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Abstract

The development of reaching behaviour in infants starts just days after birth, and

generally follows a certain pattern of pre-reaching frequency which contains a notable

drop in frequency around 7 weeks of age. The developmental mechanisms underlying

this pattern vary, but a prominent theory is that the onset of muscle co-activation

influences developmental pre-reaching behaviour. Developmental robotics studies

are valuable in examining developmental theories’ merits by reverse-engineering be-

havioural models from leading theories and observing resulting behaviour. The cur-

rent study aims to use developmental robotics to provide additional insight into the

muscle coactivation theory. The cognitive model used to represent processing of mo-

tor actions was realized as a counterfactual Bayesian agent, implementing a previously

untested method, counterfactual imaging, as its inference strategy. The viability of

the imaging procedure in cognitive modeling of motor control was evaluated based on

task performance. Due to complexity issues inherent in the imaging procedure, its

viability as a model for cognition was found to be limited. Even after inference sim-

plification, performance in motor tasks was low. As such, its efficacy was found to be

insufficient for it to be a viable method in modeling cognitive tasks. Influence of the

onset of muscle coactivation was evaluated by comparing it to empirical results from

behavioural studies in developmental psychology. The behavioural effects observed

in human infants were not replicated by the simulated infants implementing an onset

of muscle coactivation. Since imaging was found to be an insufficient model of mo-

tor control, the observed results currently only provide a preliminary indication that

muscle coactivation may not be the cause of observed behavioural patterns. Further

investigation using different models of motor cognition may be necessary.
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1 Introduction

From birth, one of the first things all human infants do is exploring and learning their motor space.

All of our limbs have their own functionalities, and their functioning must be learned before we can

use them dependably and inattentively. Among these functionalities is the capability of reaching

that our arms grant us, and infants start exploring this capability almost from birth. Before infants

reach the age of reaching onset, they exhibit goal-oriented forward extensions of the arms. These

movements are called prereaching movements or prereaching behaviour, and their development

usually follows certain consistent patterns. In a longitudinal study, von Hofsten [1] found that

prereaching behaviour is exhibited even in the first weeks of an infant’s life in frequencies that

generally follow the following pattern: in the first several weeks of life, the amount of prereaching

behaviour is relatively stable, and happens somewhat frequently. Around 7 weeks of age, the num-

ber of prereaches overall drops, while visual fixation on objects of interest increases. As infants

age, the frequency of prereaching behaviour starts increasing around 10 weeks of age onward, and

keeps increasing. This temporary decrease in prereaching movements seems to indicate a change in

a goal-directed action, but the mechanism behind this change still remains unknown. Additionally,

von Hofsten found a pattern in hand posture during prereaching behaviour: prereaches performed

were mostly performed with a closed hand in the first two months of life, and is especially pre-

dominant during the drop-off in overall prereaching behaviour around 7 weeks of age. After this

dip occurs, the number of closed-hand prereaches decreases again, and prereaches where the hand

is opened before or during the forward extension overtake them in frequency.

Von Hofsten proposed two possible explanations for the decrease in infant’s prereaching move-

ments at 7 week of age. The first is based on the theory of approach and withdrawal [2]. This

explanation states that, as infants are subjected to stimuli, they may withdraw from a stimulus

as its intensity increases. This could be visual withdrawal (i.e. turning eyes away, or even the

entire head), but also proximal withdrawal (i.e.not wanting to get physically near the stimulus).

This explanation, however, would suggest that alongside a decrease in forward extensions, infants’

fixations on the target would also decrease, which was not the case in von Hofsten’s study. The

second explanation has von Hofsten’s favour, and focuses on co-activation of agonist and antag-

onist muscles which commences between 1 and 2 months of age [3]. This hypothesis states that,

between the age of 1 and 2 months, infants transition from using an agonistic muscle group to

using both an agonistic and an antagonistic muscle group in goal-directed movement. Agonistic

muscle groups are muscles that pull parts of a limb in the direction of a goal position, whereas

antagonistic muscle groups do the opposite.

Contrary to this phenomenon is the restriction imposed by Descartes’ law of reciprocal inner-

vation [4]. According to this theory, whenever a movement involving contrary muscle groups is

executed, the agonistic muscle group should contract to perform that movement, while the antag-

onistic muscle group should relax with the same magnitude. It is due to the inhibitory nature of

this effect that it is often called reciprocal inhibition. The muscle coactivation as seen by Gatev [3]
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Figure 1: Frequencies of extended reaches across different conditions as found by von Hofsten. One can

clearly see trends that are consistent across movement conditions (the target object movement speed:

stop, slow, fast): Stark increasing slopes starting at 13 weeks of age, and small dips in extended reaching

frequency at 7 weeks of age. This consistent behaviour does not hold under the indicated control condition,

where no object was present. From [1]

runs contrary to this phenomenon, making it a notable effect in the developmental cycle of infants’

motor control. The law of reciprocal innervation is also reported for the control of eye muscles,

which is more commonly referred to as Sherrington’s law of reciprocal innervation. Gatev’s reports

on muscle coactivation of the arms do not extend into the domain of oculomotor control, and as

such no assumptions can be made about its presence or absence in this field. If muscle coactivation

in the oculomotor system does not follow the same developmental pattern as it does in control of

limbs, this may cause the observed difference between the two: The increased gaze percentages at

the 7-week age category, in contrast to the apparent reaching withdrawal at the same age.

Frey-Law et al. [5] present research into muscular activation profiles in both the knee and elbow

joints. They showed a definite, but small, amount of muscle coactivation to be present in healthy
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adults during precise, goal-oriented movements. This may point towards coactivation onset in

infants not being an ‘external’ effect, but rather a strategy involved in more precise, less reflexive

goal-directed reaching. Frey-Law et al. note the source of this antagonist coactivation seems to be

the premotor areas, separating it from reciprocal inhibition, which has “distinct pathways”. These

distinct pathways are often stated to reside mostly in the spinal cord. However, these pathways

seem to be linked not only to inhibitory, but also excitatory connections [6]. More concretely,

Crone et al. show that the spinal source for reciprocal inhibition can be traced back to the

inhibitory reciprocal Ia pathway [7]. This pathway stems from the muscle spindles in the agonist

muscles, and follows the inhibitory interneurons to the antagonistic motor neurons. Additionally,

Hoshiyama et al. show preliminary evidence in favour of a cortical influence on reciprocal muscle

control [8]. Using Transcranial Magnetic Stimulation (TMS) over smaller intervals just before

voluntary movements, they showed a gradual increase in agonist facilitation, which co-occurred

with antagonist inhibition from 60ms before the voluntary movement. These results suggest a

cortico-spinal influence on the reciprocal effects of muscle innervation.

Gribble et al. [9] measured the amount of muscle coactivation in goal-oriented reaching tasks

in healthy adults in order to determine its involvement in movement accuracy. They measured

electromyographic signals in the arm muscles during and after movements aimed at targets of

varying sizes. The arm’s muscle coactivation was observed to be inversely related to the target’s

size; for smaller targets, participants co-contracted their opposing muscles more. This suggests

that, in healthy adults, muscle coactivation is a modulating force that facilitates accurate movement

of the arms.

It stands to reason that the neurological sources of coactivation and reciprocal inhibition are the

same in both infants and adults. As such, one can conclude that, as in adults, muscle coactivation

in infants may be strongly involved in fine-grained motor control. Indeed, where the involvement

of small measures of muscle coactivation in fine-grained control is to be expected, the amount

of coactivation in infants is much increased compared to that in adults. The reason for this

phenomenon is, as per this research, unknown. We hypothesize, however, that it is used by infants

as a means to quickly explore and learn fine-grained control of the arm necessary for reaching,

which is thus preceded by the coactivation phase.

1.1 Developmental Robotics Models

Empirical developmental studies show many behavioural trends and neural mechanisms that seem

to be involved in the development of infants. Confirming or falsifying theories regarding causalities

between behaviour and cognition can prove difficult due to a major restriction inherent in develop-

mental psychology: Participants are (very) young. Selecting participants for specific abnormalities

becomes near impossible considering such studies often require infants only a few weeks or months

of age— after all, it is not often that a 2-week-old infant is diagnosed with specific neurological

disorders. It is here that developmental robotics can provide insight into the relations between
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physical and cognitive mechanics on one hand, and developmental trends on the other. Modeling

a ‘growing’ agent that adheres (or runs counter) to the tested theory allows researchers to test the

merit of said theory. In this specific case, modeling an artificial agent following the natural con-

straints set by von Hofsten’s coactivation hypothesis allows us to test the hypothesis by comparing

simulation results to the empirical ones. Such insight into the basis underlying developmental

trends can prove vital in the understanding of human cognition.

Before diving into our own model of development, some knowledge on the current state-of-

the-art in developmental robotics must be established. Several models for the development of

motor skills have been presented, some of which in direct response to von Hofsten’s findings. The

following are several robotic models of motor-space exploration in developing infants. Savastano

& Nolfi [10] present a biologically inspired approach to learning models of inverse kinematics.

It learns in increments, and makes use of the reflexive nature of infants’ movements, as well as

the maturation process involved in them. Their results closely resemble those found in empirical

studies done with young infants, and show the importance of variation in factors that influence

the complexity of tasks during motor-skill acquisition. This incremental learning process provides

opportunities for infants’ motor skills to progress more effectively as they learn new, more complex

variations as they improve. The results found in this study are noted to be analogous to the

motor skill characteristics seen in 2 to 18-month old infants. This time interval does not include

the prereaching stage, of which Savastano and Nolfi take note. They do, however, model the

prereaching stage, characterizing it by its low visual acuity, its reflexive nature, and the reduced

involvement of cortical areas. They implement these characteristics using only sensory-motor

connections, and hand-coded weights and fixed learning rates.

Berthier [11] proposed a mathematical model for motor-skill acquisition based on ‘movement

units’ described by von Hofsten in later research [12]. Using Q-learning, he trained a model that,

using these smaller sub-movements, learned to reach for targets in a 2-dimensional movement

space. This model was made on the assumption that infants use these submovements due to

lack of control of the arms, and as such was made to exhibit them during low performance time

windows. The resulting movement characteristics (i.e. use of submovements, end effector position,

movement velocity) were compared to those collected from six human infants. The simulated

infants indeed had less need for submovements as they ’aged’, and generally finished goal-directed

movements in the first move after having been trained. This follows the trends seen in humans,

where fully in-control adults will tend to make arm movements without the need for submovements.

