
RADBOUD UNIVERSITY

MASTER THESIS

Methods For Automatically Generating a
Legal Thesaurus

Author:
Hugo DE VOS
s4193695

Supervisor:
Dr. Iris HENDRICKX

A thesis submitted in fulfillment of the requirements
for the degree of Master

in the

Center for Language Studies

September 3, 2017

http://ru.nl
mailto:hdvos93@gmail.com
mailto:hdvos93@gmail.com
http://www.jamessmith.com
http://www.ru.nl/cls/

iii

Radboud University

Abstract
Faculty of Arts

Center for Language Studies

Master

Methods For Automatically Generating a Legal Thesaurus

by Hugo DE VOS

s4193695

Automatic thesaurus generation is a desired technique for the reason that a the-
saurus is a useful tool in NLP, but manually making a thesaurus is expensive and
time consuming. In this thesis, the process of thesaurus generation is divided up in
two parts: term extraction and relation extraction. Term extraction being the process
of automatically finding candidate terms for a legal thesaurus and relation extraction
is the process of finding which terms are hypernyms of each other. For term extrac-
tion different termhood measures are used: Log Likelihood, Kullback Leibler Diver-
gence and the measure as assigned by the TExSIS tool. For relation extraction, differ-
ent classifiers are trained to classify whether two terms have a hypernym-relation.
The conclusion of this thesis is that no system could be built that can autonomously
build a thesaurus and that in the short term it is better to look for a system to assist
humans in making a thesaurus.

http://ru.nl
http://www.ru.nl/facultyofarts/
http://www.ru.nl/cls/

v

Contents

Abstract iii

1 Introduction 1
1.1 Problem Description . 1
1.2 The Legal Domain . 2
1.3 Aim of the thesis . 4
1.4 Research Questions . 5
1.5 Outline of the thesis . 5

2 Related work 7
2.1 Language Technology in the legal domain 7
2.2 Thesaurus and Ontology Learning . 8
2.3 Term Extraction . 9

2.3.1 Measuring Termhood . 9
2.3.2 Informativeness . 10
2.3.3 Phraseness . 11

2.4 Relation Extraction and Relation Classification 12
2.4.1 Pattern Based Approaches . 13
2.4.2 Word Embeddings . 13

Finding Hypernyms by Projecting embedding vectors 14
Supervised methods for hypernym 15

3 Methodology 17
3.1 Term extraction . 17

3.1.1 Datasets . 18
Foreground Corpus . 18
Background Corpus . 18
Preprocessing . 18

3.1.2 TeXSIS . 18
3.1.3 Log Likelihood . 19
3.1.4 Kullback-Leibler divergence for informativeness and phraseness 19
3.1.5 Linguistic Filters . 20
3.1.6 Evaluation . 20

3.2 Relation Extraction . 21
3.2.1 Datasets . 21

The Thesaurus . 21
The Corpus . 22

3.2.2 The Word2Vec Models . 22
3.2.3 Features . 22

Negative Examples . 23
Data Split . 23
Overview Descriptives . 23

3.2.4 Classifiers . 24

vi

3.2.5 Evaluation . 24
Jaccard Overlap . 24

4 Term Extraction Results 25
4.1 TExSIS . 25
4.2 Log-Likelihood . 26

No filter . 26
Filter: Noun . 26
Filter: Verb . 27
Filter: Noun Preposition Noun (NPN) 27
Filter: Adj N . 28
Filter: SPEC . 28
Combination of Filters . 29
Comparison of filters . 29

4.3 Kullback-Leibler divergence for Informativeness and Phraseness . . . 29
No filter . 29
Filter: Noun . 30
Filter: Verb . 31
Filter: Noun Preposition Noun 31
Filters Combined . 32
Comparison of KLIP . 32

4.4 Comparison of TeXSIS, Log Likelihood and KLIP 32

5 Relation Finding Results 41
Continous bag of words versus skipgram 41
concatenation vectors versus offset vectors 41
SVM versus logistic regression 42

5.1 Error Analysis . 42
5.1.1 Analysis of False Positives . 42

6 Discussion and Conclusion 45
6.1 Discussion: Term Extraction . 45

Recall . 45
Precision . 46

6.2 Discussion Relation Extraction . 46
6.3 Future Research . 47

6.3.1 Optimizing Term Extraction . 47
6.3.2 Optimizing Relation Extraction 47
6.3.3 Thesaurus Learning in Practice 48

6.4 Conclusion . 48

1

Chapter 1

Introduction

Almost everyone who has written a text recently, probably visited Thesaurus.com
a few times. A useful website if you quickly need a synonym or other information
about a word.

Thesauri are useful tools in many occasions: writing a text, looking for keywords
or getting the meaning of a word. However, making a thesaurus is a lot of work. For
this reason it would be a good thing if this task could be done by a machine.

Thesauri are known to have a positive effect on many Natural Language Pro-
cessing (NLP) systems like text mining systems and information retrieval systems.
(Aronson, Rindflesch, and Browne, 1994; Jarmasz, 2012). An example of applications
in which thesauri are used are search engines (IR-systems) (Bhogal, MacFarlane, and
Smith, 2007), especially search engines that have less (computational) resources than
giants like Google and Bing. Such search engines are usually focused on a single do-
main. In these domain specific search engines, a domain specific thesaurus can make
a difference in the performance. Because smaller search engine companies have less
computational resources, it us usually beneficiary to add lexical knowledge in the
form of a thesaurus.

1.1 Problem Description

A general problem with thesauri is that they are expensive to build and maintain
(Voorhees, 1994; Aitchison, Gilchrist, and Bawden, 2000). Creating a domain specific
thesaurus requires specialists within the domain. Someone from outside the domain
would not be able to classify the domain specific terms and link them to other terms.
People with such specialist knowledge about a domain are usually costly. Making a
complete thesaurus with thousands of entries therefore takes a lot of time. For this
reason, the total costs of creating a thesaurus are high.

Legal Intelligence1 (LI) is a Dutch company that offers a search engine for looking
up documents in the legal domain. LI uses a hand made thesaurus of legal concepts
to improve their search engine and provide their customers with lexical information
about their search terms. LI is looking for an automatic way to improve and maintain
their thesaurus, for the reason that it is expensive to perform this task by hand.

1https://www.legalintelligence.com/

http://www.thesaurus.com/
https://www.legalintelligence.com/

2 Chapter 1. Introduction

1.2 The Legal Domain

The legal domain is linguistically a unique domain that poses a number of challenges
(but also) opportunities for applying language technology.

With respect to information retrieval (IR), Van Opijnen and Santos (2017) dis-
tinguishes thirteen features in which legal documents are different from most other
types of documents. But most of those features also apply to other fields in NLP.
These features illustrate the advantages and disadvantages of applying NLP to doc-
uments in the legal domain. These features are:

1. Volume

2. Document size

3. Structure

4. Heterogeneity of document types

5. Self-contained documents

6. Legal hierarchy

7. Temporal aspects

8. Importance of citations

9. Legal terminology

10. Audience

11. Personal data

12. Multilingualism

13. Scatteredness of legal resources

Volume is the reason why Information Retrieval techniques are needed, but also
a reason why the legal domain could serve as a good corpus for NLP-systems: it
is easy to get a collection with a lot of text. It differs a little per country and legal
tradition, but every day large amounts of legal text are produced within the domain
of law. From verdicts to contracts, to laws to academic material. New legal texts are
added to the total collection in a fast pace.

The average document Size in the legal domain is larger than the size of most non-
legal texts. Information Retrieval application often use summaries of the documents,
but for the reason that nuance is generally of great importance in legal texts, the
document must be processed or read as a whole to get extract knowledge.

Structure: within a legal genre, documents tend to be very structured. For exam-
ple, contracts are all structured roughly the same way. In the Netherlands, verdicts
are also all structured according to the same manner. This could be an advantage
for language technology. However, between the different legal genres the structures
tend to differ to a large extent.

This brings us to the point of heterogeneity of document types. There is no such
thing as ‘the legal document’. Many types of legal documents exist and they differ
in multiple ways. Contracts are different in structure, language use and length from
treaties, court notes or academic texts about law. This means that in most cases there
is not one method that fits all types of legal texts.

1.2. The Legal Domain 3

Self contained documents are documents that are ‘...not just ‘about’ the domain ...’
and ‘ ... actually contain the domain itself and hence [...] have specific authority, depending
on the type of documents’ (Van Opijnen and Santos, 2017, p. 68). In my opinion, this is
a rather vague point and not relevant to most research.

