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Abstract

How human perception and action deal with uncertainty has been extensively studied using the rubber-hand illusion
(RHI), which introduces a sensorimotor conflict by means of a rubber hand, causing a shift in the perceived location
of the real hand. A recent study showed that in addition to the drift in perception, the RHI also evokes an involuntary
force at the hand in the direction of rubber hand. Seemingly congruent to this finding is the strong interdependence
between perception and action found in active inference. In this work we propose a deep active inference agent which
deals with high-dimensional visual inputs in a virtual environment, that is able to account for the action produced by
humans under the RHI. In addition, the agent was subjected to reaching tasks, validating the proper function of the
agent’s perception and action.

I. INTRODUCTION

The complex mechanisms underlying perception and action that allow seamless interaction with the environment
are largely occluded from our consciousness, yet crucial to our existence. To interact with the environment in a
meaningful way, the brain must integrate noisy sensory information from multiple modalities into a coherent world
model, from which to generate and continuously update an appropriate action [1]. How the brain realises this is an
important longstanding question in cognitive science and artificial intelligence, resulting in a variety of models.

One such model, the Bayesian inference model, states that perception and action (and their interaction) can be
approached using conditional probability density functions [2]. The neurophysiological and behavioural predictions
this model makes have seen a wide range of support from empirical data (e.g. [1], [3], [4], [5]), as well as proofing
useful in artificial implementations such as computer vision [6].

The free-energy principle is a recent framework build upon this theory of Bayesian inference. Inspired by
Helmholtz’s view on perception [7], Karl Friston put forward this principle as a fundamental and uniform theory
of the brain’s functioning [8], [9], [10]. The idea underlying the free-energy principle is that biological systems
actively try to minimise the disparity between their prediction of sensory input and the actual sensory input [9].
This disparity, known as ’surprise’, depends on the prediction generated by the system’s internal model and drives
the adaptation of brain states (perception) and the internal model (learning) [11].

The free-energy principle differentiates itself from other theories by postulating that the minimisation of surprise
not only occurs through perception and learning, but also through action in the environment [10]. It describes that,
because action changes the state of the environment, it can be used to indirectly change future sensory input in
an attempt to minimise the prediction error. This framework that directly couples the optimisation of perception,
action and learning has recently gained attention from the scientific community, yielding promising results in image
quality metrics [12], [13], [14] and robotic perception and action [15], [16], [17].

Although the free-energy principle is presented as a unified theory of the brain [10] and shows promising results
in artificial applications, how can its capacity to accurately model human behaviour be assessed?

A. Rubber-hand illusion (RHI) and computational models

This problem can be approached by comparing the models’ behaviour to that of humans under a well-known
experimental paradigm in cognitive science: the rubber-hand illusion (RHI) [18]. This paradigm is used to examine
the properties of body self-perception by presenting a rubber hand and providing sensory evidence that this hand
is ones own. This evidence is provided in the form of synchronous visuo-tactile stimulation, which in the original
experiment took the form of a paintbrush stroking the real and rubber hand synchronously [18]. The paradigm shows
that within under a minute of stimulation [19], the perceived location of the real hand drastically shifts towards the
location of the rubber-arm (proprioceptive drift), and vise versa (visual drift) [20].

In [21], a Bayesian causal inference model was proposed that used visual, tactile and proprioceptive sensory
input and their respective precision to estimate the hand position when subjected to the RHI. They found that the
model produced results similar to the results produced by human subjects under the RHI. Furthermore, their model
predicted that the RHI could occur in the absence of tactile stimulation, which they confirmed in a subsequent
experiment on humans. These results suggest that Bayesian causal inference is an important part of human body
self-perception [21].

Similarly oriented models have been proposed for the free-energy principle. For example, the literature has seen
a robotic implementation of the free-energy principle [22], which was subjected to the RHI. The perceptual drift
was compared to that of humans and found to be similar, supporting the free-energy principle as a viable model of
body self-perception.
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These models all make use of multimodal perception to estimate the current body state, showing how the RHI
has an effect on passive perception. However, a recent experiment showed how humans unconsciously produce a
small involuntary force at the hand in the direction of the rubber hand [23]. This finding adds a new dimension to
the RHI, forming an additional requirement on synthetic models that attempt to predict human behaviour under the
RHI.

B. Contribution

To our knowledge, there is currently no model implemented in the literature that is able to account for these
findings. We hypothesise that the aforementioned strong interdependence between perception and action found in
the free-energy principle fits these new findings, and is therefore a viable candidate for a synthetic model of the
RHI. This means that we expect the model to produce action in the direction of a rubber hand during the RHI, as
well as observing a shift in the perceived location of the real hand – See Fig. 1a.

