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Abstract

This thesis proposes a design for a framework to aid the study of the course Semantics
and Correctness from the Faculty of Science of Radboud University. More specifically,
it covers the subject of Structural Operational - small step - Semantics, explaining what
it is, and how is it applied, and shows the implementation of a framework in Coq for a
simple programming language - While. Then, some examples from the course are made,
using this framework, and properties of Structural Operational Semantics are proven. That
includes formalising the rules of Structural Operational Semantics, showing how those are
used to prove some general examples, strong progress, determinism, essential exercises,
semantic equivalence and equivalence with Natural Semantics.
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Chapter 1

Introduction

“Formal semantics is concerned with rigorously specifying the meaning, or behaviour, of
programs, pieces of hardware etc”, as generalised in “Semantics with Applications, A
Formal Introduction” by Nielson and Nielson[4]. We need it to avoid ambiguities and
unclear descriptions in documentation (of programming languages for example) and as
a basis of implementation, analysis and verification. With fewer words, we need formal
semantics to make proofs of correctness.

There are three major types of semantics - operational, denotational and axiomatic seman-
tics. Radboud University Faculty of Science’s course Semantics and Correctness discusses,
or at least mentions, all three of them and the relations between them. The main one
studied, that provides basic knowledge to discuss the other two is operational semantics.
It can be split in two types - Natural Semantics, also known as big-step, and Structural
Operational Semantics also know as small-step semantics. This thesis focuses on the latter
while the one written by Loes Kruger [3] in parallel is centred around the former. Some
parts, that are not sub-topic dependent and are relevant to both theses are common in the
two texts and made in collaboration.

1.1 Problem outline

Some students, who follow the course Semantics and Correctness find the proofs with
operational semantics difficult and that affects their understanding of the course. Some
proofs in Semantics and Correctness use several levels of induction, which, along with some
left out details from the accompanying literature on Semantics and Correctness [4] makes
mastering the material a difficult task.[2].

A comparison can be made with another course from RU Faculty of Science - Logic and
Applications - that most students taking Semantics and Correctness have already partici-
pated in. Along all the study materials there, it includes an introduction to the functional
language and proof assistant Coq, which seems to aid the learning process significantly.
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1.2. RELATED WORK

A privately conveyed survey amongst a group of students shows however, that the work
in Coq alone was not enough to ease their studying process - it had to be combined with
detailed explanation of both the theory and how the examples in Coq are working.

1.2 Related work

Relevant work and similar formalisation in Coq already exists in “Software Foundations”
by Pierce [6] and by Schirmer [8] and Nipkow and Klein [5] in Isabelle etc. While very
helpful, those books are not tailored specifically for the needs of Semantics and Correctness:
be it different notations, examples, programming languages, formalisation decisions, or
that some of those works do not aim to be textbooks and are directed to more experienced
readers.

1.3 Goals

Based on the above conditions, there is a place in Semantics and Correctness for additional
assistance to the learning process. This thesis presents one option that covers the Structural
Operational Semantics part of the course.

This thesis’s goal is to build a framework for applying Structural Operational Seman-
tics rules in Coq. That framework, along with a comprehensive guide to both using it
and applications of Structural Operational Semantics would ultimately act as a guide to
Structural Operational Semantics for the Semantics and Correctness student.

The explanations here aim to accompany the theory of Structural Operational Semantics,
a step by step depiction of its formalisation in Coq, as well as all the examples. Effort
is made to find examples for tricky and/or essential cases of application of Structural
Operational Semantics (like using the rule [comp1

sos]), proofs via induction on the length
of the derivation sequence, as well as to address all the basic properties of Structural
Operational Semantics and its equivalence with Natural Semantics. In the last chapter of
this thesis, the response of students, who tried to use this aid can be found.

The thesis is going to try and answer the following research question: Is it possible to
formalise Structural Operational Semantics for While in Coq in a way that can
help study it in the context of the course Semantics and Correctness?

1.4 Approach

The approach to solving this problem is to make it easier to prove that executing a state-
ment results in what we expected, using Structural Operational Semantics. That entails
creating proofs in Structural Operational Semantics and illustrating the steps made to com-
plete them. That will be achieved by creating and using a framework in Coq accompanied
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1.5. CONTRIBUTION AND WORK IN COQ

by a comprehensive guide to it. This would take the following steps:

Theory
The first step of our comprehensive explanations is to cover all the relevant theory
in an understandable manner:

SOS Introduction to our type of semantics in theory.

While Explaining what this simple language entails and how are we going to use
it.

Coq Explaining how we use the proof assistant.

Expressions
Before we start formalising the statements in While, we need to be able to evaluate
expressions.

Complete execution
In SOS a statement can either be, or not be completely executed - illustrated e.g. in
the difference between [comp1

sos] and [comp2
sos]. We need to handle this problem - by

making a special case of skip, special datatype or another method.

Basic setup
The basic rules of Structural Operational Semantics need to be defined : [asssos],
[skipsos], [ifttsos], [ifffsos], [comp1

sos], [comp2
sos], [whilesos].

Properties
Once we have the rules, we use them to prove a number of Structural Operational
Semantics properties. Those can be either in one step - like determinism and strong
progress; or in many steps, that include induction on the length of the derivation
sequence.

Equivalence with Natural Semantics
Many of the applications of Operational Semantics, such as semantic equivalence,
proving soundness and completeness etc. are considerably more difficult to prove
using Structural Operational Semantics than Natural Semantics. Hence, those are
proven in the thesis focused on Natural Semantics by Loes Kruger [3], and here we
will prove that Structural Operational Semantics is equivalent to Natural Semantics.

Experiment
Finally, when the formalisation and the comprehensive explanations are done, their
effect on student’s learning process will be depicted.

1.5 Contribution and work in Coq

This thesis depicts a formalisation of Structural Operational Semantics custom tailored
for Semantics and Correctness, that differentiates from other work by following closely the

8
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notations and study flow of the course and uses a language, that is already familiar to most
of the students that follow it. Together with Loes Kruger’s [3] formalisation of Natural
Semantics, there is coverage on most of the Semantics and Correctness topics.

The finished formalisations in Coq are available on GitHub to read and use with citation.
They can be found on this link: https://github.com/lkruger27/NS_SOS_Formalization.
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Chapter 2

Background

Before we get to the formalisation of Structural Operational Semantics, we will discuss
some of the basic concepts that we will base the formalisation on: the language While,
Coq and Structural Operational Semantics.

As While and Coq are common for considering semantics, they are also discussed in the
Bachelor Thesis of Loes Kruger [3], written at the same time as this one. Section 2.2
While and section 2.3 Coq are adapted from there.

2.1 Basic notes

Here we will mention the most basic concepts most readers are probably familiar with.

2.1.1 Syntax vs Semantics

When we talk of syntax, we are considering what is written in text and notation. For
example, the ordered collection of symbols Add(x,y) could be a language’s syntax for
addition.

When we talk of the semantics of something, we consider its meaning. For Add(x,y) that
would be the reasoning, that when we see that syntax, we expect the computation behind
it to be the addition of x and y. We could depict it as (x + y) = z, but that would
be another syntax. What matters, when we are talking about semantics in this example is
the whether the value of z is indeed the sum of of x and y. More general, the semantics
is an operation to do what it is supposed to do.

That is why Semantics and Correctness is so important - we can write code as much as we
want, but we need to be able to prove that it indeed does what is expected.

10
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2.2 While

While is a simple imperative programming language, that only has a minimal number of
structures, embodying a tiny core fragment of conventional languages. It is quite similar
to Imp, described in “Software Foundations” [6]. Because of its simplicity, it is a good
example language for Semantics and Correctness, to write provable programs on it and
focus on the proofs. Its syntax can be fully defined by a context-free grammar with five
non-terminals - here called meta variables - and their constructors, that can be seen in
Figure 2.1, and will be described in detail in the following sections.

n will range over numerals Num
x will range over variables Var
a will range over arithmetic expressions Aexp
b will range over boolean expressions Bexp
S will range over statements Stm

Figure 2.1: The syntactic categories and their meta-variables

The constructs specify how to build numerals, variables, arithmetic expressions, boolean
expression and statements. The structure of the constructs can be found in Figure 2.2.

n ::= n ::= 0 | 1 | n 0 | n 1

x ::= strings of letters and digits starting with a letter
a ::= n | x | a1 + a2 | a1 ? a2 | a1 - a2

b ::= true | false | a1 = a2 | a1 ≤ a2 | ¬b | b1 ∧ b2

S ::= x := a | skip | S1;S2 | if b then S1 else S2 | while b do S

Figure 2.2: The structure of the constructs

2.2.1 Num

The syntax definition for Num is

n ::= 0 | 1 | n 0 | n 1

The function N : Num→ Z is used to express the value of a numeral n as an integer. The
semantics of Num are defined in Figure 2.3. This is a nice example of what we explained
in subsection 2.1.1 Syntax vs Semantics. Syntactically, a member of the type Num is a
string of 1-s and 0-s. However, in latter examples, we will use decimal digits to refer to
Num-s. We can do that, by implicitly converting the binary number, that the definition
gives, to what is semantically just a number. That allows us to depict the semantics of a
numeral bu using the comfortable syntax of decimals. In other words, because we know
that binary and decimal numbers mean the same thing, we can interchange the syntax
between them.

11



2.2. WHILE

N J0Ks = 0
N J1Ks = 1
N Jn0Ks = 2 · N JnK
N Jn1Ks = 2 · N JnK + 1

Figure 2.3: The semantics of numerals

2.2.2 Var

A variable is a string that specifies a place to be filled by a value. This value can change
at different steps of execution and hence be different in different states of the program. So,
here is the moment to define State-s.

2.2.3 State

It is no coincidence that the notion State is used not only here, but also in the definition
of an automaton. A state of a machine - or of the execution of a program - is a set of values
for all the (relevant / defined) variables. As we are not considering non-determinism here,
that would mean that each variable has exactly one value in a give state. On top of that,
a state is completely defined by the values for all the variables. Hence the value of the
variable is not necessary equal in every step of the program.

We can define a state as a function s : Var→ Z which maps a variable to its value at the
current moment.

2.2.4 Aexp

The syntax definition for Aexp is

a ::= n | x | a1 + a2 | a1 ? a2 | a1 - a2

To define a semantic function that expresses the value of a numeral or variable as an
integer, we need states, as the evaluation of an expression depends on the values of the
variables in it. So, how is Aexp used?

Here is the moment to give a definition for the function A. It evaluates an arithmetical
expression Aexp to its value as a number Num. Note, that this evaluation can vary
over State-s as an Aexp can contain variables, whose values may change. The formally
definedA : Aexp→ (State→ Z) is the function used to express the value of an arithmetic
expression as an integer. The semantics of Aexp is defined in Figure 2.4.

12



2.2. WHILE

AJnKs = N JnK
AJxKs = s x

AJa1 + a2Ks = AJa1Ks+AJa2Ks
AJa1 ? a2Ks = AJa1Ks · AJa2Ks
AJa1 - a2Ks = AJa1Ks−AJa2Ks

Figure 2.4: The semantics of arithmetic expressions

2.2.5 Bexp

The syntax definition for Bexp is

b ::= true | false | a1 = a2 | a1 ≤ a2 | ¬b | b1 ∧ b2

The function B : Bexp→ (State→ T) expresses the value of a boolean expression as T,
where T = {tt, ff}. The semantics of Bexp is defined in Figure 2.5.

BJtrueKs = tt
BJfalseKs = ff

BJa1 = a2Ks =

{
tt if AJa1Ks = AJa2Ks
ff if AJa1Ks 6= AJa2Ks

BJa1 ≤ a2Ks =

{
tt if AJa1Ks ≤ AJa2Ks
ff if AJa1Ks > AJa2Ks

BJ¬bKs =

{
tt if BJbKs = ff

ff if BJbKs = tt

BJb1 ∧ b2Ks =

{
tt if BJb1Ks = tt and BJb2Ks = tt

ff if BJb1Ks = ff or BJb2Ks = ff

Figure 2.5: The semantics of boolean expressions

2.2.6 Stm

A statement Stm can be considered as a command that tells the program what to do in
imperative languages. Some more complicated programming languages might have more
advanced structures, but While has only the essentials, defined as:

S ::= x := a | skip | S1;S2 | if b then S1 else S2 | while b do S

Those are assignment, skipping, composition, case distinction depending on a boolean ex-
pression and a loop that finished depending on a boolean expression respectively. However,
their semantics is dependent on whether we are in the context of Structural Operational

13
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Semantics or Natural Semantics. In this thesis, as we mentioned before, we are going to
consider them in the light of Structural Operational Semantics, and this will be discussed
in chapter 3 Structural Operational Semantics.

2.3 Coq

As described in its manual, “Coq is a formal proof management system. It provides a
formal language to write mathematical definitions, executable algorithms and theorems
together with an environment for semi-interactive development of machine-checked proofs.
Typical applications include the certification of properties of programming language(...),
the formalisation of mathematics (...), and teaching. ” [1]

Here, we will describe the Coq tactics that will be used most often in the formalisation
that follows.

2.3.1 Induction

As per “Software Foundations”, Volume 1, Chapter “More Basic Tactics” [6], “induction
... as... (is) induction on values of inductively defined types”. Let us clarify a bit on
that.

Induction ca be applied on an arbitrary member of an inductive set.

In the case the inductive set is the one of natural numbers, induction, be it strong or not,
is used to do proof by induction that as we know it. That would split the goal in two
subgoals. The first one is for the natural number being zero - the base case. In the second
subgoal, we have the hypothesis that the property we want to proof holds for an arbitrary
number k (or, in the case of strong induction for all numbers smaller or equal than k),
and the goal is to prove it of k + 1, or, in Coq notation - S k (the successor of k). That
happens, because the inductive set of natural numbers is defined with two constructors:
the zero-constructor, that claims that zero is a member of the natural numbers, and the
step-constructor, that claims that if a number is a member of the natural numbers, then
the successor of that number is also a natural number.

Alternatively, we can use induction on any other inductive set. That is, if we have a finite
set of constructors, like the statements in While, and in the assumptions, we have an
arbitrary member of that set, say S the command induction S will make as many
subgoals as are in the set, where for each subgoal, the set member will be a specific one,
until what we need to prove is proven for each member. Therefore induction is also
used for case distinction on all the possible values of a member of the set. For more
information you can also check As per “Software Foundations”, Volume 1, Chapter “Proof
by Induction” [6]
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2.4. EXTRA TACTICS

2.3.2 Inversion

In the following proofs we will use the tactic inversion very often. This tactic is
applied on a hypothesis - e.g. inversion H and can be translated in natural language
as ”Because we know H is true, then it must be the case, that H0,...,HK are true”, where
H0 ,...,HK are properties, from which H follows. In other words, inversion adds the
things that we can derive from H being true to the context.

A very simple example is the case where we have the hypothesis that A /\ B and apply
inversion on it, that will add to the context, as separate hypotheses A and B.

An alternative example can be made in the context of Structural Operational Semantics.
If in the context we have the hypothesis 〈if b then S1 else S2, s〉 ⇒ 〈S1, s〉 , introduced
in section 3.2 Structural operational semantics for While, and apply inversion on it,
it will be added to our context that the boolean expression b evalates to true, because it
is the only way this transition would be possible.

2.3.3 eapply

In the formalisation that follows, there will be many instances of applying tactics where
Coq will have to guess a variable. In some simple cases, it will manage, but in some more
complicated ones - it will not be able to infer the variables and instead, we will need to use
apply ... with ... and write it out ourselves. This will be annoying, both as that
variable might be quite long to write, and as more often than not, the exact next thing we
are going to - applying the next tactic - will tell us what the varable is. As Pierce explains
it in “Software Foundations” [6], we can avoid all that by using eapply instead of apply .
We will “tell Coq, essentially, ‘Be patient: The missing part is going to be filled in later in
the proof’. (...) In general, the eapply H tactic works just like apply H except that,
instead of failing if unifying the goal with the conclusion of H does not determine how
to instantiate all of the variables appearing in the premises of H, eapply H will replace
these variables with existential variables (written ?nnn), which functions as placeholders
for expressions that will be determined (by further unification) later in the proof.” [6].

2.4 Extra tactics

Here we will mention some of the other tactic we are going to use more often in the proofs
in Coq that will follow.

• intros : move hypotheses/variables from goal to context.

• reflexivity : finish the proof (when the goal looks like e = e).

• apply : prove goal using a hypothesis, lemma, or constructor.

• apply... in H: apply a hypothesis, lemma, or constructor to a hypothesis in the
context (forward reasoning).
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2.4. EXTRA TACTICS

• apply... with...: explicitly specify values for variables that cannot be deter-
mined by pattern matching.

• simpl : simplify computations in the goal.

• subst : substitute in the goal and context, according to equivalences present in the
context.

• rewrite : use an equality hypothesis (or lemma) to rewrite the goal.

• assert (e): introduce a ”local lemma” e.

These are all taken from “Software Foundations”, Volume 1, Chapter “More Basic Tactics”
[6], which is a great read for beginner users of Coq.
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Chapter 3

Structural Operational Semantics

3.1 Definition

Structural operational semantics - (SOS) is all about small, individual steps in the execu-
tion. As per the “Semantics with Applications, A Formal Introduction” by Nielson and
Nielson [4], the transitions have the form:

〈S, s〉 ⇒ γ

where γ either is of the form 〈S ′, s′〉 or of the form s′. The transition expresses the first
step of the execution of a statement S from state s. There are two possible outcomes:

• If γ is of the form 〈S ′, s′〉 then the execution of S from s is not completed and the
remaining computation starts from the intermediate configuration 〈S ′, s′〉. In other
words, there is another step (or steps) that needs to be executed before the statement
is complete.

• If γ is of the form s′ then the execution of S from s has terminated and the final
state is s′. That is a terminal configuration.

3.2 Structural operational semantics for While

We cannot just define semantics without using some kind of syntax. In the previous
chapter, we defined the syntax of While. Now it is time to define the rules for what do
While statements mean, depicted in Figure 3.1. The rules for While are deterministic
[4], as we will prove later.
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3.2. STRUCTURAL OPERATIONAL SEMANTICS FOR WHILE

[asssos] 〈x := a, s〉 ⇒ s[x 7→ AJaKs]

[skipsos] 〈skip, s〉 ⇒ s

[comp1
sos]

〈S1, s〉 ⇒ 〈S ′1, s′〉

〈S1; S2, s〉 ⇒ 〈S ′1; S2, s
′〉

[comp2
sos]

〈S1, s〉 ⇒ s′

〈S1; S2, s〉 ⇒ 〈S2, s
′〉

[ifttsos] 〈if b then S1 else S2, s〉 ⇒ 〈S1, s〉 if BJbKs = tt

[ifffsos] 〈if b then S1 else S2, s〉 ⇒ 〈S2, s〉 if BJbKs = ff

[whilesos] 〈while b do S, s〉 ⇒ 〈if b then (S; while b do S) else skip, s〉

Figure 3.1: Structural operational semantics for While

We assume that the reader is familiar with the Structural Operational Semantics, as de-
picted in “Semantics with Applications, A Formal Introduction” by Nielson and Nielson
[4]. We are not claiming that all theorems are mentioned and proved here, and will only
recall those that are of special interest in the formalisation.