Legal Hierarchy is about that legal documents form a hierarchy according to which
they apply. An example of this is the hierarchical principle lex posterior derogat legi
priori (The newer law displaces the older) (Verheugt, 2013). This means that if a
newer law is more important than an older law when those laws contradict. Other
examples of such principles are the specific law displaces the general law and the higher
law displaces the lower law. These principles are especially important in IR-systems
that automatically try to find laws that apply to a case. (Moens, 2001)

Temporal Aspects also refers to the lex posterior-principle above. But also to the fact
that a law can be totally retracted or be explained differently dependent on time. An
example of this is the Runescape Case (Hoge Raad, 2012). In this verdict, the theft of
a virtual amulet in the game of Runescape was punished by the High Court. Since
this case, the meaning the word good also includes virtual goods in games. Accord-
ing to Dutch law, only goods can be stolen and therefore also the exact meaning of
the word theft changed as a result of this case. This illustrates that the meaning of
laws and legal terms, constantly changes over time.

Citations are an important part of many texts in general. However, in legal texts
they are probably more important. For example in court, the whole argumentation is
built on references to law articles and precedents. This is one of the reasons why IR-
systems are a welcome asset in the legal domain, because a large amount if references
need to be retrieved to build a case in court.

Legal terminology seems to be clearly defined by itself. Murder for example, seems
to be well defined in the law. However, the exact meaning of murder can change
with the different interpretations judges might give to it through time. Furthermore,
definitions of legal terms need to be vague and precise at the same time (Coulthard
and Johnson, 2009): for example, the definition of murder must be general enough to
apply to all cases of murder, but specific enough to leave no doubt to what exactly
murder is.

Another feature of legal terminology opposed to for example biomedical termi-
nology is that many legal terms originate in common language (Dozier et al., 2010).
For example the term Avonex is a rare term. If such a term appears in a biomedical
text, it is almost certain it is a biomedical (named) entity. Legal terms and (named)
entities are more based in common language. For example, lawyer firms are in many
cases called after a person. An example of this is the company Dirk Zwager Advo-
caten (Eng: Dirk Zwager lawyers). Dirk Zwager is the name of a person and lawyers
is a very common term in the legal domain. For none of the terms in Dirk Zwager
Advocaten is very unique, this may cause problems in for example Named Entity
Recognition if no attention is payed to this problem.

A third property of legal terminology is that many legal terms consist of multiple
words. Examples of such terms are algemene maatregel van bestuur (Eng: administra-
tive order) and Algemene wet bestuursrecht (Eng: General Administrative Law Act).
Later in this thesis there will be more attention for this.

Another example is the word murder, this terms is a legal term as well as a com-
mon used term. Although the meanings of the legal murder and the general murder
overlap, the legal meaning of murder has a more specific and narrower meaning
than the common use of murder.

With Audience, Van Opijnen and Santos (2017) refers to the fact that legal texts
have a wide range of possible readers. From academic staff to lawyers to judges

https://en.wikipedia.org/wiki/Interferon_beta-1a#Avonex

4 Chapter 1. Introduction

to the laymen. Many people need the law and read legal documents for different
reasons. As a consequence of this, legal texts are consulted by people with variate
types of education. Therefore legal texts are in most cases not aimed at a single
public. A Dutch juridical verdict, for example, must ideally be readable by all Dutch
citizens, but also mus contain information detailed enough for a lawyer or scholar.

Legal texts often concert people and companies and therefore contain a lot of
Personal Data like names and addresses. On the one hand this makes them suitable
for training Named Entity Recognition systems, but on the other hand many texts
are anonymized to some degree. In the verdict corpus used later in this thesis names
and addresses of suspects, witnesses and other people are left out.

Multilingualism and multi-jurisdictionality are problems in legal language technol-
ogy. Contrary to other domains in science, the juridical domain differs per country.
First of all the language: in many scientific domains like linguistics or biomedicine,
the main language is English and the large majority of the literature is in English. In
the legal domain however, there is no standard language. In the legal domain, every
country uses its own language. Dutch verdicts and laws are published in Dutch,
English verdicts are published in English and German verdicts in German. A conse-
quence of this is that NLP-systems need to be separately developed and or trained
for every language. This makes it harder for the field of legal-NLP to develop than
NLP in other areas as it is scattered over different languages.

Multi-jurisdictionality means that the way a legal system is organized differs per
country. For example the difference between common law as practiced in the UK
and America versus the codification of law in the European mainland (Verheugt,
2013). This influences the way legal texts are structured and this also means that
legal NLP systems need to be adapted to different juridical cultures.

The conclusion of the points from Van Opijnen and Santos (2017) is that the col-
lection of all legal text is not homogeneous. The the properties of legal texts change
with time, discipline, country, audience and many more factors. In this thesis, a spe-
cific subset of all legal documents is considered (namely verdicts). The collection
verdicts are relatively homogeneous regarding the points above. However, to really
represent the whole legal domain, the results of this study should be generalized.

1.3 Aim of the thesis

The aim of this thesis is to research methods for building a legal thesaurus from
a corpus of Dutch juridical verdicts. This thesis will focus on two components of
a thesaurus learning system. As will be further explained in later chapters, these
two components of automatic thesaurus generation are: term extraction and relation
classification (Velardi, Faralli, and Navigli, 2013, e.g.). Term extraction is the task
of finding candidate terms for the thesaurus. Relation classification is the task of
recognizing whether two words are hypernym and hyponym of each other. This
thesis contains two main studies focusing on these two tasks that play important
roles in automatic thesaurus learning

This thesis does not aim to build a full thesaurus learning system, but to provide
insights into the different ingredients of a system. These insights can be used in
further studies in which a full system is built.

1.4. Research Questions 5

1.4 Research Questions

The main research questions of this thesis are:

1. What is the best method for extracting legal terms from a Dutch verdict cor-
pus?

2. What is the best method for relation classification on Dutch legal terms?

Both questions can be divided into two sub questions:

• What is the best method for the task according to the literature?

• How does that method work on the legal verdict corpus?

1.5 Outline of the thesis

• In Chapter 2, a literature review is presented on literature about the differ-
ent aspects of legal thesaurus learning. This chapter consists of four parts: a
part on NLP in the legal domain in general, a part about thesaurus learning in
general, and two parts about the two steps in most thesaurus learning: term
extraction and relation finding.

• In Chapter 3, the methodology of the experiments in this thesis is described.
This chapter is divided in two main parts. The first containing the methodol-
ogy for relation extraction and the second containing the methodology about
relation extraction.

• In chapter 4, the results of the term extraction experiments are presented and
analyzed.

• In Chapter 5 the results of the experiments about relation extraction are pre-
sented and analyzed.

• In Chapter 6 the results are discussed, linked to the literature. Also future lines
of research explored.

7

Chapter 2

Related work

This chapter consists of four parts. The first part is a general discussion about lan-
guage technology in the legal domain. The second part is about previous attempts
on thesaurus learning. Parts three and four concentrate on the studies that are con-
ducted in this thesis. Part three discusses literature about term extraction and works
towards the methodology chosen for this component of thesaurus learning. Part
four discusses literature on relation extraction and relation classification.

2.1 Language Technology in the legal domain

Although the need for language technology in the legal domain seems obvious due
to the large amount of text, there is not very much literature on this topic (Francesconi
et al., 2010; Liu and Chen, 2017). Of course, some research has been done, but the
topics of those studies are rather scattered. The different sub-domains of NLP in the
legal domain are behind to the development of NLP in other disciplines, especially
in comparison with the biomedical domain, in which the potentials of language tech-
nology are widely acknowledged and the different topics like term extraction or on-
tology learning are widely studied.

A task that got relatively much attention in legal language technology is auto-
matically predicting a judges’ decision in a legal case (Aletras et al., 2016; Luo et al.,
2017; Liu and Chen, 2017; Katz, Bommarito II, and Blackman, 2017).

Aletras et al. (2016) try to predict whether there is a violation of an article of the
European Convention on Human Rights (the Convention). For three articles of the
Convention they trained a binary classifier to classify whether it is violated or not
based on the case application. As features they use bag of words N-gram features
and as classifier a SVM is used. With this method, they achieve an accuracy of on
average .79.

The ultimate goal of Luo et al. (2017) is to develop a system to help anyone un-
derstand law. The aim is that that anyone (even a layman) could give a description
of a case in their own words and then get relevant law articles and what kind of
punishment could be expected for this case. For their system Luo et al. (2017) train a
SVM and a neural network that are able to extract relevant law articles given a case
description as well as to predict the charge given the case description.