In this work1, a new synthetic model for the free-energy principle operating in a 3D virtual environment is
proposed based on the algorithm proposed by [16] and the findings of [23]. Our aim was to create a model to
account for the forces generated during the RHI [23], as well as providing a new and scalable testing ground for
further research on the free-energy principle2. The proposed model will therefore include the implementation of
visual perception using raw imagery originating from the 3D environment. The model will be subjected to the RHI
and its output will be compared to the findings of [23]. Our expectation is that the model will produce similar action
patterns in the direction of the rubber hand. In addition, reaching tasks will be performed to assess the validity of
the actions produced by the model.

(a) (b)

Fig. 1: (a) Observed effects in the RHI experiment. (b) Deep active inference model for the virtual rubber-hand
illusion. The brain variables µ that represent the body state are inferred through proprioceptive sp and visual sv
prediction errors and their own dynamics f(µ). During the VR immersion, the agent only sees the VR arm.

II. METHODS

A. Deep Active Inference Model

Under the free-energy principle, perception and action are driven by a minimisation of prediction error [24].
Specifically, the free-energy principle describes a dynamic internal state which is connected to the world through
sensory input. This means that the internal state can only access the body state (and environment) through the
senses. The sensory input combined with the internal state are used to approximate the real body state, under the
minimisation of variational free energy.

1This work was submitted to the 1st International Workshop on Active Inference.
2Full environment and agent code is publicly available at https://github.com/thomasroodnl/active-inference-rhi

https://github.com/thomasroodnl/active-inference-rhi
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The proposed agent made use of two sensory modalities. The visual input sv is described by a pixel matrix
(image) and the proprioceptive information sp represents the joint angles of the arm – See Fig. 1b. The following
paragraphs show the variational approximation of the body state distribution µ and the action a as defined by the
free-energy principle under the mean-field and Laplace approximations. Note that this is a specific instance of the
full free-energy principle formulation [10] tailored to the RHI experimental setup. For the full derivations of these
formulas, see [25], [26], [16].

The body state belief µ and action a are determined through a minimisation of the variational free-energy on the
sensory input and previous body state belief. We compute this minimisation through gradient descent This means
that µ and a are updated every iteration with time-step differences µ̇ and ȧ shown in Equation (3) and (4).

µ = argmin
µ

F (s, µ) (1)

a = argmin
a

F (s, µ) (2)

µt = µt−1 + µ̇ ·∆t (3)

at = at−1 + ȧ ·∆t (4)

To minimise the variational free-energy at every iteration, the terms µ̇ and ȧ are set to the the negative partial
derivative of the free energy with respect to µ (−∂F∂µ ) and a (−∂F∂a ).

1) Perception inference: The free-energy optimisation with respect to µ consists three components, being the
optimisation with respect to the visual sensory input sv , the proprioceptive sensory input sp and a possible visual
goal svgoal

. This term was added to the free-energy formulation to be able to enforce particular actions to be
performed in a model that otherwise purely searches for an equilibrium state [16]. Equation (5) shows how µ̇ can
be rewritten as the minimisation of the free energy with respect to the three components mentioned before.

µ̇ = −∂F
∂µ

= (−∂Fv
∂µ

) + (−∂Fp
∂µ

) + (−
∂Fvgoal

∂µ
) (5)

The visual component of the free-energy gradient with respect to µ was computed as the error between the visual
sensation sv and visual prediction g(µ), multiplied by the partial derivative of g(µ) with respect to µ to convert
the error from visual space to body state space. When g(µ) takes the form of neural network, this partial derivative
can easily be obtained by performing a backward pass through the network [16]. The intensity of this gradient is
primarily modulated by Σ−1

µ , which denotes the visual precision. To be able to control the strength of the visual
component based on the strength of the RHI, gain parameter γ was added to the equation. This allowed us to
separate the dynamic change in illusion strength from the static visual precision. Section II-B describes how the
value of γ depends on the visuo-tactile stimulation in the context of the RHI.

− ∂Fv
∂µ

=
∂g(µ)

∂µ
· ∂Fv
∂g(µ)

=
∂g(µ)

∂µ
· γΣ−1

v (sv − g(µ)) (6)

In similar fashion to the visual component, the visual goal part of the free-energy gradient with respect to µ was
computed as the error between the visual sensation of the goal svgoal

and visual prediction g(µ), multiplied by the
partial derivative of g(µ) with respect to µ to convert the error from visual space to body state space. The intensity
of the gradient is modulated by scalars β and Σµ, which respectively denote the goal strength and the variance of
µ.

−
∂Fvgoal

∂µ
=
∂g(µ)

∂µ
·
∂Fvgoal

∂g(µ)
=
∂g(µ)

∂µ
· βΣ−1

µ (svgoal
− g(µ)) (7)

The proprioceptive part of the free-energy gradient with respect to µ was defined in a similar way as the visual
part. However, as opposed to the visual part, proprioception was modelled to reside in the same domain as the
body state belief µ, namely the joint angle space. This means that proprioceptive prediction boils down to belief
µ. Subsequently, the proprioceptive prediction error is computed as by subtracting µ from proprioceptive input sp,
and no conversion to body state space is necessary. The intensity of the gradient is modulated by Σ−1

p , denoting
the proprioceptive precision.
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− ∂Fp
∂µ

= Σ−1
p (sp − µ) (8)

2) Active inference: The problem of action is formulated similarly to that of body perception, namely as gradient
optimisation on the partial derivative of the free energy with respect to the action. Just as with body perception,
action is updated in a way that minimises the resulting variational free energy.