Additionally, the underlying assumption that infants’ use of submovements is directly linked to lack

of control was evaluated using measurements of variability and error in infants’ arm movements.

These measures were compared to those found in the simulation, and were shown to be statistically

similar.

Shaw et al. [13] provide robotic simulations of the exact experiment performed by von Hofsten

as part of the babybot challenge organized for IEEE ICDL-Epirob in 2015. They derive some

of von Hofsten’s major findings, and attempt to model three of four findings they find most
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major: the 7-week dip in prereaching, the peak in closed-handed prereaches at 7 weeks, and the

tendency in older infants to prefer stationary targets over moving targets. They do so by modelling

infants’ fixation, excitation, and reaching probability, while separating systems to learn fixation

and reaching. The model is based on learning sensory-motor mappings of target locations and

motor commands, which they used previously to model fixation learning [14]. They base the form

of (pre)reaching at specific ages on empirical results regarding the use of several agonist-antagonist

pairs. These are held accountable for certain reaching phenomena such as the locked-elbow reaches,

and circumvent modelling of muscle coactivation, noting that “[muscle coactivation] only affects

the type of reaching, and not the amount”. However, it should be noted that von Hofsten does

not necessarily measure the total number of attempted prereaches, but those that exceed a certain

length, which may still be impacted by restrictions made by certain types of reaching. The results

found by Shaw et al. do seem to replicate the statistical characteristics of the results found by von

Hofsten, but the timescale is shifted, showing the approximate expected results some 3 weeks late.

Zibner, Tekülve & Schöner [15] present a model of visual fixation, motor reaching, hand open-

ing and closing, and returning to resting position, influenced by a model of the muscular system.

They make use of three separate models to simulate the three stages of prereaching development

identified by von Hofsten. Their results, although rudimentary, do resemble what would be ex-

pected, emulating the empirical results found by von Hofsten. This model does not perform any

autonomous machine learning, and are thus separated into three ’snapshots’ emulating the three

developmental windows. In a later version, the model does perform machine learning to learn the

most successful temporal combination of sub-actions (i.e. open hand, reach, close hand) in goal-

directed reaching [16]. Indeed, their model still accounts for all stages of prereaching development,

supporting the idea that these are caused precisely by the development of sequential organization

highlighted by von Hofsten’s– and their own results.

Despite the impressive body of psychological and behavioural research regarding the source of

muscle coactivation and reciprocal inhibition in healthy adults, there is little such empirical work

regarding infants. Aforementioned research from robotics models serve to provide insight into

possible workings of motor learning. Due to the extensive observations presented by von Hofsten,

current robotics research lifts the veil of what mechanics may be involved in the development of

motor skill acquisition. Eijlander et al. [17] used a highly simplified model of the arm controlled

by a small neural network to show the effects of muscle coactivation on the development of pre-

reaching behaviour. Their results show similarities in simulated pre-reaching frequency and von

Hofsten’s results. This supports the muscle coactivation account on a low-dimensional, simplified

scale. However, interpretation of these results must take into account the level of abstraction used

in obtaining them. In particular, the decreased complexity of restricting simulations from a 3D

to 2D space may already heavily impact behavioural results. The current study not only aims to

expand the current body of knowledge, but also to extend the work from [17].
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Figure 2: An example Bayesian Network encoding probabilistic relationships between variables. Variables

are represented as nodes (X1 through X5), and probabilistic or causal relationships are the arrow connec-

tions between nodes. The network shows relationships between the season of the year (X1), whether or

not it is raining (X2), whether or not a garden sprinkler is on (X3), if a surface is wet (X4), and if that

surface is slippery (X5). The season directly impacts the odds of rain (i.e. it rains more in autumn than in

summer), and the odds of garden sprinklers being on (people water their gardens more in summer), but it

does not directly impact the odds of a surface being wet. The other relationships also encode such direct

relations- indirect relations are encoded as such, through other variables. From: Pearl, 2009 [18, p.15]

1.2 Bayesian models of motor action

There are many different theories dictating models of cognition. One such theory is rooted in

Bayesian theory, modeling functions of the brain as processing information using Bayesian statis-

tics. The basic form deals with structural (and sometimes causal) graphical models of the world

known as (Causal) Bayesian Networks, or BNs. These networks keep track of probabilistic rela-

tionships between the variables that they represent in a Directed Acyclic Graph (DAG) structure.

This means that the relationships between variables show a direction, and do not form directed

cycles (where in any directed cycle, A affects B, which affects C, which feeds back into A). Such

variables would be represented as nodes, with each pair of nodes in a network sharing a connection

of they directly influence each other. A graphical example of a BN can be found in figure 2. Nodes

can encode discrete or continuous values, encoding the probabilistic relations between variables

as discrete probability distributions or continuous probability densities. Discrete variables can en-

code binary values representing a ”yes or no” answer, or non-binary values, such as ”no rain, slight

drizzle, hard rain”. As variables encode more possible values (with continuous nodes technically

encoding infinitely many values within a certain range), the relationships between nodes in the

causal network grow in complexity. From these models, prior probabilities, joint probabilities and

conditional probabilities can be derived, and predictions over probabilities can be made based on

the internal beliefs and possible observations.

Predictive Processing (PP, also called Predictive Coding) methods are often used to model

cognition, providing a framework that utilizes top-down influences on sensory input to determine
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the state of the outside world, and learn its regularities [19, 20]. Conceptually, this is done by

capturing causalities of the outside world in a (hierarchical) statistical model [20], which can be

concretely realised as a BN [21]. Whenever an estimation of a variable in that world is needed, the

model makes a top-down prediction from the variables in the model, comparing that prediction to

the model’s bottom-up input. If there is a difference between the prediction and the input, that is

called the Prediction Error (PE). PEs are subsequently used to update the internal model to more

accurately reflect the observed causalities, in an effort to minimize future PE. Top-down predictions

in situations with high certainty can be used to cancel out bottom-up processing to efficiently make

sense of the surrounding world. This makes the task of processing complex statistical surroundings

less laborious. In situations where the model has not yet learned the relevant causal relations, PE

will be high, and influences form bottom-up inputs will be large, steering the model towards a

state that allows for accurate predictions. Imagine the following situation:

You are walking down a flight of stairs blindfolded. At first, you know little of these

stairs, and will not be able to accurately predict what is in front of you. Within the first

few steps, you will have learned there are downward steps with regular sizes, forming

an internal model of what you expect next. Your predictions are accurate, and you can

walk down the staircase with relative ease without having to feel how big the next step

will be, no longer relying so heavily on the bottom-up detection of the next step. When

reaching the bottom of the staircase, you stumble — you have encountered the floor on

this next step much earlier than predicted; there is a prediction error. You will likely

need to check another step, to ensure the floor is flat from here onward, updating your

beliefs on what is around you, to once again be able to walk upright with relative ease.

Naturally, different applications of Bayesian architectures make use of various other components

and algorithms than described above. Some applications use the beliefs inherent in the predictive

model to infer the causes or effects of certain observations. Others make use of the internal

beliefs to make what-if predictions about the effects of hypothetical scenarios within the model.

When modeling the cognitive processes underlying motor control, a Bayesian model must act

upon its surroundings based on its internal beliefs. The probabilistic mechanisms of acting upon

one’s surroundings should be clear to the agent. It is here that a distinction needs to be made

between actions and acts, where we will follow the definitions provided by Pearl [18, p.108]. These

definitions describe an act as ”[...] a consequence of an agent’s internal beliefs, disposition, and

environmental inputs [...].”. An action is then described as a deliberative internal decision-making

process, generally one that regards the consequences of an act that could be performed. The

vital difference between these two is who can observe them, and how this is done: An act can be

observed externally from the agent, while an action cannot- its observable consequence is an act,

but the action itself is a process internal to the agent.

PP models are often used for modeling perception, or elements thereof, such as receptive

fields (RFs) in the visual system. Rao & Ballard [22] make use of a tree-like structure to model
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receptive fields in the visual cortex, and attempt to show additional extra-classical effects resulting

from processing in cortical RFs. These extra-classical RF effects pertain to the modulation of

RF responses by extension of sensory input to surrounding RFs, and they can be seen across the

visual cortex [23, 24]. They implemented their model with a neuromorphic hierarchical structure in

which the feedback connections propagate predictions from higher order-units to lower-order units,

and the feedforward connections propagate the prediction error that arises from these predictions.

When the model was exposed to natural images, they found subsets of their model that showed

extra-classical RF effects, implying that the modulatory effects of extra-classical receptive fields

are not merely a feedforward mechanism, but are influenced by feedback phenomena allowing the

visual cortex to encode common image features.

In the effort of modeling motor control, PP theories have been proposed considering that

movement actions stem from proprioceptive predictions made in order to minimize surprise, or

free energy [25]. This idea of actively changing sensory inputs to minimize free energy differs

from the way perception systems minimize prediction error, which is to change predictions. This

stems from the idea that perception cannot change outside influences on an agents, but action

can; Friston calls this active inference. This can be likened to interventions: taking action to

force observations into a desired direction. Adams, Shipp & Friston expand this theory further,

explaining the counter-intuitive mirroring of connections in models of the motor cortex compared

to those of the visual cortex [26].

Modeling the cognitive processes underlying motor control involves dealing with interactions

between variables (i.e. muscles that potentially act on the same joint) influencing the same spatial

variables at once. As such, the Bayesian architecture in the present research must be able to

predict the effects of such interactions when contemplating an action. Lewis introduced a theory

for Counterfactual inference (CI) [27]. With decades of support for this theory, CI has grown

into a family of inference methods used to perform actions, allowing acts of intervention upon

the observed world to be premeditated based on belief, rather than observation. For any cognitive

agent to be able to use modulated antagonistic muscles acting on several Degrees of Freedom (DOF)

at once, it should be able to ‘imagine’ the effects of these interactions during the planning stage.