Liu and Chen (2017) had an objective that was similar to Aletras et al. and Luo
et al.: namely predicting the severeness of a charge. The exact objective of Liu and
Chen is to classify a cases into jail-time categories (for example 1-2 years and 2-5
years). This is achieved by performing a sentiment analysis that was trained on bag
of words features of case descriptions of precedents.

8 Chapter 2. Related work

These studies are examples of a line of research that gets relatively high attention
in legal NLP.

Next, related work on automatic thesaurus learning will be discussed which is
closer to the focus of this thesis.

2.2 Thesaurus and Ontology Learning

Thesaurus and ontology learning is a topic that got much attention through the his-
tory of NLP.

One of the earliest approaches on thesaurus learning is the one by Jing and Croft
(1994). They already recognize the possibilities of using a thesaurus in an IR-system.
They present a system called Phrasefinder. The system works by extracting relations
using rules. However, the paper is not really clear on what a relation exactly is.

Kageura, Tsuji, and Aizawa (2000) build a Thesaurus based on translations be-
tween Japanese and English. The idea behind this approach is that words that dif-
ferent Japanese words that translate into the same English word have a semantic
relation. Apart from this main idea, they also use Part of Speech information. This
information is used to do a cluster analysis and terms that fall in the same cluster
are assumed to be related. As well as in Jing and Croft (1994), there is no clear def-
inition of what a relation is. They are not explicitly looking for hypernym relation,
or a synonym relation. Just words that are semantically related. For this reason this
study is less applicable to this thesis.

A similar technique based on translations (this time Mandarin to English) was
used by Yang and Luk (2003). They learn a legal thesaurus based on parallel trans-
lations of Hong Kong law texts. What makes this study relevant is that this study
extensively describes the term extraction part. In this study, the tf-idf measure was
used to extract relevant terms. Although the tf-idf measure itself is not used in this
thesis, the termhood measures used in this thesis are similar to tf-idf as will be ex-
plained later in this thesis.

The second reason why the study of Yang and Luk (2003) relates to this thesis
is of course that a thesaurus is built for the legal domain. The problem is that it is
not possible to adapt or test their methodology for Dutch. The reason for this is that
there does not exist a parallel corpus for Dutch law. Maybe Europarl and the Eu-
ropean laws and treaties might serve this goal. However these only cover the very
specific domains in law like, for example, trade-law and agricultural law. Areas like
criminal law will not be covered.

Lenci, Montemagni, and Pirrelli (2006) describe a system for learning a legal the-
saurus. This study divides the thesaurus learning algorithm in two stems: term
extraction and relation finding. Term extraction is the process of extracting candidate
terms that could be part of the thesaurus. Relation finding is the part where relations
between those candidate terms are searched. The advantage of splitting the process
in two parts is that the search field for relations is a lot smaller. The scope can even
be reduced to a single domain (like the legal domain). The idea of this two phase the-
saurus learning has also been applied in other studies (Velardi, Faralli, and Navigli,
2013).

This two step phase has also been applied in this thesis.

2.3. Term Extraction 9

2.3 Term Extraction

Term extraction focuses on finding domain relevant words or phrases (terms). The
domain relevance can be expressed as ‘termhood’, which is generally defined as:

the extent to which a term is distinctive for the document or domain of interest.

According to this definition, the notion termhood is relative to the domain. If, for
example, you have a document about a forest the term oak tree might have a high ter-
mhood, while in the domain of linguistics, oak tree has a low termhood. The scope
of this thesis is the legal domain, in particular the domain of Dutch verdicts. Because
of this, a definition of termhood that better applies to this thesis is:

The extend to which a term is distinctive for Dutch legal Verdicts

Apart from these definitions, termhood also consists of a second measure: phrase-
ness. Phraseness can be defined as follows:

The extend to which a term is a cohesive entity

This concept will be explained further in section 2.3.3

2.3.1 Measuring Termhood

There are a lot of measures to measure the termhood of a candidate term, of which
most originate in information retrieval. In this section I will give a brief overview of
some of these methods.

A good place to start is tf-idf (Salton and Buckley, 1988). This is the prototypical
measure to determine how much a term says about a document. This measure works
by multiplying the term frequency with the inverse document frequency. There are
different definitions of tf-idf, but they all come down to weighing some kind of term
frequency with the inverse document frequency.

The terminology some kind of term frequency has been chosen as there are different
types of document frequency among which are Boolean frequency (word is present (1)
or absent (0)), absolute frequency (the number of times a term occurs in a document),
relative frequency (absolute frequency divided by document size) and the log frequency
that can either be the logarithm of absolute or the relative frequency.

The inverse document frequency is equal to one divided by the number of doc-
uments the term is present in. TF-IDF could be described as the term frequency
weighed by the inverse document frequency. The purpose of this weighing is to
down weigh stop words that occur often in a single document (high tf) but also oc-
cur in many other documents (low idf) and up weigh words that occur a lot in a
document (high tf) but not in many other documents (hence the high idf). The in-
tuition is that words with a high tf-idf value are indicative for what a text is about.
In a text about language, for example, words like verb and noun will have high tf-idf
and words like the or computer will have a low value as either their term frequency
is low or their inverse document frequency is low.

10 Chapter 2. Related work

A disadvantage of the tf-idf measure is that it works on the document level. Per
document in a collection, the tf-idf is determined for each word. The research in this
thesis does not try to find out whether a terms is descriptive for a document but
whether it is descriptive for a domain (law) and hence whether it is descriptive for a
collection of documents representing this domain.

A review of different measures to determine the termhood of a word is presented
in (Verberne et al., 2016). As reported in this paper, the termhood of a term can be
determined based on a combination of two measures: informativeness and phraseness:
informativeness is the extent to which a term gives information about the topic of a
document or document collection and phraseness to which a candidate term is a full
phrase.

For example, the word combination college van burgermeester (Eng: College of
Mayor) will have a high informativeness, because it will occur frequently in the legal
domain and not often in a non legal domain. However, it will have a low phraseness,
as it is incomplete. The complete phrase is college van Burgermeester en Wethouders
(Eng: College of Mayor and Aldermen). In this case you only want to find the second
complete option as a term and not the first incomplete option. To achieve this, you
must take into account both informativeness and phraseness.

2.3.2 Informativeness

Informativeness is the amount of information a term gives about a document or col-
lection of documents. In other words, how much a certain term says about a domain
or how representative that word is for a domain.

For example, in the legal domain the term penalty clause will have a high infor-
mativeness, because this is a combination of words that occurs often in the legal
domain and not often outside the legal domain. The word apple will not have a high
informativeness, as it is not unique for the legal domain.

Another way to put it, informativeness is how easy it is to classify a document
based on a term. If you find the word penalty clause occurs in a text, you can say with
reasonable certainty that the text belongs in the legal domain, however, when the
word apple occurs in a document, it is not possible to say (on this information alone)
whether the document is a legal document.

In (Verberne et al., 2016) five informativeness measures are identified: Parsimo-
nious language models (PLM), Kullback–Leibler divergence for informativeness (KLI), Fre-
quency Profiling, Co-occurrence based method (CB).

Those models differ in the details, but they essentially compare the occurrence
of a word in a corpus or document with the occurrence of that same word in a back-
ground corpus. That background corpus can be either a totally different corpus or
all the documents in the same collection as is the case with tf-idf.

An method where two corpora are compared is the pointwise Kullback-Leibler
Divergence for Informativeness (Verberne et al., 2016; Tomokiyo and Hurst, 2003).
Kullback-Leibler Divergence for Informativeness (KLI) is defined in equation 2.1 in
which P (t|D) is the probability of a term (t) occurring in a document and P (t|C)
the probability of a term occurring in a document collection. It is, possible but not
necessary for the document (D) to occur in the background corpus (C). As a result of
this, any document or corpus can be compared with any other document or corpus
with this method.

2.3. Term Extraction 11

KLI(t) = P (t|D)log
P (t|D)

P (t|C)
(2.1)

The KLI-measure measures the informativeness based on relative frequency of
words (or n-grams) in different corpora. Other measures like Frequency Profiling
and Parsimonious Language Models (Hiemstra, Robertson, and Zaragoza, 2004) are
based on the observed frequency versus the expected frequency. In parsimonious
language models the expected frequency of a word is estimated based on the collec-
tion this document is part of and then, for each n-gram, its observed frequency is
compared with its real frequency. For this measure, the ‘target document’ must be
part of the background collection.

