Flip-That-Bucket’.  

Methods 

Participants 

Verbaarschot et al. tested 41 subjects at the InScience festival in Nijmegen, the Netherlands of which 9 

were later excluded as they did not follow instructions correctly. In the final analysis an additional 

subject was excluded by Verbaarschot et al. This subject was therefore also not included in this 

research as it would not have any comparative value. The final number of subjects is 31. 

Apparatus 

The data was collected using the TMSi Porti system3 with water based electrodes. The sampling rate 

was 512Hz and the electrodes where placed at Fp1, Fp2, F3, Fz, F4, C3, Cz, C4, P3, Pz, P4, POz, TP9 

and TP10 according to the International 10/20 system4. Furthermore, muscle activity was recorded 

using two EEG electrodes in a bipolar pair on the wrist and centre of the right forearm (flexor pollicis 

longus).  

Task 

The subjects played several rounds of Flip-that-Bucket in 4 blocks: a practice block of 3 trials, a 

training block of 60 trials, a hidden validation block of 15 trials and a test block of 60 trials.  

Dataset 

The trials were labelled with 3 types of events: ‘player act’ where the subject acted before the robot 

did, ‘robot act with intent’ where the robot acted and the subject had an intention to move and ‘robot 

act without intent’ where the robot acted without the subject having an intention to move. Not all trials 

were used. Verbaarschot et al. report a big response of the subjects when the robot acted first. 

According to them this might be related to an error potential or it might reflect the subject’s surprise or 

frustration after losing. Due to this big response the movement onset might have been interrupted or 

disturbed in the trials where the robot acted first. For this reason those trials have been excluded 

leaving only trials where the player acted first.  

Data Analysis 

The methods of Awwad Shiekh Hasan et al. can be divided into six general steps: pre-processing, 

feature extraction, feature selection, model-building, classification and onset detection. Following is a 

detailed explanation of each of these steps.  

1.Pre-processing 

First the continuous EEG- and EMG-data was sliced into segments of 6 seconds around a ‘player act’ 

event, specifically 4 seconds before and 2 seconds after such event. Then the data was pre-processed 

using the Common Average Reference(CAR) method. Furthermore, the data was demeaned, detrended 

and the bad channels and bad trials where the power differed more than 2 times the standard deviation 

                                                           
3 http://www.tmsi.com/products/porti/  
4 http://www.mariusthart.net/downloads/eeg_electrodes_10-20.svg  
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were removed. After these steps for each of the participants on average 67 good trials were left with 

min. 25, max 107 and std. 18.  No channels had to be removed. 

2.Feature Extraction 

For every trial the EEG-data was sliced into windows of 1 second with each window shifting ⅛ of a 

second. With a sampling rate of 512Hz this makes for a window of 512 samples shifting 64 samples a 

time and a total of 40 windows per trial. For all 12 channels the Power Spectral Density(PSD) of each 

window was computed using the Thomson Multitaper Method(Thomson, 1982). Only a selection of 

10 frequencies in the range of 8-26Hz sampled at 2Hz was used. To reduce dimensionality at an early 

stage the decision to deviate from Awwad Shiekh Hasan et al.’s method was made. Awwad Shiekh 

Hasan et al. also include frequencies in the range of 28-45Hz, sampling at 3Hz. However, as expected, 

almost no activity was seen in this range as the expected Event-Related Desynchronization takes place 

in the alpha and beta band (8-30Hz)(Bai et al., 2011). This phenomenon can be seen as a drop in 

power in said range around the button press (t=0). This was seen especially well when the power was 

averaged over all trials of subject 1 in channel C3.   

3.Feature Selection 

To perform feature selection the data was labelled into a ‘movement’ and ‘baseline’ class based on 

EMG activity. The movement class was further subdivided into a ‘preparation-‘, ‘execution-‘ and 

‘after-execution’ class. First the EMG onset and offset of each trial was computed using a script by 

Coghlan (Coghlan, 2006) based on methods by Hodges and Bui(Hodges & Bui, 1996). For this 

method first the mean and standard deviation of a resting phase is determined. The threshold for 

EMG-activity is set to the mean + 1*standard deviation of the resting phase. The EMG-onset is 

determined by the first time the average activity in a window of 50ms exceeds the threshold and the 

EMG-offset by the first time the activity dives below this threshold.  