In this thesis, we will focus more on finite derivation sequences, as Coq is will give errors
if it detects an infinite sequence.

3.2.1 Derivation Sequence

A derivation sequence starting from a configuration 〈S, s〉 is a sequence γ0, γ1, γ2..., where
γ0 = 〈S, s〉 and γi ⇒ γi+1 for i ≥ 0 That sequence can either be finite, finishing in γk,
where γk is either a stuck (described in subsection 3.2.2 Stuck and Progress) or a terminal
state (described in section 3.1 Definition) and k ≥ 0, or infinite.

We write γ ⇒i γ′ to indicate there are i steps to get from γ to γ′ and γ ⇒∗ γ′ to indicate
that there are zero or more but finite number of steps, to get from γ to γ′. Note that γ′

does not need to be a stuck or a terminal configuration, and hence, those notations do not
necessarily describe a derivation sequence.

3.2.2 Stuck and Progress

A stuck configuration 〈S, s〉 is a non terminal one, where there is no γ, such that 〈S, s〉⇒ γ.
In other words, a stuck configuration is a pair 〈S, s〉, where, in the state s, we cannot execute
the statement S and get to another state. Thus, there is no rule we can apply to make
progress in the sequence.
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3.2. STRUCTURAL OPERATIONAL SEMANTICS FOR WHILE

“Software Foundations” [6] introduces the notion of strong progress. This is a property of
the language that every configuration, is either terminal or if it is non-terminal - of the
type 〈S, s〉 - then there will exist γ such that 〈S, s〉 ⇒ γ.

In other words, each configuration is either terminal or can make progress, stepping to
another configuration. So, if the property of strong progress holds for a language, then we
cannot get to a stuck configuration applying the rules to execute each statement.

For While, as we defined it, the property of strong progress holds.

Abort

We could extend While to While’ with a statement, say ”abort” and the matching rule
[abortsos] that only consists of 〈abort, s〉. That would mean we have no step that we can
make from the non terminal configuration 〈abort, s〉, and thus that this is a stuck state.
Then, it would be easy to prove that there is no strong progress, in our new language
While’. However, in this thesis, we will work with the original While language and its
other properties that we can use, without considering the lack of strong progress.

3.2.3 Comp

A few details on the [comp1
sos] and [comp2

sos] rules: They express the fact that to execute
〈S1;S2, s〉, you need to execute S1 first. Thus, trying to execute S1, 〈S1;S2, s〉 could result
either in 〈S2, s

′〉, if the entire S1 was executed, or in 〈S ′1; S2, s
′〉, where there would still be

steps of S1 to finish. As expressed in “Semantics with Applications, A Formal Introduction”
[4]

• If the execution of S1 has not been completed we have to complete it before embarking
on the execution of S2.

• If the execution of S1 has been completed we can start on the execution of S2.

3.2.4 Induction on the Length of the Derivation Sequence

Once we have made the formalisation, we will consider some examples from the course
Semantics and Correctness. Because of that, it is useful to give the general strategy in
“Semantics with Applications, A Formal Introduction” [4] for proofs by induction, that we
encounter in SOS context:

Induction on the length of the derivation sequence

Base case Prove that the property holds for all derivation sequences of length zero.

General case Prove that the property holds for all other derivation sequences:

IH Assume that the property holds for all derivation sequences of length at most k.
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3.3. WHY STRUCTURAL OPERATIONAL SEMANTICS?

IS Show that it holds for derivation sequences of length k + 1.

3.3 Why Structural Operational Semantics?

Natural semantics is useful in many situations, when we want to prove that a program is
in the expected state when it terminates. But it is not as helpful, when we are talking
about intermediate steps or concurrent programming - latter example given in the chapter
Small-Step Semantics of “Software Foundations”, [6]. There execution is not only about
mapping an input to an output state. Instead, there are intermediate states that the
program passes through, and those states can be observed by concurrently executing code.

Schirmer [8] presents a more general differentiation between big- and small- step semantics:
“A big-step semantic executes the whole program at once and relates the initial with the
final states. A small-step semantics is a single step relation between configurations of the
computation.”

And finally, we will give the summary from “Semantics with Applications, A Formal In-
troduction” [4]. We mention non-determinism here for completeness’s sake, and will not
discuss it in detail.

Natural Semantics versus Structural Operational Semantics

• In a natural semantics the execution of the immediate constituents is an anatomic
entity, so we cannot express interleaving of computations.
• In a natural semantics we cannot distinguish between looping and abnormal

termination.
• In a natural semantics non-determinism will suppress looping, if possible.

• In a structural operational semantics looping is reflected by infinite derivation
sequences and abnormal termination by finite derivation sequences ending in a
stuck configuration.
• In a structural operational semantics we concentrate on the small steps of the

computation so we can easily express interleaving.
• In a structural operational semantics non-determinism does not suppress looping.
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Chapter 4

Formalisation

4.1 Expressions

The course Semantics and Correctness works with a simple programming language, While,
that we already discussed. Based on the work of Pierce [6] on another simple imperative
language - Imp, here we will define our rules for While. The full files can be found on
GitHub.

4.1.1 Var

As in all the other programming languages, a variable is a string of characters, that can
be assigned a value. We could make a custom type Var in Coq, but it would just be
a coercion with string with no additional properties. Therefore, we will directly use
string for the type Var.

4.1.2 Num

Formalising Num may look like an easy task at first, but it takes many steps to comfortably
apply the definition of numeric values from While. It might be tempting to just use Z, as
more often than not, we will use N to evaluate a numeral to an integer. Simpler still, we
can make the observation that the definition of the numeral as binary string is unassigned
and even depict them as nat.

However, since we have already started looking into the definition, we can see that this is
not possible. The nat type in Coq is defined inductively with two constructors: O for the
zero-element and S (n:nat) for the successor of a natural number[6].

However, in the definition of Num we have four constructors:

Inductive Num : Type :=

| NZero
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4.1. EXPRESSIONS

| NOne

| NEven (n : Num )
| NOdd (n : Num ).

That entails two constructors for 0 and 1 respectively, and two for n0 and n1, - where n

is a member of Num- that concatenate 0, respectively 1, to an already defined numeral.
We should remind here that this builds a binary number and using one of the latter
two constructors raises the order of the number by one. In other words, the latter two
constructors multiply the value so far by two and add either zero or one to it, for even and
odd numbers respectively. The function N evaluates those numerals to integers [4], and
we define it as follows:

Fixpoint Neval (n : Num ) : Z :=

match n with

| NZero => 0
| NOne => 1
| NEven n => 2∗( Neval n )
| NOdd n => 2∗( Neval n ) + 1
end.

We can even make a coercion, to interpret members of Num as integers directly:

Coercion Neval: Num >-> Z.

Now we have defined the type Num and we can convert from it to integers. However, using
it is not very comfortable. Similar to the case, described in “Software Foundations” where
the definition of nat would require for us to write S(S(S O))) to represent 3 [6], if we
want to represent the numerical with value 3, we need to use nested constructors: NOdd

NOne . To illustrate how progressively complicated that would be for bigger numbers, 5
would be NOdd (NEven None) and so on. It would be useful to be able to write digits
as well to represent numerals. In other words, we need a coercion in the opposite direction:

Coercion z_to_num: Z >-> Num.

That requires slightly deeper understanding of the type Z in Coq. It is defined with three
constructors: a zero one - Z0 - and a positive and negative one, which both take another
type - positive : Zpos and Zneg . We coerce the zero constructors of Z with the zero
constructor of Num and dwell into the definition of positive for the rest.

Fixpoint z_to_num (z:Z ) : Num :=

match z with

| Z0 => NZero

| Zpos n => pos_to_num n

| Zneg n => pos_to_num n

end.
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4.1. EXPRESSIONS

The type positive is more useful for our purpose than nat. Fortunately, instead of
having a definition based on immediate successor, positive has constructors for the
unit-element - 1 - and constructors for even and odd numbers respectively. That matches
perfectly our remaining three constructors and allows us to define:

Fixpoint pos_to_num (n:positive ): Num:=

match n with

| xH => NOne

| xO n’ => NEven ( pos_to_num n’ )
| xI n’ => NOdd ( pos_to_num n’ )
end.

Note that in order for those definitions to work, the latter three listings need to be written
in Coq in reverse order.

Using the above, we can finally write digits, which are going to be interpreted as with
integers and they, in turn, can be coerced with numerals. This will make the further
examples much easier to read.

4.1.3 State

A small interlude before we continue to Aexp and Bexp, as both of these expressions use
the notion of state.

The structures we have left to define in While, are Statements - Stm. As we noticed
in the description of the rules of SOS, a statement is basically a command that is to be
given in a certain State. Thus, here, we will consider how we can depict states in Coq.
Remember, State was defined as a map s : Var → Z in While. So, we will first need to
define a map, that takes a string - the name of the variable and can returns its matching
numeric value, as is done in “Software Foundations” [6].

Definition total_map (A : Type ) := string -> A.

For Imp, that would be nat. For While, the matching numeric value would be of type
Z. This suggest that we can use digits to depict the value of a state: our state will have to
map strings to Z.

Definition State := total_map Z.

Note, that we can also evaluate Num-s to Z. Since both of those sets can be depicted with
digits, it will be easy to assume writing the same non-negative integers for the two.

In a program, we are not going to have all the variables initialised with a value. Thus, we
will need a default empty state to start with and develop on. So, we define
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4.1. EXPRESSIONS

Definition empty_st := (_ !-> 0).

We need to be able to find and update a variable in the state, so we can update the state:

Definition eqb_string (x y : string ) : bool :=

if string_dec x y then true else false.

Definition t_update {A : Type} (m : total_map A )
(x : string ) (v : A ) :=

fun x’ => if eqb_string x x’ then v else m x’.

And finally, we make a nice recursive notation to make new states by adding variables to
an empty state.

Notation "’_’ ’!->’ v" := ( t_empty v )
(at level 100 , right associativity ).

Definition empty_state := (_ !-> 0).
Notation "x ’!->’ v ’,’ m" := ( t_update m x v )

(at level 100 , v at next level , right associativity ).
Notation "x ’!->’ v" := (x !->v , empty_state )

(at level 100 , v at next level , right associativity ).

4.1.4 Formalisation of Aexp

In this and the next subsections, we will observe the iterative reasoning behind the formal-
isation of the arithmetical expressions.

Constructor

First, we will consider our initial guess - and it, indeed, is correct for big step evaluation.
For most of the thesis, we will work with that and only execute the statements in small
steps.

Above, we defined Aexp as

a ::= n | x | a1 + a2 | a1 ? a2 | a1 - a2

This same definition is used in Imp. We can write this syntactic definition in Coq using
Inductive Aexp and set those options as the constructors.

Inductive Aexp : Type :=

| ANum (n : nat )
| AId (x: string )
| APlus (a1 a2 : Aexp )
| AMinus (a1 a2 : Aexp )
| AMult (a1 a2 : Aexp ).
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4.1. EXPRESSIONS

Evaluation

Once we have the syntax for the arithmetical expressions, we would want to define what
each of those constructors does. For that, we define a Fixpoint aeval :

Fixpoint aeval (st : state ) (a : Aexp ) : nat :=

match a with

| ANum n => n

| AId x => st x

| APlus a1 a2 => ( aeval st a1 ) + ( aeval st a2 )
| AMinus a1 a2 => ( aeval st a1 ) − ( aeval st a2 )
| AMult a1 a2 => ( aeval st a1 ) ∗ ( aeval st a2 )
end.

Instead of writing AJaKs as is done in “Semantics with Applications, A Formal Introduc-
tion” [4], we write ( aeval st a ) in Coq. To make it more similar to the notation of
Semantics and Correctness, we define:

Notation " ’A[[’ a ’]]’ st " := ( Aeval st a )
(at level 90 , left associativity )(*: while_scope*).

4.1.5 Formalisation of Bexp

We do the same iterative reasoning as in the above section, this time for Boolean expres-
sions.

Constructor

We define Bexp the same way as we did with Aexp in syntax as Inductive bexp :

Inductive Bexp : Type :=

| BTrue

| BFalse

| BEq (a1 a2 : Aexp )
| BLe (a1 a2 : Aexp )
| BNot (b : Bexp )
| BAnd (b1 b2 : Bexp ).

Evaluation

And we define its semantics with Fixpoint Beval , with respect to the state:

Fixpoint Beval (st : State ) (b : Bexp ) : bool :=

match b with

| BTrue => true

| BFalse => false
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| BEq a1 a2 => ( Aeval st a1 ) =? ( Aeval st a2 )
| BLe a1 a2 => ( Aeval st a1 ) <=? ( Aeval st a2 )
| BNot b1 => negb ( Beval st b1 )
| BAnd b1 b2 => andb ( Beval st b1 ) ( Beval st b2 )
end.

Notation

Notation " ’B[[’ b ’]]’ st " := ( Beval st b )
(at level 90 , left associativity )(*: while_scope*).

4.1.6 Formalisation of Stm

Contructors

Now we are ready to finally define the statements, using all the other parts of While we
already defined, similarly to “Software Foundations” [6]:

Inductive Stm : Type :=

| ass (x : string ) (a : Aexp )
| skip

| comp (s1 s2 : Stm )
| if_ (b : Bexp ) (s1 s2 : Stm )
| while (b : Bexp ) (s : Stm ).

This, however is not very similar to the statements we find in Semantics and Correctness.
To make it closer, we use custom notations for the statements:

Notation "x ’::=’ a" :=

( ass x a ) (at level 60).
Notation "’SKIP’" :=

skip.

Notation "s1 ; s2" :=

( comp s1 s2 ) (at level 80 , right associativity ).
Notation "’WHILE’ b ’DO’ s " :=

( while b s ) (at level 80 , right associativity ).
Notation "’IF_’ b ’THEN’ s1 ’ELSE’ s2 " :=

( if_ b s1 s2 ) (at level 80 , right associativity ).

What we do with those constructors next, will be specified by the rules we need to formalise.
The next section is a small notation interlude, after which we will take a look at the rules
and explain why it was chosen.
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4.2 Extra Notation

Most of the notations we are going to meet throughout this formalisation, are either quite
simple, so that we don’t need to pay extra attention to them, or, as above, cleared out
together with the definition of what is noted. However, here are some terms and notations,
that are not mentioned as often, or not at all, during classes, but still would be useful.

4.2.1 Coercion

This manipulation of notation was already used before. Now, we elaborate on it a bit more.
Coercion in Coq is a special kind of function, that can be used by the type system to
coerce - transform - a value of the input type to a value of an output type. For example:

Coercion AId : string >-> Aexp.

Coercion ANum : Num >-> Aexp.

We mentioned above, that one of the constructors of Aexp is ANum , which takes a Num.
Thus, we should be able to convert a Num to an Aexp , and we use Coercion for that.
Note that we just need to match the constructors, not necessarily call the coercion the
same way. Instead, we can match using a normal definition as follows:

Definition bool_to_bexp (b : bool ) : Bexp :=

if b then BTrue else BFalse.

Coercion bool_to_bexp : bool >-> Bexp.

4.2.2 Bind scope

It is important to note that some notations we will be introducing might already be in
use. In order to avoid clashing, we will use Bind Scope , which means that within the
function scope, this notation will mean what we declared, even if it means something else
in other scopes,a s follows:

Bind Scope while_scope with Aexp.

Bind Scope while_scope with Bexp.

Notation "x + y" := (APlus x y) (*...*) : while_scope.

Note that with Bind Scope we state that the notation of a function is valid in this scope
alone.

Instead, with Delimit Scope we set a keyword to show that a certain expression is writ-
ten, using the notations with this scope - a one-line Open Scope . Then, when we want
to use it, we simply write the scope at the end of the example, as follows: Definition

example_Aexp:- (3+ (X*2)%while : Aexp.
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4.3. DIFFERENCE BETWEEN THE TWO COMPOSITION RULES

4.3 Difference between the two composition rules

There are a couple of options how to define whether a statement is completely executed or
not. In this section, we will consider two of the approaches, and depict the implementation
of the one we choose. Let us first refresh the difference between [comp1

sos] and [comp2
sos].

[skipsos] 〈skip, s〉 ⇒ s

[comp1
sos]

〈S1, s〉 ⇒ 〈S ′1, s′〉

〈S1; S2, s〉 ⇒ 〈S ′1; S2, s
′〉

[comp2
sos]

〈S1, s〉 ⇒ s′

〈S1; S2, s〉 ⇒ 〈S2, s
′〉

Figure 4.1: A reminder of the three rules in question

We will discuss them in reversed order, as [comp2
sos] is a little bit easier to understand.

[comp2
sos] We use this rule when the statement before ; can be executed in one step.

Let us take an example, that will be further discussed in the application chapter:
in the case of z ::= x ; x ::= y we will use [comp2

sos], and the first statement,
z::=x will be easily executed by applying [asssos], and then we can go straight to the
execution of x ::= y with another [asssos]. Now, it is important to notice that the
; operator is right - associative. That means, that z ::= x; x ::= y; y ::= z,
would be interpreted as z ::= x; (x ::= y; y ::= z). Thus z ::= x will be
S1 and x ::= y; y ::= z will be S2.

[comp1
sos] This rule is used when the statement before ; requires more than one step to be

executed. Let us modify the example we used above slightly by adding parentheses:
(z ::= x; x ::= y); y ::= z. Notice the brackets - we want to associate to the
left here and handle the ; after the brackets first. Now S1 is z ::= x; x ::= y

and S2 is y ::= z. We cannot use [comp2
sos], as we cannot execute S1 in one step -

instead we have to apply [comp1
sos], where the first part of S1, which will initially get

executed is z ::= x and the part S1’, which is left to do afterwards is x ::= y.

It is easy to show that the two three-term examples are semantically equivalent. In other
cases, however, consider that S1 might be a statement that includes WHILE . As we know
[whilesos]’s execution converts it to an IFS and maybe more WHILE-s afterwards, which
for sure cannot happen in one small step.