CI provides methodologies fit for reasoning about these interactions within an action. The general

workings of CI are as follows:

An agent A reasoning over a set of variables V with, among others, variables X ∈ V
and Y ∈ V . A has observed neither X nor Y , but (for whatever reason) would like

to infer what would happen to the probability distribution over the values of Y if A

were to set the value of X to x. The new distribution of Y cannot be accurately

found by conditioning on X = x, since this is not an observation, but an interventional

action by A. Thus, A cannot assume the new probability distribution over Y to be

P (Y |X = x). A must instead determine the effects of acting upon X; doing X = x,

or: P (Y |do(X = x)).
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The distinction must be made between this so-called do-operator [28], and conditioning on its

parameters. Support for the necessity of a do-operator can be exemplified from the problems that

would arise when counterfactualizing by way of conditioning:

”[...] workers should never hurry to work, to reduce the probability of having overslept; students

should not prepare for exams, lest this would prove them behind in their studies.” [18, p.108-109]

The practical application of CI in Bayesian inference for modeling such complex cognitive tasks

as motor control has, to our knowledge, not been explored in practice. As such, it is reasonable to

test not only the hypothesis that coactivation influences motor-skill acquisition, but also the viabil-

ity of CI in motor control applications. Exact implementations and of the do-operator have been

the subject of some debate within the Bayesian community. Pearl [29] proposes a mathematical

account of the probabilistic mechanisms underlying CI as action to provide a concrete function as

the do-operator. The proposed method, dubbed Imaging or Bayesian Imaging, provides an exact

definition of the shift in probability mass caused by counterfactualizing a value for any variable

in a model. Moreover, Pearl claims it allows for disjunctive CI: counterfactualizing on various

disjoint values for any given variable (i.e. X = x1 or X = x2). Though this claim is followed

by supporting arguments, Pearl also provides due warning for those considering disjunctive CI as

a plausible theory of mind, stating that the underlying assumptions may be too grand to justify.

Regardless of whether we have need for disjunctive CI, we can still benefit from the clarity with

which Pearl describes the steps involved in imaging. The way he describes Imaging is as follows:

If we have a causal model with a set of variables in which we want to speculate over the effects of

an action, we divide the model’s variables into < x,y, z >. Here, x is the subject of the current

action, where it is ‘set’ to x = x∗. z is the set of variables that are in the past— they are known in

the current moment. y is the set of variables that are in the future, whose probability distributions

will change given the action do(x = x∗). Each possible set < x,y, z > is a so-called world ; an

instance of the causal network. Together, all worlds form the set W. Before performing an action,

each world w in W is assigned a probability mass m which is equal to the world’s likelihood in the

causal model:

m = P (x, y, z) (1)

When the action do(x = x∗) is performed1, all worlds in W with x 6= x∗ vanish, shifting their

probability mass to the surviving worlds W′ with x = x∗. Each vanishing world w selects its most

similar set of worlds in W ′: Sx(w). The most similar worlds are selected using a similarity measure

that guarantees that all worlds w′ that share a history z are equally similar to w. Each world w′

in Sx(w) receives mass from w proportionally to the prior probability of w′. This guarantees that

even among equally similar worlds, the mass released by w is not shared equally, but proportionally.

Each surviving world’s probability mass is the post-interventional probability over y for that world:

P (y|do(x = x∗)).

It is important to note is that imaging does not dictate a set similarity measure for worlds, nor

1Note that this action is part of an intervention, thus we cannot observe yet the new distributions over y, and

thus it is not an act. This is the distinction between actions and acts in imaging over multiple variables.
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does it dictate an action selection measure; it describes the probabilistic effects of a counterfactual

action. As such, CI with imaging preserves the possibility for exploration and exploitation [30],

depending on the action selection criteria an agent upholds. Furthermore, the definition of worlds

included in the use of imaging is best suited for causal models with discrete variables. Dividing

worlds that include continuous variables would cause an implicit discretization. Indeed, the ‘bor-

ders’ between worlds serve the same probabilistic purpose as encoding discrete variables with a

granularity (i.e., the number of values a variable can take) equal to the distance between a world’s

borders.

1.3 Goals and Hypotheses

Taking into consideration current research and state-of-the-art, we propose the following research

questions:

• Can we employ imaging as counterfactual inference to model complex cognitive tasks such as

motor-skill?

• Can the onset of muscle coactivation cause an impetus motor-skill-acquisition?

• Can the onset of muscle coactivation in 3-dimensional reaching behaviour cause observed

developmental patterns?

The indicated strengths of imaging seem to qualify it as a good candidate algorithm for modeling

motor control. However, as often seen with models of reasoning and cognition, it may be too

complex to qualify as a serious cognitive theory, or it may simply generate behaviour that is not

observed in the real world. We surmise the effects of muscle coactivation may at least include

improvements in movement accuracy, as it is shown to be involved in precise movements in healthy

adults. In earlier research into this very topic, 2-dimensional simulations of a similar system did

show statistically similar developmental trends of prereaching behaviour as a result of coactivation

onset [17]. However, extending movement into the third dimension adds redundancy. This redun-

dancy brings increased complexity, which may cause the onset of muscle coactivation alone to be

insufficient to generate observed developmental patterns. The idea is that learning the intricacies

between interacting muscles in a redundant system poses a sufficient challenge to simple models

of cognition, disallowing the onset of muscle coactivation to really make a difference.
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2 Methods

2.1 Movement

The first step in testing our hypotheses is to build a system that performs these movements while

incorporating said constraints. Thus, we first set out to code a movement simulation framework

that could simulate movements of limbs in a 3-dimensional space. Simulation of a 2-link, 4-DOF

arm was coded in Python 3.7. It operates in a 3D space that encodes objects positions as a

set of x,y, and z coordinates. The following sections will describe the characteristics of the arm

model, explain the mechanics behind movement in this model, and cover the mechanical constraints

implemented by emulating the muscular system.

2.1.1 Arm Model

It is simple to imagine a simulation of a human arm: It consists of the upper arm and the forearm,

which are connected by a the elbow. The upper arm is connected to the shoulder, which we can

assume to take a fixed position and orientation in the simulated space, based on von Hofsten’s

experimental set-up. Those with an ambitious imagination may also include a hand, which connects

to the forearm by the wrist joint. The upper arm rotates along its shoulder joint, and the forearm

rotates along the elbow joint. Due to the limited contribution that movement of the hand and its

connected wrist joint make towards reaching distance and direction, we opted against including

them, instead lengthening the forearm by 20%.

Building a simulation to match this and allow for realistic motion forces us to take into account

some additional constraints:

In order to move based on muscle (co-)contraction, each DOF must be articulated by a set

of two muscle groups.

The joints in the human arm have their limits: One cannot bend their elbow backwards, nor

does the shoulder joint allow us to scratch our own backs. Additionally, the forearm cannot

intersect the upper arm, blocking the elbow joint.

Any rotation of the upper arm moves the forearm’s position and orientation, affecting the

way it moves in space by rotating along the elbow joint.

The first issue is solved rather matter-of-factly: each DOF in the arm is actuated by two muscles,

which are mediated by a coactivation coefficient (CC). The exact mathematics behind this pro-

cess will be covered at the end of subsubsection 2.1.3. The net force on the joint in question is

transformed into a joint angle between pre-defined bounds for each DOF. These bounds form the

solution to the second issue — allowing each DOF to function within its own physical limits. The

bounds of motion were based on results found by Rosen et al. [31], and take into account both

types of limits (i.e. limits are either a hard rotation limit, or are blocked by limbs). The third

problem outlined above describes the term kinematics: If we rotate each joint j in the set of joints
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Figure 3: The right-hand rule commonly used in robotics and engineering approaches. It is easily re-

membered by holding one’s right hand square in front, and pointing the index finger, middle finger and

thumb in orthogonal directions, indicating the x,y, and z-axis respectively. Curling the index finger in the

direction of the middle finger represents motion along the y-axis. Some accounts of the right-hand rule

interchange the y- and z-axis. We uphold the version as shown here throughout this research.

J connected by links (or vectors), around axes [x, y, z] by angles θxj , θyj and θzj , then what are

the new states of each j in J? More simply put: If the joints in limb A do X, then what will be

the new state of A? This subject will be covered in subsubsection 2.1.2.

The simulated arm consists of two segments, which we will call links L1 and L2 for the upper

arm and forearm respectively. L1 is jointed at (i.e. can rotate around and translate from) the

origin of the representation space for simplicity. L2 is jointed at the end-point of L2 — it’s frame

of reference is L2. The vectors representing L1 and L2 indicate positions in a 3D space based

on their reference frames, with axes ordered [x, y, z] following the right-hand rule used in many

standard robotics applications such as ROS2. Figure 3 shows an easy method to visualize this

coordinate system, explained by the right-hand rule.

2.1.2 Kinematics

The subject of kinematics is a common problem in many engineering and robotics applications.

Indeed, it is useful to be able to calculate the effect force inputs have on the movement and

position of any moving system. More importantly, it is useful in these applications to be able to

determine the right force inputs to arrive at a desired outcome state or extract a certain change

in states. This process is aptly named inverse kinematics [32]. In contrast, our aim is to provide

a kinematic system, and let our model infant ’figure out’ the dependencies by itself. Therefore,

we require the simulated system to be able to calculate the transformations of the simulated arm

2ROS: Robotic Operating System. http://www.ros.org/
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given joint inputs. Additionally, our aim is not to calculate and learn the entire temporal profile

(i.e. translational and rotational speed) of movements; we are merely interested in final posture of

the arm, and the position of the hand; the end-effector.

Processing motions of the links in the multi-link system describing the arm model follows a set

of matrix transformations imposed on the vectors representing the links. This allows for rotation

along all three axes, and for translation within the space described by these axes. First, we will

explain translational transformations, as they are the easiest to describe and understand. Then,

we will describe rotational transformations along each axis, and subsequently describe how these

are combined to allow for a full (homogeneous) transformation of a link in 3D space. Lastly, we

will describe how these transformations can be propagated through a hierarchy of links in a multi-

link system to explain the mechanics of the arm model. The following methodology is based on

material from [33], and verified with reports of comparable methods in [34].

Translational motion of a positional vector [x, y, z] in space can be defined as an offset of

the very same vector. For convenience, we will not treat this as matrix additions, but matrix

multiplication. The matrix encoding the translation will be referred to as the translation matrix.

Calculating translation using the translation matrix will go as follows:
x′

y′

z′

1

 =


x+ dx

y + dy

z + dz

1

 =


1 0 0 dx

0 1 0 dy

0 0 1 dz

0 0 0 1



x

y

z

1

 (2)

Equation (2), and the contents of its matrices is based on the following reasoning: The trans-

lation matrix must follow certain rules to be useful when combining multiple transforms later on,

which also affect how we treat our positional vector [x, y, z]. The two main criteria that shape the

matrices in equation (2) are as follows:

• Translation of a vector v by 0 unit distance (i.e. the vector stays the same) requires mul-

tiplication with translation vector t to return v. Thus we need to construct t such that no

translation (t0) yields vt0 = v. t0 is easily found — the identity matrix I of v does precisely

as described.