Figure 1: Observed power drop in alpha and beta band and at 8Hz 



When the result was undetermined or not around the time the button was pressed the average onset 

and offset of the trials was taken. Using the EMG onset and offset times the data was labelled 

‘preparation’ (p) from 1,5 seconds prior to onset until onset, ‘execution’ (e) from onset until offset, 

‘after-execution’ (a) from offset until 1,5 seconds after onset and the remaining samples were labelled 

as ‘baseline’ (b). In figure 2 an example of such labelling is shown on the average EMG-signal over 

all subjects, with the mean onset time (3,78sec) and mean offset time(4.65sec) over all subjects. 

Finally, each window was labelled with the label of the most common class in that window. As these 

labels are used in selection of the best features this method as proposed by Awwad Shiekh Hasan et al. 

can not be referred to as unsupervised learning. ‘Weakly’ supervised learning was found to be more 

accurate in this situation. 

Resulting from the feature extraction there are 12 channels x 10 frequencies making a total of 120 

features. As Gaussian Mixture Models(GMM) do not perform well on high dimensional data(Zhao, 

Shrivastava, & Tsui, 2018) feature selection was done to select a number of features that separate data 

in the preparation and execution class best from the other classes. To do so Awwad Shiekh Hasan et 

al. compute the Davies Bouldin Index(DBI) for every feature. The DBI is an index that evaluates how 

well the data is clustered into the given classes. This is done in the following steps:  

First 𝐴𝑖 is computed which is the centroid of class 𝑖. This boils down to the mean value of that feature, 

where, to clarify, a feature is the PSD value of a specific frequency at a specific channel. 

Then 𝑆𝑖 is computed for every class 𝑖, which is in essence the within class scatter:  

𝑆𝑖 = (
1

𝑇𝑖
∑ |𝑋𝑗 − 𝐴𝑖|𝑝

𝑇𝑖

𝑗=1

)

1
𝑝

 

Figure 2:  Average EMG and datalabelling 



Where 𝑇𝑖 is the number of datapoints in class 𝑖, 𝑋𝑖 is a datapoint assigned to class 𝑖 and 𝐴𝑖 the centroid 

of class 𝑖. In this case we take 𝑝 = 2 making this essentially a function of the Euclidean distance 

between datapoint 𝑋𝑖and cluster centroid 𝐴𝑖. 

Then 𝑀𝑖𝑗 is computed for every combination of class 𝑖 and 𝑗 where 𝑖 ≠ 𝑗. This is in essence the 

between class scatter:  

𝑀𝑖𝑗 = (∑ |𝐴𝑘,𝑖 − 𝐴𝑘,𝑗|𝑝

𝑛

𝑘=1

)

1
𝑝

 

Where again 𝑝 = 2 and 𝐴𝑘,𝑖 is the kth dimension of the centroid of cluster 𝑖. As datapoints in this case 

are one dimensional values (𝑛 = 1), the computation of 𝑀𝑖𝑗 boils down to the absolute difference 

between the two cluster centroids.  

Then 𝑅𝑖𝑗, which combines the within- and between class scatter, is computed as follows:  

𝑅𝑖𝑗 =
𝑆𝑖 + 𝑆𝑗

𝑀𝑖𝑗
 

Finally the DBI for a certain feature is defined as follows: 

𝐷𝐵𝐼 =
1

𝐶
∑ 𝐷𝑖

𝐶

𝑖=1

 

where  

𝐷𝑖 = 𝑚𝑎𝑥𝑗≠𝑖 𝑅𝑖𝑗 

and C is the number of classes.  

However, Awwad Shiekh Hasan et al. select N features based on the DBIs “that maximise the 

separability of ‘‘preparation’’ against other subclasses” and N features  “that maximise the validity of 

‘‘execution’’ against other classes”. This was interpreted as them not using the final DBI for a feature 

but the 𝐷𝑖 value for preparation and execution. The DBI of a feature does not evaluate the separability 

from a specific set of classes but evaluates its separability from all other classes. The 𝐷𝑖 value however 

does say something about the separability of one specific class against the others, the mean of all of 

those 𝐷𝑖 values makes the DBI score for a feature. In this case 𝐷𝑝𝑟𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛 and 𝐷𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 were used 

to select the best N features to build the model where N is always a multiple of 2.   