In contrast to the the differential equation that drives perception, the time-step difference of action ȧ was modelled
to only of consist an optimisation of the proprioceptive free energy with respect to the action. This is coherent with
the view of action as a way to cancel proprioceptive prediction error akin to classical body reflex arcs [27].

ȧ = −∂F
∂a

= −∂Fp
∂a

(9)

− ∂Fp
∂a

= −Σ−1
p (sp − µ) (10)

B. Visuo-tactile synchrony

To be able to simulate the rubber-hand illusion using the discussed free-energy model, the model needed to be
extended to incorporate the influence of visuo-tactile stimulation on the perceived causality of the sensory input,
similar to the model used in [15]. To simplify this problem, the environment was configured to provide the time
points at which a visual stimulation event and the corresponding tactile stimulation took place, which were denoted
as tv and tt respectively. We distinguished between two explanations of causality using the variable C, approaching
it as a Bayesian causal inference problem [21]. It is either the case that the observed (rubber) hand produced both
the visual and the tactile event (the rubber hand is perceived as our own), denoted by C = 1, or the observed hand
produced the visual event and our real hand produced the tactile event (the rubber hand not perceived as our own),
denoted by C = 2. The strength of the illusion embodied by γ was formulated as the probability of C = 1 given
time points tv and tt. Bayes’ rule was applied to this probability in order to obtain Equation (11).

p(C = 1 | tv, tt) =
p(tv, tt | C = 1) · p(C = 1)

p(tv, tt | C = 1) · p(C = 1) + p(tv, tt | C = 2) · p(C = 2)
(11)

This equation describes how the probability of C = 1 is updated based on a visuo-tactile event and the previous
or prior probability p(C = 1), and was used in the model as the temporal updating step. The likelihood of the
visuo-tactile event given C = 1 p(tv, tt | C = 1) was defined as a Gaussian probability density function over the
error between tv and tt with a mean of 0. The idea behind this was that when the error is zero, the likelihood
should be maximal and when the error increases, the likelihood decreases.

p(tv, tt | C = 1) = N (tv − tt, 0, σ2) (12)

p(tv, tt | C = 2) = U(tv − tt,∆tmin,∆tmax) (13)

The likelihood of the visuo-tactile event given C = 2 was defined as a uniform distribution over the error between
tv and tt. Because C = 2 denotes the hypothesis that the visual and tactile events are produced by different arms,
these events are independent. This means that p(tv, tt | C = 2) = p(tv | C = 2) · p(tt | C = 2). However, the
probability of a visual or tactile event happening at a certain absolute time point depends on the implementation of
the stimulation (e.g. stimulation at regular intervals or randomly) and is not of main interest to the RHI paradigm.
Rather, the relative difference between the events matters, which is why the likelihood given C = 2 was modelled
as a uniform probability density function of the error between tv and tt. The uniform distribution was limited by
the minimally and maximally possible time differences ∆tmin and ∆tmax, which are defined by the experimental
setup.

This causality computation was integrated in the model by updating the strength of the visual component γ with
the value of p(C = 1 | tv, tt) every time a visuo-tactile event occurs. Equation (11) was computed by simply filling
in the value of γ for the current timestep as the prior p(C = 1). By observing that C = 1 and C = 2 are the only
causal explanations in C and are each other’s opposite, the prior p(C = 2) can be defined as 1− p(C = 1). Thus,
p(C = 2) can be computed by taking 1− γt.
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γt+1 =

{ p(tv,tt|C=1)·γt
p(tv,tt|C=1)·γt+p(tv,tt|C=2)·(1−γt) , if visuo-tactile event

γt · exp(− (t−tt)2

∆−1
t

· rdecay), otherwise
(14)

With the Bayesian update rule in place, the value of γ changes each time a visuo-tactile event occurs. However,
without events occurring, the value of γ would simply remain stationary solely relying on this formula. This would
imply that a complete lack of evidence for long time spans would have no effect on the strength of the illusion.
Although the effect of the absence of evidence over time on the strength of the illusion had, to our knowledge, not
been systematically studied yet, we predicted the strength of the illusion to decay over time. Our reasoning is as
follows: If the illusion is strong, the system is in a constant high-error state because of the discrepancy between the
proprioceptive and the visual input. This discrepancy can be justified for in the presence of clear evidence that forces
the probability of C = 1 to be high. However, in absence of such evidence, there is no continuous justification for
the high error, and as a system that minimises the free-energy, the system should lower its estimated probability
of C = 1 to minimise error. Thus, we modelled the behaviour of γ when no event is occurring as a decay based
of which the strength is based on the amount of time that has passed since the last visuo-tactile event. However,
because a visuo-tactile event consists of two separate time points, we only use the time point of the last tactile
event.