All of these examples can be found in the appendix.
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4.3.1 Skip as Stuck

“Software Foundations” [6] uses SKIP as a command value - as this rule does not change the
state, it can be considered “stuck”. We can place a SKIP step in the end of each statement.
Then, the [comp1

sos] rule will be executed, until a statement SKIP is encountered, and only
then it will be finished with a [comp2

sos] rule.
It is interesting to consider that choice in light of other programming languages. For
example,in java and C++, the operation ; for composing statements together are just
written after each line. If we use this method, in defining the end of a program, we can
also use the same notation as new line for both the rule SKIP and ; SKIP . In other
words, the same rule is applied if the end of a program is ;, as it would be if it was ;SKIP.

We can get consistent writing of ; after each command, including the last one, as long as
there is an implicit new line at the end of the program. The result would be the habit of
writing a ; after each line in languages such as java and C++.

4.3.2 Using a Configuration

Another approach, closer to the notations of Nielson and Nielson [4] is to differentiate
between a configuration that is finished and one that still has something to execute. That
will give us the difference between [comp1

sos]: “there is more, we only executed a part of
the first statement”; and [comp2

sos]: “the first of the two statements can be completely
executed in one step, we are done after it”. This approach is a bit more complicated, but
easier to understand.

Because of that, combined with this thesis being meant to assist studying for the course
that follows this book, we will use it.

Formalisation of the Skip Configuration

We define the configuration as an Inductive type.

Inductive Config: Type :=

| Running (S:Stm ) (s:state )
| Final (s:state ).

As explained about this approach above, we have a Running constructor, that still has
a statement that needs to be executed, and Final - which is just a state. The final
configuration will be encountered not only in the end of programs, but also in the end of
each statement that gets completely executed.

To make it less confusing, we will make matching notation for the two constructors and
a coercion to be able to easily convert a state to a final configuration (which contains it
alone).

Coercion Final: state >-> Config.
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Notation "’�’ s ’�’ " := ( Final s ).
Notation "’�’ S ’,’ st ’�’" := ( Running S st ).

4.3.3 Stuck With Configurations

Using this configuration setting, we intuitively would know that a Final configuration
would not make progress.

In subsection 3.2.2 Stuck and Progress we defined stuck as a non-final configuration, from
which there is no configuration that can be reached. In turn, in section 5.2 Strong Progress,
we will show that While, as we defined it makes strong progress - and there is no step
that can be made to get to such a configuration.

So, in order to not have to introduce another term, we will slightly alter the definition
of stuck, for the sake of the formalisation - to be any configuration, from which there is
no configuration that can be reached. Note that we make a small condition that always
evaluates to true to make it easier to use that definition in Coq.

Definition isStuck ( conf: Config ) :=

0=0 -> ~ ( exists ( conf’:Config ) , conf ==> conf’ ).

The true-evaluation 0=0 is there to set the correct scope. Knowing this, we can now prove
that a Final configuration is indeed a stuck one:

Lemma final_is_stuck:

forall s ,
isStuck �s� .

Proof.

intros.

unfold isStuck.

intros.

intro.

destruct H0.

inversion H0.

Qed.

4.4 Making A Step

Each small step in Structural Operational Semantics can be considered as transition from
one configuration - conf - to another - conf’. In conf , we always expect to see one
of the statements, and a state in which that statement is supposed to be executed. In
conf’, we see how that statement changed the state and there might or might not be
another statement, that the first one got converted to.

So, we define the notation and the inductive set as follows:
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Reserved Notation " conf ’==>’ conf’ "

(at level 40). (*levels?*)

Inductive sstep : Config -> Config -> Prop:=

(*...*)

Notation " t ’==>*’ t’ " := ( multi sstep t t’ ) (at level 40).

This, similar to what we wrote with the arithmetical and boolean expressions earlier means
that we will use this notation in its own definition.

Now that all the preparatory work is complete, we get to implementing the rules themselves,
as constructors of the inductive set sstep . The entire function ca be found in section B.2
The basics of SOS formalisation, needed for students to understand the proofs.

[skipsos] Regardless of which configuration is used - the one we chose or using SKIP as
a special structure, this rule stays the same. It does not change the state and there
is no statement to be executed after it.

| SSSkip : forall st ,
�SKIP , st� ==> st

Note that here the coercion is used, to accept the state given alone as a configuration.
We could have written � st� or Final st instead of st without change of
meaning.

[asssos] The rule x := a takes a string variable - x - that can be assigned a value in the
state, or an Aexp, and assigns the evaluation of the expression a to the variable.

| SSAss: forall x a n st ,
aeval st a = n ->

� (x::=a ) , st� ==>� (x !-> n , st )�(*t_update st x n)*)

Here, we are using big step evaluation of the arithmetical expression. If we were to
try and use small-steps for it the aeval would be replaced with a use of astep ,
which we consider in section 7.1 Making small steps in evaluating expressions. The
comment depicts an alternative way to represent the updated state.

[comp1
sos] Derivation trees, like the one explaining this rule in Figure 4.1 are written from

the bottom up and read and applied top down. That intuition helps to understand
why IF S1 in a state s results in a S ′1 in s′, THEN S1 followed by S2 in the same
state s will result in S ′1 followed by S2 in s′ and not the other way around.

| SSCompI: forall S1 S1’ S2 st st’ ,
�S1 , st� ==>�S1’ , st’� ->

�S1 ; S2 , st� ==>�S1’ ; S2 , st’�
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[comp2
sos] With the same reasoning as in the above rule, and the difference already de-

scribed above, the stress here is on the fact that the initial configuration goes to a
final state.

| SSCompII: forall S1 S2 st st’ ,
�S1 , st� ==> Final st’ ->

�S1 ; S2 , st� ==>�S2 , st’�

[ifttsos] and [ifffsos] Importantly, those are two separate rules. Depending on a boolean
expression either the first or second statement is in the resulting configuration, to be
the next one executed.

Note that using Coq’s already defined if -else clause to combine them into one
would defeat the purpose of defining those rules from scratch, and require coercing
BTrue and BFalse with the predefined true and false respectively.

| SSIftrue: forall b S1 S2 st ,
Beval st b = true ->

�IF_ b THEN S1 ELSE S2 , st� ==>�S1 , st�

| SSIffalse: forall b S1 S2 st ,
Beval st b= false ->

�IF_ b THEN S1 ELSE S2 , st� ==>�S2 , st�

Same as with [asssos], we are using big-step evaluation - beval on the Bexp, but
that could instead be a use of bstep for small-step evaluation.

Additionally, note that to completely execute those rules, you will need more than one
step - one to reduce the IF -THEN -ELSE - to one of the statements it chooses from
and then at least one step to execute that statement. Thus, if there is a statement
that follows after this one, you will need to use [comp1

sos] instead of [comp2
sos].

[whilesos] Finally, While would not be called that way without the [whilesos] rule. It can
be reduced to execution of the statement and recursive call to itself if the Bexp is
evaluated to tt, or doing nothing otherwise.

| SSWhile: forall b S st ,
�WHILE b DO S , st� ==>

�IF_ b THEN (S ; WHILE b DO S ) ELSE SKIP , st�

Just like with [ifttsos] and [ifffsos], we need more than one - in this case at least three
- steps to execute this statement and, if there is a rule following, we should use
[comp2

sos].
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4.5 Making Many Steps

Each of the rules above makes a single step. However, programs are rarely single-statement;
if that was the case, we would not even need differentiation between small- and big-step
semantics. To be able to prove that programs do what we expect them to, we need to be
able to make more than one step. In other words, we need to be able to not only make
〈 , 〉 ⇒ 〈 , 〉 transitions, but also 〈 , 〉 ⇒∗ 〈 , 〉 ones, where the latter denotes zero or
more of the former transitions.

To do that, we will consider the function sstep as a relation between two configurations.
Instead of the transition from conf to conf’, now we will say that configuration conf

is in relation sstep with configuration conf’ if and only if we can transition from conf

to conf’ with one of the rules from sstep .

We do that, because we can define a relation on Coq as:

Definition relation (X : Type ) := X -> X -> Prop.

Then, we will make that relation reflexive and transitive.

In Coq,, this is an inductive definition with:

Reflexive constructor being the 0 case: Making zero steps should still be a star tran-
sition. We cannot make a step go from one configuration to the same one, but the
we can have a multistep (star transition): γ ⇒ ∗γ, that means we do now make any
steps.

Transitive constructor being the induction step: if a transition 〈S, s〉 ⇒ 〈S ′, s′〉 is a
step and we have a multistep 〈S ′, s′〉 ⇒∗ 〈S ′′, s′′〉, then 〈S, s〉 ⇒∗ 〈S ′′, s′′〉 is also a
multistep.

In Coq we will first define a reflexive and transitive relation more generally. Then we are
just going to notate sstep as such a relation:

Inductive multi {X : Type} (R : relation X ) : relation X :=

| multirefl : forall (x : X ) , multi R x x

| multistep : forall (x y z : X ) ,
R x y ->

multi R y z ->

multi R x z.

Notation " t ’==>*’ t’ " := ( multi sstep t t’ ) (at level 40).

4.6 Making k Steps

Other than eventually reaching a configuration from another, in some cases we also want
to explicitly count how many steps are needed to make that transition. Thus, we define a
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type of cumulative relations, similar to the one we did for the star, that also keeps track
of the number of steps, and then we will make our notation for Structural Operational
Semantics steps with recorded number:

Inductive multi_k {X : Type} (R : relation X ) : nat -> relation X :=

| multikrefl : forall (x : X ) , multi_k R 0 x x

| multikstep : forall (x y z : X ) (k:nat ) ,
R x y->

multi_k R k y z ->

multi_k R (S k ) x z.

Notation " t ==>[ k ] t’ " := ( multi_k sstep k t t’ ) (at level 50).

Using that notation, we will consider some some small but important cases:

4.6.1 Zero Steps

There are a couple of interesting considerations with zero steps. Note, that this is quite
different than using any of the rules of Structural Operational Semantics, as we are not
actually making a step.

4.6.2 Identity Zero Steps

From any configuration, we can get to the same configuration in zero steps.

Lemma identity_zero:

forall c ,
c ==>[ 0 ] c.

Proof.

apply multikrefl.

Qed.

If and only if two configurations c and c’ are equal, then there can be a transition in zero
steps from one to the other.

We will usually only need one of f the directions for our proofs, so we make two separate
lemmas:

Lemma zero_steps:

forall c c’ ,
c ==>[ 0 ] c’ -> c = c’.

Proof.

intros. inversion H. reflexivity.

Qed.
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Lemma zero_steps_rev:

forall c c’ ,
c = c’ ->

c ==>[ 0 ] c’.

Proof.

intros. induction H.

apply identity_zero.

Qed.

4.6.3 Stuck and Stuck Stops

In subsection 4.3.3 Stuck With Configurations me made a small alteration, to call a stuck
statement one that does not make progress, regardless if it is final or not, and we defined
it as:

Definition isStuck ( conf: Config ) :=

0=0 -> ~ ( exists ( conf’:Config ) , conf ==> conf’ ).

We also promised that section 5.2 Strong Progress we will show that While makes pro-
gresses with all of its rules. Hence, the only way to get to the end of a derivation sequence
is to get to a final configuration. Now we want to prove that indeed if a statements is
stuck (either final or really stuck, per the definition of “Semantics with Applications, A
Formal Introduction” [4]), it indeed cannot make progress, and that takes us to the end of
a derivation sequence.

From subsection 4.6.2 Identity Zero Steps we know, that we can get to the same configura-
tion in zero steps. So, we can conclude, that if we go somewhere from a stuck configuration,
then it can only be to the same configuration and in zero steps.

Lemma stuck_stops:

forall c c’ k ,
isStuck c ->

c ==>[ k ] c’ ->

k = 0 /\ c’ = c.

Proof.

intros.

unfold isStuck in H.

induction k.

− inversion H0 ; subst.

split. reflexivity. reflexivity.

− destruct H0. split. reflexivity. reflexivity.

destruct H. reflexivity.

exists y. assumption.

Qed.
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4.6.4 Final Configuration and Number of Steps

Adding on subsection 4.6.3 Stuck and Stuck Stops, we know, from the altered definition,
that Final is a stuck configuration. So, we can derive the same thing as in the above-
mentioned section, in the specific case, when we try to go to anther configuration from a
Final one.

Lemma state_k_zero:

forall k s conf ,
�s� ==>[ k ] conf

->

k = 0 /\ conf = �s�.

Proof.

intros.

apply stuck_stops.

apply final_is_stuck.

assumption.

4.6.5 One Step

The multi_k relation is, still executing Structural Operational Semantics steps. Thus,
making one step with the multi_k relation would be the same as making a normal single
step. With this clear intuition, we just need to prove it in both directions, so that we can
use it later on, when needed.

From single step to one step:

Lemma one_step:

forall c c’ ,
c ==> c’ ->

c ==>[ 1 ] c’.

Proof.

intros.

apply ( multikstep sstep c c’ ).
assumption. apply zero_steps_rev.

reflexivity.

Qed.

And from one step to a single one.

Lemma one_step_rev:

forall c c’ ,
c ==>[ 1 ] c’ ->

c ==> c’.
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Proof.

intros.

inversion H. subst.

apply zero_steps in H2. subst.

assumption.

Qed.

Now we are ready to go and use all that formalisation to make some proofs with Structural
Operational Semantics.

4.7 Revisit State

There is a final step we need to make before we are ready to use the framework. We still
cannot prove trivial statements like the following:

Example triv_3:

� x::=y , (x !->1 , y !->4 , z !->3)� ==>� x !->4 , y !->4 , z !->3�.

That is because somewhere in the proof we would need to use the [asssos] rule, which in
turn, will call the function t_update on the initial state. The resulting state will be
notated as:

� x !-> 4, x !-> 1, y !-> 4, z !-> 3 �

instead of
� x !-> 4, y !-> 4, z !-> 3 �

which we need. Note that the two states are semantically equivalent but syntactically
different. As such, we can easily prove that one is equal to the other, using the below
tactic, but Coq cannot infer that automatically.

Ltac eq_states :=

apply functional_extensionality ; intros ; unfold t_update ; simpl ;
repeat match goal with

|− context [ eqb_string ?v ?x ] =>

destruct ( eqb_string v x )
end ;
reflexivity.

This is enough to show that a state is equal to another as long as their mappings are the
same, regardless of what values the variables had before. However, in our formalisation
of Structural Operational Semantics, a state is rarely met alone - it is always a part of a
configuration - be it the only part, or together with a statement. Therefore now, we want to
prove and use the fact that if two configurations consist of the same (or lack of) statements,
and equal states, then those configurations are equal as well. The following two theorems
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show that, with and without a statement in the configurations respectively. Note that both
proofs are very simple, including only simple rewriting and evaluating equivalence.

Theorem conf_eq_rn:

forall S s s’ ,
s = s’ -> �S , s� = �S , s’�.

Proof.

intros.

rewrite H.

reflexivity.

Qed.

Theorem conf_eq_fn:

forall s s’ ,
s = s’ -> �s� = �s’�.

Proof.

intros.

rewrite H.

reflexivity.

Qed.

Now that we have equality of configurations, we will need to show that, if from one con-
figuration conf we can get in one step to another - conf’ and conf’ is equal to a
conf’’, then we can get in one step from conf to conf’’. Note that in the Coq
theorem, we stress on the fact that we can only make a one step transition if in conf

there is a statement to execute and make at least one step.

Theorem stm_eq:

forall S s conf’ conf’’ ,
�S , s�==> conf’ ->

conf’ =conf’’ ->

�S , s� ==> conf’’.

Proof.

intros.

rewrite H0 in H.

apply H.

Qed.

We are going to use that to finish those proofs that require a one step transition that
changes a variable already present in the state.

In section 4.8 Examples and [comp1
sos] vs [comp2

sos] you will notice that all examples, that
require the possibility to make zero or more step, use the transition ⇒∗ and finish with
applying its constructor multirefl we defined in section 4.5 Making Many Steps. That
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is, we are trying to say that from a final configuration we can get to the same final config-
uration in exactly zero steps and nowhere else. The next theorem proves that that is the
case, regardless of the notation of that state.

Theorem no_stm_eq:

forall s conf’ conf’’ ,
�s�==>∗ conf’ ->

conf’ =conf’’ ->

�s� ==>∗ conf’’.

Proof.

intros.

rewrite H0 in H.

apply H.

Qed.

Finally, we generalise the above statement for all star-transitions. Note that the following
theorem can completely replace the usage of the previous one, but we will mostly need it
in the above very specific case and thus it is justified that we mention them both.

Theorem conf_stm_eq:

forall conf conf’ conf’’ ,
conf==>∗ conf’ ->

conf’ =conf’’ ->

conf ==>∗ conf’’.

Proof.

intros.

rewrite H0 in H.

apply H.

Qed.

Now, with those easy proofs, we can finally proceed to proving some neat examples in
section 4.8 Examples and [comp1

sos] vs [comp2
sos].

4.8 Examples and [comp1
sos] vs [comp2

sos]

Most of the simple examples of using this framework are pretty straightforward. To execute
many steps, we iteratively apply multistep (or multikstep in the case when we
are interested in knowing exactly how many steps we are talking about) which makes us
consider what the first step we need to make is - one of the constructors of sstep , and
then repeat on the rest of the sequence, until we get to a transition from one state to the
same, in which case we can use multirefl (or respectively multikrefl).

In this section we will illustrate that, together with answering a question that might rise
quite often while we talk about Structural Operational Semantics- When to use [comp1

sos]
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and when - [comp2
sos]?

We are going to visit in detail an example from the lectures in Semantics and Correctness
(in the full file, some simpler examples are discussed beforehand, hence the odd numbering):

Example triv_7_lecture’:

� z ::=x ; x ::= y ; y ::=z , (x !->3 , y !->4 , z !->5)� ==>∗
� (y !->3 , x !->4 , z !->3)�.

Here we will only be using [comp2
sos].

When we start the proof we will use multistep three times, which makes for the three
steps that need to be executed. Finally, to close the proof, we will use multirefl , for
the zero step. We have two options:

We can use the standard apply when we will need a with clause and tell Coq what
state will the first step result in:

Proof.

− apply multistep with �x ::= y ; y ::=z , z !->3 , x !->3 , y !-> 4 , z !-> 5�.

Alternatively, we can use eapply , which we described in subsection 2.3.3 eapply , and
let Coq infer the goal by itself. In that case, it will use undefined variables, and assume
their value as the need comes to assert equality between the variable and another of the
same type, using the principle that “it must be it”.