4.Model Building 

The type of model Awwad Shiekh Hasan et al. built is a Gaussian Mixture Model(GMM). In this 

model it is assumed that the data is generated by K normal distributions where K is finite. These 

normal distribution are referred to as components. Naturally these components have a mean 𝜇𝑘 and a 

variance 𝛴𝑘 but also a mixing coefficient 𝜋𝑘. One could say this mixing coefficient determines how 

‘dominant’ a certain component is in generating the data relative to the other components. 

Classification using a GMM happens by computing the probability that a datapoint is generated by a 

certain component which in turn has a probability that is belongs to a certain class.  

For building and evaluating the model and eventually testing the methods as a whole, 10-fold cross 

validation is used twice. Once for building and selecting the best model, optimum number of 

components K and optimum number of features N. And once for evaluating the whole system of onset 

detection. First the data is divided, trial by trial, into 9 parts train data and 1 part test data. To avoid 

confusion this test data is from now on referred to as ‘evaluation’ data. The evaluation data is used to 



evaluate the method as a whole in the final step. The train data again is divided, trial by trial, into 9 

parts train data which is used to build the model and 1 part test data to test the classification accuracy 

of the model.  

Awwad Shiekh Hasan et al. experiment with the number of components  but limits K in the range of 4-

20 and the number of features N in the range of 2-100 as the performance could be severely affected 

by the high dimensionality of the data. According to them using more features could cause overfitting 

as it becomes harder to build accurate probabilistic models with such high dimensional data. However, 

when reproducing this it was found that the GMM often would not settle and produced errors related 

to the high dimensionality of the data already when N was larger than 10. Furthermore there were 

warnings for a so called variance floor when K was larger than 8. When the covariances of a GMM are 

too low it is a sign that overfitting could be taking place. For this reason K was taken in the range of 2-

8 and N was taken in the range of 2-10. This does not pose a problem for the comparability to Awwad 

Shiekh Hasan et al.’s methods as they also report optimum parameters within or close to this range. 

For comparison these are also reported in the discussion&conclusion section. 

To find the optimum parameters for the model the train data was taken and for every possible 

combination of K and N a second round of 10-fold cross validation was used to find the best 

performing model. First a model was fitted to the train data. This model was trained using the 

Expectation-Maximization method. Then the model was used to classify the test data. Using the class 

labels as defined in step 3 the classification accuracy was computed. Finally the best performing 

model was further used for classification.  

5.Classification 

As explained the data is classified using probability distributions. To start with, it is assumed that the 

data is modelled by the following probability density function:  

𝑃(𝑥) = ∑ 𝜋𝑘

𝐾

𝑘=1

𝑁(𝑥|𝜇𝑘 , 𝛴𝑘) 

Where 𝐾 is the number of Gaussian components, 𝑁(𝑥|𝜇𝑘 , 𝛴𝑘) is the normal distribution with mean 𝜇𝑘 

and variance 𝛴𝑘 and 𝜋𝑘 the mixing coefficient. 𝜋𝑘 should satisfy 0 ≤ 𝜋𝑘 ≤ 1 and ∑ 𝜋𝑘 = 1𝐾
𝑘=1 . 

To explain the steps that lead towards the computation of 𝑃(𝑐|𝑥), Awwad Shiekh Hasan et al. 

introduce a random K-dimensional binary variable 𝑧𝑘. 𝑧𝑘 satisfies ∈ {0,1} and ∑ 𝑧𝐾 𝑘 = 1. Which 

basically helps us compute the chance that 𝑥 is generated by a certain component 𝑧𝑘, 𝑃(𝑧𝑘|𝑥). In this 

case  

𝑃(𝑧𝑘 = 1|𝑥) =
𝜋𝑘𝑃(𝑥|𝑧𝑘 = 1)

∑ 𝑃(𝑥|𝑧𝑘 = 1)𝐾
𝑘=1

 

Where 𝜋𝑘𝑃(𝑥|𝑧𝑘 = 1) can be calculated from the component 𝑧𝑘′s multivariate normal probability 

density function given its mean and variance. This is also used to assign each datapoint in the train 

data to the component it was most likely to be generated from. 