Finally, we note that the prior value of γt cannot be initialised to zero as this would prevent the model from
ever attaining a non-zero illusion strength. Furthermore, there is evidence that humans can experience the illusion
without any stimulation [21], meaning that γ must start at a non-zero value.

C. Visual forward models

To be able to use visual sensory information to update the belief and action, a visual forward model was needed
to create visual predictions from which to compute the prediction error. Two different neural networks solutions for
this visual model were considered, a (deep) convolutional decoder and a variational autoencoder (VAE).

2

µ 10
24

FC1
81
92

FC2

128 8

R
128 16

CT1

128 16

C1
64 32

CT2

64 32

C2
48 64

CT3

48 64

C3
32 12

8

CT4

32 12
8

C4
1 25

6

CT5

(a) Convolutional decoder network architecture

1 25
6

I

16 25
6

CV1
MP1

32 12
8

CV2
MP2

64 64

CV3
MP3

128 32

CV4
MP4

128 16

CV5
MP5

81
92

R

40
96

FC1

10
24

FC2

51
2

FC3

2

FCµ

2

FClog(σ)

2

z

(b) Variational autoencoder architecture (encoder only)

Fig. 2: Visual forward model architectures. FC: Fully-connected (dense) layer, R: Reshape operation, C: 2D
Convolutional layer, CT: 2D Convolutional Transposed layer.



6

1) Convolutional decoder: The convolutional decoder was designed in similar fashion to the decoder used in
[16] (in turn based on architectures used in [28]), which showed promising results in generating forward visual
predictions and allowed for the intuitive computation of the complex relation between the visual space and the
joint space ∂g(µ)

∂µ by means of the backward pass through the network. The decoder employed two fully connected
layers to generate a large hidden representation vector from µ, which was reshaped into a 3-dimensional tensor. This
tensor was transformed into a grayscale image by alternately applying upconvolutional and convolutional operations,
reducing the amount of kernels and increasing the resolution (see Fig. 2a), while reducing visual artifacts respectively
[28]. The ReLU activation function was used for all layers except the last one, which employed a sigmoid activation
function to squeeze the output in the [0, 1] range complying with the grayscale imagery. Our implementation of
the decoder was designed with the experimental setup in mind, noting that the different dimensions of our human
model compared to the NAO robot model used in [16] would require a different approach. The human model being
multiple magnitudes larger than the NAO robot meant that the arms were relatively further away from the camera,
resulting in sparse camera images. To retain proper rendering of the arms in the visual prediction, a high resolution
of 256x256 pixels was chosen as the visual prediction output. To achieve this, the main decoder proposed in [28]
was adjusted by adding an additional set of upconvolutional and convolutional layers and changing the number of
kernels per layer to accommodate this new layer (See Fig. 2a).

2) Variational autoencoder: The variational autoencoder was designed using the same decoding structure as
the convolutional decoder to allow for the comparison of their respective performance. This meant that after
training, these models operated equivalently, yet their different training architecture could prove important to model
performance. The variational autoencoder differs from the convolutional decoder by using an encoder structure
during training that encodes a latent representation of the input image I in the form of a mean and variance vector
(see Fig. 2b). These vectors are used to constitute a multivariate Gaussian distribution from which to sample the
estimated belief z, which is fed into the aforementioned decoder structure to produce output image Î .

3) Training: To train the two visual models, 8000 random arm positions were generated by uniformly sampling
random angles for both the shoulder and elbow within a range of [-50, 50] degrees relative to the center condition
(see section II-D3). The true arm joint angles q and the corresponding visual perception sv of these generated
positions were collected and made up the training and validation set (10% of total entries used for validation).

The convolutional decoder was trained by providing the network with true arm positions from the training dataset
and letting the network produce visual outputs. The loss was computed as the mean squared error (MSE) between
the visual outputs and the visual ground truths (corresponding to the true arm positions provided to the network as
input), which was used to perform gradient descent on the weights of the network.

The variational autoencoder was trained by providing the network with the visual images from the training dataset
and letting the network produce visual outputs. The loss was computed as the sum of two terms. The first term
was again the mean squared error (MSE) loss between the visual ground truth (in this case also the input to the
model I) and the visual prediction (Î). The second term was a regularisation term DKL(q(z | I) || p(z)) being
Kullback-Leibler divergence between the distribution q(z | I) embodied by the encoder’s mean and variance vectors
and desired distribution p(z) [29]. By setting p(z) to a Gaussian distribution with as mean the true arm position and
as variance some small value (i.e. N (x, 0.001)), the latent space was enforced to resemble the joint angle space.
This way, the decoder part of the network could be used to make visual prediction from joint angle beliefs during
agent operation.

Both visual models were trained using the ADAM optimiser with an initial learning rate 0.001. This learning rate
was decayed every 20 epochs with a rate of 0.95. Mean squared error was used as a loss criterion, and a minibatch
size of 200 was used. The visual models were both trained for 800 epochs.