This is not the case with frequency profiling (Rayson and Garside, 2000). This
method is used for comparing two corpora or document collections with each other.

First the expected frequency of term t in corpus C (E(t, C)) given corpus C and
corpus D is computed with equation 2.2 in which count(t,D) is the absolute occur-
rence count of a word in corpus C and count(t,D) the absolute count in corpus D.
|C| and |D| are the size of corpus C and D respectively. This formula is based on the
same principle of expectedness as in for example χ2. Also the expected frequency for
every term in corpus C is computed with this formula.

E(t, C) = |C| ∗ count(t, C) + count(t,D)

|C|+ |D|
(2.2)

With the expected frequency for each term, the log-likelihood of a term occurring
in a corpus can be computed. The log-likelihood (LL) of a term t occurring in corpus
C can be computed with equation 2.3. As explained in (Gelbukh et al., 2010), this
formula does not discriminate between the foreground and the background corpus.
It only signals to what extent a word contributes to the difference between the fre-
quency distributions between the two corpora. As Verberne et al. (2016, p. 517) put
it: The term with the largest LL value is the word with the most significant relative frequency
difference between the two corpora.

This is visible from the formula, as the LL will be high when a term occurs more
than expected in the domain corpus, but also when the term is unique for the back-
ground corpus.

In Gelbukh et al. (2010), this symmetry is solved by applying the following heuris-
tic: If the relative frequency of the term in the background corpus is higher than the relative
frequency in the foreground corpus, the log-likelihood is multiplied by -1. As a consequence
of this, terms with a high positive value are representative for the foreground cor-
pus and terms with a ‘high’ negative value will be representative for the background
corpus.

LL = 2 ∗
(
count(t,D) ∗ log count(t, d)

E(t,D)
+ count(t, C) ∗ log count(t, C)

E(t, C)

)
(2.3)

2.3.3 Phraseness

In Verberne et al. (2016), two measures for phraseness are described: C/NV-value
and the Kullback-Leibler Divergence for Phraseness (KLP). Both methods rely on
applying higher weights to longer terms. In the example above about college van
Burgermeester en Wethouders (Eng: college of Mayor and Aldermen), every substring

12 Chapter 2. Related work

of this 5-gram occurs at least as often as the full 5-gram. It is even very likely that
every subset of words of this n-gram, occurs more than the full five words together.
These substrings however, are most of the times not a term on their own.

The C-value (Frantzi and Ananiadou, 1999) works by multiplying the number of
occurrences of an n-gram with the number of words in an n-gram. This way, longer
n-grams get a higher weight and an n-gram such as Burgermeester en Wethouders will
get a lower C-value that the full phrase.

The C-value raises a problem, namely that terms that are a subset of another
term, may be overlooked. For example, the C value will favour College van Burger-
meester en Wethouders above the single word term Burgermeester. Of course, the count
of Burgermeester will be higher than the full 5-gram, but this method is not very sen-
sitive for this problem.

A measure that is more refined with this is the Kullback-Leibler Divergence for
phraseness. The formula for this measure is presented in 2.4. In this formula, P (t|D)
is the probability of a term in document or corpus D. P (ui|D) is the probability of
each unigram i ui from term t in D.

For example, the term college van Burgermeester en Wethouders consists of 5 uni-
grams. P (u0|D) is the probability of college occurring in D.

A result of this formula is that longer terms gain a higher weight. If the unigrams
a term consists of are rare, they will hardly occur outside the context of the larger
term. And the lower the probabilities of the unigrams, the higher the KLP will be.
On the contrary: when a unigram occurs a lot on itself, it may be a term of itself.
In this case the KLP for the larger phrase it is a part of will be lower, because the
individual term also occur.

KLP (t) = P (t|D) ∗ log P (t|D)∏n
i=1 P (ui|D)

(2.4)

The Kullback-Leibler divergence for phraseness (KLP) can be combined with
the Kullback-Leibler difergence for informativeness (KLI) in one termhood measure
called the Kullback-Leibler divergence for Informativeness and Phraseness (KLIP). This for-
mula is presented in 2.5. The KLIP is essentially a weighed sum of the KLI and the
KLP. The gamma (γ) is a parameter that determines how heavily the KLI and KLP
are weighed. The value of the gamma is always between zero and one. A gamma
close to zero yields a high weight for the KLI. A gamma close to one means that the
phraseness is more important .

KLIP (t) = (1− γ) ∗KLI(t) + γ ∗KLP (t) (2.5)

2.4 Relation Extraction and Relation Classification

The task that is done in this thesis is relation classification: classifying whether two
words are hypernym and hyponym from each other. This is different from relation
extraction, because in relation extraction a system actively searches for words that
have a relation. However, to get a good understanding of relation classification, we
need to start at relation extraction.

2.4. Relation Extraction and Relation Classification 13

2.4.1 Pattern Based Approaches

One of the earliest approaches to automatic hypernym relation extraction is the one
by Hearst (1992). This method works by finding patterns that signal a hypernym
relation.

Finding these patterns is done by using a seed-list of known pairs with a hy-
pernym relation. A large corpus is searched for places where those terms co-occur.
At these places the algorithm searches for patterns of words and POS tags that also
regularly co-occur with these pairs. Then it is inferred that such patterns signify
hypernym relations. These patterns are then used to find other pairs

For example: a pattern like in 2.6 can signal a hypernym relation. From a sen-
tence like 2.7, this pattern can extract that injury is a hypernym of bruise, wound and
broken bone.

(2.6) NP {, NP} * , ‘or other’ NP

(2.7) Bruises, wounds, broken bones or other injuries

A later variant on the algorithm by Hearst is the Snowball algorithm (Agichtein
and Gravano, 2000). This is a bootstrapping algorithm for extracting semantic rela-
tions. This is a method begins the same as the method above, but when new word
pairs are found, these word pairs are then used as seed pairs to find more patterns
that then can be used to find new pairs. This method lead to rather high results of a
precision and recall both about .85 after 3 iterations through the cycle.

A difference between the snowball method and the method by Hearst (1992) is
that snowball was designed for more concrete relations like a organization-location
relation. For this reason, the system was also tested on this type of relations and
not on hypernym relations. As a result of this, both systems are difficult to compare
directly. However, as the method of snowball shows similarities with the method of
Hearst, it is not unthinkable to use snowball for hypernym relation extraction.

2.4.2 Word Embeddings

A reason why the pattern based methods described in the previous section may not
be useful for the verdict corpus used in this thesis1 is that the so called Hearst pat-
terns tend to be rare in a corpus (Fu et al., 2014). And I expect them to be even rarer
in the verdict corpus. The reason for this is that the verdict corpus is not explanatory
in nature and also that the texts are specific to one case.

For this reason, a method with more abstraction is needed. A way to get an ab-
stract representation of a word’s meaning is via word embeddings.

Word embeddings is a way to represent words in a vector space. Word embed-
ding vectors represent words based on their contexts. The state of the art of embed-
ding models at the moment are word2vec (Mikolov et al., 2013b) and GloVe (Pen-
nington, Socher, and Manning, 2014). The general working of both of these models
is to train a neural network to predict context of a word and then take the weights
of the hidden layer of the neural network as vector representing a word.

The intuition behind embedding models like Word2Vec or even Latent Semantic
Indexing (Deerwester et al., 1990) is that words that occur in the same context have
similar meaning. Context can either be direct context (for example a window of 5

1See section 3.2.1 for the description of this corpus.

14 Chapter 2. Related work

words left and right) or a larger context like a whole document. A simple example
to illustrate is that both words cow and horse both can occur in the sentence ‘the * eats
grass in the meadow.’. From this it can be deduced that cow and horse have similar
meanings. (Namely: both mammals, farm animals, grass eaters etcetera.)

The reason why word embeddings might be suited well for extracting hypernym
relations is that Mikolov et al. (2013a) showed that semantic relations between words
are intuitively present in these models. For example: Figure 2.1 shows that the lo-
cation of Moscow relative to Russia in the vector space is the same as the position of
Beijing in relation to China.

Another classic example that shows the same is that if you take the vector repre-
senting queen and subtract from it the vector of woman and add the vector for man to
that result, you end up close to the vector for king. What this and the previous ex-
ample show, is that semantic relations in the real world are represented in the vector
space models achieved by word2vec and GloVe 2.

FIGURE 2.1: This image cited from Mikolov et al. (2013a, p. 4) show
how relations are present in vector space models with embedding

vectors.