Furthermore the chance that 𝑧𝑘belongs to class 𝑖, 𝑃(𝑐 = 𝑖|𝑧𝑘) can be calculated as follows: 

𝑃(𝑐 = 𝑖|𝑧𝑘) =
𝑁𝑘𝑖

𝑁𝑖
 

where 𝑁𝑘𝑖 is the number of datapoints in the train data that are classified as 𝑖 and have been generated 

by 𝑧𝑘 and 𝑁𝑖 is the total number of datapoints in the train data that were classified as 𝑖. Again the class 

labels from step 3 were used however this time only ‘movement’ and ‘baseline’ were used instead of 



applying the subclasses of ‘movement’. In order to compute 𝑁𝑘𝑖 and 𝑁𝑖 class labels are needed which 

is not allowed in unsupervised learning techniques. Therefore this method is considered to be ‘weakly’ 

supervised.  

Having computed the probabilities that 𝑥 was generated by component 𝑧𝑘, 𝑃(𝑧𝑘 = 1|𝑥) and 𝑧𝑘 

belonging to class 𝑖, 𝑃(𝑐 = 𝑖|𝑧𝑘), the probability that 𝑥 belongs to class 𝑖 can be computed as follows: 

𝑃(𝑐 = 𝑖|𝑥) = ∑ 𝑃(𝑐 = 𝑖|𝑧𝑘) ∗ 𝑃(𝑧𝑘 = 1|𝑥)

𝐾

𝑘=1

 

When these probabilities are computed for both classes the test data is assigned the class with the 

highest probability when a certainty threshold α is reached:  

|𝑃(𝑐 = 𝑚𝑜𝑣𝑒|𝑥) − 𝑃(𝑐 = 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒|𝑥)| > 𝛼 

It is unclear how exactly Awwad Shiekh Hasan et al. determined the certainty threshold α using the 

cross validation scheme. In this replication this was solved by taking the median certainty – its 

standard deviation. If a datapoint could not be assigned to a class with a certainty that met the 

threshold, it was assigned to the class of its predecessor.  

6.Onset Detection 

As each window in feature space now is classified as ‘baseline’ or ‘movement’ the final decisive 

mechanism of onset detection can be applied. Awwad Shiekh Hasan et al. did this by looking at the 

classes of 11 classified windows. This onset window moves window by window over the evaluation 

data. When 4 consecutive windows labelled with ‘baseline’ are found followed by 4 consecutive 

windows of the ‘movement’ class an onset is detected. A visualisation of this is given in figure 3.  

Awwad Shiekh Hasan et al. use a debounce window to stabilize the signal and prevent it from 

‘bouncing’ between activated and not activated. however as for this research only the True Positive 

and False Positive detections are used for evaluation this debounce window was not necessary.  

 

Figure 3: The onset window moving over classified windows in feature space 

 

Evaluation 

As explained the evaluation was done by using 10-fold cross validation. Around 5 to 7 trials per 

subject were used as evaluation data to produce the number of True Positive(TP) and False 

Positive(FP) detections. From this the true-false difference (TF) was computed with the following 

formula: 



𝑇𝐹 = (
𝑇𝐹

𝐸
−

𝐹𝑃

𝐸 + 𝐹𝑃
) ∗ 100 

Where E is the total number of events. A detected onset is labelled as TP if there was a real onset 

either 2 seconds before or after the predicted onset. This method was used by Awwad Shiekh Hasan et 

al. and was defined for practical asynchronous BCI evaluation(Townsend, Graimann, & Pfurtscheller, 

2004). 

Results 

Beneath, in table 1, the results of the movement onset detection methods proposed by Awwad Shiekh 

Hasan et al. applied on the dataset collected by Verbaarschot et al. are presented. Besides the TF value 

the total number of True Positives(TP) and False Positives(FP), the average classification performance 

and the performance of the best model are reported. Furthermore the optimal number of 

components(K) and the optimal number of features(N) are also given.  