• When performing any non-zero translation, the translation vector t must retain the shape of

I, but contain translation distances inserted such that the translation distances are applied

only to their respective axes. However, if we were to keep v = [x, y, z], then I would be a

3×3 identity matrix. Subsequently, inserting the translational distance for the z-axis dz into

I would contradict the previous condition; t0 6= I, since dz must be placed on the diagonal

of I. To satisfy both conditions, we must extend both v and t to contain an extra dimension.

Appending the value 1 to v to make v = [x, y, z, 1] would extend I (and thus, t) to a 4 × 4

matrix, with space for inserting dx, dy, and dz, without interfering with the first criterion.

The added dimension to both the positional vector and the translation vector do not affect the

outcome values for any transformation we apply. Additionally, this appended value holds no



2 METHODS 16

meaning for the position or orientation of a given link. As such, we can ignore the added 1 in the

positional vector.

Rotation of a vector along any axis in a 3D space is akin to rotating a vector in a 2D plane

that excludes said axis. Rotation of vectors on a 2D plane by θ◦ is described by:[
x′

y′

]
=

[
cos(θ) −sin(θ)

sin(θ) cos(θ)

][
x

y

]
(3)

Equation (3) follows the right-hand rule in that rotation using positive angles using this formulation

is performed counterclockwise on the given plane. Note that, when used to rotate any vector by

0◦, the rotation matrix is a 2 × 2 identity matrix (since sin(0) = 0 and cos(0) = 1). Indeed, the

first criterion for translation matrices also applies to the rotation matrix. This property is what

shapes the rotation matrices in whichever dimensions we require. However, the matrix as used in

equation (3) cannot be used in our method for rotation in 3D, since they do not incorporate the

z-axis. Additionally, when composing a rotation and translation later on, we require the rotation

and translation matrices to share a 4-length dimension. When composing multiple rotations and a

translation, we require all matrices to be 4×4 in keeping with the translation matrix. As such, we

will shape the rotation matrix such that any non-rotation (i.e. 0◦) forms a 4× 4 identity matrix.

For rotation along each axis, we define a separate rotation matrix that rotates a 2D plane along

that axis. For each axis, we insert the sin and cos of the rotation angle into the rotation matrix

at the dimensions that indicate the axes of the rotated 2D plane. The resulting rotation equations

take the following forms for rotating along axis x, y and z respectively:
x′

y′

z′

1

 =


1 0 0 0

0 cos(θx) −sin(θx) 0

0 sin(θx) cos(θx) 0

0 0 0 1



x

y

z

1

 (4)


x′

y′

z′

1

 =


cos(θy) 0 sin(θy) 0

0 1 0 0

−sin(θy) 0 cos(θy) 0

0 0 0 1



x

y

z

1

 (5)


x′

y′

z′

1

 =


cos(θz) −sin(θz) 0 0

sin(θz) cos(θz) 0 0

0 0 1 0

0 0 0 1



x

y

z

1

 (6)

Much like equation (3) describes a rotational transformation of a vector in 2D, we can combine

the rotation matrices in (4), (5), and (6) into a form that describes a rotational transformation of

a vector in 3D space. This combination of all three dimensions can be written as follows:
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
x′

y′

z′

1

=


1 0 0 0

0 cos(θx) −sin(θx) 0

0 sin(θx) cos(θx) 0

0 0 0 1



cos(θy) 0 sin(θy) 0

0 1 0 0

−sin(θy) 0 cos(θy) 0

0 0 0 1



cos(θz) −sin(θz) 0 0

sin(θz) cos(θz) 0 0

0 0 1 0

0 0 0 1



x

y

z

1

 (7)

Equation (7) assumes that we apply rotation transformations in the order x, y, z, but these

rotation matrices can be swapped around to alter this order. For purposes of continuity and clarity,

we perform these operations in the order our axes are mentioned, which follows equation (7).

Combining equations (2) and (7) yields the following equation, showing us how to simultaneously

rotate and translate a vector. We call this the homogeneous transformation:


x′

y′

z′

1

=


1 0 0 dx

0 1 0 dy

0 0 1 dz

0 0 0 1




1 0 0 0

0 cos(θx) −sin(θx) 0

0 sin(θx) cos(θx) 0

0 0 0 1



cos(θy) 0 sin(θy) 0

0 1 0 0

−sin(θy) 0 cos(θy) 0

0 0 0 1



cos(θz) −sin(θz) 0 0

sin(θz) cos(θz) 0 0

0 0 1 0

0 0 0 1



x

y

z

1

 (8a)

Where we can define a matrix H for the homogeneous transformation by:

H = D(dx, dy, dz)Rx(θx)Ry(θy)Rz(θz) (8b)

which in (8a) is defined as:

H=


1 0 0 dx

0 1 0 dy

0 0 1 dz

0 0 0 1




1 0 0 0

0 cos(θx) −sin(θx) 0

0 sin(θx) cos(θx) 0

0 0 0 1



cos(θy) 0 sin(θy) 0

0 1 0 0

−sin(θy) 0 cos(θy) 0

0 0 0 1



cos(θz) −sin(θz) 0 0

sin(θz) cos(θz) 0 0

0 0 1 0

0 0 0 1

 (8c)

Equation (8) shows us how to perform the homogeneous transformation on a single link, and

provides us with the mathematical definition of the homogeneous transformation matrix H. Since

the arm is a multi-link system, we also require an approach to propagate changes in global po-

sition and orientation through the hierarchy of links. While our upper-arm link L1 expresses its

endpoint relative to the world (its [x, y, z] values are the same as in our global coordinate system,

or L1 = L1G), our forearm link L2 expresses its endpoint relative to L2 (L2 = L2L1). Thus,

the end-effector position resulting from transformations performed on the system L1, L2 cannot

be expressed directly from L2. Instead, we must define its position in L2 relative to the global

positioning through L1. We can derive the global expression of L2 (denoted L2G) as follows:

L2G = L1 +HL1HL2L2L1 (9)

Using the concepts of kinematics described above, we can define movements of the arm model

concretely within our 3D coordinate system.

Rotational transformations in both links of the arm model are calculated from the arm model’s

muscle activation. The degrees of motion are calculated within each DOF’s bounds proportional
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to the net muscle activation within its bounds. That means that, after applying the effects of

muscle coactivation (as will be described in subsubsection 2.1.3), the net force applied by each

agonist-antagonist pair defines the angle θ of one rotational DOF in the connected link. The

upper arm L1 can be rotated along all three axes, whereas the forearm link L2 is only rotated at

the elbow along the x-axis, as the elbow only has one DOF. Transformation matrices HL1 and

HL2 are calculated from the input angles, and the end-effector position is calculated in a global

reference frame following equation (9). This provides us with a hand position in space as a function

of muscle activations and a CC.

2.1.3 Muscle Coactivation

Implementing a model of the muscular system allows us to view muscle coactivation and reciprocal

innervation (or reciprocal inhibition) are two sides of the same coin: Whenever a muscle group

tenses up, what does its antagonistic muscle group do? Full muscle coactivation would imply that

antagonist muscle groups contract at the same time without inhibition. Equal amounts of agonist

and antagonist muscle activation is rare in healthy adults, where partial muscle coactivation is

often used to facilitate high-precision movements. On the other hand, full reciprocal innervation

implies that, when tensing a muscle group causes an intended movement, its antagonistic muscle

group relaxes fully to facilitate the movement. By these definitions, we define both terms in a

combined CC,, scaling from 0 to 1, where 0 denotes full reciprocal innervation, and 1 denotes

the fraction of full muscle coactivation. This distinction is crucial: the coactivation scale does

not dictate antagonist activation based on agonist activation. Otherwise, an agent would relegate

control over half of its muscles to a single control-related intent. Instead, the CC encodes a measure

of reciprocality between the agonist and antagonist muscles. For example:

If an agonist-antagonist pair A,B receive muscle inputs 0.8, 0.3 respectively, this means

that A is tensed up 80% of its maximum capacity, and B is tensed 30% of its maximum

capacity. If paired with a CC of 0, B would be tensed by 0% of its maximum capacity

instead, since a CC of 0 indicates full reciprocality. However, with a CC of 1, B would

be tensed by the full 30% indicated. A CC of 0.5 would lead to B tensing up by 15%

of its maximum capacity, and so forth.

This system allows our agent to activate all muscles individually, while retaining control over

conflicting activity. Such conflict control allows use of coactivation for precise movements in each

DOF separately, while only making use of one CC value per movement. We can define the net

force for each DOF given agonist input A, antagonist input B, and coactivation CC as follows:

F (A,B,CC) = A− CC ×B (10)

However, this requires us to pre-emptively define inputs A and B for the agonist and antagonist

respectively. In order to make this decision implicit, we assume that the most strongly activated

muscle group is the agonist. This is simply a matter of the definition of antagonist muscles; they



2 METHODS 19

are the muscles that pull a DOF in the opposite direction of the intended movement. If, for any

DOF, the antagonist were to contract more strongly than the agonist, the DOF would move in the

other direction. This results in a movement for which our antagonist is technically the agonist —

it is the muscle that pulls the DOF in the direction of the movement. Therefore, we can implicitly

determine the agonist and antagonist by the activation, and arrive to a net joint force of:

F (A,B,CC) = max(A,B)− CC ×min(A,B) (11)

This net muscle contraction receives some normally distributed noise (µ = 0, σ = 0.05). This noise

serves to introduce some randomness to the system, promoting richness in the causal relationships

represented by the cognitive model. For each DOf in the arm, this joint force can be calculated

and transformed into a joint angle by scaling the joint force proportionally to the DOF’s rotation

limits. When a joint angle for each DOF has been determined, the kinematic system calculates

the pose and end-effector position resulting from these rotations.

2.2 Cognitive Model

In order to simulate infants that utilize the described movement system to reach for objects,

we require a model of cognition to determine the arm’s desired input signals to reach any given

end-effector position. We construct a cognitive agent that uses the arm model, and envelops a

probabilistic causal model encoding its knowledge about the arm model’s functions. It utilizes

this causal model to process spatial information of a desired action to generate inputs for the arm

model.