Proof.

− eapply multistep.

After that first step, where for clarity, we used the explicit apply , we have two subgoals:

<< z ::= x; x ::= y; y ::= z, x !-> 3, y !-> 4, z !-> 5 >> ==>

<< x ::= y; y ::= z, z !-> 3, x !-> 3, y !-> 4, z !-> 5 >>

Where we need to prove that the second configuration can indeed by reached in one step.
And:

<< x ::= y; y ::= z, z !-> 3, x !-> 3, y !-> 4, z !-> 5 >> ==>*

(y !-> 3, x !-> 4, z !-> 3)

That concerns the rest of the sequence.

Then we continue pretty straightforward - for the first subgoal - we know what the first
step leads to, we only need to apply the appropriate constructors of sstep we need in
order to execute this step.

+ apply SSCompII. apply SSAss. reflexivity.

Then we use multistep again, execute the next step with constructors of sstep , and
then multistep again, on the remaining sequence of length zero or more, until all the

40



4.8. EXAMPLES AND [COMP1
SOS] VS [COMP2

SOS]

steps are executed. In most examples, we do all that with eapply , as it is faster and
easier to do, but, as mentioned, here we state the intermediate steps explicitly, for clarity.

+ apply multistep with (�y ::=z , x !->4 , z !-> 3 , x !->3 , y !->4 , z !
->5� ).

∗ apply SSCompII. apply SSAss. reflexivity.

∗ apply multistep with � (y !->3 , x !->4 , z !->3 , x !->3 , y !-> 4 , z !
-> 5)�.

apply SSAss. reflexivity.

Finally, we need to prove that the resulting state is equal to the one we expected. That
will take a use of multirefl , to state that a final state can go in zero or more steps - in
this case zero - to the same state. Then, we need to use a few more commands due to the
problem discussed in section 4.7 Revisit State, and the custom tactic defined there:

eapply no_stm_eq.

eapply multirefl. apply conf_eq_fn. eq_states.

And with that, it all comes together to make a complete proof.

Qed.

A different version of this example is on that uses [comp1
sos], with a very small tweak in

the definition:

Example triv_7_lecture’’:

� (z ::=x ; x ::= y ) ; y ::=z , (x !->3 , y !->4 , z !->5)� ==>∗
� (y !->3 , x !->4 , z !->3)�.

Now the first statement to be executed is the one in the brackets. It takes two steps to
execute it, and thus needs an application of [comp2

sos].

Proof.

− apply multistep with �x::=y ; y ::=z , z !->3 , x !->3 , y !-> 4 , z !-> 5�.

+ eapply SSCompI. (*<--- Used Comp 1! *)

Here, after we applied the multistep , we needed to prove:

<< (z ::= x; x ::= y); y ::= z, x !-> 3, y !-> 4, z !-> 5 >> ==>

<< x ::= y; y ::= z, z !-> 3, x !-> 3, y !-> 4, z !-> 5 >>

Which happens in one step, using [comp1
sos].

Then we finish this subgoal with:

∗ apply SSCompII. apply SSAss. reflexivity.
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And further on, the proof is identical to the one described above, starting from the next
multistep and can be found at section B.2 The basics of SOS formalisation, needed for
students to understand the proofs.

Additionally, in the accompanying files on GitHub an example, that uses [whilesos] can be
found with a proof.

Definition triv_8_while: Stm :=

x ::= 2 ;
WHILE (~ (x=1))
DO x ::= ( AId x − 1)
.

Without the use of [comp1
sos]:

Example proof_8_while:

� triv_8_while , empty_State� ==>∗ � x !->1�.

And with it:

Example proof_8_while’:

� triv_8_while ; SKIP , empty_State� ==>∗ � x !->1�.

Proof.

unfold triv_8_while.

− eapply multistep.

+ apply SSCompI. (* <-- NEW*)

We will not give the full proofs here, as they can be a bit long, but they can be found on
our GitHub page. The notations used there are already discussed in previous chapters.
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Chapter 5

Properties

Now that we have formalised Structural Operational Semantics, it is time to discuss some
of its properties and prove them. For many of those proofs we use induction on the length
of the derivation sequence, as shown in subsection 3.2.4 Induction on the Length of the
Derivation Sequence. Those will give some more detail on how Structural Operational
Semantics can be applied.

Most of these properties are proven in natural language in “Semantics with Applications,
A Formal Introduction” by Nielson and Nielson [4]. Here, we will define them in natural
language and then in Coq, after which we will prove them only in Coq, explaining the
steps taken.

5.1 Determinism

First we will consider some properties of single steps rules. We start by proving that
Structural Operational Semantics is deterministic.

The book “Semantics with Applications, A Formal Introduction” [4] defines determinism
as follows:

If for all choices of S, s, γ, γ′:

〈S, s〉 ⇒ γ and 〈S, s〉 ⇒ γ′ implies γ = γ′

In Coq, with our generic naming for configurations, that looks a bit less pretty.

Theorem one_step_deterministic:

forall conf’ conf’’ conf ,
conf ==> conf’ ->

conf ==> conf’’ ->

conf’ = conf’’.

Proof.
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We make a case distinction on all the possible rules that can be applied. Not that c is
conf’, c1 - conf’’, c2 -conf and Hc1 and Hc2 the two transitions that wipp prove
tho be the same.

intros c c1 c2 Hc1 Hc2.

generalize dependent c1.

induction Hc1 ; intros c2 Hc2.

In this case Hc1 is a step transition of the type conf ⇒ conf’. However, first we need
to do a small trick - we generalise one of the variables that intros gives us, and put it in
the context only after we make the case distinction - for Coq this is just another induction.

The [skipsos] and [asssos] are quite trivial.

− (*SKIP*) inversion Hc2. reflexivity.

− (*ASS*) inversion Hc2. subst. reflexivity.

Next, [comp1
sos] and [comp2

sos] prove to be quite difficult. That is because we are doing
distinction in the rule applied in the first transition. But, in the case of ;, for the second
transition - the one to conf’’ - there are still two options - whether we use [comp1

sos] or
[comp2

sos] there.

− (*COMPI*)inversion Hc2 ; subst.

+ assert (�S1’ , st’� = �S1’0 , st’0� ).
{

rewrite <- ( IHHc1 �S1’0 , st’0� ).
reflexivity. assumption.

}
inversion H. subst. reflexivity.

+ assert (�S1’ , st’� = � st’0� ).
{

rewrite <- ( IHHc1 � st’0� ).
reflexivity. assumption.

}inversion H.

The proofs for both cases go quite similarly. We first case distinct on the second transition’s
; use. For either case, we assert that the configurations after executing just the first
statement are the same in both transitions, and then we use that to prove that indeed the
same composition rule was used.

− (*COMPII*)inversion Hc2 ; subst.

+ assert (�S1’ , st’0� = � st’� ).
{

rewrite <- ( IHHc1 � S1’ , st’0� ).
reflexivity. assumption.

} inversion H.
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+ assert (� st’0� = � st’� ).
{

rewrite <- ( IHHc1 � st’0� ).
reflexivity. assumption.

} inversion H. subst. reflexivity.

That done, the remaining cases are clear. The [ifttsos] and [ifffsos] are completely the same, as
using the IF_ ... THEN rule suggest the correct value of a BJbKs in the state it is used
in.

− (*IF TRUE*) inversion Hc2 ; subst.

+ reflexivity.

+ rewrite H5 in H. inversion H.

− (*IF FALSE*) inversion Hc2 ; subst.

+ rewrite H5 in H. inversion H.

+ reflexivity.

And finally, the [whilesos] rule, is as trivial, as the [asssos] one - as it can only do one thing.

− (*WHILE*) inversion Hc2 ; subst.

reflexivity.

With that we have proven that all the rules in our Structural Operational Semantics are
deterministic.

Qed.

We must note here, that if we add some extensions to it - some more rules - we will have
to revisit this proof.

5.2 Strong Progress

In subsection 3.2.2 Stuck and Progress we defined the notion of strong progress as per
“Software Foundations” [6] that each configuration is either final, or can make a step to
another configuration. Now we will prove that that is indeed the case for While.

To do that, we first need to define a predicate to check if an arbitrary configuration is
indeed final.

Definition is_final ( conf:Config ) :=

exists s , conf = Final s.

Now we will prove in Coq that While, as we defined it, indeed makes a strong progress.

Theorem strong_progress:

forall conf:Config ,
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is_final conf

\/
( exists conf’ , conf ==> conf’ ).

Proof.

The proof goes quite similar to the one for determinism that we just discussed. We will
first distinguish the cases of a Running and a Final configuration.

intro.

induction conf.

Running is the type that comes first on order to be proven, which is the non final option
- right in the distinction from our definition. That would leave us to prove:

exists conf’, <<S,s>> ==> conf’

− right. induction S.

Unlike the determinism proof, now the case distinction will not be on different ways to
make steps, but on the possibilities for a statement. That is, because in our context we
have no knowledge that a step is actually made, but only that there is some statement. It
is our goal to prove that steps are made.

[asssos] and [skipsos] are pretty trivial, as they will be for most of the proofs.

+ eexists. apply SSAss. reflexivity.

+ eexists. apply SSSkip.

For [comp1
sos] and [comp2

sos], we make a case distinction on the what can we get to in one
step by only trying to execute the first statement.

+ inversion IHS1. induction x.

∗ exists �S ; S2 , s0�. apply SSCompI. assumption.

∗ exists �S2 , s0�. apply SSCompII. assumption.

That case distinction is achieved by the induction on x.

[ifffsos] and [ifttsos] are the most tricky part of this proof, as we need to manually add to our
context that the boolean expression as a condition can either evaluate to true or false and
then distinguish on those two cases.

+ assert ( Beval s b = true \/ Beval s b = false ).
{ induction (B [ [ b ] ] s ).
− left. reflexivity.

− right. reflexivity.

}
destruct H.

∗ exists �S1 , s�. apply SSIftrue. assumption.
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∗ exists �S2 , s�. apply SSIffalse. assumption.

The [whilesos] is pretty easy after this.

+ exists �IF_ b THEN (S ; WHILE b DO S ) ELSE SKIP , s�. apply

SSWhile.

Finally, we are only left to consider the case that a configuration can be final. We first
focus on the left side of the disjunction and then the predicate is_final will finally come
into use.

− left. unfold is_final. exists s. reflexivity.

Qed.

And with that we have proven that we indeed defined While in such a way that it can
make a strong progress.

5.3 Composition in k1 + k2 steps

This lemma, along with its natural language proof is given as Lemma 2.19 in “Semantics
with Applications, A Formal Introduction” [4]

Lemma If 〈S1;S2, s〉 ⇒k s′′, then there exists a state s′ and natural numbers k1 and k2

such that 〈S1, s〉 ⇒k1 s′ and 〈S2, s
′〉 ⇒k2 s′′ and k = k1 + k2.

Lemma comp_complete:

forall k Ss1 Ss2 s s’’ ,
�Ss1 ; Ss2 , s� ==>[ k ] �s’’�
->

exists s’ k1 k2 ,
�Ss1 , s�==>[ k1 ] �s’� /\ �Ss2 , s’� ==>[ k2 ] �s’’� /\ k = (k1 + k2 ).

The proof of this lemma is by strong induction on the length of the derivation sequence.
The base case - k = 0 vacuously holds, as a composition is not a stuck state.

Proof.

(*induction on the length of the derivation seqence*)

induction k using strong_induction.

− (*0*)

intros.

inversion H.

For the induction step we assume the property holds for all k ≤ k0, and want to prove it
for k0 +1. We fist get to the same notation in the proof, with the rename and then enrich
our context a bit.
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− (*IS*)

rename k into k0.

intros.

inversion H0. subst.

inversion H2 ; subst.

Now, we have two options what the first of those k0 + 1 steps would be: an execution of
either [comp1

sos] or [comp2
sos]. We consider them in order of appearance.

5.3.1 [comp1
sos]

+(*compI*)

Here, the context of the Coq proof is:

1 subgoal

k0 : nat

H : forall k : nat,

k <= k0 ->

forall (Ss1 Ss2 : Stm) (s s’’ : State),

<< Ss1; Ss2, s >> ==>[ k] << s’’ >> ->

exists (s’ : State) (k1 k2 : nat),

<< Ss1, s >> ==>[ k1] << s’ >> /\

<< Ss2, s’ >> ==>[ k2] << s’’ >> /\ k = k1 + k2

Ss1, Ss2 : Stm

s, s’’ : State

H0 : << Ss1; Ss2, s >> ==>[ S k0] << s’’ >>

S1’ : Stm

st’ : State

H3 : << S1’; Ss2, st’ >> ==>[ k0] << s’’ >>

H2 : << Ss1; Ss2, s >> ==> << S1’; Ss2, st’ >>

H7 : << Ss1, s >> ==> << S1’, st’ >>

______________________________________(1/1)

where H is our induction hypothesis. It however is quite cumbersome and difficult to use.
We extract a small piece to put in the context by itself, by asserting that is true and
proving that assertion using H.

assert ( exists (s’ : State ) (k1 k2 : nat ) ,
� S1’ , st’ � ==>[ k1 ] � s’ � /\
� Ss2 , s’ � ==>[ k2 ] � s’’ � /\ k0 = k1 + k2 ).
{apply H.

∗ reflexivity. (*omega.*)

∗ assumption.

}
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Then we break this substantial piece of information we just asserted down to several smaller
hypotheses.

destruct H1. rename x into s0. destruct H1. rename x into k1.

destruct H1. rename x into k2. destruct H1. destruct H4.

Finally, it is time to break our goal into its three main parts and prove them one by one.

exists s0.

exists (S k1 ).
exists k2.

Note that, since we know we are using [comp1
sos], we know that if we assume

〈S1;S2, s〉 ⇒k0+1 s′′

then the derivation sequence can be written as

〈S1;S2, s〉 ⇒ 〈S ′1;S2, s
′〉 ⇒k0 s′′

because 〈S1, s〉 ⇒ 〈S ′1, s′〉 and we can therefore apply the induction hypothesis on

〈S ′1;S2, s
′〉 ⇒k0 s′′

So, if 〈S ′1, s〉 ⇒k1 s′′ and 〈S2, s0〉 ⇒k2 s′′ then 〈S1, s〉 ⇒k1+1 s′′ and thus 〈S1;S2, s〉 ⇒k0+1 s′′:

From here, proving the three subgoals is quite easy.

split.

−− apply ( multikstep sstep� Ss1 , s � � S1’ , st’ � ).
assumption. assumption.

−− split.

−−− assumption.

−−− omega.

5.3.2 [comp2
sos]

Here, the proof is easier, as we know that we can go from 〈S1;S2, s〉 to 〈S2, s
′〉 in just one

step. Using that, we break the goal in its three separate parts and solve them directly with
relative ease.

+(*compII*)

exists st’.

exists 1.
exists k0.

split.

∗ apply one_step. assumption.
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∗ split.

assumption.

reflexivity.

Thus, by induction, the lemma is proved.

Qed.

If this proof’s explanation is unclear, it is advised to look at the natural language expla-
nations in “Semantics with Applications, A Formal Introduction” [4].

5.4 Composition in k steps

We will next prove the lemma in the opposite direction:

Lemma If 〈S1, s〉 ⇒k1 s′ and 〈S2, s
′〉 ⇒k2 s′′, then there exists a natural number k such

that 〈S1;S2, s〉 ⇒k s′′ and k = k1 + k2.

In other words, if two statements can be executed in a respective amounts of steps, the
composition of those two statements will be executed in as many steps as the sum of the
steps for each of the statements.
We can define it as:

Lemma exec_comp:

forall k1 k2 S1 s S2 s’ s’’ ,
�S1 , s� ==>[ k1 ] � s’�
->

� S2 , s’� ==>[ k2 ] �s’’�
->

exists k ,
�S1 ; S2 , s� ==>[ k ] �s’’� /\ k = k1+k2.

To prove that, we will need to do strong induction on k1 as to that first statement we will
ad our extra transition, when we prove the induction step.

Thus, we want to add only k1 to the context and keep all other variables encapsulated in the
forall so that we can have a nice, generic, and easy to work with induction hypothesis.
That will make for a bit of an uncomfortable use of the lemma later on, as we will see on
in Chapter 6, but we need it in order to prove it and use it.

So we define the property we need as:

Definition prop_exec_comp (k1:nat ) :=

forall k2 S1 s S2 s’ s’’ ,
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�S1 , s� ==>[ k1 ] � s’�
->

� S2 , s’� ==>[ k2 ] �s’’�
->

exists k ,
�S1 ; S2 , s� ==>[ k ] �s’’� /\ k = k1+k2.

And the lemma using it:

Lemma exec_comp:

forall k1 ,
prop_exec_comp k1.

With that done, the proof is straightforward by strong induction on k1

Proof.

intros.

unfold prop_exec_comp.

induction k1 using strong_induction ; intros.

The base case holds vacuously, as it assumes that S1 is completely executed in zero steps.

− exists (k2 ).
split.

assert (� S1 , s � = � s’ � ).
{apply zero_steps. assumption. }
inversion H1.

omega.

When we make the induction step, there is one interesting note that needs to be made:

− remember (k1 + k2 ) as k0.

exists ( S k0 ).

We remember the sum of k1 and k2 as its own variable K0. And when we want to prove
the case for k0 + 1 - the induction step - we actually do it for k1 + k2 + 1. From then on
we simply have a case distinction between [comp1

sos] and [comp2
sos], quite similarly to the

previous proof.

The full proof can be found on our GitHub page.

5.5 Half a Composition

There is another way to consider the composition. This is Essential Exercise 2.21 in the
book “Semantics with Applications, A Formal Introduction” [4] and might seem quite
intuitive:
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Lemma If 〈S1, s〉 ⇒k s′ then 〈S1;S2, s〉 ⇒k 〈S2, s
′〉.

When we define this property, and, as before, we will try to poorve that it holds for all k.

Definition property_half_comp (k:nat ) :=

( forall S1 s s’ ,
�S1 , s� ==>[ k ] �s’�
->

forall S2 ,
�S1 ; S2 , s� ==>[ k ] �S2 , s’� ).

(*2.21*)

Theorem half_comp:

forall k ,
property_half_comp k.

We again unfold the property and do a straightforward proof by strong induction.

Proof.

intros.

unfold property_half_comp.

induction k using strong_induction.

There is nothing interesting in the proof to show here - it can be found in the accompanying
files.

Note, that instead of using this trick, which we do here for clarity, we can use the quantifier
with k in the first place - forall k S1 s s’ - and then, when we start the proof use
intro (which will only add k to the context and nothign else) instead of intros followed
by an unfold .