Subject TF TP FP Average 

classification 

performance(%) 

Best 

classification 

performance(%) 

K N 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

40.8622   

46.4524   

50.7463   

39.0476   

48.0357   

66.1706   

36.5000   

29.6984   

27.0000   

26.4545   

35.6652   

48.9286   

18.6071   

44.4365   

41.7489   

38.7262   

10.5952   

42.8135   

40.1984   

67.6515   

19.5635   

50.6893   

41.5833   

10.5758   

31.8539   

48.4762      

13.8093   

58.8690   

32.5714   

17.1574   

38.3492 

37    

36    

59    

26    

38    

48    

17    

32    

14    

38    

34    

36    

17    

33    

45    

26    

14    

40    

32    

67    

22    

63    

40    

18    

44    

30         

32    

37    

23    

41    

37 

13    

11    

18     

3     

6     

6     

3    

16     

3 

20 

14     

8     

5    

11    

16    

13     

9    

14     

6    

16    

11    

24    

13     

8    

15     

6         

31    

12     

8    

38    

16 

   57.7083 

   59.1583 

   60.4062 

   54.9750 

   65.6786 

   65.6250 

   57.6458 

   56.2750 

   63.1875 

   68.9866 

   60.5833 

   54.1167 

   62.9405 

   55.1000 

   61.9420 

   66.6042 

   60.1583 

   61.2143 

   62.5000 

   64.4554 

   59.0000 

   68.1736 

   59.3750 

   61.9583 

   56.0139 

   54.1500 

   50.5000 

   64.3625 

   55.4250 

   63.4271 

   65.0333 

   69.5833 

   65.5000 

   70.6250 

   66.0000 

   75.4167 

   71.6667 

   74.3750 

   69.1667 

   75.8333 

   75.6250 

   66.2500 

   68.0000 

   68.7500 

   69.0000 

   68.9286 

   78.7500 

   63.5000 

   67.1429 

   67.5000 

   73.5714 

   68.7500 

   75.6250 

   67.5000 

   71.9444 

   59.7222 

   71.2500 

   70.0000 

   72.5000 

   69.5000 

   79.0625 

   74.5833 

     4 

     5 

     6 

     4 

     2 

     2 

     3 

     4 

     2 

     2 

     6 

     4 

     3 

     6 

     3 

     2 

     2 

     3 

     3 

     4 

     7 

     6 

     4 

     4 

     3 

     4 

     3 

     7 

     4 

     3 

     8 

    10 

     2 

     2 

    10 

     6 

     2 

     6 

     4 

     6 

     8 

    10 

    10 

     8 

     6 

     4 

     4 

     2 

     4 

     6 

    10 

     4 

     6 

     8 

     8 

    10 

     8 

     8 

     2 

     4 

     4 

     4 

 

Table 1:  ‘Weakly’ supervised GMM movement onset detection results 



With an average TF score of 37.5431 (std. 14.7984) the investigated method performs rather poorly. 

Although the classification accuracy of the best performing model is greater than 70% with roughly 

half the participants the TF score unfortunately does not seem to follow. This might be due to the fact 

that often a movement onset was not detected at all because of an absence of four consecutive 

windows classified as ‘baseline’ followed by four consecutive windows classified as ‘move’. In the 

ideal world the classifier would start with classifying windows as ‘baseline’ and then a sudden switch 

to ‘movement’ would happen. This, however, is unfortunately not the case. As it turns out this process 

stays very gradual and the data remains lowly separable. As for the performance of the GMM, as 

expected it performed better with a rather low number of features and components. On average 6 and 4 

respectively.  

To find out whether Awwad Shiekh Hasan et al.’s methods is an improvement relative to Verbaarschot 

et al.’s linear classifier their results had to be converted to True Positives and False Positives. 

Verbaarschot et al. evaluate their results by dividing them into 4 classes according to the time of the 

prediction relative to the button press of the participant. According to them a predicition is ‘too early’ 

if it happens 2 seconds or longer before the button press, ‘early’ when it happens between 2 seconds 

and 1 second before the button press, ‘on time’ when it happens within 1 second before the button 

press and ‘too late’ if it happens after the button press. As Verbaarschot provided the exact prediction 

times these results could be converted to Awwad Shiekh Hasan et al.’s ranges of TPs and FPs. In the 

figure below a timeline of how the predictions are labelled for a single trial by the two authors is 

given.   