D. Experimental setup

1) Free-energy model: The free-energy model discussed in section II-A was implemented in Python building
upon the PixelAI algorithm from [16]. The most notable extensions of this algorithm were the inclusion of the
proprioceptive action component, the illusion strength algorithm and the integration with the Unity engine simulation
environment (see next section).

2) Environment: The experiment took place in a virtual environment modelled in the Unity engine [30]. For the
agent, the same configurable arm model as used in [23] was used. To simplify the free-energy optimisation and
visual decoder training, the free-energy agent was given velocity control over the joints of the left arm, which was
granted two degrees of freedom, being shoulder adduction and abduction (moving towards and away from the body)
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and elbow flexion and extension (moving the lower arm towards and away from the upper arm). The body state
space was subsequently defined as the angles of these degrees of freedom with respect to the initial position.

The environment provided proprioceptive sensory input on the aforementioned joint angles to the free-energy
model in degrees relative to the initial joint angle position, as defined by the RHI paradigm (see next section). Visual
sensory input to the model originated from a camera located between the left and right eye positions, producing
256x256 pixel grayscale images. This camera was configured to not be able to observe the real body, but instead
only see the presented ’rubber’ body. A solid grey background was used to avoid visual interference and decoder
artefacts originating from properties other than the presented arm as well as providing a high contrast image. The
grey background had an intensity of 32

255 (≈ 1
8 on a scale from black (0) to white (1)), which was selected instead

of a black background because initial tests showed poor optimisation performance in these conditions.
Instead of using the original realistic skin texture on the arm, a solid non-reflective near-white colour was used to

prevent model optimisation problems resulting from having to learn the reflective properties of the arm with respect
to the environment. This near-white colour had an intensity of 232

255 (≈ 7
8 on a scale from black (0) to white (1)),

which was chosen for the same reason optimisation reasons as the grey background colour. Finally, the ML-Agents
toolkit was used to provide the interface between the Unity environment and the model in Python [30].

Virtual arm: 

Left

Real arm: 

Center

CameraVisuo-tactile 

stimulation

Fig. 3: Virtual environment and experimental setup modelled in the Unity engine.

3) Rubber-hand illusion: Equivalent to the setup used by [23], the real arm was placed in a forward resting
position such that the hand was located 30 centimeters to the left of the body midline, denoted as the center
position. The real arm was not visually observed by the agent, instead, the fake ’virtual’ arm is observed either
at the position of the real hand, 15 centimeters to the left of the real hand or 15 centimeters to right of the real
hand, respectively known as the center, left and right positions. These conditions were created in the environment
by manually adjusting the shoulder and elbow joint to making sure that the horizontal (X-axis) distance between
the center and left/right condition was 15 centimeters, and the vertical (Y-axis) distance was zero centimeters.
Because of the limitation of only being able to control two joint angles, this resulted in a slight deviation in the
forward/backward (Z-axis) distance of about 1 centimeter, making the absolute distance between the left/right and
center conditions a few millimeters higher than 15 centimeters.

Visuo-tactile stimulation was applied by generating a visual event at a regular interval of two seconds, followed
by tactile event after a delay randomly sampled from a uniform distribution within a certain range. This range was
depended on the stimulation condition, being either synchronous or asynchronous. In the synchronous condition, the
time difference (in seconds) between the visual and tactile event was uniformly sampled from the range [0, 0.1),
while for the asynchronous condition, it was sampled from the range [0, 1). The rate of exponential decay when no
event took place rdecay was set to 1

80 . The variance of the Gaussian distribution determining the likelihood of the
visual and tactile events shown in Equation (12) was set to 0.2 (with tv and tt in seconds).

The agent’s arm was restricted such that no actual movement of the real arm was allowed, instead, the attempted
movement was being observed. For both visual models, the agent was exposed to the three RHI conditions for
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N = 5 trials. Every trial lasted for 1500 iterations, which in combination with ∆t = 0.02 means an analogous real
trial time of 30 seconds.

4) Reaching: To validate proper functioning of the agent’s perception and action, multiple reaching tasks were
performed, testing the agent’s ability to move its arm to a desired position. To this extend, 80 random goal arm
positions were generated, of which 40 were close to the initial arm position and 40 were further away from the
initial arm position. For the ’close’ positions, joint angle offsets for the shoulder and elbow were randomly sampled
from ± Uniform(1, 8), while for the ’far’ positions, these offsets were sampled from ± Uniform(8, 18).

In agent was informed of these goal positions by providing it the visual perception corresponding to the goal
positions as a visual goal in the active inference formulation. Both visual models were subjected to the reaching
task using the same goal positions for 5000 iterations per reaching task. Both the distance between the real arm and
the goal position and the visual error were recorded and are shown in Fig. 7.