5.6 Equivalence between ∗ and k

In Chapter 4 we defined the notion of a star (∗) - making an unknown amount of steps
to get from one configuration to another - and k - going from one to another configuration
in exactly k steps. As they both use the same rules, they must be equivalent in the sense
that if two configurations are linked with a star relation, so are they with k relation - and
vice versa.

We define it as follows:

Lemma k_equiv_star:

forall conf conf’ ,
conf ==>∗ conf’

<->
exists k ,

52

https://github.com/lkruger27/NS_SOS_Formalization/blob/master/Formalisation_SOS/multi_k.v
https://github.com/lkruger27/NS_SOS_Formalization/blob/master/Formalisation_SOS/multi_k.v


5.6. EQUIVALENCE BETWEEN ∗ AND K

conf ==>[ k ] conf’.

And prove it easily by applying two properties - first that star implies k, and then that k
implies star, which we will prove directly after this lemma.

Proof.

intros. split.

− apply star_implies_k.

− intros.

inversion H.

apply k_implies_star with x. assumption.

Qed.

Those two statements are proven by induction on the respective relations. In both cases,
we use the reflexive constructor of the relation for the base case, and apply once the step-
constructor to get to finally apply the induction hypothesis.

Lemma star_implies_k:

forall conf conf’ ,
conf ==>∗ conf’

->

exists k ,
conf ==>[ k ] conf’.

Proof.

intros.

induction H.

− exists 0. apply zero_steps_rev. reflexivity.

− inversion IHmulti.

exists (S x0 ).
apply multikstep with y.

+ assumption.

+ assumption.

Qed.

Lemma k_implies_star:

forall conf conf’ k ,
conf ==>[ k ] conf’

->

conf ==>∗ conf’.

Proof.

intros.

induction H.

− apply multirefl.
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− apply multistep with y.

+ assumption.

+ assumption.

Qed.

Here we use a small lemma called zero_steps_rev , discussed in subsection 4.6.2 Iden-
tity Zero Steps, but now it nothing more than a shorthand that a configuration can go to
itself in exactly zero steps. The tactics apply zero_steps_rev. reflexivity.

in the first lemma can be replaced by apply multikrefl.
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Chapter 6

Equivalence with Natural Semantics

Structural Operational Semantics is very useful for building compilers, stack machines,
and handling many language functionalities. However, some applications, such as proving
semantic equivalence, relation to Axiomatic Semantics, proving soundness and complete-
ness, etc. are much easier done using Natural Semantics. Many works [6] [4] [8] [5] focus
on that and do those difficult proofs only in Natural Semantics. Small step relation to
Axiomatic Semantics is done in some works, for example in “Axiomatic Semantics for
Compiler Verification” by Schäfer, Schneider and Smolka [7], or “The Formal Semantics
of Programming Languages An Introduction” by Glynn Winskel [9]. However, they do
not treat some problems specific for our topic, such as describing the rule [comp1

sos] with
Axiomatic semantics and take very different approaches to defining Structural Operational
Semantics.

So, instead of dwelling in those complex proofs, we will follow the example of “Semantics
with Applications, A Formal Introduction” [4] and leave all that to Natural Semantics.
Here, we will prove that Structural Operational Semantics is equivalent to Natural Seman-
tics and thus that all the properties that hold for Natural Semantics hold for Structural
Operational Semantics as well.

6.1 Brief description of Natural Semantics

We mentioned before the thesis “A Formalization of Natural Semantics of Imperative Pro-
gramming Languages in Coq” by Loes Kruger [3], written in parallel with this thesis. It
discusses Natural Semantics in depth and proves many properties that Structural Opera-
tional Semantics, talked about in this thesis, inherits because of the equivalence. Here we
will cite parts of the formalisation in her work, that we will need to prove the equivalence
- more specifically the While rules. Note that it uses the same definition of While we
have discussed so far.
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6.1.1 Seval

The most important part of Loes Kruger’s work [3] we will need is her formalisation of
Natural Semantics:

(* semantics Stm and notation for transitions *)

Reserved Notation "conf ’-->’ st’"

(at level 40).

Inductive Seval : Config -> State -> Prop :=

| ass_ns : forall st a1 n x ,
Aeval st a1 = n ->

Seval ( Running (x ::= a1 ) st ) ( t_update st x n )
| skip_ns : forall st ,

Seval ( Running SKIP st ) st

| comp_ns : forall s1 s2 st st’ st’’ ,
Seval ( Running s1 st ) st’ ->

Seval ( Running s2 st’ ) st’’ ->

Seval ( Running (s1 ; s2 ) st ) st’’

| if_tt_ns : forall st st’ b s1 s2 ,
Beval st b = true ->

Seval ( Running s1 st ) st’ ->

Seval ( Running ( IF_ b THEN s1 ELSE s2 ) st ) st’

| if_ff_ns : forall st st’ b s1 s2 ,
Beval st b = false ->

Seval ( Running s2 st ) st’ ->

Seval ( Running ( IF_ b THEN s1 ELSE s2 ) st ) st’

| while_tt_ns : forall st st’ st’’ b s ,
Beval st b = true ->

Seval ( Running s st ) st’ ->

Seval ( Running ( WHILE b DO s ) st’ ) st’’ ->

Seval ( Running ( WHILE b DO s ) st ) st’’

| while_ff_ns : forall b st s ,
Beval st b = false ->

Seval ( Running ( WHILE b DO s ) st ) st.

Until now we have used our notation for a configuration in Coq quite a lot, which, together
with the notation for a Natural Semantics transition --> would make for an inductive
definition, that is a little bit easier to read, while equivalent to the above.

(* semantics Stm and notation for transitions *)

Reserved Notation "conf ’-->’ st’"

(at level 40).

Inductive Seval : Config -> State -> Prop :=
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| ass_ns : forall st a1 n x ,
Aeval st a1 = n ->

�x ::= a1 , st� --> (x !->n , st )
| skip_ns : forall st ,
�SKIP , st� --> st

| comp_ns : forall s1 s2 st st’ st’’ ,
�s1 , st� --> st’ ->

�s2 , st’� --> st’’ ->

� (s1 ; s2 ) , st� --> st’’

| if_tt_ns : forall st st’ b s1 s2 ,
Beval st b = true ->

� s1 , st� --> st’ ->

� IF_ b THEN s1 ELSE s2 , st� --> st’

| if_ff_ns : forall st st’ b s1 s2 ,
Beval st b = false ->

�s2 , st� --> st’ ->

�IF_ b THEN s1 ELSE s2 , st� --> st’

| while_tt_ns : forall st st’ st’’ b s ,
Beval st b = true ->

� s , st� --> st’ ->

�WHILE b DO s , st’� --> st’’ ->

�WHILE b DO s , st� --> st’’

| while_ff_ns : forall b st s ,
Beval st b = false ->

�WHILE b DO s , st� --> st

where "conf ’-->’ st’" := ( Seval conf st’ ).

Importing it to our project enables us to prove the equivalence.

6.2 Equivalence between Natural Semantics and Struc-

tural Operational Semantics

As defined in “Semantics with Applications, A Formal Introduction” [4], we will want to
prove that 〈S, s〉 → s′ if and only if 〈S, s〉 ⇒∗ s′. We define a theorem for it in Coq

Theorem ns_eq_sos:

forall S s s’ ,
�S , s�-->s’

<->
�S , s�==>∗s’.

And prove it, using two lemmas that we will discuss afterwards.
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Proof.

intros.

split.

apply ns_implies_sos.

apply sos_implies_ns.

Qed.

How we prove those lemmas ns_implies_sos and sos_implies_ns , however, is
a much longer matter. Note that a natural language proof can be found in “Semantics
with Applications, A Formal Introduction” [4]. In that book the two implementations are
in opposite order, but here we start with proving that Structural Operational Semantics
implies Natural Semantics, as that is closer to what we have been doing so far, and only
after that we get to Natural Semantics implies Structural Operational Semantics.

In both directions, we will first prove that this is indeed the case for a SOS transition in
k steps, and then use the equivalence between star and k relation - proven in section 5.6
Equivalence between ∗ and k - to prove the lemmas in the theorem above.

6.2.1 Structural Operational Semantics in k steps implies Natu-
ral Semantics

We will use the trick we already showed in some of the properties, and define a property
depending on the variable we will do induction on, and then use that in the lemma itself:

Definition sos_ns_k (k:nat ):=
forall S s s’ ,
�S , s�==>[ k ]�s’�
->

�S , s�-->s’.

Lemma sos_k_implies_ns:

forall k ,
sos_ns_k k.

Proof.

Then we will do induction on the length of the derivation sequence - that is only possible
since we use the k relation instead of the star one.

Proof.

intros.

unfold sos_ns_k.

induction k using strong_induction.
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The base case holds vacuously.

− intros. inversion H.

In the induction step, we add all of our assumptions to the context, and then make a case
distinction based on what rule we could apply first. We are doing strong induction - that
means that for any number of steps smaller or equal to k0, we know that the property
indeed holds. So, we want to prove that it will still be the case when we add a different
step in the start - putting the total of k0 + 1 - and after we make that new initial step,
there will be only k0 steps to make, for which we can just apply the induction hypothesis.

We will not give the entire proof here.

It is important to note that here we want to prove transitions of Natural Semantics. That
is the reason why the rule ordering, among other things, is a bit different - using the strong
iduction on k makes cases that match the possible While constructions.

[assns]

For the case of [assns], we first assert that executing the [asssos] indeed leads to a state
where the value of the arithmetical expression is assigned to the variable. Then we assert
that this state leads in zero steps to s′.

+ (*ass*)

assert (y = � (x !-> A [ [ a ] ] s , s )� ).
{

apply one_step_deterministic with � x ::= a , s �.

assumption. apply SSAss. reflexivity.

}
subst.

assert ( k0 = 0 /\ �s’� = � (x !-> A [ [ a ] ] s , s )� ).
{

apply state_k_zero. assumption.

}
inversion H1. inversion H5.

subst.

apply ass_ns. reflexivity.

In fact most of the cases have similar assertion based structure, and thus we will not repeat
it more than necessary .

[skipns]

This case is similar, with the difference of that the state does not change, and we assert
that it is indeed the case.
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[compns]

We first apply the property we proved in section 5.4 Composition in k steps, to split our k
composition into executing two separate statements. Then we apply the rule [compns] on
the goal, which gives us two subgoals, as per the definition of this NS rule.

+ (*comp*)

apply comp_complete in H0.

destruct H0. destruct H0. destruct H0. destruct H0.

apply comp_ns with x.

For each of them, we do induction on the length of the derivation sequence for executing
S1 and S2 respectively. Then for each of those two induction steps, we do induction on the
opposite statement.

Here you can see the application of the nested inductions, in one of the cases:

∗ induction x1.

−− assert ( � S2 , x � = � s’ � ).
apply zero_steps. destruct H1. assumption.

inversion H4.

−− apply H with x0.

...[
ifttns

]
and

[
ifffns

]
This case has the structure IF_ b THEN s1 ELSE S2. We first assert that the statement
transits in one step in either S1 or S2 to be executed in the same state.

+ (*if*)

assert (y = �S1 , s� \/y = �S2 , s� ).
{

inversion H2 ; subst. left. reflexivity.

right. reflexivity.

}

Now, we split those two cases. Those are the cases, where Structural Operational Semantics
leads to S1 or S2. Now, we want to prove that those cases can indeed happen in Natural
Semantics- by case switching on what b can evaluate in the starting state.

∗ (* where y = �S1, s� *)

inversion H2 ; subst.

−− (*b evalates to true*)

apply if_tt_ns.

assumption.

apply H with k0. reflexivity. assumption.
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−−(*b evalates to false*)

apply if_ff_ns.

assumption.

apply H with k0. reflexivity. assumption.

The case of y = � S2 ,s� is identical.[
whilett

ns

]
and

[
whileff

ns

]
Finally, in the case of WHILE , we need to get a few more steps before we can prove the
implication. First, we assert that the [whilesos] rule does indeed what we expect it to do,
and add that to the context.

+ (*while*)

assert (y = �IF_ b THEN (S ; WHILE b DO S ) ELSE SKIP , s� ).
{

inversion H2 ; subst. reflexivity.

}

Now we treat the proof similarly like the above case, apply the IF_ b THEN s1 ELSE S2

structure, only now we know exactly what S1 and S2 are. Here y is the next intermediate
configuration.

...

assert (y = �S ; WHILE b DO S , s� \/ y = �SKIP , s� ).
{

inversion H1. left. reflexivity.

right. reflexivity.

}

As we now know exactly what statements there are, we do not need the second case distinc-
tion. Instead, in the first case, we apply the lemma we proved in section 5.3 Composition
in k1 + k2 steps.

∗ (* y = �S; WHILE b DO S, s�, hence b evaluates to true*)

apply comp_complete in H4.

Then we separate that assumption, as there are a few cluttered properties there. Finally

we can apply
[
whilettns

]
and take care of all the goals generated by that.

eapply while_tt_ns with x.

−− inversion H1 ; subst. assumption.

−− apply H with x0. omega. assumption.

−− apply H with x1. omega. assumption.
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Note that here, H is the induction hypothesis generated for this case from our strong
induction all the way in the beginning:

H : forall k0 : nat,

k0 <= S k ->

forall (S : Stm) (s s’ : State),

<< S, s >> ==>[ k0] << s’ >> -> << S, s >> --> s’

Lastly, after some transformations of the context, in the SKIP case, we can apply
[
whileffns

]
.

apply while_ff_ns. assumption.

.

With that, we have proven that Structural Operational Semantics in k steps implies Natural
Semantics.

Qed.

6.2.2 Structural Operational Semantics implies Natural Seman-
tics

Now, that we have proven that Structural Operational Semantics implies Natural Semantics
when executed in k steps, we can use the equality between the k and the star relation, that
we proved in section 5.6 Equivalence between ∗ and k and prove that it is the case when
for a star sequence as well.

Lemma sos_implies_ns:

forall S s s’ ,
�S , s�==>∗�s’�
->

�S , s�-->s’.

We prove it by adding everything to the context, turn the star into k relation using the
equality, generalise it back, and apply the lemma we just proved in the previous section.

Proof.

intros.

apply star_implies_k in H.

inversion H.

rename x into k. clear H.

(*careful to have the genralizations in the same order.

Otherwise , the premises will not match.*)

generalize dependent s’.

generalize dependent s.

generalize dependent S.
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generalize dependent k.

apply sos_k_implies_ns.

Qed.

6.2.3 Natural Semantics implies Structural Operational Seman-
tics in k steps

Just like we approached the previous problem from the k steps side, we will first prove
that Natural Semantics implies Structural Operational Semantics when a configuration is
reached from another in exactly k steps. We define it as:

Lemma ns_k_implies_sos:

forall S s s’ ,
�S , s�-->s’

->

exists k ,
�S , s�==>[ k ] s’.

We will now need to do induction on the shape of the derivation tree. That is, our case
distinction is going to be on the possible rules that can be applied from Natural Semantics.

Proof.

intros.

induction H.

[assns] and [skipns] are trivial - we apply the appropriate rules to the Structural Operational
Semantics transition, and then, as they were just one specific step, we evaluate that the
resulting states are the same. We include their proofs here, as an example of using the
multi_k constructors.

− (* ass *) exists 1. eapply multikstep. apply SSAss.

apply H. eapply multikrefl.

− (* skip *)exists 1. eapply multikstep. apply SSSkip. eapply

multikrefl.

For [compns], we will have to apply the rule that we proved in section 5.4 Composition in
k steps. Because of the generalisation trick we used there, we need to rewrite it here, and
only afterwards use it.

We already have x in our context, being the number of steps to get from 〈S1, s〉 to the
final state configuration s′.

assert (
forall k2 S1 s S2 s’ s’’ ,

�S1 , s� ==>[ x ] � s’�
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->

� S2 , s’� ==>[ k2 ] �s’’�
->

exists k ,
�S1 ; S2 , s� ==>[ k ] �s’’� /\ k = x+k2 ).

{ apply exec_comp.

}

With everything that this assertion adds to the context when broken down, it is now only
a matter of applying assumptions to finish this case.

The proofs for
[
ifttns

]
and

[
ifffns

]
are identical, with applying the multikstep constructor

and respectively either the [ifttsos] or the [ifffsos] rules. Here is just one of the cases.

− (*if_tt*) destruct IHSeval. clear S.

exists (S x ). apply multikstep with � s1 , st �.

∗ apply SSIftrue. assumption.

∗ assumption.

Finally, we consider
[
whilettns

]
and

[
whileffns

]
. In both those cases, we need two small steps,

to get from the WHILE... DO s0 statement (where s0 is a statement , to either
actually start executing the statement s0, or to got to the end of it - a SKIP statement.

In the
[
whilettns

]
case, we represent that with calling the successor of the number of steps

needed to finalise it twice:

− (*while_tt*)

destruct IHSeval2. destruct IHSeval1. clear S.

exists (S (S (x0+x ) ) ) .

We then apply [whilesos], followed by [ifttsos].

apply multikstep with

�IF_ b THEN (s0 ; WHILE b DO s0 ) ELSE SKIP , st�.

∗ apply SSWhile.

∗ apply multikstep with

� s0 ; WHILE b DO s0 , st�.

−− apply SSIftrue. assumption.

Finally, we fall back into proving the composition case all over again, and we will not show

that again. At the very end of this proof, we get to the
[
whileffns

]
rule, which is just three

steps away from terminating - applying [whilesos], [ifffsos] and [skipsos] in that order, just like
we would do in a non-generic case:
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− (*while_ff*)

exists 3.
apply multikstep with

�IF_ b THEN (s0 ; WHILE b DO s0 ) ELSE SKIP , st�.

+ apply SSWhile.

+ apply multikstep with �SKIP , st�.

∗ apply SSIffalse. assumption.

∗ apply multikstep with �st�.

apply SSSkip. apply zero_steps_rev. reflexivity.

With that, our proof - that Natural Semantics implies Structural Operational Semantics
with k steps - is complete.

Qed.

6.2.4 Natural Semantics implies Structural Operational Seman-
tics

Now, we can use the above proved lemma, to show that if we can go from one configuration
to a state in Natural Semantics then that is the case with the Structural Operational
Semantics star relation as well.

Lemma ns_implies_sos:

forall S s s’ ,
�S , s�-->s’

->

�S , s�==>∗s’.

We use the Natural Semantics transition that is already in our context to add there the
Structural Operational Semantics with k steps, for some k.

Proof.

intros.

assert ( exists k ,
�S , s�==>[ k ] s’ ).
{

apply ns_k_implies_sos. assumption.