Because semantic relations are reflected in these distributional vector space mod-
els, these models could possibly also be used to detect hypernym relations. And this
has been tried in different ways that will be described in the following sections.

Finding Hypernyms by Projecting embedding vectors

One of the approaches to learn hypernym relations is described in Fu et al. (2014).
In this approach, a projection matrix is learned. When an embedding vector of a

2The examples given here are all for word2vec. But things that hold for word2vec also hold for
GloVe, as word2vec and GloVe practically arrive at very similar model via a different path (Řehůřek,
2015)

2.4. Relation Extraction and Relation Classification 15

hyponym is multiplied with this matrix, the result is close to the vector of it’s hy-
ponym. For example, multiplying the vector of tulip with this matrix, should result
in the vector of flower.

Fu et al. (2014) try to learn the projection by solving equation 2.8. In this equation,
Φ is a transformation matrix, that, when multiplied with the vector of a hyponym
(x) should result in the vector of the hypernym (y). N in the equation is the number
of hypernym/hyponym pairs. The optimization results in the optimal matrix Φ.
This entails that the difference between Φ ∗ ~x and the vector of its hyponym (~y) is
minimal. In the optimal situation is ~xΦ equal to ~y meaning that the hyponym vector
multiplied with the projection matrix Φ is equal to the hypernym vector.

Φ∗ = argmin
Φ

1

N

∑
x,y

‖Φx− y‖2 (2.8)

An intuitive objection against this method is that not all hypernym relations are
the same and thus can not be uniformly represented in the vector space. For example
in the flower example, flower is a hypernym of tulip, rose and also lily. Because all
hyponyms of flower have a different meaning, their location in the vector space is
different and so their location relative to flower is too.

This problem is recognized by Fu et al. (2014) and solved by clustering the offset
vectors (i.e. the vectors that are the result of subtracting the hyponym vector from
the hypernym vector). They then first learn to assign a hyponym to a cluster and
then multiply the hyponym vector with a transformation matrix belonging to that
specific cluster to get the vector of the hypernym.

Fu et al. (2014) report results with a maximum precision of .80 and a recall of.62,
which are good results in comparison to similar studies

The method of Fu et al. (2014) has been tried by Espinosa-Anke et al. (2016), for a
taxonomy system with hypernym relations. They also learn a transformation matrix
that should project the vector of a hyponym on the vector of its hypernym. They
report F-scores within the range of .22 and .60, depending on the domain (.22 in the
physics domain and .60 in the domain of education). These scores are considerably
lower than in Fu et al. (2014).

No explanation is given for this difference between the results of both studies,
but the difference shows that the approach of learning a projection matrix may be
susceptible to many factors like domain, corpus or even language, as the study by
Fu et al. (2014) was on a Mandarin Chinese encyclopedia and the study by Espinosa-
Anke et al. (2016) was on English Wikipedia.

Supervised methods for hypernym

Apart from the unsupervised approaches presented above, there are also super-
vised methods for extracting thesauri based on embedding vectors. One of these
approaches is described by Baroni et al. (2012). In this experiment a Support Vector
Machine (SVM) classifier is trained to predict whether a pair of two words or terms
are in a hypernym relation.

The features for this classifier are the embedding vectors for both words concate-
nated. From two vectors of length 300 one vector of length 600 is created and on
these vectors the classifier is trained.

As negative examples (examples of pairs that are not hypernym relations), ran-
dom pairs of words are used as well as inverted hypernym pairs (tuples of hyper-
nym, hyponym instead of the other way around).

16 Chapter 2. Related work

The classifier itself is a binary classifier that only predicts whether given a con-
catenated vector, can say whether they form a hypernym pair or not. The classifier
just answers a yes/no question.

This method of training a binary classifier to predict whether a pair of terms have
a hierarchical relation based on embedding vectors has also been used in Roller, Erk,
and Boleda (2014). In this paper, the method of Baroni et al. is compared with an-
other method that is mentioned by Baroni et al. (2012) as an idea for future research.

This second method makes use of the phenomenon described in Mikolov et al.
(2013a) that relations are signified by adding and subtracting word vectors. In the
method by Roller, Erk, and Boleda, a feature vector (f) is created by subtracting the
hyponym vector from the hypernym vector. These feature vectors are then enriched
by concatenating them with f2 (itself squared) creating a vector of length 600.

These features are then used to train a logistic regression classifier that that clas-
sifies whether a pair of words have a hypernym relation.

In the study by Roller, Erk, and Boleda (2014), the same method for creating
negative examples is used as in Baroni et al. (2012), namely, creating pairs of random
terms and inverting 33% real pairs to create inverted pairs consisting of hypernym-
hyponym instead of hyponym-hypernym.

For their experiments Roller, Erk, and Boleda (2014) report a maximum accuracy
of .85 for the difference vectors and a maximum score of .81 for the concatenated
vectors. However, the range of accuracy scores for the concatenation vectors goes
from .65 to .81, while the lowest value for the difference vector is .80, suggesting that
difference vectors are a better and more constant method.

A comprehensive study that compares different vector operations like the ones
described above (concatenation, subtraction) has been performed by Weeds et al.
(2014). In their study, they compare, subtraction, multiplication, addition, concate-
nation, and only training on one vector from the pair.

Weeds et al., train different classifiers with on two different datasets using these
vector operations. Apart from classifiers that predict hyponymy3, they also trian
classifiers to predict cohyponymy, whether two terms are hyponyms of the same
hyponyms (whether they are sisters so to say).

The conclusion of this comparative study is that the results for the different vec-
tor operations differ significantly. Weeds et al. also conclude that different operations
work well for different tasks, but that subtraction an concatenation work well. Sub-
traction scored a maximum accuracy for hyponym detection of .75 and a minimum
of .74 and concatenation scored accuracies of .74 and .68.

Another remarkable result of Weeds et al. is that by only taking the vector of the
hypernym and ignoring the vector of the hyponym as a total an accuracy of .75 can
be achieved, which is the same result as the best result for difference vectors. This
finding supports the theory of Levy et al. (2015) that the SVM just learns whether a
term is more often a hypernym than a hyponym. In other words, the SVM just learns
the position of a single word in the hierarchy.

3A small difference between the classifiers by Weeds et al. and Roller, Erk, and Boleda is that the
classifiers of Weeds et al. predict hyponymy instead of hypernymy. It would be an interesting line of
research to investigate hypernym detection is similar to hyponym detection.

17

Chapter 3

Methodology

As mentioned in the previous sections, thesaurus learning consists of two major
steps: term extraction and relation finding. For this reason this chapter is split in
two. Section 3.1 is about different approaches towards term extraction and section
3.2 will be about the method for finding relations.

3.1 Term extraction

In this experiment, three measures for termhood will be compared: Log-Likelihood
(Rayson and Garside, 2000), Kullback-Leibler Divergence for Informativeness and
Phraseness (KLIP)(Tomokiyo and Hurst, 2003) and termhood as used in TExSIS(Macken,
Lefever, and Hoste, 2013). All three measures are based on the principle of compar-
ing occurrences of terms in a foreground corpus (legal corpus) with occurrences of
terms in a background corpus (general corpus). All of these measure return a score
for a term. And sorting terms according to this score ideally leads to a ranked list
on which the highest n terms are all legal terms. The ranked lists are evaluated with
Average Precision and with Precision and Recall @N.

For the measures Log-Likelihood and KLIP, the ranked lists are filtered with lin-
guistic filters based on Part of Speech. The reason for this is to exclude terms that
cannot possibly be legal terms based on their POS-tags. These filters will also be
evaluated with Average Precision and with Precision and Recall @N.

On TExSIS no further experiments were done. The reason for this is the limited
access to the software of TExSIS. I had no access to the backend of the system. For
this reason I could not use the same background corpus with TeXSIS (TeXSIS uses
Europarl(Koehn, 2005) as background corpus.) It was also not possible to get POS-
tags in the output phrases. This made it difficult to do further experiments. The
results of TExSIS have been included for the reason that it is a state of the art system
to which I wanted to compare my results.

In this section, the different parts of the term extraction study are described. In
section 3.1.1 the foreground corpus and the background corpus are described as well
as the different preprocessing steps. In section 3.1.2, a few methodological notes
on TExSIS are mentioned In sections 3.1.3 and 3.1.4, the Log-likelihood and KLIP
procedures are described respectively. In section 3.1.6 the evaluation methods are
described.

18 Chapter 3. Methodology

3.1.1 Datasets

Foreground Corpus

As a foreground corpus a collection of 300k legal verdicts1 was used. This dataset
contains legal verdicts in all Law areas (e.g. criminal law, tax law or administrative
law). This corpus had a total of around 800M tokens of which 650M words and 150M
punctuation marks.