III. RESULTS

A. Rubber-hand illusion

The shift in perceived arm location and the action attempted by the agent resulting from subjection to the RHI
are depicted in Fig. 4. Both showed similar patterns for both the synchronous and asynchronous condition. We take
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Fig. 4: Model results. (a, b, c) Mean perceptual end-effector drift (in cm). (d,e,f) Mean attempted horizontal end-
effector acceleration. (g) Mean forces exerted by human participants in a virtual rubber-hand experiment (from [23]).
(h) Visual representation of the Jacobian learnt for the visual models.
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VAE ConvDecoder
Condition µ σ µ σ
Left −2.954× 10−1 1.592× 10−1 −1.815× 10−1 8.857× 10−2

Center 9.011× 10−3 2.939× 10−3 −4.063× 10−3 1.806× 10−3

Right 3.649× 10−2 2.034× 10−2 −9.099× 10−3 6.531× 10−3

(a) Synchronous stimulation
VAE ConvDecoder

Condition µ σ µ σ
Left −9.7594× 10−3 2.254× 10−2 −8.012× 10−3 7.392× 10−3

Center 1.957× 10−3 1.827× 10−3 −6.222× 10−4 1.108× 10−3

Right 5.990× 10−4 4.253× 10−4 1.015× 10−3 7.207× 10−4

(b) Asynchronous stimulation

Fig. 5: Statistics of the attempted horizontal end effector acceleration under the RHI (in ms−2). The numbers shown
are analogous to the results displayed in Fig. 4e and 4f.
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Fig. 6: Attempted joint angle acceleration under the RHI during synchronous stimulation.

a more in-depth look at the action patterns, since these are the results to be compared with the human data. For
the left condition, we observed the expected negative (i.e. left on the horizontal axis) end effector action during
synchronous stimulation (4e) for both visual models. For the center condition, both models seemed to produce
the expected near-zero end effector action. For the right condition, we observed the expected positive end effector
action for the agent using the variational autoencoder during synchronous stimulation, but a close to zero action
for the convolutional decoder. It seems to be the case that the convolutional decoder in general produced weaker
actions than the variational autoencoder under the same conditions. Lastly, we found that during asynchronous
stimulation, both models produce near-zero action under any experimental condition. It is interesting to note that
for both models, left-oriented action was multiple orders stronger than right oriented action (for the VAE under
synchronous stimulation, the ratio was µL

µR
≈ 8.1), even though these conditions had identical distances from the

center condition.
To better understand the attempted end effector acceleration we examine the components from which it originates,

being the attempted acceleration in the shoulder and elbow joints which is displayed in Fig. 6. For the shoulder
joint, we observed similar action patterns for both models as observed in the end effector. However, the action of
the shoulder joint for the right condition appeared to be stronger (relative to the action for the left condition) than
in the end effector for both models. We identify the origin of this difference by looking at the action in the elbow
joint. For the elbow joint we observed an attempted downward rotation for the left and right conditions. Because
the shoulder joint was positioned at angle of about 30° relative to the vertical axis, downward rotation had a left
horizontal component while upward rotation had a right horizontal component. This means that the elbow joint
produced an attempted action with a left horizontal component for both the left and right conditions. Subsequently,
the expected right horizontal component produced by the shoulder joint was hindered by left horizontal component
produced by the shoulder joint, increasing the difference between the left and right condition.
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Fig. 7: Reaching performance. (a) Euclidean distance from the middle of the agent’s hand to the middle of the target
hand position. (b) Mean squared error (MSE) between the visual perception sv and the visual goal svgoal

.

B. Reaching

For the reaching tasks we measured both the L2 distance between the real arm to the goal and the mean squared
error (MSE) between the visual observation and the visual goal, shown in Fig. 7. We observed similar performance
for the variational autoencoder and the convolutional decoder models for both the ’close’ and ’far’ reaching tasks.
For the ’close’ reaching tasks, we observed quick and stable convergence to the goal position, where the per-task
deviation was mostly caused by the random starting position. For the ’far’ reaching tasks on the other hand, the
average of all runs showed only a slight trend towards the goal position, with a larger variance than expected from
the random initial start position only. We found that there were twelve goal positions for which both models were not
able to decrease the distance between the end effector and the goal, indicating a complete failure to reach towards
the target. These goal positions all had their shoulder joint angle within [-18, -15.3], with eight positions having
their elbow range within [-17.7, -8.3] and the other four positions within [10.9, 18]. Analysing the data without
these outliers (Fig. 8) shows a stable trend for the ’far’ condition similar to that observed in the ’close’ condition,
indicating that the overall ’far’ reaching performance was adequate, but that a certain range of goal targets pose a
problem to the model.
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Fig. 8: Euclidean distance from the middle of the agent’s hand to the middle of the target hand position without
the twelve outliers discussed in section III-B.
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Fig. 9: Visual representation of the ∂g(µ)
∂µ Jacobian for both visual models. Positive (red) points indicate that increasing

the corresponding joint angle increases the intensity of those pixels, while negative (blue) points indicate a decrease
in pixel intensity for an increased joint angle.