}

Now the context and our goal are as follows:

1 subgoal

S : Stm

s, s’ : State

H : << S, s >> --> s’
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H0 : exists k : nat, << S, s >> ==>[ k] << s’ >>

______________________________________(1/1)

<< S, s >> ==>* << s’ >>

We then only need to get a specific k - call it x in this case, and use it to prove the lemma.

destruct H0.

apply k_implies_star with x.

assumption.

Qed.

6.2.5 Again: Equivalence between Structural Operational Se-
mantics and Natural Semantics

With that we have all the parts we used in our theorem that Natural Semantics and
Structural Operational Semantics are equivalent.

Theorem ns_eq_sos:

forall S s s’ ,
�S , s�-->s’

<->
�S , s�==>∗s’.

Proof.

intros.

split.

apply ns_implies_sos.

apply sos_implies_ns.

Qed.

The proof is now complete. The full proof can be found in accompanying files.
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Chapter 7

Extensions

7.1 Making small steps in evaluating expressions

The evaluation functions in section 4.1 Expressions are enough for the goal of this thesis,
that focuses on small step statement execution. However, there the definition of boolean
and arithmetical expression have one way of execution - completely. It is possible, instead,
to make small steps with arithmetical and boolean evaluations too.

We mentioned in the previous chapter, that Structural Operational Semantics in While
is deterministic. Thus, we know that a configuration can lead to at most one state. So,
won’t small steps for evaluating the expressions change that?

No. Whether we execute the entire statement, or just a part of it in Structural Operational
Semantics depends not only on the operator, but also on the form of the arguments. In a
way, we can consider the small step of the execution as an elaborate way to stress on the
associativity.

7.1.1 Making steps with Aexp

To do small step evaluation, instead of a Fixpoint , we will use an Inductive evaluation
function, simiarly to how we defined the small step statements.

Before that, we will want to be able to convert all the numbers we will work with (e.g. the
ones in1+1+1), into an Aexp, which can be added, subtracted and multiplied, before, in
the end, the result is given back as a number.
We are denoting this operation with==>a.

Reserved Notation "’A[[’ a ’]]’ st ’==>a’ a’ "

(at level 40 , st at level 39).
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Inductive astep : state -> Aexp -> Aexp -> Prop :=

| AS_Num: forall st n ,
A [ [ n ] ] st ==>a n

| AS_Id : forall st i ,
A [ [ AId i ] ] st ==>a ANum (st i )

| AS_Plus1 : forall st a1 a1’ a2 ,
(A [ [ a1 ] ] st ==>a a1’ ) ->

(A [ [ APlus a1 a2 ] ] st ==>a ( APlus a1’ a2 ) )
| AS_Plus2 : forall st v1 a2 a2’ ,

aval v1 ->

A [ [ a2 ] ] st ==>a a2’ ->

A [ [ APlus v1 a2 ] ] st ==>a ( APlus v1 a2’ )
| AS_Plus : forall st n1 n2 ,

A [ [ APlus ( ANum n1 ) ( ANum n2 ) ] ] st ==>a ANum (n1 + n2 )
| AS_Minus1 : forall st a1 a1’ a2 ,

A [ [ a1 ] ] st ==>a a1’ ->

A [ [ ( AMinus a1 a2 ) ] ] st ==>a ( AMinus a1’ a2 )
| AS_Minus2 : forall st v1 a2 a2’ ,

aval v1 ->

A [ [ a2 ] ] st ==>a a2’ ->

A [ [ ( AMinus v1 a2 ) ] ] st ==>a ( AMinus v1 a2’ )
| AS_Minus : forall st n1 n2 ,

A [ [ AMinus ( ANum n1 ) ( ANum n2 ) ] ] st ==>a ( ANum ( minus n1 n2 ) )
| AS_Mult1 : forall st a1 a1’ a2 ,

A [ [ a1 ] ] st ==>a a1’ ->

A [ [ AMult a1 a2 ] ] st ==>a ( AMult a1’ a2 )
| AS_Mult2 : forall st v1 a2 a2’ ,

aval v1 ->

A [ [ a2 ] ] st ==>a a2’ ->

A [ [ AMult v1 a2 ] ] st ==>a ( AMult v1 a2’ )
| AS_Mult : forall st n1 n2 ,

A [ [ AMult ( ANum n1 ) ( ANum n2 ) ] ] st ==>a ( ANum ( mult n1 n2 ) )

where "’A[[’ a ’]]’ st ’==>a’ a’ " := ( astep st a a’ ).

This constructor evaluates just one step of the equation. We will use the multi relation
we defined in section 4.5 Making Many Steps to evaluate a small-step expression:

Notation "’A*[[’ a ’]]’ st ’==>a’ a’ " := (multi astep st a a’) (

at level 40).

It is difficult to miss that there are three versions for Plus, Minus and Mult each in this
implementation. The astep is a recursive call that only does operation on expressions if
they are fully reduced. So, expressions like 11 + (x− (4 + 1)) will be converted to:
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AS_Num(AS_Plus2 (11 (AS_Minus2 (AS_ID X) (AS_Plus 4 1))))

and solved form the inside constructor out. Here, associativity could matter, depending
on the order in which we write the constructors.

Note, that in “Semantics with Applications, A Formal Introduction” [4], this notation is
defined for the relation definition of arithmetical expressions. However, the two definitions
are later proven to be equivalent. As we will not dwell deeper into the difference between
those definitions, it suffices to say, that the operation denoted A[[_]] ==>a _ is going
to evaluate one step of an arithmetical expression, similarly the notation _ ==> _ which
executes a statement. In turn A*[[_]] ==>a _ could evaluate the entire expression,
regardless of how many steps it takes, similarly to==>* for executing statements, making
many steps.

7.1.2 Making steps with Bexp

Just like in Aexp, we can do small step evaluation of Bexp. To do that, we will need
an inductive definition. Here, we do not need to evaluate boolean values, as in our simple
language, we can just take the appropriate constructor - BTrue or BFalse .
We are denoting this operation with==>b.

Inductive bstep : state -> Bexp -> Bexp -> Prop :=

| BS_Eq1 : forall st a1 a1’ a2 ,
A [ [ a1 ] ] st ==>a a1’ ->

B [ [ BEq a1 a2 ] ] st ==>b ( BEq a1’ a2 )
| BS_Eq2 : forall st v1 a2 a2’ ,

aval v1 ->

A [ [ a2 ] ] st ==>a a2’ ->

B [ [ BEq v1 a2 ] ] st ==>b ( BEq v1 a2’ )
| BS_Eq : forall st n1 n2 ,

B [ [ BEq ( ANum n1 ) ( ANum n2 ) ] ] st ==>b
(if (n1 =? n2 ) then BTrue else BFalse )

| BS_LtEq1 : forall st a1 a1’ a2 ,
A [ [ a1 ] ] st ==>a a1’ ->

B [ [ BLe a1 a2 ] ] st ==>b ( BLe a1’ a2 )
| BS_LtEq2 : forall st v1 a2 a2’ ,

aval v1 ->

A [ [ a2 ] ] st ==>a a2’ ->

B [ [ BLe v1 a2 ] ] st ==>b ( BLe v1 a2’ )
| BS_LtEq : forall st n1 n2 ,

B [ [ BLe ( ANum n1 ) ( ANum n2 ) ] ] st ==>b
(if (n1 <=? n2 ) then BTrue else BFalse )

| BS_NotStep : forall st b1 b1’ ,
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B [ [ b1 ] ] st ==>b b1’ ->

B [ [ BNot b1 ] ] st ==>b ( BNot b1’ )
| BS_NotTrue : forall st ,

B [ [ BNot BTrue ] ] st ==>b BFalse

| BS_NotFalse : forall st ,
B [ [ BNot BFalse ] ] st ==>b BTrue

| BS_AndTrueStep : forall st b2 b2’ ,
B [ [ b2 ] ] st ==>b b2’ ->

B [ [ BAnd BTrue b2 ] ] st ==>b ( BAnd BTrue b2’ )
| BS_AndStep : forall st b1 b1’ b2 ,

B [ [ b1 ] ] st ==>b b1’ ->

B [ [ BAnd b1 b2 ] ] st ==>b ( BAnd b1’ b2 )
| BS_AndTrueTrue : forall st ,

B [ [ BAnd BTrue BTrue ] ] st ==>b BTrue

| BS_AndTrueFalse : forall st ,
B [ [ BAnd BTrue BFalse ] ] st ==>b BFalse

| BS_AndFalse : forall st b2 ,
B [ [ BAnd BFalse b2 ] ] st ==>b BFalse

where "’B[[’ t ’]]’ st ’==>b’ t’ " := ( bstep st t t’ ).

Similarly to astep , this function only makes one small step. And to evaluate the entire
sequence of small steps, we use the multi relation.

Notation "’B*[[’ b ’]]’ st ’==>b’ b’ " := (multi bstep st b b’) (

at level 40).

7.1.3 Conclusion - small step expressions

We have shown that it is possible to indeed define a step in evaluation the arithmetical
expression in many steps, using Inductive . Now we can return to freely using the
Fixpoint which evaluates the entire expression in one goal. That way of evaluating -
without making the steps separately - is overall simpler and allows us to focus more on the
Structural Operational Semantics of statements.
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Chapter 8

Experiment

This formalisation of Structural Operational Semantics, as well as the one of Natural
Semantics written in parallel by Loes Kruger [3], is primary meant to serve as a studying
aid in the course Semantics and Correctness. Therefore, we need to test whether it is
indeed helpful. The main challenge in that is that the course does not, at the time of
writing this, feature a part in Coq. So, the experiment that needs to be made, has to
include an explanation that it introduces enough Coq knowledge to make the formalisation
understandable, but not too much, to completely defeat the purpose of aiding the studying
process by giving too much of information and confusing students.

8.1 Research Question

The research question of this experiment is: Does the formalisation of Natural Se-
mantics and Structural Operational Semantics in Coq help Semantics and Cor-
rectness students to make proofs on paper?

8.2 Experiment

We make a comparative study on whether being introduced to the formalisation of Natural
Semantics and Structural Operational Semantics. In other words, we want to test whether
introducing the formalisation next to the regular study is better than just the regular study
materials. Note that we at no point make the claim that this formalisation can replace
work with the regularmaterial.

8.2.1 Participants

While this formalisation covers all the basic terms in While, Structural Operational Se-
mantics and (in Loes Kruger’s work [3]) Natural Semantics, it is not aimed specifically
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towards people with no background in the topics and it matches the course Semantics and
Correctness in Radboud University, so we are sure that this course provides the background
needed. Thus, we need participants that are following, or have followed the course Seman-
tics and Correctness. Additionally, if the participants already completely understand all
concepts to a passable level, do not find them difficult, and do not need to study them
anymore, then this formalisation hardly has something to add for them. Therefore, we
need participants, who are currently students in the course Semantics and Correctness,
and have not concluded it successfully yet. From that very limited pool, sampling is easy
- we would invite all students currently in that situation to participants, as they are not
that many, and the ones who agree are the participants in this experiment.

8.2.2 Variables

For our analysis, we use just one independent binary variable - ”the participants have had
no contact with the formalisation” versus ”the formalisation has been introduced to them
and some exercises were done with it”. The dependent variable, that we will measure
is how difficult do the students find the relevant topics of Semantics and Correctness -
Natural Semantics and Structural Operational Semantics - on a scale from one to ten.

8.2.3 Research Hypothesis

We hypothesise that there will be a decrease, relative per participant, in the perceived
difficulty of the two Semantics and Correctness topics after introduction and practising
with the formalisation in comparison to beforehand. In other words, the hypothesis is that
the participants will find the two Semantics and Correctness topics easier after using the
formalisation than before.

8.3 Setup

The experiment is set up to be of within subject design. We can afford to do that, as we
are comparing whether spending time on the formalisation is better than not doing so, and
not whether spending time on the formalisation is better than spending the same amount
of time on studying the book, slides or homework. That might also be an interesting point
to examine, but we will not discuss it here.

8.3.1 Baseline - Before

The participants are first asked to fill in a questionnaire, found at section A.1 Before the
Meeting, to establish how they perceive the difficulty of Natural Semantics and Structural
Operational Semantics. Later on, their updated opinions will be compared to this baseline.
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8.3.2 Task

A meeting, with the length of a study block - an hour and forty five minutes is conducted
with the participants. During it, in a panel lecture context, the formalisation is presented
to the participants and all their questions regarding it are answered. For more consistent
results and replicability, that meeting could be replaced by a written text. However,
since the volume of information is very big, and we do not want this experiment to take
the participants an unreasonable amount of time, we consider a meeting to be the better
option, as a text would take longer to read. Regardless of whether it is text or a lecture, the
topic would be the same - an explanation of the basic formalisation and some proofs made
with it - theones for SOS can be found in Appendix B Experiment Structural Operational
Semantics- Coq files for Structural Operational Semantics, and the explanations - in the
appropriate chapters above.

Both for Natural Semantics and Structural Operational Semantics the files with formali-
sation to explain, contain one proof that will not be discussed. Participants are asked to
try and prove the lemma this proof is for, in natural language, using the Coq proof alone.
They are allowed to spend as much time as they would like, but are asked to deliver the
proofs within a few days from the meeting. That is the actual task, where they can test
for themselves the formalisation, see how it works and decide whether using it helps them
to understand the topics, hence they would perceive them as less difficult.

8.3.3 Measuring the Depending Variables - After

After the new proofs are submitted, the participants are asked to fill in a second ques-
tionnaire (found at section A.2 After the Meeting) with their updated perception of the
difficulty of the two topics. A comparison can then be made, per participant and in gen-
eral, to see if there is a significant positive change in their opinion. We are making a one
directional statistical test, as we are only looking for positive change, and do not check for
or expect a negative change, as there is no reason for one to occur.

Additionally, in the case of few participants, the learning progress can be seen from the
quality of the proofs they made.

Finally, a final meeting is conducted, to take the participants’ opinion on the formalisation
and receive advice, if some is given, on how to make it more suitable to fulfil its goal.

8.3.4 Avoiding Confounding Variables and Possible Modification

Now we will mention some variables that might be confounding and explain how we avoid
them or how they can be avoided in the future. Additionally, we will mention some things
we could have done differently and why we didn’t.
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Different study ways per participant

Naturally, the participants would have different levels and capacity of understanding the
material. However, since we are comparing for each of the Semantics and Correctness
students to their own baseline, we are only looking whether their own perception of diffi-
culty improved. Additionally, for some participants the improvement might be bigger than
for others. Hence, both a mean of improvement and separate per person would both be
interesting observations.

Varying amount of time invested

This variable’s effect is limited by the short time given the students to submit their proof
- there is a maximum total time participants can spend on it. Additionally, if a student
needs more time to understand the formalisation, that will affect their response of perceived
difficulty (if you to spend a lot of time trying to understand something, you would not mark
it as easy).

Any time spent on the topics would result in the topic being easier

This variable is also limited by the short time to make the proof, but not as much.

A way to avoid both this and the previous point is to make a between-subject designed ex-
periment, where a control group spends a set amount of time studying the already provided
material, and a test group spends the same amount of time studying the formalisation.
However, in the current situation, that is not ideal, as time to get used to Coq and un-
derstanding how the formalisation is used needs to be factored in - in this case we use a
meeting or a text, but that is inapplicable on the control group. In the future, that design
could be tested with more carefully selected participants, who are familiar with both Coq
and the material of Semantics and Correctness. In section section 8.4 Execution we will
show another reason why such a design is not well applicable in this experiment.

Finally, our participants, outside of the experiment, have an incentive to spend time on the
course - it is a mandatory one for some programs. Thus they are assumed to have spent a
lot of time on studying the conventional materials, and if they already have an opinion on
how difficult they find the topics and spending a few more hours on them might improve
their understanding of the material, but not the perceived difficulty.

Using grades as measuring the effect, instead of perceived difficulty

If we were to use testing and grades on the proofs to measure our depending variable,
we would have the three confounding variables mentioned above with much bigger effects,
as the experiment would test how well do students study instead of how easy it is for
them. Additionally, we would need to account for students’ performance under pressure,
decisiveness and ability to do well on tests and most of all their learning capacity. Our
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result would be much more dependent on the effort the participants put in the experiment,
than on the learning aid capabilities of the formalisation.

8.4 Execution

During execution the experiment, we follow the above design closely. Here the specific
conditions of the execution are described.

The biggest challenge in executing this experiment is its timing. This thesis is written in
the third and fourth quarter of the study year. However, in this year, the course Semantics
and Correctness is run during the first quarter. Therefore, the only students, that fulfil the
requirements we discussed above for participants, are ones, who have started the course,
but for some reason did not pass the final exam. Out of this very limited set of possible
participants, only five students agreed to participate in an experiment that is related for a
course that is not currently running.

Another challenge is the two questionnaires participants needed to fill in. We could not
give them an anonymous identification to add at each questionnaire, and hence the two
got disjointed, which rendered individual comparisons impossible. If the experiment is
replicated this is a notable point for improvement.

8.4.1 Pros

The small sample size makes for a nice personal relation with the participants, and provides
ample time for questions. Because of this, it is possible to read trough all the proofs made
and comment on that, as well as receive much needed feedback. As this is the first version
of this formalisation, feedback on improving the study aid is very much appreciated.

Additionally, most of these participants have spent a lot of time trying to understand the
material. Therefore, the few hours they can spend on the formalisation are just a small
percentage of what they had spent and the confounding variable any time spent on the
topics is an improvement is severely limited.

8.4.2 Cons

This small set of participants is not a representative sample. It makes the different
ways and speeds of studying confounding variable have a very big effect. In fact, our
results will now not be whether the formalisation is a good studying aid for Semantics and
Correctness students, but whether the formalisation is a good studying aid for students,
who need to redo Semantics and Correctness. Additionally, so few samples are not enough
to make a viable statistical test and hence we are going to only look at the values we gain
instead. Therefore it is highly recommended that the experiment, with the same design,
is repeated while the course Semantics and Correctness is running.
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8.5 Results

Over all, the experiment did not provide positive results. Throughout, the sample size
dropped from five to four people, who did the proofs to only three,w ho filled in the
second questionnaire. When measuring the baseline, before any tasks were completed, the
participants were quite optimistic. They predicted that using the Coq formalisation would
be helpful to them and were in fact excited to try.

Unfortunately, executing the tasks took the participants a lot of time and effort and, while
there were some ideas how the formalisation could be useful, the overall opinion was that
using the formalisation as is was quite confusing for them.