The corpus was anonymized with respect to the names of civilians. In most cases
these were defendants or witnesses.

The choice for this particular corpus was mainly because of its availability. Be-
cause it is public data provided on the website of the Dutch court (www.rechtspraak.nl)
it was free to use.

Background Corpus

As background corpus, the newspaper part of OpenSoNaR500 (Reynaert, Camp,
and Van Zaanen, 2014) was used. This corpus contains 700k newspaper articles. In
total the background corpus consists of 212M tokens.

The main reason to use this corpus was for replication of Verberne et al. (2016)
in which a generic newspaper was used. The SoNaR newspaper corpus seemed fit
for the purpose of background corpus, since newspaper articles generally take on a
wide range of topics. It is true that some newspaper articles are about legal topics,
but this is only a subset of the total.

Preprocessing

The SoNaR500 newspaper corpus was lexically preprocessed by the creators of the
corpus. (Reynaert, Camp, and Van Zaanen, 2014): The whole corpus was tokenized
and POS-tagd with frog (Bosch et al., 2007), a tool for linguistically analyzing Dutch.

The verdict corpus was also preprocessed. It was first tokenized and then POS-
tagged with the frog tool (Bosch et al., 2007).

The corpora were preprocessed in such a way that the POS-tags were concate-
nated to the word they belong to. This way the colibri script from the following part
of the pipeline recognized the token and POS-tag as a single word.

Stop words were intentionally not removed from the corpora. The reason for
this is that there are legal terms that contain words that are considered stop words.
For example: Officier van justitie (Eng: prosecutor) contains the word van (Eng: of),
a preposition that is on most stop word lists. Another example of a term containing
stop words is onderzoek ter terechtzitting (Eng: examination at the hearing) containing
the stop word ter (Eng: at the).

3.1.2 TeXSIS

As mentioned before, there was little possibility to influence the TExSIS procedure.
The architecture of TExSIS has already been explained in the literature section 2. A
few methodological notes will be made here.

1Kindly supplied by Legal Intelligence

https://www.rechtspraak.nl/

3.1. Term extraction 19

Macken, Lefever, and Hoste (2013) could not share the source code or compiled
code with me. They provided the opportunity to send a corpus and process the
corpus with TExSIS themselves2. They sent back the term lists with the terms and
their termhood values.

The verdict corpus in total was too large to be handled by TExSIS. Because of
this, only the part about criminal law (NL: strafrecht) was used. However, also this
corpus was too large. Therefore, the corpus was divided into 4 parts that were pro-
cessed separately. This resulted in 4 separate lists of words with their termhood
value. These lists were aggregated according to the following algorithm: The new
list was the union of the four lists. If a term occurred in more than one list, the
highest termhood value was taken.

3.1.3 Log Likelihood

The log likelihood for each word has been calculated with the algorithm described in
(Rayson and Garside, 2000). This means, first computing the log likelihood accord-
ing to formula 2.3 and then multiply the patterns that have a higher frequency in the
background corpus than in the foreground corpus with -1. This algorithm has been
implemented in the log-likelihood script that is part of colibri core (Van Gompel and
Van Den Bosch, 2016).

The colibri script first creates a pattern model for both of the corpora and then
computes the log likelihood for each pattern. A pattern model is a list of patterns
with the frequencies of this pattern in the corpus. In this case a pattern was either a
1-, 2- or 3-gram of tokens with their POS-tag concatenated.

The colibri script returns a list of patterns with their log-likelihood value. The
list is sorted in such a way that the pattern with the highest log-likelihood is on top
and the one with the lowest on the bottom.

The returned list consisted of around 35M patterns. For practical reasons like
speed and memory, only the top 1M patterns were taken into account.

3.1.4 Kullback-Leibler divergence for informativeness and phraseness

For each pattern the Kullback-Leibler divergence for Informativeness and Phrase-
ness (KLIP) was computed for all 1-, 2-, and 3-grams in the corpora. The KLIP
was computed with formula 2.5 in whichKLI(t) is the Kullback-Leibler Divergence
for Informativeness (formula 2.1) and KLP (t) the Kullback-Leibler Divergence for
Phraseness. The γ (gamma) parameter ranges from 0 to 1 and can be used to con-
trol the balance between the KLI and the KLP . A high γ means a high focus on
phraseness and a low gamma a high weight for Informativeness. In this experiment,
6 different values for gamma were tried (0.0, 0.2, 0.4, 0.6, 0,8, 1.0).

For this experiment a modified implementation of an existing script3 has been
used. The script was adapted to (1) not remove stop words for reasons described
above and (2) not tokenize the corpus. This made for a fairer comparison with the
Log Likelihood method. The tokenization was turned off, because the corpus was
already tokenized in the preprocessing. Added to that, the Kullback-Leibler exper-
iment must be kept as similar as possible to the Log-Likelihood experiment, which
was the second reason to switch of the tokenization module.

2Many thanks to Macken, Lefever, and Hoste for providing me with this opportunity.
3https://github.com/suzanv/termprofiling

https://github.com/suzanv/termprofiling

20 Chapter 3. Methodology

3.1.5 Linguistic Filters

A first analysis of the results of the experiments above (see section 4.2), revealed
there were many false positives that could be ascribed to the style differences be-
tween the foreground and the background corpus. Function words and punctuation
got high Log likelihood values. For this reason, linguistic filters were applied with
the intention to only get n-grams that could form a legal term. These filters could be
seen as a phraseness measure based on heuristics.

The applied filters are:

1. Noun: Selects patterns that exist of one Noun. For example: rechtbank (Eng:
court)

2. Verb: Selects patterns that exist of one verb. For example: moorden (Eng: to
Murder)

3. Noun Preposition Noun (NPN): For example: Officier van Justitie (Eng: prose-
cutor)

4. Adjective Noun (Adj. N): Selects an adjective followed by a noun. For exam-
ple: hoger beroep (appeal)

5. SPEC. A miscellanuous POS-tag. Inspection revealed that some relevant terms
had this POS tag. For example: appellant (Eng: appellant). This tag is often
used for names, but as a result of the anonymization of the corpus, these were
not captured by this tag.

3.1.6 Evaluation

The different methods return a list of patterns that are sorted according to the ter-
mhood value (Log Likelihood, KLIP or TeXSIS termhood.). The paradigm is that the
higher the term is on the sorted list, the better the term represents the domain.

The ideal result would be a list where the top N items are all legally relevant
terms and every pattern below N is not.

For this reason, the result is evaluated with precision and recall at N. Precision
at n is the precision given the top N terms and recall @ N the recall for every term
until rank N. Precision at N punishes for every non legal word high in the ordered
list with legally relevant terms. Recall at N evaluates the number of legal terms that
have been retrieved at a certain N. The final goal is to find a good balance between
precision at N and recall at N so that for a certain top N, as much terms as possible
are found (high recall at N) but at the cost of the least number of non legally relevant
terms in this top N (high precision at N).

Apart from precision and recall at N, also Average Precision (AP) for the first 1000
terms was calculated. The reason for this is that this measure it is easier to compare
the result of the different experiments than with precision for N terms. Average
precision is defined as by formula 3.14 in which P (r) is the precision at rank r. rel(r)
is a binary value depending on whether the term at rank r is relevant in the legal
domain (1) or not relevant (0).

AP =

∑1000
r=1 (P (r) ∗ rel(r))

#relevantdocuments
(3.1)

4Formula adapted from ‘lindabeekeeper’ at slideshare.net

https://www.slideshare.net/lindabeekeeper/calculating-precision-presentation

3.2. Relation Extraction 21

As a golden standard an online juridical dictionary5 was used. This word list
contains a total of 4664 legal words. In the evaluation, a word is considered legally
relevant if this word is in the list of juridischwoordenboek.

3.2 Relation Extraction

The method for extracting relations is adopted from Roller, Erk, and Boleda (2014).
The idea of this method is to classify whether a pair of terms is a hypo- hypernym
pair or not. This reduces the problem to a binary classification task.

In this thesis, a method is used that works by training word embeddings with
word2vec on a legal corpus and use these features to classify a pair of words have
a hypernym relation or not. In the upcoming sections, the method is explained in
more detail.

3.2.1 Datasets

For these experiments, two data sets are used: 1) a legal thesaurus for training and
evaluating the classifier. 2) a legal text corpus to train the word2vec model.