The following subsection describes the Bayesian network used to model the causalities between

action and observation. Subsequently, the way imaging is performed with the Bayesian network

is explained in detail, accompanied by additional considerations regarding its use. Lastly, the

entire processing timeline is highlighted, showing how inputs for the causal model are processed

to produce motor output.

2.2.1 Causal Model

To generate predictions for the ‘best’, ‘most likely’, or ‘least uncertain’ muscle activations to

perform a desired reach, we constructed a causal Bayesian network. This network encodes the

causal and probabilistic relationships between muscle (co)activations, arm postures and spatial

locations as a DAG. To allow the simulated agent to perform inference over all these variables, its

structure must contain the following:

• Pairs of nodes for representing the agonist-antagonist muscles for each DOF in the arm: agx

and antx for every DOF x. Considering the arm model’s specifications, the causal network

must contain 4 of these pairs, for 8 muscle nodes in total.

• A coactivation coefficient node CC to encode how heavily the agonists’ activations are re-

ciprocally inhibited by the antagonists’ activations.
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Figure 4: The causal model that codes for muscle (co)activation, DOF movement, and spatial position.

• Nodes that encode positions in each DOF, integrating activity from the corresponding agonist-

antagonist pair, as well as the coactivation coefficient. Four of these nodes are required, one

for each DOF.

• Nodes that combine DOF movement into spatial positions for the end-effector. Three of

these nodes are required, one for each dimension on the physical space.

The resulting causal Bayesian network can be found in figure 4. Due to the discrete nature of

imaging, each node is a discrete variable. However, representing these variables as binary values

only allows them to be on/off switches. Encoding these variables as such does not necessarily

allow for a natural model of motor control. Indeed, if muscles and CC values are only encoded

as 0 or 1, the DOF nodes would only be able to encode 23 = 8 different causal combinations.

Such sparsity would ‘trickle down’ to the lower layers. Of course, encoding all variables as binary

values to avoid probabilistic sparsity is no solution: reducing motor control to such lengths would

constrain the resulting data to a point where comparing it to any empirical data is an exercise in

futility. When observations over the BN are made, the internal beliefs (likelihoods over variables)

contained therein must be updated to more accurately reflect past experience. Updating beliefs or

hypotheses H given some evidence E is usually done using Bayes Theorem:

P (H|E) =
P (E|H)(H)

P (E)
(12)

An alternative, however, is to iteratively construct hyperparameters of each of these likelihoods,

which can be collapsed into probabilities given any query in the BN. A hyperparameter is a

parameter describing a probability distribution, such as the number of occurrences of a certain

value in that distribution. One can think of a hyperparameter as a parameter used to describe prior
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knowledge about an underlying distribution. This hyperparameter can be varied or updated to

represent different prior knowledge about the mechanisms underlying observations. Furthermore,

iterative approaches of updating a hyperparameter allows for construction of a distribution over the

hyperparameter— a hyperprior. The practical applications of hyperparameters vary: They allow

us to represent an arbitrary function in a relatively easy way. Moreover, hyperpriors constructed

from hyperparameters reflect uncertainty about the correctness of a model’s distributions.

The hyperparameter’s ease of implementation in both construction and updating allows us to

easily keep track of observations in high-granularity systems. Hyperparameters that keep track of

observations of specific states can be collapsed into probabilities for any queried state. A belief

update over hyperparameters then means to simply add an observation to whatever state was

observed. Collapsing a hyperparameter to find the likelihood of a certain query simply consists of

calculating the proportion of total value of the query over all observations:

P (q) =

∑
q∈Q

q∑
H

(13)

Where Q is a queried collection of states q, and H is the hyperparameter.

A note on complexity

The consideration of node granularity brings about a different problem pertaining to imaging: the

number of worlds that must be considered when imaging over the network, and the number of

actions that must be executed when imaging actions over multiple nodes in a network. Concretely,

the space complexity, as well as the time complexity of imaging, quickly become problematic if the

network it is leveraged on contains many nodes, or high-granularity nodes.

Assuming a BN with n nodes with consistent node granularity g, the number of worlds that

must be assigned a probability mass at the start of the operation, M is gn: The space complexity

of imaging over an entire granularity-consistent network is exponential.

For time complexity, we must consider the number of actions that need to be made to image

over a size-n granularity-consistent network. With each i-th action (where i is a counter of the

nodes for which an action has been selected) that selects a value for a node, M shrinks to gn−i.

However, every excluded world must consider every surviving world to determine how to spread its

probability mass. For each action, gn−1(g− 1) worlds are excluded, all of which must consider the

remaining gn−1 worlds. Multiplying the number of excluded worlds by the number of worlds each

must consider, the complexity of performing an action in a model with n nodes with granularity

g is g2n−2(g − 1). More generally, inferring an action as imaging within a network is also an

operation that increases in run-time exponentially in the input size: it is an intractable operation

that is NP-hard. Intractability is a problem for theories of mind due to its inherent assumption

of computational power or available time. For any form of computer, whether it be a laptop or

a brain, to finish an intractable algorithm requires a computational speed or available time that

grows exponentially in the input size. For any real-world scenario to be processes, the input size of a
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problem can reasonably be assumed to be sufficiently large to pose a computational problem for any

type of computer. Since processes of cognition are, in most cases, split-second processes, models of

cognition cannot assume the unreasonably long computation times necessary to solve intractable

problems. By extension, the speed at which computations of intractable algorithms must be made

in the brain to restrict the algorithm’s run-time also grows to unreasonable proportions. The

apparent complexity of imaging highlights a crucial problem in applying it as a theory of cognition.

There are measures that can be taken to reduce the complexity of imaging over a network relative

to the input size. These measures will be described in the following section, 2.2.2.

2.2.2 Imaging over Limb Mechanics

In order to be able to perform imaging over the variables involved in the mechanics of moving the

arm, steps need to be taken to guarantee viable space- and time-requirements. The most obvious

answer is to only apply imaging to parts of the causal model, separating nodes from one another,

allowing for an action to include fewer imaging steps. The question then becomes which parts

of the BN to split apart from one another, and how to do so. Naturally, this splitting of the

BN into smaller subnetworks should respect the causal influences between parts of the network.

The most straightforward way of causally separating subnetworks is called d-separation [35]. The

d-separation criterion identifies whether two collections of nodes X and Y in a causal model

are conditionally independent (d-separated) or conditionally dependent (d-connected), given some

evidence E. This means that, for any evidenced nodes E, making an observation over any node in

X can affect the probability distributions in X, but not in Y , and vice versa. Basic d-separation

criteria can be found in figure 5, showing how evidence in causal structures d-separates and d-

connects variables. This is the basis of conditional dependency— d-separated sets of nodes are

conditionally independent of one another.

D-separating the causal model into smaller subnetworks cannot be done indiscriminately. In

fact, although d-separation is a prerequisite for subnetworks to be imaged over independently, not

all d-separated subnetworks are functional choices for imaging. Firstly, considering d-separated

single nodes as subnetworks, and imaging over them as such does not decrease the algorithm’s

complexity. Secondly, imaging in a top-down or bottom-up manner influences which d-separation

criteria are fit qualifiers for subnetworks. Although an action is not probabilistically equivalent to

conditioning, it does d-connect or d-separate subnetworks. Thus, imaging in a top-down fashion

allows for d-separation of subnetworks only after the procedure has already started, and a set

number of worlds is already considered. One could argue that, if the first imaging action d-

separates the necessary subnetworks, one could separate them beforehand, and perform the same

first action in all networks. Considering this idea in terms of our causal BN, one can conclude

that top-down imaging can be used with separate subnetworks if it first performs an action on CC,

which will d-separate all four axis nodes. However, top-down imaging cannot infer the best arm

input parameters for any target position. Indeed, if our cognitive model aims to provide input

parameters for the arm model given an X,Y,Z position, it must perform bottom-up inference over
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Figure 5: D-separation criteria for variables A and C in three different basic network structures: I): When

B is not observed, A and C are d-connected through it. When B is observed, A can no longer influence

C through B, and they are d-separated. II): When B is a common parent to A and C, they are are d-

connected since observing one provides information about B, influencing knowledge of the other. However,

observing B d-separates A and C. III): When A and C have a common child in B, they are d-separated

when no observations are made. However, observing B d-connects A and C. From Shriprakash, 2016 [36]

its nodes to find the input parameters that are most likely to match the positional values.

As with top-down imaging, bottom-up imaging in our causal model would require conditioning

(or first acting) on CC to d-separate the axis nodes, and then imaging bottom-up. However, the

first imaging action d-connects the axis nodes by performing an action on a common child node.

This does not aid in solving the complexity of imaging over our causal model; the architecture as

seen in figure 4 would not allow for d-separation of any subnetworks in an informative manner. As

such, we made a structural change to the network: we removed the X,Y and Z nodes. The removal

of these nodes is described in 2.2.3. It provides the additional benefit that spatial information

no longer requires discretization to allow for imaging. Indeed, separating spatial information and

cognitive function allows removes the cognitive model’s restrictions on spatial variables. The

resulting BN can be found in figure 6.

2.2.3 Replacing X,Y and Z

With the positional nodes gone, the axis nodes (and their muscles) are d-separated from one

another, and imaging bottom-up through them can be done separately without d-connecting them.

Removing the positional nodes from the causal model can be likened to representing movement

cognition in a body-oriented frame of reference. Movements, and by extension, DOF configurations,

are coded relative to the body. The translation from target positions in space should also be coded

in a body-oriented frame, and input to the DOF configurations through that. To represent this

body-oriented translation from spatial positions to body positions, the architecture needs a way

to determine a ‘goal posture’ that coincides with spatial positions.