However, with this sample size and bias, and the fact that not all the participants had the
same experience, the results of this experiment were by no means conclusive. Additionally,
with forty percent (two) of the participants not giving all the quantitative data we needed,
a statistical analysis was rendered useless. Below, we will list those results in more detail,
as well as the feedback given by the participants.

A vital future step would be to incorporate that feedback and repeat the experiment with
a larger sample size. That second experiment’s result might be completely different from
the current one.

8.5.1 Baseline

We use a questionnaire to get quantitative data before the Coq tutorial - the meeting
described in the above section - which we will later compare to the later results from
another questionnaire.

The first question in the questionnaire checked whether the choice for the topics induction
on the shape/length of the derivation tree/sequence was appropriate.

Figure 8.1: Before Questionnaire, Question 1
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As can be seen in Figure 8.1, induction proofs were chosen by three out of five students
and another participant chose “All” which includes induction. This indicates that these
topics were indeed considered difficult and the choice to show them in the tutorial was
appropriate.

The following questions dived deeper into the induction. According to participants, in-
duction on the shape of the derivation tree has an average difficulty of 6.8/10. This is
the case because they find it difficult to understand the concept, apply the induction step
correctly and use the complex terms included in the proof. Induction on the length of
the derivation sequence has an average difficulty of 6.2/10. Some people find this more
difficult because there is no visual representation, while others find it easier because it uses
sequences instead of trees.

With that established, we asked the participants how much they like building proofs in
Coq. This question was present to establish participants’ previous opinion of Coq. The
previous experiences might influence their reception of the Coq formalisation. The average
score for this question was 5.4/10 - sightly above average.

Moreover, we asked the participants if they think a Coq formalisation would help them
understand the proofs better.

Figure 8.2: Before Questionnaire, Question 8

As can be seen in Figure 8.2, the participants think a formalisation in Coq might help
them. Reasons for that could be that it easier to correct mistakes in Coq and the fact
that Coq can give real-time feedback on whether the step taken is possible. According to
participants it is easier when you can directly see the results of your actions. However, there
might also be downsides because it is necessary to learn to work with the formalisation
while learning how the actual proofs work. Because you are learning multiple things at
once, using the formalisation might get confusing.
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8.5.2 Task Execution

As we mentioned above, the task execution took much more time than expected. In the
planning of the experiment, we expected not more than two days for that. However, because
the experiment was run during exam period, most of the students only had the time to
work on them two weeks later. The proof they were asked to do, indeed did not take more
than two days once they were started. Therefore, for future running of the experiment, a
motivation to complete the task at a time closer to the Coq tutorial is recommended. In
this case, as the proof were started later on, it is possible that that affected their perceived
difficulty, as some information form the Coq tutorial might have been forgotten.

Another problem that participants encountered was that in order to make the natural
language proofs, they needed to pull even older knowledge about how to do those proofs
from Semantics and Correctness lectures from more than half a year ago. Again, that
would be easier for students if it was parallel with the course.

8.5.3 Questionnaire After the Tasks

After completing the task, participants were asked to fill in a second questionnaire, to
compare with their initial expectations. Only three participant did that, and hence those
results are hardly reliable.

They were asked first how helpful they found the tutorial on a scale form one to ten. The
average score for this question was 3.67/10. This score is very low, partially because of the
confounding factors discussed before. Moreover, in subsection 8.5.4 Student Feedback we
will mention all the improvements that the participants suggested that, if implemented,
would be able to raise this result.

It is interesting to note that the individual scores were 1, 2 and 7, which indicates that for
one student, it was noticeably helpful.

Then, the participants were asked of they were able to finish the proofs and which materials
they used to make their proof.

While the participants were initially enthusiastic that they could complete them for two
days, two weeks later the results in this question were not very positive, as can be seen
in Figure 8.5. None of the participants completely finished the proofs. It was commonly
mentioned that they did not have the time and were busy with other work. It is note-
worthy, that all of the participants were indeed students with exams near the time of the
experiment. One participant finished the Natural Semantics proof but not the Structural
Operational Semantics one. The reason for that is probably that in the course Semantics
and Correctness, the order of teaching is first Natural Semantics and then Structural Op-
erational Semantics, and hence the participant started in the same order and did not have
the time to write both proofs.
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Figure 8.3: Proof finish rate

Most participants focused on using the Coq formalisation but also needed to consult the
slides, as shown on Figure 8.4. That could partially be attributed to the necessity of
improvements, as well as the fact that the participants needed to extensively consult the
slides in order to remember how a natural language proof should look like. If the experiment
is repeated during Semantics and Correctness, we expect highly different result.

One participant managed to base their whole work on the Coq formalisation, which makes
us hopeful that it is indeed possible to do so.

Figure 8.4: Usage of Coq during proofs creation

Afterwards, they were asked to rate how difficult induction on the shape of the derivation
tree and induction on the length of the derivation sequence were respectively on a scale
form one to ten. This was done to compare the new result to the initial one, from before the
tutorial. However, as the first questionnaire was filled by five participants and the second
one - by three, we cannot make conclusions about changes on average. Small changes do
occur, but the two values are in the range of error due to the sample size. Unfortunately,
we did not foresee participant dropping out an did not make identifier per participant, to
make individual compassion possible.
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Finally, the participants were asked if they would like to see some Coq proofs in the course
Semantics and Correctness.

Figure 8.5: After Questionnaire, Question 9

All participants answered ’Maybe’. When asked to elaborate, they recommended a number
of improvements, discussed in subsection 8.5.4 Student Feedback. However, worry was
expressed that adding it to Semantics and Correctness increase the workload of the already
heavy subject.

8.5.4 Student Feedback

Finally, qualitative data was gathered using a free form meeting,where each participant had
the opportunity to share their own experience and give feedback. Here, we will describe
their points.

Visualisation The participants mentioned that it was difficult to understand the proving
part in Coq. In the previous course Logic and Applications, there was a visual
representation of the tree that was made. All participants agreed that having a visual
representation along side the proof would be helpful. In Logic and Applications the
interface was also easier to use. The rules had names similar to the names used in
the course. If we could make a simple interface like that, it might also make the
formalisation more understandable. This point is more valid for Natural Semantics
than for Structural Operational Semantics.

Many learning topics It was mentioned that the course Semantics and Correctness
was quite a while ago and it took some time to understand how the induction proofs
work again. Because of this, it also felt like the participants needed to learn multiple
things at once: the Coq formalisation, the used notation, induction proofs in Coq
and induction on the shape/length of the derivation tree/sequence.
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Meaning of Coq rules There needs to be a better introduction and more explanation
to be used in the course or in a bigger experiment. It was difficult to understand
how certain rules work, especially the inversion and generalize dependent

rules were considered difficult. This could be accomplished by writing an elaborate
manual on how to use all the rules. Another suggestion was to start with small proofs,
show a normal proof by induction and slowly work up towards a proof by induction on
the shape/length of the derivation tree/sequence. Possibly using small assignments
in between so the participants can figure out how the rules work themselves. The
suggested structure is similar to the one followed in this thesis. However, reading it
would take the participants more time.

Workload With all the effort needed to understand Coq, the participants showed concern
that and increase of the workload that might occur if Coq proofs are incorporated
in the course. The course is already quite time consuming and has difficult concepts.
Adding work with Coq might make the workload too high. On the other hand,
it could not hurt to have a working formalisation available for students that are
interested and understand Coq better.

Induction - handling mistakes Most of the students found the induction proofs difficult
to understand and it did not help them to make the proofs on paper. However, we
also asked if the proofs that were discussed during the tutorial would be useful. Most
participants said that they would find that very helpful if they understood it because
making trees and sequences in Coq is easier. That is, because it is easier to correct
mistakes and check if certain rules can be applied.

Additional formalisation We asked if there were other parts of the course where a
Coq formalisation would help. Most participants agreed that Blocks and Procedures,
which also consist of single derivation trees, would be useful if a visual representation
would be provided.

Automatism One participant mentioned that Coq might not be helpful because most
of the work is performed by the inversion rule that was difficult to understand.
According to that participant, looking at the Coq proof is similar to looking at the
solution for the proof on paper. It was also mentioned that looking at solutions does
not increase understanding. In other words, there was concern that the Coq proof
does not teach students how the proof should be made, but only shows a solution.

Benefit Next to all the improvement suggestions and concerns, the participants did
mention that they were glad that it was looked into ways to make the course easier.
They also mentioned that the group might be biased as they already found the topics
difficult. Other students might find the formalisation more useful.

81



8.5. RESULTS

8.5.5 Discussion

The experiment will most definitely need to be made a second time with a bigger sample
size on order too get definitive results. Its setup proved to be viable, but there are some
changes that can be made to it as well.

As we already mentioned, the period for task execution was longer than previously esti-
mated. In the planning of the experiment, we expected around two days for the participants
to make their proofs on paper. However, because the experiment was run during exam
period, most of the students only had the time to work on the proofs two weeks later. The
proof they were asked to do, indeed did not take more than two days once they started.
It is possible that the long period between the tutorial and making the proofs on paper
affected the perceived difficulty, as some information from the Coq tutorial might have
been forgotten. This might also explain why the average score for how useful the tutorial
was very low. However, in the questionnaire we found that some participants did not or
barely made use of the actual Coq formalisation while making the proofs. Because the
tutorial was set up to help the participants translate a Coq proof to a proof on paper, this
might also affect the tutorial score. It is important to note that one participant did score
the usefulness of the tutorial with a seven. This leads us to believe that the usefulness of
the tutorial and the Coq formalisation depends heavily on the participants themselves.

Another problem that participants encountered was that in order to make the proofs on
paper, they needed to pull even older knowledge about how to do those proofs from Se-
mantics and Correctness lectures from more than half a year ago. Because of that, results
for the experiment are less reliable. It might also be a factor in why the participants were
not able to complete the proofs.

If a similar experiment will be conducted in the future, it should include Semantics and
Correctness students during a run of the course and with a stricter deadline for submitting
the proof on paper after the tutorial. It would also be better to link the first and second
questionnaire of a single participant: that would allow for individual comparisons of the
results and accounting for participants dropping out.

Finally, the results are also not very reliable because the experiment started with five
students but was only finished completely by three students. This group is too small to
generalise the findings to all the Semantics and Correctness students.

8.5.6 Conclusion Experiment

Currently, the formalisation does not help much students to understand the proofs better.
Despite that there seems to be enough possible improvements that would make the formal-
isation better. For example, a visual representation of the trees, exercises with the Coq
formalisation to get used to it and better documentation might make the formalisation
more helpful. However, the workload must be taken into account if the Coq formalisation
is incorporated in the course.
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Chapter 9

Conclusion

This thesis aimed to answer the following research question: Is it possible to formalise
Structural Operational Semantics for While in Coq in a way that can help learn
it in the context of the course Semantics and Correctness?

We have showed that it is indeed possible to create a formalisation of Structural Operational
Semantics, that follows the material of Semantics and Correctness - most of which overlaps
with the book “Semantics with Applications, A Formal Introduction” by Nielson and
Nielson [4]. However, we did not get definitive results of whether that formalisation is
indeed helpful to studying the topic. Instead, we gained useful insight on how to improve
the formalisation in such a way that it can be a good studying aid.

It is worth to note, however, that there is a difference between how good a studying aid
the students find this formalisation on average, and how many of the students find it a
good studying aid. While the improvements aim to make it as good source of information
as possible for as many students as possible, this formalisation’s goal is to only be used
by students who find it helpful. Therefore, if there is at least one student for whom it
is useful, which as the experiment already showed is the case, then that formalisation is
already a helpful study aid.

9.1 Challenges in formalising Structural Operational

Semantics

Building the formalisation was not an easy task. We first needed to formalise While and
the states. Then, before we could proceed to the rules of Structural Operational Semantics,
we needed to make a choice as to how to differentiate between a configuration that can make
progress and one, that is final and has led to the end of the execution of the statements.
We chose a typical functional programming tactic to making a configuration type that can
be either running - in which case it takes a statement to execute and a state, or final where
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there is only a state to stop at.

Then we got to formalise the rules and proofs of many properties of Structural Operational
Semantics: We proved that Structural Operational Semantics for While is deterministic
and that if makes strong progress. Then we dove into making not only a single small step,
but a sequence of them, where we either kept track how many steps we are taking or not
(star transition). That allowed us to make proves using induction on the length of the
derivation sequence. We used this technique to to prove the following properties:

• That if and only if two statement get executed in k1 and k2 respectively, then their
composition’s execution takes k1 + k2 steps.

• That if a statement gets executed in k steps, then a composition of this statement
to a second one, would get to needing to execute only the second one in k steps.

• That if and only if we can get from one configuration in k steps, then we can make
those steps without counting them - using the star notation.

With those we covered all the most common properties, usually associated with Structural
Operational Semantics.

The rest of the properties that Structural Operational Semantics has, are quite difficult
to prove using SOS. Usually Natural Semantics is used to prove them. Hence, we proved
that Structural Operational Semantics is equivalent to Natural Semantics, which was one
of the most challenging proofs in this thesis. That done, now we know that the properties
of Natural Semantics depicted in the thesis about Natural Semantics written in parallel by
Loes Kruger [3] also hold for Structural Operational Semantics.

The full formalsiation can be found on our GitHub page.

9.2 Comparison to related work

In chapter 1 Introduction it was mentioned that quite a few formalisations already exist
but they do not match the course Semantics and Correctness. The current formalisation
does match the course based on “Semantics with Applications, A Formal Introduction” by
Nielson and Nielson [4] better, with respect to the other works referenced, for the following
reasons:

• “Software Foundations” [6] uses only natural numbers and not Numerals, as the
definition of While does, while our formalisation redefines numbers as numerals.

• “Software Foundations” [6] uses SKIP as a sort of stuck configuration, which is
not the case in Semantics and Correctness. Hence, we make our own type for a
configuration that distinguishes between Running and Final .

• “Software Foundations” [6] focuses is on small step evaluation of expressions. While
we do mention them as an extension, we do not focus on it at all, and just directly
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evaluate it, similarly to “Semantics with Applications, A Formal Introduction” [4].

• “Software Foundations” [6] does introduce the star transition, but not the k one,
where we count the number of steps made. As a result, it does not consider induction
on the length of the derivation sequence at all, while it is a main building block in
this thesis.

• In “Software Foundations” [6] most of the examples are with an even simpler toy
language than While which does not extend to its use in Semantics and Correctness,
that we follow.

• There are very few examples on how to prove equivalence between Natural Semantics
and Structural Operational Semantics and the ones that were found used completely
different notations and rules.

• This formalisation has notation that matches more closely to the notation in the
book. For example, the transitions in Software Foundations look like : -->, which
here are reserved for Natural Semantics. We try to stick as close as possible to
“Semantics with Applications, A Formal Introduction” [4], with its 〈 , 〉 ⇒, 〈 , 〉 by
using �_,_� ==> �_,_� , which is as close as we can get without overriding
already existent notations like <,> or=>, using ascii symbols. Moreover, the names of
the types match the names used in the course as much as possible.

• This formalisation has many examples directly taken from the courses book - “Se-
mantics with Applications, A Formal Introduction” [4] - or the slides. This helps to
understand it and make a direct comparison between proofs in the book and in the
formalisation.

• The formalisation is in Coq, which is already familiar to most of the students. Other
formalisation were made in Isabelle, which is an unfamiliar language.

• From the custom type selection and notation, it follows, that all the proofs have their
own way of progress, that might be similar to some but not exactly compatible with
other works.

This list indicates that this formalisation definitely matches the course Semantics and Cor-
rectness better than the other sources used (primarily, but not only “Software Foundations”
[6]).

9.3 Future work

The formalisation could be improved in several ways. Naturally, there are more properties
and extensions of While that can be included. For example the course Semantics and
Correctness has a follow-up course Semantics and Rewriting. The first lecture covers the
Break and Continue statements. It would be very interesting to extend the thesis with
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those rules as they are quite relevant for Structural Operational Semantics. However, this
would not be the primary concern.

The more obvious focus of future work should be on making the existent formalisation a
better studying aid.

It would be interesting to perform the experiment during the Semantics and Correctness
course. This would give more reliable results and would provide more feedback on how to
further improve the formalisation and its explanation.

Before that however, there is already existent feedback that can be incorporated. Better
documentation of the proofs and explaining what the Coq tactics do would be a good first
step. A build up on that would be to redefine some tactics to better match the steps taken
in a natural language proof, similar to the way tactics are redefined to bear the name of
the respective rule in the course Logic and Applications at Radboud University.

Another interesting extensions would be to find alternatives for the mapping of the states.
Currently, the formalisation uses the definition for total and partial maps from “Software
Foundations” [6]. However, this definition does not match nicely with the notation used
in the course.
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dations. Electronic textbook, 2017.
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Appendix A

Questionnaire for the experiment

A.1 Before the Meeting

1. Which Semantics and Correctness topic did you find the most difficult?

• Proof trees in natural semantics

• Induction on the shape of the derivation tree

• Derivation sequences in structural operational semantics

• Induction on the length of the derivation sequence

• Hoare logic and annotated programs

• Blocks and procedures

• Other

2. Why do you think this was difficult?

3. How difficult do you think induction on the shape of the derivation tree is on a scale
from 1 to 10?

4. Why do you think this was easy/difficult?

5. How difficult do you think induction on the length of the derivation tree is on a scale
from 1 to 10?

6. Why do you think this was easy/difficult?

7. How much do you like making proofs in Coq on a scale from 1 to 10?

8. Do you think seeing natural semantics and operational structural semantics proofs
in Coq would help you to make proofs on paper?
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• Yes

• No

• Maybe

9. Why do you think that seeing proofs in Coq would help/not help?

10. Do you have any further questions or comments?

A.2 After the Meeting

1. How helpful did you think the Coq tutorial was on a scale from 1 to 10?

2. Did you manage to finish the proofs on paper?

• Yes

• No

• Other

3. Did you use the proofs in Coq while making the proof on paper?

• No

• A few times

• I based my whole proof on it

• Other

4. Did you use any other materials when you were working on the proofs?

• Yes, the book

• Yes, the slides

• Yes, the online solutions

• No, I only used the Coq proof

5. How much did the tutorial/proofs in Coq help when making the final proofs on paper
on a scale from 1 to 10?

6. How difficult do you think derivation on the shape of the derivation tree is on a scale
from 1 to 10 after the tutorial?

7. How difficult do you think derivation on the length of the derivation sequence is on
a scale from 1 to 10 after the tutorial?

8. Did you give different ratings than in the first questionnaire and why?
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9. Would you like to see some Coq proofs in the course Semantics and Correctness?