IV. DISCUSSION

A. Agent performance

We have seen how the free-energy agent produced action roughly within our expectations of its behaviour under
the RHI. In addition, we have seen that the model is well capable of reaching towards a goal position presented
in the form of a visual goal, except for a certain range of goal positions which the agent was unable to approach.
The fact that all outliers consistently arose from goal positions in a very specific range of joint angles suggests that
this range of positions is associated with local optima in the visual model. This could be partly caused by the arm
moving out of the camera frame, but because this issue not only appears for highly negative goal elbow joint angles,
but also for highly positive goal elbow joint angles, it is unlikely to be the main cause.

For the RHI trials, the results showed that even though the left and right conditions are located at exactly the
same distance from the center position, action towards the left was stronger than action towards the right. Although
non-symmetry of the actions could be explained by phenomena such as the body midline bias, these phenomena
generally expect a stronger illusion (or action, see [23]) when the rubber arm is closer to the body, meaning that
we would expect to see a stronger action for the right condition with respect to the left condition. We also observed
that the shoulder joint produced (downward-)left oriented action for both conditions, and that the elbow joint action
was weaker than the shoulder joint action.

To understand how these action patterns arise, we examine at the Jacobian ∂g(µ)
∂µ of the visual models. We have

discussed how this term, shown in Fig. 9, constitutes the mapping between joint angle space and visual space,
which allows us to interpret what happens during the backward pass through the network. The mapping is intuitive,
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showing how the pixel intensity values of the visual prediction g(µ) are expected to change with respect to a change
in the joint rotation. As to be expected, the shoulder Jacobian has positive values on the right and negative values
on the left outline of the arm, as positive shoulder rotation will cause the arm to move to the right. For the elbow
joint, we see that the top outline contains positive values and the bottom outline negative values, as positive elbow
rotation causes the arm to move up and towards the camera.

From the visualisation of ∂g(µ)
∂µ , we take away three important conclusions. First of all, the variational autoencoder

shows more consistent and less noisy Jacobians, indicating that this model might have learned a more stable
representation of the visual space and its relation to the joint angle space.

Secondly, we observe that the values of the elbow joint Jacobians are weaker than the shoulder joint Jacobians
for both models. We hypothesise that this is the reason why we have observed weaker elbow joint action under the
RHI, as well as it being able to explain why elbow joint convergence during the reaching tasks was slower than
shoulder joint convergence.

Finally, conversion from visual space to joint angle space greatly emphasises local differences. For both models
and joints the strongest values lie on the border of the arm. This means that when the visual prediction error is
multiplied with the Jacobian to obtain the visual belief and action update, the error at the border of the arm is of
the greatest influence. By combining this knowledge with the visual location of each of the RHI conditions (Fig.
10), we find a possible explanation for the asymmetric action patterns. We observe that the visual representation
of the left condition overlaps with the visual representation of the center condition, while the visual representation
of the right condition, this is not the case. We therefore hypothesise that the local emphasis exerted in the error
minimisation combined with the visual perspective are the cause of the difference in action strength between the
left and right conditions.

In addition, the local emphasis in the visual space also fits the reaching results, as it could explain why goal
positions that are visually far away from the initial position are hard to reach than goal positions that are visually
close to the initial position.

L C R

Fig. 10: Visual observation of the RHI conditions.

B. Comparison with human data

Our findings resemble the human data from [23] (shown in Fig. 4g) in that a non-negative action is produced in
the direction of the rubber arm. Our results deviate from these findings in that we observe asymmetric action for
the left and right condition despite their equal distance from the hand. In addition, under asynchronous stimulation
our model produces close to no action, while the human data shows no statistically significant difference between
the forces produced under synchronous and asynchronous stimulation [23]. This indicates that the prior probability
value for γ (and/or general visual component strength) was set too low, where higher values might have attained
similar results to that in humans.

Aside from comparing the patterns shown, in both human and agent data on shared characteristics, we could not
perform direct statistical analysis between the two. Because the agent’s action was simplified to velocity control
and thereby ignored many physical influences (see section IV-C) in the system, we were measuring attempted
acceleration instead of end effector force measured in humans [23]. Although these metrics are similar in meaning,
the simplifications made to the environment prevented us from being able to perform direct comparison.
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C. Model simplifications and challenges

In order to create a working system that produced valuable results within the time constraint, a number of
simplifications had to be made.

First of all, the active inference formulation that drove the agent’s action was build upon extensive simplifications
such as the Laplace and mean-field approximations, in which we simplify the approximation of a probability
distribution to the approximation of its mean. Although easy in computation and interpretation, this ignores the
information captured by other properties of the distribution. Better results could possibly be achieved by using
variational methods that do not make these approximations (see for example [31]).