Calculating a limb posture coinciding with a given end-effector position is the inverse of what
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Figure 6: The causal model that codes for muscle (co)activation and DOF movement. By removing the

common child relation between the axis nodes, this BN allows for easy separation of subnetworks for a

bottom-up imaging procedure.

our arm model does: The arm model calculates the end-effector position given a set of joint posi-

tions, which we call kinematics. Finding the analytic solution to inverse kinematics in a redundant

system in 3D is a non-trivial problem. However, we can approximate a posture solution (i.e. goal

states for the axis nodes) given an end-effector position using several methods. Indeed, many

methods for finding or approximating an inverse kinematic solution have been proposed in the

past. However, the current model requires a relatively simple solution. Buss provides several sim-

ple iterative approaches that provide good approximations of an analytic solution [37]. The basis

of these methods is the Jacobian J , a transformation matrix that contains all relevant rotational

and translational information pertaining to the end-effector [38]. J can be determined as a propa-

gation of homogeneous transformation matrices determined in equation (8), and is used in forward

kinematics. For inverse kinematics, one should find the inverse Jacobian— finding this analytically

is, again, non-trivial, but we can substitute it for something else. For example, Buss shows that

using a weighted transposed Jacobian to iteratively approach an inverse solution can provide a

good approximation given the right weighting. A more complex, but more flexible solution that

Buss highlights, is the Damped Least Squares (DLS), which was first used for inverse kinematics

approximation by Nakamura [39] and Wampler [40]. DLS is more stable when approximating sin-

gular inverse solutions— when the target end-effector position is at or beyond the possible reach

length, where there is only one joint posture that provides that end-effector position. Due to the

out-of-reach position of targets in von Hofsten’s experiment [1], this method was selected as the

approximator due to this stability.
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2.2.4 Processing Timeline

The timeline of processing a target-oriented reach is a composite of the various methods as de-

scribed above. These methods are used in the same order for every reach, but with different targets.

When a target is processed into desired node states, the following happens:

A target’s position is sampled from a normal distribution with a confidence interval equal to the

target’s width. This sampling is a rudimentary form of visual noise, and serves to introduce vari-

ability into the system’s inputs. The sampled target X,Y,Z position is processed by the DLS

approximator until an approximation is determined within an error bound of 1 unit distance. For

each iteration of the DLS approximation, only the arm model’s four DOFs will be retained. After

a sufficient approximation has been found, the desired joint rotations are transformed into their

respective desired axis node activations.

Once the desired axis node activations are known, the current CC value is determined based

on the agent’s ‘age’. The basis for this value will be highlighted further in section 2.3.3. The agent

will then split its causal model into four subnetworks: one of each axis node with its corresponding

muscles, and CC as its parents. For each subnetwork, the imaging procedure starts: Possible worlds

are initiated, and receive their probability mass. For all subnetworks, the first imaging action that

is performed is setting CC to the predetermined value, which is the same for all four subnetworks.

This first action is dictated by the inference ordering; it d-separates the subnetworks, and only

by imaging over CC first is the separation of subnetworks a valid operation. Probability mass

from excluded worlds is spread to surviving worlds. Subsequently, each subnetwork’s desired axis

value is set using an imaging action, and probability mass is again spread. Once the CC and axis

values have been set, the surviving worlds’ total probability mass dictate probability distributions

over the muscle nodes within the current action. The action selection criterion is not dictated by

the imaging procedure. Based on the distribution over node values dictated by remaining worlds,

values are sampled with their probability. In contrast to selecting the most likely action, this

allows for some exploration of the action space when there is large uncertainty (high entropy) in

the probabilistic effects of an action. A value is first selected over the agonist node, and probability

mass is spread for the last time. Lastly, a value is selected over the antagonist node, after which

a single world remains.

The selected world for each subnetwork dictates values for that subnetwork’s muscle nodes.

The selected values and CC are input into the arm model, which calculates a reach including its

random muscle noise. Note that the executed reach may differ from the desired reach by virtue of

prediction error and muscle noise.

2.3 Simulations

Much like the procedure for calculating a reach, the simulation protocol of infants always is always

subject to the same development and testing. This section describes the various phases of a

simulation.
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2.3.1 Development of Muscle Coactivation

Over the course of development, an infant’s tendency to coactivate antagonistic muscles during a

reach follows a set trend: In weeks 1 and 4, there is only agonist activation (CC = 0.0). Starting

at week 7 there is strong inhibition from the antagonist muscle (CC = 0.8), which decreases back

(through CC = 0.6 and CC = 0.3 at weeks 10 and 13 respectively) to an established ‘adult’

level (CC = 0.2) from week 16 onward. In every motor activity, be it learning phases or test-

phase reaching, the coactivation coefficient that corresponds to the infant’s ‘age’ is selected. These

figures, although based on reports from Gatev [3] and Spencer & Thelen [41], are still arbitrary

to a degree. Indeed, reports of ‘proportional activity’ conform to these numbers, but are reported

separately. In favour of keeping the architecture consistent, we opted to keep this abstraction in

place. Further considerations and discussion on this topic are presented in section 5.

2.3.2 Motor Babbling and the Learning Phase

When an infant is generated, the beliefs implicit in the BN are not yet developed. In order to

develop probabilistic and update relationships in the BN, we employ the following learning phase

procedure: The infant’s CC is set to a value that corresponds to its age. For each muscle in the

arm’s system, a random decimal value between 0 and 1 is sampled from a uniform distribution. The

corresponding reach is calculated, and the causal model’s hyperparameters are updated to reflect

the new observation. In order to develop a new infant’s beliefs, this random learning procedure

is executed with 5000 trials. Such high numbers of random trials are often used in developmental

robotics to jump-start motor learning in simulated or robotic agents. This is generally dubbed

motor babbling as a blanket name for such random learning initiation, based on the equally named

phenomenon seen in infants [42].

After the motor babbling phase has concluded, each 3-week age group elicits a developmental

phase to learn to deal with its available system, and a testing phase to test its new capabilities as

von Hofsten did. These phases will be briefly explained in 2.3.3 and 2.3.4.

2.3.3 Developmental Phase

For each 3-week age group, 2000 development phase trials are executed much like in the motor

babbling phase: the coactivation coefficients are determined on age, which can now be values

other than 0.0 (note that in the motor babbling phase, CC = 0.0 always holds), leading to new

experiences for the agent to learn from. The number of learning trials is kept consistent for each age

group to prevent contamination of results. After all, if certain age groups perform more learning

trials than others, the difference (or lack thereof) in behaviour may be caused by this learning gap,

rather than by mechanistic changes.

The developmental phase learns from such random activity rather than repeatedly calculating

informed reaches for several reasons. First and foremost, learning by way of testing the outcomes of

random activations builds probabilistic relationships that represent observed causalities. After all,
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performing random reaches still adheres to the constraints set by the arm model. These constraints

are what the agent must learn to deal with. Secondly, calculating a reach with CI is an operation

that requires too much run-time to execute hundreds, let alone thousands of times in a row, even

despite measures taken to reduce overall complexity. The extent of this run-time issue will be

made concrete in 2.4.

2.3.4 Testing Phase

For each age group, the learning phase is followed by a testing phase, in which von Hofsten’s

set-up is mimicked to gather comparable data. The simulated infant is assumed to be ‘strapped

in’, locking its position in space. A set of 70 random targets are generated within a certain out-

of-reach range: z-axis positions were normally distributed (µ = 0.0, σ = 0.5). Values on the x-axis

were uniformly distributed between -30 and 30 unit distances. Values on the y-axis were normally

distributed at a distance from the reachable space threshold (µ = 5, σ = 2).

During the testing phase, the 70 targets are presented to the infant. For each target, the infant

infers a desired state to reach for that target, and predicts the best motor signals to reach the

desired state. That is, given a desired state, a prediction is made using imaging for each muscle

node to determine which value for that muscle is most likely to lead to the desired end-state. The

most likely values are chosen to be executed by the motor system. When a reach is executed, data

is gathered regarding the infant’s performance, and the number of extended reaches.

2.4 Data Acquisition

The testing phase gathers data regarding the following metrics:

• The total number of extended reaches.

• The sum over prediction errors in the causal model’s axis nodes per trial.

• The reach error between the end-effector and the reaching target per trial.

For determining the number of extended reaches, a reaching threshold is determined based on

the unit length of the arm, to match von Hofsten’s metric. Despite the fact that von Hofsten

does not mention the extent of his chose threshold, one can assume that it was chosen to only be

exceeded when at least the elbow is flexed or extended such that the hand would point toward

the target. As such, we can assume it must be at least the length of the forearm. So as not

to exclude too many reaches, we set the threshold slightly over the length of the forearm, to a

unit distance of 12 along the y-axis (forward in the movement space). This means that extending

the arm downward (where no target will be present) would not be counted as an extended reach.

Whenever the y-axis value of the end-effector position for a performed reach crosses the extension

threshold, it is added to the number of extended reaches for that testing phase. Each infant gathers

the number of extended reaches per testing phase, for 7 numbers per infant.
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Prediction error for an axis node is the sum of differences between axes’ predicted values, and

their observed values in the executed reach. Both the predicted and observed values fall within the

same numerical range, which is consistent over all joint axes. As such, we can sum the prediction

errors for each axis to come to a total prediction error. For each trial, the prediction error can be

defined as: ∑
a∈A
|ad − ao| (14)

Where A is the collection of axis nodes, ad is the desired value for node a, and ao is the observed

value for the axis in the executed reach. While the desired values for each axis node are restricted

to the possible values the nodes can take, this does not hold for the observed values. Due to the

nature of the kinematic calculations and the added muscle noise, the observed values for each axis

can be any real number between 0 and 1. The possible range for the prediction error is any real

number between 0 and 4. Prediction errors are gathered on a trial-by-trial basis, totalling 70 error

results per testing phase, for 490 error results per infant.

The reach error is calculated as the difference between the end-effector position and the target

position. Since both of the positions are vectors with shape [x, y, z] for target t and hand h, the

reach error can be defined as:

error = |[xt, yt, zt]− [xh, yh, zh]| (15)

Since test phase targets are always out of reach, the lowest the reach error could be for an executed

reach is 1, but on average it will be 5. Reach errors are gathered on a trial-by-trial basis, totalling

70 error results per testing phase, for 490 error results per infant.

Initial experimentation with node granularity up to 7 values per node showed little improvement

in prediction- and reaching accuracy beyond a node granularity of 5. Run-times, however, increased

significantly beyond this granularity. With a granularity of 5, the projected run-time per infant was

approximately 30 minutes, taking approximately 3.5 seconds per reaching action. Granularities of

6 and 7 increased the time per action to approximately 9.8 and 27 seconds respectively, leading to

projected run-times of 85 and 228 minutes respectively. Taking into consideration this increase in

run-time compared to its low pay-off, we decided to run all simulations with node granularities of

5 across the causal models.
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Figure 7: The mean number of extended reaches during the test phases for each age group.

3 Results

The results pertaining to the extended reaches can be found in figure 7. A one-way ANOVA was

performed to test the effect of age as a within-subject factor on the number of extended reaches.