10. Why would you like to see/ not see Coq proofs in the course Semantics and Correct-
ness?

11. Do you have any suggestions to improve the formalization?

12. Do you have any suggestions to improve the explanation of the formalization?

13. Do you have further questions or comments?
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Appendix B

Experiment Structural Operational
Semantics- Coq files

B.1 While description, common for SOS and NS

(* This file explains the basic framework and the NS and SOS

files import

from this file. *)

(* Imports from the Coq standard library *)

Set Warnings "-notation-overridden ,-parsing".

From Coq Require Import Bool.Bool.

From Coq Require Import Init.Nat.

From Coq Require Import Arith.Arith.

From Coq Require Import Arith.EqNat.

From Coq Require Import omega.Omega.

From Coq Require Import Lists.List.

From Coq Require Import Strings.String.

From Coq Require Import Logic.FunctionalExtensionality.

From Coq Require Import BinNat.

Import ListNotations.

(* The language While uses integers, we need to open the Z scope

We also use a special scope for defining the Statements *)

Local Open Scope Z_scope.

Declare Scope while_scope.

Open Scope while_scope.

(*Num *)

Inductive Num : Type :=
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| NZero

| NOne

| NEven (n : Num )
| NOdd (n : Num ).

Fixpoint Neval (n : Num ) : Z :=

match n with

| NZero => 0
| NOne => 1
| NEven n => 2∗( Neval n )
| NOdd n => 2∗( Neval n ) + 1
end.

Coercion Neval: Num >-> Z.

(* We want integers to be reconginized as numerals and

numerals as integers *)

Fixpoint pos_to_num (n:positive ): Num:=

match n with

| xH => NOne

| xO n’ => NEven ( pos_to_num n’ )
| xI n’ => NOdd ( pos_to_num n’ )
end.

Fixpoint z_to_num (z:Z ) : Num :=

match z with

| Z0 => NZero

| Zpos n => pos_to_num n

| Zneg n => pos_to_num n

end.

Coercion z_to_num: Z >-> Num.

(* The state is defined as a total map. Total maps can be defined

in Coq by making a general total_map function. This function

maps a string it to an element of the specified type A *)

Definition total_map (A : Type ) := string -> A.

(* We need a total map from strings to integers *)

Definition State := total_map Z.

(* Total maps need a default element, the t_empty function maps

an
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undefined element to the default element v of some type A *)

Definition t_empty {A : Type} (v : A ) : total_map A :=

( fun _ => v ).

(* eqb_string compares strings *)

Definition eqb_string (x y : string ) : bool :=

if string_dec x y then true else false.

(* t_update updates the mapping of string x to new value v of

some

type A *)

Definition t_update {A : Type} (m : total_map A )
(x : string ) (v : A ) :=

fun x’ => if eqb_string x x’ then v else m x’.

(* We add some notation to make it easier to use these functions

in proofs *)

Notation "’_’ ’!->’ v" := ( t_empty v )
(at level 100 , right associativity ).

(* The default element for the state should be 0.

This means that every string that doesn’t have a specific

mapping, maps to integer 0 *)

Definition empty_State := (_ !-> 0).

(* Some more notations *)

Notation "x ’!->’ v ’,’ m" := ( t_update m x v )
(at level 100 , v at next level , right associativity ).

Notation "x ’!->’ v" := (x !-> v , empty_State )
(at level 100 , v at next level , right associativity ).

(* Syntax Aexp *)

Inductive Aexp : Type :=

| ANum (n : Num )
| AId (x : string )
| APlus (a1 a2 : Aexp )
| AMinus (a1 a2 : Aexp )
| AMult (a1 a2 : Aexp ).

(* Semantics Aexp *)

Fixpoint Aeval (st : State ) (a : Aexp ) : Z :=

match a with

| ANum n => Neval n
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| AId x => st x

| APlus a1 a2 => ( Aeval st a1 ) + ( Aeval st a2 )
| AMinus a1 a2 => ( Aeval st a1 ) − ( Aeval st a2 )
| AMult a1 a2 => ( Aeval st a1 ) ∗ ( Aeval st a2 )
end.

(* We want a string and numeral to be recognized as Aexp to do

calculations *)

Coercion AId : string >-> Aexp.

Coercion ANum : Num >-> Aexp.

(* Syntax Bexp *)

Inductive Bexp : Type :=

| BTrue

| BFalse

| BEq (a1 a2 : Aexp )
| BLe (a1 a2 : Aexp )
| BNot (b : Bexp )
| BAnd (b1 b2 : Bexp ).

(* Semantics Bexp *)

Fixpoint Beval (st : State ) (b : Bexp ) : bool :=

match b with

| BTrue => true

| BFalse => false

| BEq a1 a2 => ( Aeval st a1 ) =? ( Aeval st a2 )
| BLe a1 a2 => ( Aeval st a1 ) <=? ( Aeval st a2 )
| BNot b1 => negb ( Beval st b1 )
| BAnd b1 b2 => andb ( Beval st b1 ) ( Beval st b2 )
end.

(* This is the mapping to tt and ff *)

Definition bool_to_bexp (b : bool ) : Bexp :=

if b then BTrue else BFalse.

Coercion bool_to_bexp : bool >-> Bexp.

(* More notation, it is not needed to understand how this works

*)

Bind Scope while_scope with Aexp.

Bind Scope while_scope with Bexp.

Notation "x + y" := ( APlus x y ) (at level 50 , left associativity )
: while_scope.
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Notation "x - y" := ( AMinus x y ) (at level 50 , left associativity )
: while_scope.

Notation "x * y" := ( AMult x y ) (at level 40 , left associativity )
: while_scope.

Notation "x <= y" := ( BLe x y ) (at level 70 , no associativity )
: while_scope.

Notation "x = y" := ( BEq x y ) (at level 70 , no associativity )
: while_scope.

Notation "x && y" := ( BAnd x y ) (at level 40 , left associativity )
: while_scope.

Notation "’~’ b" := ( BNot b ) (at level 75 , right associativity )
: while_scope.

(* Instead of writing Aeval and Beval, the writing style in the

book can be used *)

Notation " ’A[[’ a ’]]’ st " := ( Aeval st a )
(at level 90 , left associativity ).

Notation " ’B[[’ b ’]]’ st " := ( Beval st b )
(at level 90 , left associativity ).

Notation " ’N[[’ n ’]]’" := ( Neval n )
(at level 90 , left associativity ).

(* Syntax Statements *)

Inductive Stm : Type :=

| ass (x : string ) (a : Aexp )
| skip

| comp (s1 s2 : Stm )
| if_ (b : Bexp ) (s1 s2 : Stm )
| while (b : Bexp ) (s : Stm ).

(* More notations , when defining proofs capitals are used *)

Notation "x ’::=’ a" :=

( ass x a ) (at level 60).
Notation "’SKIP’" :=

skip.

Notation "s1 ; s2" :=

( comp s1 s2 ) (at level 80 , right associativity ).
Notation "’WHILE’ b ’DO’ s " :=

( while b s ) (at level 80 , right associativity ).
Notation "’IF_’ b ’THEN’ s1 ’ELSE’ s2 " :=

( if_ b s1 s2 ) (at level 80 , right associativity ).

(* The transitions use configurations.
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In NS there are only general configurations <S, s> and

terminal configurations s.

In SOS there are running configurations -> <S, s> *)

Inductive Config: Type :=

| Running (S:Stm ) (s:State )
| Final (s:State ).

(* We always want a state to be recognized as a configuration *)

Coercion Final: State >-> Config.

Notation "’�’ s ’�’ " := ( Final s ).
Notation "’�’ S ’,’ st ’�’" := ( Running S st ).

(* Some standard names for variables to use in proofs *)

Definition w : string := "w".

Definition x : string := "x".

Definition y : string := "y".

Definition z : string := "z".

B.2 The basics of SOS formalisation, needed for stu-

dents to understand the proofs

(* First, we need some imports from the Coq library *)

Set Warnings "-notation-overridden ,-parsing".

From Coq Require Import Bool.Bool.

From Coq Require Import Init.Nat.

From Coq Require Import Arith.Arith.

From Coq Require Import Arith.EqNat.

From Coq Require Import omega.Omega.

From Coq Require Import Lists.List.

From Coq Require Import Strings.String.

From Coq Require Import Logic.FunctionalExtensionality.

From Coq Require Import BinNat.

Require Import tut_common.

Import ListNotations.

(* The language While uses integers, we need to open the Z scope.

We also open the scope where the statements are defined in. *)

Local Open Scope Z_scope.

Open Scope while_scope.

(*SOS frameworks*)

Definition w : string := "w".
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Definition x : string := "x".

Definition y : string := "y".

Definition z : string := "z".

Reserved Notation " conf ’==>’ conf’ "

(at level 99).

Inductive sstep : Config -> Config -> Prop:=

| SSSkip : forall st ,
�SKIP , st� ==> st

| SSAss: forall x a n st ,
Aeval st a = n ->

� (x::=a ) , st� ==>� (x !-> n , st )�(*t_update st x n)*)

(*don’t forget - a derivation tree is written bottom up but read

top-down.

This is reading*)

| SSCompI: forall S1 S1’ S2 st st’ ,
�S1 , st� ==>�S1’ , st’� ->

�S1 ; S2 , st� ==>�S1’ ; S2 , st’�

| SSCompII: forall S1 S2 st st’ ,
�S1 , st� ==> Final st’ ->

�S1 ; S2 , st� ==>�S2 , st’�

| SSIftrue: forall b S1 S2 st ,
Beval st b = true ->

�IF_ b THEN S1 ELSE S2 , st� ==>�S1 , st�

| SSIffalse: forall b S1 S2 st ,
Beval st b= false ->

�IF_ b THEN S1 ELSE S2 , st� ==>�S2 , st�

| SSWhile: forall b S st ,
�WHILE b DO S , st� ==>

�IF_ b THEN (S ; WHILE b DO S ) ELSE SKIP , st�
where " conf ’==>’ conf’ " := ( sstep conf conf’ ).

(* The SOS version of stm_eq for one step*)

Theorem stm_eq:

forall S s conf’ conf’’ ,
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�S , s�==> conf’ ->

conf’ =conf’’ ->

�S , s� ==> conf’’.

Proof.

intros.

rewrite H0 in H.

apply H.

Qed.

(* Use the tactic from Experiment_NS *)

Ltac eq_states :=

apply functional_extensionality ; intros ; unfold t_update ; simpl

;
repeat match goal with

|− context [ eqb_string ?v ?x ] =>

destruct ( eqb_string v x )
end ;
reflexivity.

Close Scope while_scope.

(* For a running configuration *)

Theorem conf_eq_rn:

forall S s s’ ,
s = s’ -> �S , s� = �S , s’�.

Proof.

intros.

rewrite H.

reflexivity.

Qed.

(* And for a final one *)

Theorem conf_eq_fn:

forall s s’ ,
s = s’ -> �s� = �s’�.

Proof.

intros.

rewrite H.

reflexivity.

Qed.

(* Relation *)

Definition relation (X : Type ) := X -> X -> Prop.
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(* Making many steps *)

Inductive multi {X : Type} (R : relation X ) : relation X :=

| multirefl : forall (x : X ) , multi R x x

| multistep : forall (x y z : X ) ,
R x y ->

multi R y z ->

multi R x z.

Notation " t ’==>*’ t’ " := ( multi sstep t t’ ) (at level 40).

(* The SOS version of stm_eq for many steps *)

Theorem no_stm_eq:

forall s conf’ conf’’ ,
�s�==>∗ conf’ ->

conf’ =conf’’ ->

�s� ==>∗ conf’’.

Proof.

intros.

rewrite H0 in H.

apply H.

Qed.

(* Making K steps *)

Inductive multi_k {X : Type} (R : relation X ) : nat -> relation X

:=

| multikrefl : forall (x : X ) , multi_k R 0 x x

| multikstep : forall (x y z : X ) (k:nat ) ,
R x y->

multi_k R k y z ->

multi_k R (S k ) x z.

Notation " t ==>[ k ] t’ " := ( multi_k sstep k t t’ ) (at level

50).
Print multi_k.

(* Some simple exersice - how do we used comp1 and comp2 *)

Example triv_1:

� x::= (1+3) ; SKIP , (y !->3 , z !->3)� ==>�SKIP , x !->4 , y !->3 , z !->3�.

Proof.

− eapply SSCompII.

+ eapply SSAss. reflexivity.
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Qed.

(* When will we need to use comp1? *)

Example triv_7_lecture’’:

� (z ::=x ; x ::= y ) ; y ::=z , (x !->3 , y !->4 , z !->5)� ==>∗
� (y !->3 , x !->4 , z !->3)�.

Proof.

− eapply multistep with �x::=y ; y ::=z , z !->3 , x !->3 , y !-> 4 , z !->
5�.

+ eapply SSCompI. (*<--- Used Comp 1! *)

∗ apply SSCompII. apply SSAss. reflexivity.

(* We can strictly say what the resulting state needs to be

*)

+ apply multistep with �y ::=z , x !->4 , z !-> 3 , x !->3 , y !->4 , z !->
5�.

∗ apply SSCompII. apply SSAss. reflexivity.

(*...or let coq guess it*)

∗ eapply multistep.

apply SSAss. reflexivity.

eapply no_stm_eq.

eapply multirefl. apply conf_eq_fn. eq_states.

Qed.

(*----------*)

(* And now for the big bad induction on the derivation sequence

- from the slides, and from the homework*)

Local Close Scope Z_scope.

Close Scope while_scope.

(* First we need some tiny lemmas to tell Coq obvious things*)

Lemma zero_steps_rev:

forall c c’ ,
c = c’ ->

c ==>[ 0 ] c’.

Proof.

intros. induction H.

apply multikrefl.

Qed.

Lemma one_step:

forall c c’ ,
c ==> c’ ->

c ==>[ 1 ] c’.
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Proof.

intros.

apply ( multikstep sstep c c’ ).
assumption. apply zero_steps_rev.

reflexivity.

Qed.

(* And a small definition of what is a stuck configuration

- it is not only a Final one*)

Definition isStuck ( conf: Config ) :=

0=0 -> ~ ( exists ( conf’:Config ) , conf ==> conf’ ).

Lemma final_is_stuck:

forall s ,
isStuck �s� .

Proof.

intros.

unfold isStuck.

intros.

intro.

destruct H0.

inversion H0.

Qed.

Lemma stuck_stops:

forall c c’ k ,
isStuck c ->

c ==>[ k ] c’ ->

k = 0 /\ c’ = c.

Proof.

intros.

unfold isStuck in H.

induction k.

− inversion H0 ; subst.

split. reflexivity. reflexivity.

− destruct H0. split. reflexivity. reflexivity.

destruct H. reflexivity.

exists y0. assumption.

Qed.

(* We will use strong induction , without bothering to prove it.*)
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Check nat_ind.

Theorem strong_induction:

forall P : nat -> Prop ,
P 0 ->

( forall n : nat , ( forall k : nat , ( ( k <= n )%nat -> P k ) ) -> P (S
n ) )

->

forall n : nat , P n.

Proof.

Admitted.

(* The example from the slides

- with this one you can always check the natural lanugage

proof there *)

(*

For all statements S1 and S2 and for all states s and s’:

if �S1;S2,s� ==>[k]s’’
then there exists a state s’and natural numbers k1 and k2

such that

�S1;s� ==>[k1] s’ and �S2;s’� ==>[k2] s’’

where k = k1 + k2

*)

Lemma comp_complete:

forall k Ss1 Ss2 s s’’ ,
�Ss1 ; Ss2 , s� ==>[ k ] �s’’�
->

exists s’ k1 k2 ,
�Ss1 , s�==>[ k1 ] �s’� /\ �Ss2 , s’� ==>[ k2 ] �s’’� /\ k = (k1

+ k2 ).
Proof.

(*induction on the length of the derivation seqence*)

induction k using strong_induction.

− (*0*)

intros.

inversion H.

− (*IS - we can use one compf rule or the other*)

rename k into k0.

intros.

inversion H0. subst.

inversion H2 ; subst.

+(*compI*)
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assert ( exists (s’ : State ) (k1 k2 : nat ) ,
� S1’ , st’ � ==>[ k1 ] � s’ � /\
� Ss2 , s’ � ==>[ k2 ] � s’’ � /\ k0 = k1 + k2 ).
{apply H.

∗ reflexivity. (*omega.*)

∗ assumption.

}
destruct H1. rename x0 into s0. destruct H1. rename x0 into k1

.

destruct H1. rename x0 into k2. destruct H1. destruct H4.

exists s0.

exists (S k1 ).
exists k2.

split.

−− apply ( multikstep sstep� Ss1 , s � � S1’ , st’ � ).
assumption. assumption.

−− split.

−−− assumption.

−−− omega.

+(*compII*)

exists st’.

exists 1.
exists k0.

split.

∗ apply one_step. assumption.

∗ split.

assumption.

reflexivity.

Qed.

(* This example is from the homework - as it seems, the

natural lanugage proof is online too. However, plase try to do

it

yourself before you consult it - the question here is will the

Coq file make it easier as is. *)

(* For all statements S1 and S2, all states s and s’ and all

natural numbers k:

if �S,s�==>[k] s’ then �S1;S2,s� ==>[k] �S2,s’� *)

Definition property_half_comp (k:nat ) :=

( forall S1 s s’ ,
�S1 , s� ==>[ k ] �s’�
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->

forall S2 ,
�S1 ; S2 , s� ==>[ k ] �S2 , s’� ).

(*2.21*)

Theorem half_comp:

forall k ,
forall S1 s s’ ,
�S1 , s� ==>[ k ] �s’�
->

forall S2 ,
�S1 ; S2 , s� ==>[ k ] �S2 , s’�.

Proof.

intro.

(* We only want k in the context to do induction over the whole

thing on k*)

induction k using strong_induction.

− intros. inversion H.

− rename k into k0.

intros.

inversion H0. subst.

induction y0.

(* if it is compi or compii in other words

if S1 is executed in many or 1 steps *)

+ rename s0 into s’’.

rename S into S1’.

apply ( multikstep sstep� S1 ; S2 , s � � S1’ ; S2 , s’’ � ).
∗ apply SSCompI. assumption.

∗ apply H. reflexivity. assumption.

+ rename s0 into s’’.

apply ( multikstep sstep� S1 ; S2 , s � �S2 , s’’ � ).
∗ apply SSCompII. assumption.

∗ assert (k0 = 0 /\ �s’� = �s’’� ).
{ apply stuck_stops. apply final_is_stuck. assumption.

}
inversion H1. inversion H5. subst. apply zero_steps_rev.

reflexivity.

Qed.
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