Secondly, the visual system was simplified to use monocular grayscale vision instead of binocular RGB vision in
order to make visual model training feasible. Although we speculate that colour vision would not have a great effect
on model performance, binocular vision might have a significant effect as at would allow for three-dimensional
interpretation of the image. This could possibly alleviate some of the optimisation problems discussed in section
IV-A which are likely due to the error computation in two-dimensional visual space. However, this would come at
the cost of challenging model training and a diminished real-time execution performance. Another approach would
be to use monocular vision but to perform the error computation at multiple levels in the network, allowing for
error computation on multiple abstract space representations. Such an approach corresponds to formulations of the
free-energy principle that model perceptual inference as an hierarchical error optimisation in the brain [9].

The background and arms were solidly coloured to ensure proper optimisation and to rule out any influence from
the environment on model performance. Although the lack of influence from external factors in the visual space is
desired from a scientific and proof-of-concept perspective, real-world applications would need the visual model to
account for noise and visual distractors in order to function properly3.

Important simplifications made to the environment and free-energy model include the exclusion of mechanics
such elasticity, angular and end effector drag and mass. As mentioned before, the model was simplified to act
upon a velocity controller in the joint angles, which allowed for relatively simple environment setup and model
execution. In addition, only considering the first order dynamics in the free-energy formulation allowed for its simple
implementation, execution and parameter configuration.

A disadvantage associated with these simplifications is that we could not directly compare the agent’s results with
the data produced by humans from [23], although we argue that configuring a complex physics environment such
that it can accurately represent the real world experimental setup (and corresponding empirical results) would be
infeasible within the given time constraint.

By using a simple time-step update to compute µ and a, we are in fact using a simple proportional controller.
Such simple controllers are known to oscillate for high gains and experience slow convergence for lower gains. This
means that by including higher order dynamics in the model’s formulation, a substantial improvement in reaching
speed and convergence performance could possibly be achieved.

The usage of a simple time-step update also meant that when there is a persistent error, for instance when the real
arm is restricted and cannot move to minimise the error, the action will increase indefinitely. This is not biologically
plausible as at some point, the neuronal activation driving the action is saturated and cannot increase further. To
account for this, the action value was clamped to simulate this saturation.

Finally, the environmental setup included no delay between the occurrence of events and their perception by the
agent. This lack of sensory delay meant that we did not have to worry about the model and real world being out of
sync possibly causing additional optimisation challenges, as shown in [16]. However, in both humans and robotic
implementations, this delay is inherent to the system and thus unavoidable.

D. Future work

The results have shown how the agent produced action similar to humans under the RHI, as well as showing
adequate reaching performance. However, limitations in the visual model caused sub-optimal performance under
the RHI and in reaching tasks. It would be interesting for future work to focus on visual architectures that improve
perception and action updating by instead of performing the error computation purely in the two-dimensional visual
space, perform error computation and propagation at multiple levels as described in [32]. This could allow for a

3The problem with bringing this model to the real world is that generating a correct visual prediction for a real-world environment requires
intricate knowledge about that environment. This problem can be solved by either only performing visual prediction and error computation for the
interesting part of the visual space (say, the visual prediction of a limb), or by creating a universal model that incorporates the world knowledge
and reasoning necessary to predict the visual result real-world dynamics. Note that if we were able to create such a model, the agent would not
only be able to update beliefs about their limb positioning but also about events and properties in the environment.
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more global and perspective invariable visual system as it is not limited by the visual space, instead being able to
perform error computation at multiple abstract layers of the visual system. Furthermore, using less approximations
in the active inference formulation (e.g. by using stochastics methods [31]) will possibly result in more accurate
and complete action and perception.

Additionally, it is important to note that our implementation used static values for controlling variables in the
active inference formulas such as the precision of the sensory modalities Σ−1

v and Σ−1
p , while in fact, these should

be optimised in real-time depending on the perceived reliability of the modalities. The optimisation of these terms
in real-time would enable the model to dynamically change the influence of sensory modalities, allowing the model
to adjust for noisy sensory input increasing precision. In addition, future work could focus on extending the active
inference formulation of the model by adding physical mechanics and replace the velocity control by force actuation.
This could allow the model to be used in more sophisticated simulations and possibly even real-world applications.
Finally, in this work, we only consider pure reactive action to prediction error. It would be interesting to consider
models of action with policy, where high-level planning is involved and a policy is learned based on the task.

E. Conclusion

In this work, we have proposed a deep active inference model with as goal to replicate the action patterns found
in [23]. The model used high-fidelity visual input in combination with proprioception to guide perception and action
in a simulated environment. The model was able to produce similar perceptual and force patterns to those found
in humans, reinforcing active inference as a viable method to model human action. Additionally, reaching tasks
validating the proper function of the agent’s action by successfully reaching targets both close to and far from the
initial position, showing no difference in model performance. However, multiple outliers during the far reaching tasks
showed that the visual model is likely susceptible to local optima which negatively impact the reaching performance.
Possible future work includes the extension of the visual model and active-inference formulation to more precisely
update the perception and action, as well as considering models that do not only depend on purely reactive action.
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