The effect of age on the number of extended reaches was statistically significant (F (6, 174) =

46.9, p < 0.001). A post-hoc Bonferroni test revealed statistically significant differences only

between consecutive weeks 3 and 7 (p < 0.001), and weeks 7 and 10 (p = 0.01). Furthermore,

differences between non-consecutive age groups were statistically significant between weeks 1 and

4 and all other age groups (p < 0.001 for all differences). Additionally, the differences were

statistically significant between week 7 and week 13 (p < 0.05) and week 10 and 16 (p < 0.005).

Note that the statistically significant difference between weeks 3 and 7 and weeks 7 and 10 are

caused by increases in reaching extension, rather than a (temporary) decrease comparable to the

one found by von Hofsten.

To test for an effect of age on the prediction error, a one-way ANOVA was performed. A

visualization of the tested data can be found in figure 8. The effect of age on prediction error was

found to be statistically significant (F (6, 174) = 1163.577, p < 0.001). Further investigation using

a post-hoc Bonferroni test revealed the following: Week 1 was statistically significantly different

from all others (p < 0.001) except for week 13 (p = 0.987). Week 4 was found to differ statistically

significantly from week 1(p < 0.001), 7 (p < 0.001) and 10 (p < 0.001), but not from others. Week

7 and 10 were found to differ statistically significantly from all other age groups (p < 0.001 for all
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Figure 8: The mean summed prediction error during the test phases for each age group.

comparisons). Week 13 was found to not differ statistically significantly form weeks 1 (p = 0.987)

and 4 (p = 0.121), but it did differ significantly from all others age groups (p < 0.001 for all

comparisons). Weeks 16 and 19 were found to differ statistically significantly from all age groups

(p < 0.001) except week 4 (p = 1.0), and from one another (p = 0.155).

Notable effects here are the statistically significant differences were found between all consecutive

age groups (p < 0.001), except weeks 16 to 19, where no statistically significant difference was

observed (p = 0.155).

To test for an effect of age on the reaching error, a one-way ANOVA was performed. A

visualization of the tested data can be found in figure 9. We observed a statistically significant

effect of age on reach error (F (6, 174) = 27.095, p < 0.001). Further investigation using a post-hoc

Bonferroni test revealed significant differences between consecutive age groups at week 7 and 10

(p < 0.005), and between week 10 and 13 (p < 0.01). When looking at non-consecutive age group

differences, weeks 7 and 10 differed statistically significantly from all other age groups (p < 0.001

for all comparisons to week 7, P < 0.05 for all comparisons to week 10). All other comparisons

were not statistically significant. Note that, regardless of differences between age groups, none of

the age groups present an average reach error below a unit distance of 24, and after outlier removal,

standard deviations stay close to 1 unit distance.
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Figure 9: The mean reach error during the test phases for each age group.

4 Discussion of Results

Given the observed statistical results, we can follow up on our research questions and hypotheses.

While these results can not prove or disprove hypotheses, they can provide support for or against

them.

First and foremost, “Can we employ imaging as counterfactual inference to model complex cog-

nitive tasks such as motor-skill?” can be answered with the most certainty. Complexity issues at

the computational level alone pose a very serious issue for imaging as CI in cognitive modeling.

Any intractable algorithm should raise concerns in this regard; after all, how are the operations

inherent in such methods executed in the brain without requiring exorbitant amounts of time? We

know that planning and execution of arm movements —which employ more muscles and degrees of

freedom than our architecture— takes up only a few hundred milliseconds from when a motion is

first detectable in the brain [43]. Present simulations took up over tenfold that amount of time per

reaching motion, while both planning and execution were performed in highly simplified systems.

Imaging as a method for CI deserves a commendation for minimizing its prediction errors given

the unpredictability of its observations. Indeed, when we observe the results over prediction er-

rors, we can see that, in relatively stable surroundings (little to no coactivation, little deviation

from previous experience), the prediction error was minimized quite well. Although it does not

approach 0 error, this is to be expected in a noisy surrounding. Furthermore, since the prediction

error originates from the difference between an observed value (which can be any real number
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between 0 and 1), and a restricted prediction value, one should expect some semblance of predic-

tion error. Indeed, where two observations of 0.14 and 0.28 differ greatly, low-granularity causal

models may represent both as 0.2. This bin size caused by discretization allows predictions to

be done optimally given internal beliefs, and still incur prediction errors as large as half the bin

size. Taking into account both movement noise and granularity-induced minimum average error,

imaging seems to perform relatively well.

However, when we look at reaching error, we can observe that even minimizing prediction error as

well as possible does not prove sufficient to learn the external task of motor control. While signifi-

cant prediction error increases are indeed accompanied by significant reaching error increases (and

likewise for decreases), reaching error simply does not approach the expected minimum average

error of 5. The fact that such high reaching errors can arise from relatively low prediction errors

shows the need for accurate prediction in motor action: The prediction error caused by node gran-

ularity and muscle noise seems small when expressed in node activations. However, translation of

prediction error to joint angle differences shows an average of nearly 20◦ rotation error per joint.

Such deviations in posture can lead to extensive differences in end-effector position, showing the

necessity for low prediction error.

We can conclude that, although imaging can be used to make counterfactual predictions over nodes

with good accuracy, it brings about various issues that hamper its usefulness in cognitive modeling.

Furthermore, while taking complexity-reducing measures and abstracting physical systems barely

allows imaging to be used as an inference method, the behavioural results show little improve-

ment. Due to the complexity reductions, there is a limit to how accurate predictions can be, and

in motor control, this is clearly an issue. This trade-off between the viability and the effectiveness

of the methodology lead us to conclude that imaging in its current form does not allow for realistic

modeling of the cognition underlying motor control. This shows factors that need to be taken

into consideration when formalizing and operationalizing imaging in robo-havioural studies in the

FOES method [44]: Imaging is a formalization of counterfactual imaging that proposes computa-

tional solutions to fundamental questions. The implementation, including the measures taken to

operationalize imaging in a motor control setting highlights issues with the proposed formalization:

Acquiring a combination of tractability and effectiveness requires further operationalization. Fur-

ther improvements allow for exploration of the various implications of implementational details.

Studying the computational and behavioural theories following this process should be the end goal.

Inspecting the statistical results in order to answer the question “Can the onset of muscle

coactivation cause an impetus motor-skill-acquisition?” provides us with some insight, but adds

considerations. The onset of muscle coactivation, in our simulations, is implemented with values

that are speculative based on qualitative reports. The age that this onset coincides with correlates

to an increase in prediction -and reaching error. When the coactivation coefficient approaches

more mature levels the errors decrease. However, they do not decrease significantly past the level

of pre-coactivation errors. Based on these results we can not claim support for the idea that the

onset of muscle coactivation causes quick improvement in motor-skill. However, the low levels of
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prediction error, and the low variance therein especially, do point to a benefit of low (but present)

levels of muscle coactivation, which seems to be in line with behavioural studies.

Considering the restrictions placed upon reaching performance by the chosen generative model of

cognition, one should keep in mind that the prediction errors may be artificially lower-bound by

the uncertainty implicit in the architecture. As such, we cannot immediately conclude that our

data does not support the idea that muscle coactivation or the onset thereof improves motor-skill

acquisition. In fact, we should keep additional considerations in mind: The choice of generative

cognitive models underlying motor action may (indirectly) affect how mechanistic constraints affect

behavioural results. The mechanisms, restrictions and limits implicit in the choice of cognitive

models are likely to affect the observable behaviour of the model. As such, one should take into

consideration that the results observed in this study may be heavily influenced by choosing a

counterfactual Bayesian model of cognition. After further operationalization of the computational

theory of counterfactual inference, the results may be wholly different from those observed here.

However, under the workings of imaging as a counterfactual inference theory, observed behavioural

erformance does not improve under muscle coactivation onset. As such, we should conclude that

cognitive systems that function as counterfactual Bayesian imaging can not utilize the onset (or

presence) of motor control sufficiently to experience strong improvement of motor-skill as a result

of muscle coactivation onset.

Much like the previous question, “Can the onset of muscle coactivation in 3-dimensional reach-

ing behaviour cause observed developmental patterns?” can be answered with additional considera-

tions. Looking at the results for our simulations’ extended reaches, the differences should be clear

immediately. at 13, 16 and 19 weeks of age, our simulated infants show significantly more extended

reaches than ‘newborn’ infants, which is consistent with von Hofsten’s findings. However, around

the onset of muscle coactivation, we find a statistically significant increase in extended reaches,

followed by a significant decrease between week 10 and 13. It should be abundantly clear that

this significant peak is the opposite of the behaviour that is observed in infants at the age of coac-

tivation onset. The obvious conclusion one would make is that the onset of muscle coactivation

in a 3D muscle based reaching model does not cause observed behavioural patterns, but it does

rather the opposite. As such, these results do not support the coactivation hypothesis. However,

one must again take into consideration the effect that the choice in generative causal models may

have on observed behaviour. As with the previous question, one should view these results as a

conditional rejection of the hypothesis that muscle coactivation causes observed developmental

patterns. Indeed, we can conclude that, if cognition of motor control can be modeled as coun-

terfactual Bayesian inference, muscle coactivation alone does not cause the behavioural patterns

during human development.

A consistent theme among these conclusions should be clear: The choice of cognitive models

can heavily influence behaviour exhibited by simulated agents. Although imaging as a method

for making counterfactual predictions does seem to work given that measures are taken to reduce

complexity, it does not suffice as a generative cognitive method if used to model complex mecha-
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nisms. Due to the failings of imaging as a viable strategy for modeling cognitive functioning, one

could go so far as to conclude that hypotheses regarding the effects of muscle coactivation onset

cannot be confirmed nor discarded, as the used inference protocol simply does not mimic cognitive

functioning sufficiently.
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5 Conclusion and future work

Considering the nature of our current conclusions, further investigation into the themes of this

study may provide additional insights, and may provide results that show different support than

those presented here. Furthermore, the implementation of simulated experiments has forced cer-

tain decisions to be made, some of which could benefit from further inspection.

In terms of emulating von Hofsten’s experimental set-up, the choice of a reaching threshold, though

an informed decision, remains an arbitrary one. The current study chose a threshold based on the

simulation’s unit sizes of the arm, reasoning that reaches in the direction of a target would at

least exceed a unit distance of y = 12. This threshold was kept consistent along all values on the

x- and z-axis, as von Hofsten’s description of the threshold mentions a straight line drawn on a

television screen. As exact distances are not named, we were forced to choose a threshold based

on what could reasonably be called a ‘reach’. Furthermore, von Hofsten does not mention any

displacement of the reaching threshold between weeks. Due to physical growth in infants, this may

even have affected the relative effort needed for a reach to exceed the threshold. Since there was

no mention of controlling for such an arguably difficult to balance factor, we chose to keep the

threshold consistent at y = 12 over all simulations.