 

After converting Verbaarschot et al.’s results the TF score was computed and is given in table 2, 

below. Furthermore the difference in TF score is given in the last column. Here a positive score means 

the improvement of Awwad Shiekh Hasan et al.’s method relative to the linear classifier used by 

Verbaarschot et al.  

 

Figure 4: Evaluation of the results by both authors on a trial timeline 
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Finally the TF scores of both methods were tested on whether it is normally distributed using a one-

sample Kolmogorov-Smirnov test. Both results were negative which means both scores are not 

normally distributed. As a consequence the results can not be tested with statistical methods which 

assume normally distributed data and thus a right-sided Wilcoxon signed rank test was done to test 

whether the TF scores of the ‘weakly’ supervised GMM performed significantly better than the TF 

scores of the linear classifier.  

As it turns out the ‘weakly’ supervised GMM significantly(P<.001)outperformed the linear classifier 

with the mean of the difference in TF scores being 26.614 and a standard deviation of 19.4687. Where 

the average TF score of the linear classifier is 10.9285 with a standard deviation of 9.5586. 

Discussion & Conclusion 

Although the ‘weakly’ supervised GMM clearly outperformed the linear classifier both methods did 

not perform very well. The results do not come near the TF scores (mean 80.99, std. 16.30) Awwad 

Shiekh Hasan et al. report. This might be due to the fact that the experiment by Verbaarschot et al. was 

done in a more noise rich environment where the participants could have been excited and distracted 

causing the EEG data to be lowly separable. Another cause for this discrepancy in performance might 

Table 2:  linear classifer movement onset detection results converted to TPs, FPs, TF scores and the improvement of TF score 
per subject 



be due to the fact that Awwad Shiekh Hasan et al. were only able to test 5 subjects. This might lead to 

a less representative TF score than might be true for the whole population.  
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Furthermore, Awwad Shiekh Hasan et al. take a rather large window to label predictions as True 

Positive (2 seconds before and after the true onset). In some cases this even results in predictions after 

the button press being labelled as a True Positive. As reported by Libet et al. a movement onset 

happens up to 2 seconds before the actual movement(Libet et al., 1983). Therefore it does not seem 

appropriate to classify a movement onset prediction that happens either before or after this window as 

True Positive. By taking a window that is twice as large, a larger number of TPs can be obtained 

without the classifier accurately detecting the onset. When a 2 second window was applied to the 

evaluation method rather than the 4 second window Awwad et al. used, the new TF score was found to 

be considerably lower(mean 6.6951, std. 22.2024) with a lot of scores being negative. This indicates 

that often there were more False Positives detected than True Positives.  

In conclusion, movement onset detection remains hard. As this preparatory phase in the brain is a 

gradual process the data seems to stay lowly separable making it hard to determine a switch from the 

baseline state towards movement. The methods by Awwad Shiekh Hasan et al. did improve movement 

onset detection in the game ‘Flip-that-Bucket’ by Verbaarschot et al. however the ‘weakly’ supervised 

GMM did not perform very well. Further experiments to determine how well these methods work need 

to be carried out in more sterile conditions to examine whether it was just the noise rich, ecologically 

valid, environment of the InScience festival that caused the GMM to perform poorly or that there 

might also be some cause in the methods itself.  

Recent studies have shown that it is possible to achieve good results on movement onset detection 

using a variety of methods including a random forest classifier(Liu et al., 2018), a nonlinear dynamic 

multiple-input/single output model(Mirzaee & Moghimi, 2019), linear discriminant analysis(Zhang, 

Chen, Jianbin, & Meng, 2018) and neural networks(Gatti, Atum, Schiaffino, Jochumsen, & Manresa, 

2019). If the goal is to develop asynchronous BCI systems for movement onset detection that have to 

work in everyday life it remains important to test those various methods in ecologically valid 

experiments to ensure they can deal with the noise that comes with it.  

 

 

 

 

 

 

 

 

Table 3:  Results as reported by Awwad Shiekh Hasan et al. 
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