The Thesaurus

The legal thesaurus 6 that is used in this experiment is manually constructed by spe-
cialists in the legal domain. Some examples of pairs in the thesaurus are presented
in table 3.1.

TABLE 3.1: A few examples of terms from the legal thesaurus

Pair Translation
Term Hypernym Term Hypernym
radio-omroep omroep radio station broadcasting station
vader ouders father parents
adoptiekind kind adoptive child child
vuurwapen wapen fire arm weapon

In total, the thesaurus contains 8422 hypernym pairs consisting of a total of 9705
words. This means that there are words that are part of multiple pairs. There are two
causes for this: 1) There can be multiple hyponyms of one hypernym. For example:
Both rose and tulip are hyponyms of flower, resulting in flower occuring in two pairs
(tulip - flower 7 and rose - flower). 2) A term that is the hypernym in one pair, can
be the hyponym in another pair. For example flower is a hypernym of tulip, but a
hyponym of plant, resulting in flower being present in the pair tulip - flower as well as
flower - plant.

Of all the words in the thesaurus, only 5266 could be used in the experiment for
only those words were present in the word2vec model. This resulted in a total of
usable 3050 pairs.

5www.juridischwoordenboek.nl (Eng: juridicaldictionary.nl)
6The legal thesaurus used in this experiment was kindly provided by Legal Intelligence
7in this thesis, relations are always presented as <hyponym> - <hypernum>

www.juridischwoordenboek.nl
https://www.legalintelligence.com/

22 Chapter 3. Methodology

The Corpus

The corpus is the same verdict corpus as used in the term extraction task described
above. The only difference was in the preprocessing.

An additional step was added to the preprocessing: All juridical multiword
terms in the thesaurus were concatenated with underscores resulting in a term like
monistisch parlementair stelsel being processed to monistisch_parlementair_stelsel. Word2vec
only considers unigrams. By concatenating the multiword terms to one string, word
2 vec was therefore able to learn vectors for the multigrams.

Replacing the multiword terms, was done in order from long n-grams to short,
meaning that n-grams consisting of more words were first concatenated, in order
to always concatenate the longest possible n-gram. For example, the juridical term
monistisch parlementair stelsel has as a substring the n-gram parlementair stelsel. In this
case, the n-gram must be concatenated to monistisch_parlementair_stelsel and not to
parlementair_centrum.

Ideally the predictions of the term finding experiment should be used for deter-
mining what terms need to be concatenated. However, the results of the term finding
experiment (see chapter 4) were from such quality that they could not be used for
the follow up.

3.2.2 The Word2Vec Models

Two word2vec models were trained, one skipgram model and one continuous bag
of words model. Both models were trained with a window of five and a size of 300.

3.2.3 Features

From the word2vec models two types of features were extracted. Concatenated fea-
tures and offset features.

The concatenated feature vectors were created by simply concatenating the vec-
tor of the hyponym (~u) with the vector of the hypernym (~v) resulting of a vector
of length 600. The concatenated vectors then were normalized. The creation of the
vector is presented in formula 3.2.

~fconcat =
〈~u;~v〉
‖〈~u;~v〉‖

(3.2)

The offset vectors were created by subtracting the normalized vector of the hyponym(~u)
from the vector of the normalized hypernym (~v) (eq 3.3). Then the resulting vector
(~d) was concatenated with the squared of ~f (eq 3.4 and 3.5).

~d = ‖~u‖ − ‖~v‖ (3.3)

~e = ~d2 (3.4)

~foffset = 〈~d : ~e〉 (3.5)

3.2. Relation Extraction 23

Negative Examples

For the training of the classifiers, also negative examples (examples of pairs that do
not have a hypernym relation) are necessary. Two types of negative examples were
created, random pairs and inverse pairs. The random pairs were two random words
from the corpus. Those random pairs were made sure to meet 2 conditions:

1. No two words in a pair are the same. (A pair like apple - apple was prevented) 8

2. A pair must not be an actual hypernym pair.

Some examples of random examples are presented in table 3.2

TABLE 3.2: Examples of random negative examples

Pair Translation
metaalschroot claimverzoek metal scrap claim request

Koopmanstraat herinneringsfactuur
Koopmanstraat
(street name)

reminder invoice

voedingskosten dalende food costs descending (Adj)
bemiddelingsperiode stond Conciliation agreement stood

The other kind of negative examples were inverse hypernym tuples. These were
created by inverting the order of actual hypernym pairs. For example: a pair like ap-
ple - fruit would be inverted to fruit - apple. In total one third of the positive examples
was inverted. Some examples of inverted examples are presented in table 3.3.

TABLE 3.3: Examples of inverted negative examples

Pair Translation
schip oorlogsschip ship war vessel
inkomen jaarinkomen income yearly income
pleegouder pleegvader foster parent foster father
rechterlijk vonnis mondeling vonnis judicial verdict oral verdict

Data Split

The data was randomly split into two parts. A train set (75%), a test set (25%).

Overview Descriptives

An overview of how the dataset is constructed is presented in table 3.4.

TABLE 3.4: An overview of how the training set is compiled

Positive examples Random Negative Examples Inverse Negative Examples Total
Train 1414 2122 708 4244
Test 427 640 213 1280
Total 2129 2862 921 -

8An interesting study would be to investigate whether the addition of such pairs would influence
the results.

24 Chapter 3. Methodology

3.2.4 Classifiers

Following Roller, Erk, and Boleda (2014), two types classifiers were tried. In Roller,
Erk, and Boleda (2014), a logistic regression classifier was used for the offset vectors
and a support vector machine (SVM) was used for the concatenated vectors. In this
experiment, I tried both classifiers for both vectors.

For both the logistic classifier and the SVM the implementation of of scikit learn
(Pedregosa et al., 2011) was used.

3.2.5 Evaluation

To evaluate both classifiers, precision, recall and F1-score was used. Apart from
those measures, a manual error analysis of the false positives was performed.

Precision and recall were calculated for the positive predictions (a pair has a
hypernym relation). Precision was calculated according to formula 3.6, recall with
formula 3.7 and precision with formula 3.8.

In the case of the positive predictions, the true positives (TP) are the pairs that
are correctly classified as having a hypernym relation and the false positives (FP)
are the pairs mistakenly classified as having a hypernym relation. The false nega-
tives (FN) are the pairs that do have a relation, but were classified as not having
one.

Precision = TP
TP+FP (3.6)

Recall = TP
TP+FN (3.7)

F1 = 2 ∗ Precision∗Recall
Precision+Recall (3.8)

Jaccard Overlap

Another way of evaluating the different classifiers is by measuring the Jaccard over-
lap between the lists of true positives. The aim of this is to determine to what extend
the different classifiers classify the same pairs as having a relation or whether they
are able to identify different pairs as hypernym pairs. The Jaccard overlap index
(J) is defined in formula 3.9 in which A and B are collections of true positives for
different classifiers.

J(A,B) =
|A ∩B|
|A ∪B|

(3.9)

25

Chapter 4

Term Extraction Results

4.1 TExSIS

The results for TExSIS (Macken, Lefever, and Hoste, 2013) are presented in figure
4.1. The average precision for the results of TExSIS is .0336.

The graph for precision shows a small peak at around N = 220. The height of this
peak is about .09, meaning that of the top 220 terms, 9% is a legal term.

Examples of true positives are presented in Table 4.1 and examples of false posi-
tives are presented in Table 4.2. The first interesting thing to note is that all termhood
values of the top-5 False positives are higher than the termhood value of the highest
True Positive. The highest true positive only comes at place 18 in the ranked list of
results. This results in the low average precision.

Most of the false positives in Table 4.2 could be considered legal terms. Except
for spoornummer, which is a railroad term. The term benadeelde most of the times co-
occurs with other words to form a pattern like benaldeelde partij (Eng: disadvantaged
party). This is a thing that could be solved with more weight for phraseness.

TABLE 4.1: TExSIS True Positives

Pattern Translation Termhood

bewezenverklaring
statement that
charge is proven

98.25

juncto has a connection with 82.14
gewoonteheling habitual healing 60.69
dagvaarding subpoena 59.17
gevangenisstraf imprisonment 56.63

TABLE 4.2: TExSIS False Positives

Pattern Translation Termhood

bewezenverklaarde
charge of which
proof is validated

248.48

parketnummer district number 183.88
terechtzitting hearing 177.6
benadeelde disadvantaged party 176.4
spoornr track nr 141.62

26 Chapter 4. Term Extraction Results

4.2 Log-Likelihood

The results for the different filters for the Log-Likelihood measure are presented
in figure 4.2. In this figure, all filters show the same pattern, namely, a spike in
the beginning that then stabilizes at a low value (below .2). This indicates that in
the high ranks there is a high concentration of legal words, but that later on, the
concentration of legal words drops to about one in five words. In the case of the
Noun filter this results in a precision at N = 1000 of about .2.