Furthermore, our simulations were one-shot trials, rather than repeated continuous operations.

Von Hofsten measured extended reaches per minute, with any extended reach exceeding seconds

counting as 2, and any reach exceeding 8 seconds counting as 3, et cetera. Additionally, the

stimuli in the behavioural study moved in front of the infants at various speeds, allowing for

various (significant) effects on the infant’s prereaching behaviour. Due to the trial-based nature of

our simulations, such movement effects could not be emulated. Expanding an this architecture to

be able to deal with time-streams of stimuli is a logical next step. Modeling motor behaviour as

changes in motor states provides a more flexible, and indeed more natural approach to simulating

motor-skill acquisition. Such an expansion can be expected to intrpduce new questions: What

happens internally when no stimulus is present? What motivates an infant to reach for any

stimuli, or to even explore and learn new skills at all? This idea of intrinsic motivation has been

the subject of discussion in developmental robotics. The current study circumvents this issue by

assuming intrinsic motivation to attempt a target-oriented reach. Predictive processing offers a

working interpretation for this concept: When a stimulus enters an infant’s perceptive field, it

changes observations, and causes prediction error. High rates of prediction error are unfavourable

to any organism- the oscillation imply a lack of homeostasis [45]. The infant would attempt

to minimize prediction error on both short- and long-term scales by observing as much about the

stimulus as possible. The intrinsic motivation to learn stems from the prediction error minimization

that implements homeostasis, thus giving the predictive infant a reason to seek out information on

its stimuli. Such prediction error-motivated motor learning should follow from predictive methods

if they are implemented such that they seek to minimize any prediction errors.
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Presenting a moving stimulus in a time-locked series of positions would prove to be a problem

for an imaging agent when one considers the required run-time for calculating a single desired

posture (or change therein): The gathered data were restricted to causal models with low granu-

larity structures due to the run-time required to calculate a single reach. With the chosen network

granularity of 5, calculating a single reach took up approximately 3.5 seconds. If we were to time-

lock the movement of a stimulus to emulate the stimulus presentation von Hofsten outlines, the

agent would only perform one posture change every 3.5 seconds. Such low reaction speeds make

it exceedingly difficult for any simulated infant to keep up with the stimulus, let alone follow its

position with smooth hand movements.

Von Hofsten’s findings include reports on visual fixation of the presented stimulus. These find-

ings were important in favouring the coactivation hypothesis over the approach-and-withdrawal

hypothesis, as they contradicted the latter. The current architecture does not include models of

eye movement and binocular perception. However, in early stages there were plans to include a

model of eye movement, which were discarded in favour of a streamlined, singular approach with

respects to the scope of this thesis. After all, the main goals of the thesis were to test the effects

of coactivation on reaching behaviour, and to test the viability of CI in cognitive models. The

current sampling of spatial input from the target position was used as a simplified shorthand for

such a model.

In essence, an integrated model of the eyes would work similarly to the arm model, but each

eye would rotate along 2 DOFs. Each DOF would have an agonist-antagonist muscle pair to rotate

the eye, which would be subjected to muscle coactivation and reciprocal innervation. Each eye

would sample using the current method, and the combined sampled would be used to interpolate

a 3-D location of the target. The observed positional information would be transformed to body-

centered information, which would be usable in subsequent fixations and reaches. The resulting

model would be able to use multiple subsequent eye movements to fixate the target, or look around

randomly in search of certainty. In doing so, it would inform other motor systems (i.e. the arm,

but the current architecture supports any multi-link limb system) about salient information.

Another point of discussion is the seemingly excessive simplification of internal representations

of motor states. Representing muscle tension as a numeric value is most logically done using con-

tinuous values between some arbitrary lower and upper limits. The need to discretize internal

representations came from the definition of causal worlds used in the imaging procedure. Repre-

senting all worlds in a system with continuous variables would require artificially discretizing these

variables during construction of worlds, lest an infinite number of worlds are used in the imaging

procedure. Keeping the causal model discretized is a simpler solution, both in belief updating

and in consistency of values in the architecture. Naturally, when discretizing variables that should

logically be continuous variables, one would prefer high granularity in these nodes. At first, we

had aimed to use a causal network with consistent node granularities of 10 or higher. Even af-
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ter implementing the additional complexity saving measures outlined in 2.2.1, it became quickly

apparent that such high granularities were not viable.

These problems may not be exclusive to motor control, but can be generalized over cogni-

tive functions that require fine-grained processing. One should note that the issue arising from

the memory- and time-complexity of reasoning with too many different worlds is not exclusive to

imaging. The notion of worlds was not introduced with imaging; it is a term that has been used

in the discussion on CI since before imaging was coined. Any model of counterfactual inference

based on worlds would cause the same problematic trade-off between model accuracy and com-

plexity. Solutions to this trade-off would have to deal with the explosive complexity of dealing

with continuous variables.

A solution one might think of is pre-selection of worlds based on some statistical measure such

as informativeness, or the world’s prior. However, this is a classical part of the frame problem

[46, 47], where, in order to not consider a world, it implicitly must be considered, trapping the

counterfactual agent in a infinite loop of rejecting worlds for consideration. Over the years, cir-

cumventions (and in some cases, claimed solutions) to the frame problem have been proposed

[48, 49, 50, 51], most of which have different applications. Due to the specific nature of the cur-

rent problem, we can not assume nor propose that any of these solutions or circumventions would

provide improvement over the current issue surrounding CI without diving deeper into their work-

ings. Most of these solutions are based in higher-order logic, and attempting to apply them to

the current issue is far beyond the scope of this section. However, the idea stands that a solution

in higher-order logic may provide an escape from the complexity issues surrounding CI. A point

one might make in favour of one specific method of circumvention is that no reasonable agent

that thinks ahead considers every possible event within the number of reasoning steps it makes.

This is a valid argument- after all, any agent that reasons several steps forward will require strong

boundaries on each set of subsequent steps. An example of this would be chess players, who should

not take into account every possible move at all times when thinking ahead several turns, since not

every move is viable in a competition. The bounding of inference steps within what can reasonably

be expected is an example of the sleeping dogs strategy. Advocates of using this strategy within

any AI application may find this a reasonable constraint, and it truly seems to be. However, when

considering a potentially great number of worlds, attempting to apply the sleeping dogs strategy

shows a problem: What worlds does the agent not even think of, and how does it determine those

that are worth consideration? The problem here is that the sleeping dogs strategy is implicitly

applied in the variables that are represented in the causal model, especially if subnetworks are

separated in preparation for CI. Bounding the outcomes by what can reasonably be expected is

the first step implicit in any workable implementation of CI, and attempting to apply any form of

“not waking sleeping dogs” is a futile operation.

Critics may offer up the notion reasoning forward an arbitrary number of steps is bound to cause

complexity issues in any scenario, be it in the real world or in simulations. As such, it is reasonable

to argue that CI should not be considered too far ahead. The question that arises here is: How
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far is too far? Since imaging and other world-based CI strategies are NP-hard, one could argue

that every step is one too far, as every step introduces exponential growth in computational load.

Regardless, one should take into consideration that the current study was performed with with CI

over maximally four nodes with relatively low granularity at any given time. A possible response

is that the non-binary nature of the causal model is what makes this specific use of the method so

problematic, and that CI over binary causal models could work perfectly well. With sufficiently

small inputs even NP-hard solutions can be executed quickly and– assuming such a small model

accurately represent causal structures of the given problem— quite well. the ‘solutions’ to the

complexity issues of CI presented in this study serve the same purpose of shrinking the input

of the algorithm to a workable size. However, these pre-emptive steps merely circumvent high

computational loads caused by the algorithm, rather than addressing its complexity.

One may think the current study may not have made optimal use of imaging’s strengths: Since

imaging facilitates disjunctive counterfactual actions, it can be argued that its required compu-

tational load is wasted on processing single counterfactuals. However, it should not be forgotten

that disjunctive actions lead to less exclusion of worlds. This means that each disjunctive ac-

tion leaves more worlds to be considered during inference over following variables, increasing the

run-time of the algorithm even further. Furthermore, while disjunctive action is indeed one of

imaging’s strengths, Pearl forewarns its use for a reason. Reasoning over successive disjunctive

actions assumes cognitive functions that we were not willing to make: Justifying the use of parallel

sequential disjunctives in a model of cognition seemed like a fool’s errand. After all, how would the

cortical regions responsible for controlling limbs process multiple disjunctive actions at once? This

question can be applied to both reasoning with worlds and to disjunctive actions. Worlds (and

the non-disjunctive reasoning over them) can generally be explained as follows: For each decision

of a control parameter, a multitude of worlds disappears as though a set path has been chosen.

This can be likened to lateral inhibition between layers of neurons in the cortex. In the motor

pathways, neurons encoding the chosen activation for a physical action would be the most strongly

activated, inhibiting others. As such, the notion of worlds is not necessarily unrealistic, if one were

to imagine them as possible activations in pathways responsible for motor actions. For disjunctive

action, this explanation would not hold. Several laterally inhibiting chains of neurons in a pathway

cannot fire simultaneously, as they would inhibit each other, with one chain winning the ‘exchange’.

Various suggestions for further research can be considered given the questions and possible ex-

pansions this study provides. On the developmental and behavioural side, further experimentation

could include extension of the experimental paradigm to include time-scale representations of stim-

uli and motor states will elucidate the effects the onset of muscle coactivation can have on reaching

behaviour. Likewise, an inclusion of a model of eye movement and visual perception can be in-

cluded, providing data regarding fixation behaviour and its interactions with coactivation onset.

It should be clear that the underlying generative model should first be changed, and tested for

possible changes in observed behaviour. Imaging in its current state does not seem to be the right
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model for motor cognition.

Further development on imaging and other methods for CI should be considered with a focus

on their ideal applications, as well as on improving their complexity. Although the basic form of

imaging as presented by Pearl deals with complexity issues, further development of the method

may introduce changes that allow for time-efficient imaging over possible world states. If such an

improvement were to be developed, the bounds of what can be accomplished by counterfactual

imaging will surely shift in favour of natural and realistic models of cognition.
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