The shape of the Log-Likelihood results is similar to the shape of the TExSIS
results (figure 4.1) and the KLIP results (figure e.g. 4.7)

No filter

When no filter is applied the first few results are False Positives. The first ‘spike’ oc-
curs at N = 16. This means that the 15 patterns with the highest log-likelihood ratio,
do not occur in the legal word list form juridischwoordenboek.nl. When observing
these 15 patterns it strikes that many patterns consist only of punctuation or punc-
tuation in combination with high frequent words. A few high ranking examples of
these patterns are given in table 4.3.

TABLE 4.3: Examples of ’false positives’ with high log-likelihood ra-
tios

Pattern Log-likelihood
.(LET) De(LID) 4208320
](LET) 4012150
[(LET) 3945600
.(LET) "(LET) 2895640

Filter: Noun

For this filter, the first spike occurs at N = 2, meaning that only the single noun
pattern with the highest log-likelihood is not present in the word list. The patterns
at N=3 and N=4, however, do not occur in the reference word-list. The three highest
ranking words that do not occur in the reference list are presented in table 4.4.

TABLE 4.4: Examples of false positives for the Noun filter

Pattern Translation Log-likelihood
rechtbank court 1179910
beroep appeal 947694
uitspraak verdict 817633

This is a remarkable top three of false Positives, because these terms are all legally
relevant terms. They also seem to have a high phraseness, for the reason that they
have a clear meaning as individual entity and are not part of a multiword term. An
explanation for this could be that these terms are too obvious to be included in this
legal word list. These terms could be considered common knowledge within as well
as outside of the legal domain in the Netherlands, hence they are not included in
the word list. Another reason could be that the creators just did not think about
including them.

www.juridischwoordenboek.nl

4.2. Log-Likelihood 27

More specific terms (of which the terms is table 4.4 are a substring) are present in
the reference word list. For example arrondissementsrechtbank (regional court), hoger
beroep (synonymous to beroep1Beroep can also mean profession, but in the legal domain it
is often interchangable with ‘hoger beroep’), and einduitspraak (final verdict).

Filter: Verb

The first true positive occurs at N = 6 meaning that the 5 words with the highest log
likelihood are not in the reference word list. These words are displayed in table 4.5.

Except from verdachte (suspect), all patterns are function words and therefore are
not legally relevant terms. It is therefore remarkable that those words have such a
high log-likelihood since you would expect them to have a high frequency as well
in the background corpus.

TABLE 4.5: Top 5 verb unigrams. (all false positives)

Pattern Translation Log-likelihood
heeft has (3SG of have) 1972240
zegt says 700455
verdachte suspect 686796
werd became (SG) 430882
worden become (PL or INF) 364732

Another remarkable thing about the verb unigrams is that many of the top re-
sults are actually nominalisations of verbs and therefore nouns instead of verbs. A
few examples of this are gedaagde (defendant) with a log-likelihood of 364602, and
betrokkene (involved person) with a log-likelihood of 162656. These mistakes can be
explained by the fact that the automatic memory based tagger in frog is not perfect.

Filter: Noun Preposition Noun (NPN)

The precision for the NPN-filter never gets really high. The highest precision is .07
at N=54. The 16 NPN patterns with the highest log-likelihood are all false positives.

Examples of high ranking false positives are presented in table 4.6. The second
example in the table is a sub-phrase of a set of larger phrase that typically occur in
legal verdicts. This phrase, application of article can be followed by any code referring
to an article in the Dutch law codification. For example: toepassing van artikel 1 van het
Wetboek van Strafrecht (Eng: application of article 1 of the Criminal Code). This complete
phrase does not have a place in a thesaurus, nor does the sub-phrase presented in
table 4.6. However, this sub-phrase is an example of a pattern that could be filtered
out with a more elaborate measure for phraseness than the linguistic filter used in
this experiment, since this sub-phrase is not a complete phrase on its own.

An explanation for why onderzoek ter zitting is not present in the word list could
be that the phrase onderzoek ter terechtzitting is present in the word list. This phrase
is synonymous to onderzoek ter zitting and also very similar in writing and including
both of them could appear redundant for the creators of the word list.

In figure 4.2 the (blue) line corresponding with this filter stops at N = 366, indicat-
ing that there are only 366 instances of NPN patterns in the top one million patterns
with highest log-likelihood.

1

28 Chapter 4. Term Extraction Results

TABLE 4.6: Examples of false positives for the NPN filter

Pattern Translation log-likelihood
Artikel(N) zonder(P) titel(N) article without a title 184221.0
toepassing(N) van(P) artikel(N) application of law article 58608.6
onderzoek(N) ter(P) zitting(N) sitting of the court 58301.1

Filter: Adj N

This filter scores relatively well on precision and recall. Figure 4.2 shows that this
filter is the third best after the Noun filter en the combined filter.

A few examples of true positives are presented in table 4.7

TABLE 4.7: Examles of true positives consisting of an adjective and a
noun

Pattern Translation Log Likelihood
hoger beroep appeal 463601.0
enkelvoudige kamer single judge 25165.1
Europese Unie European Union 21925.1
Europese Commissie European Commission 15280.7
dagelijks bestuur board 12603.1

Examples of false positives are presented in table 4.8. Last year and last week are
clearly not legal terms, however, statutory interest and provisional provision are. Gen-
eral law is an example of a false positive that could be solved by using a phraseness
measure. There are many titles of Dutch laws that start with the phrase Algemene
wet. For example: Algemene wet bestuursrecht (Eng: General Administrative Law
Act) and Algemene wet Gelijke Behandeling (Eng: Equal Treatment Act).

Note that Algemene wet starts with a capital letter. This signifies that it is (the
start of) a title of a law. This observation justifies the choice of not lowercasing the
corpora.

TABLE 4.8: High ranking False Positives after applying the Adjective
Noun filter

Pattern Translation Log Likelihood
vorig jaar last year 191207.0
Algemene wet General law 94727.0
vorige week last week 82708.5
voorlopige voorziening provisional provision 59127.4
wettelijke rente statutory interest 54800.8

Filter: SPEC

The SPEC-filter does not show a clear peak for precision at the beginning like the
other examples in figure 4.2. It stabilizes very early at a low precision. A few exam-
ples of true positives are presented in table 4.9. All items are nouns but that got the

4.3. Kullback-Leibler divergence for Informativeness and Phraseness 29

miscellaneous tag. One of the reasons they might have gotten the SPEC-tag, is that
(three of them) start with a capital letter 2

TABLE 4.9: Examles of true positives with a SPEC-tag

Pattern Tanslation log-likelihood
appellant appellant 95040.5
Eiser plaintiff 13509.9
Appellant Appellant 13334.4
Verweerder Defendant 8881.68

Some examples of false positives for this filter are presented in table 4.10. Again,
the most important reason for terms being in this list, is that they start with a capital.
Some false positives that actually should be in a legal thesaurus are mr. and Uwv.

TABLE 4.10: Examles of false positives with a SPEC-tag

Pattern Tanslation log-likelihood
Van From/Of 1072430.0
De The 718478.0
e e 708809.0
mr. abbr. master in law 571927.0

Uwv
abbr. Organization for
employee insurances

145619.0

Combination of Filters

The results of the combined filters are also present in figure 4.2. Remarkable is that
the precision is lower than the results for the only nouns filter.

Comparison of filters

In table 4.11 the Average precision values for all the filters are presented. According
to this table, the N-filter has the best results. However, this filter only finds nouns,
and in reality, more terms than only noun unigrams need to be found. For this
reason, it might be better to use the combined filters or combine even more filters.

TABLE 4.11: Comparison of the Filters of the Log-Likelihood

No Filter N V N VZ N Combined
AP .0523 .1665 .0413 .0496 .1379

4.3 Kullback-Leibler divergence for Informativeness and Phrase-
ness

No filter

The results for the Kullback-Leibler Divergence for Informativeness and Phraseness
(KLIP) with no linguistic filter are presented in Figure 4.3. When this figure is com-
pared with the Log-Likelihood results in Figure 4.2 it is clear that for precision as

2the corpora were not lower cased on purpose for reasons explained in section 3.2.1

30 Chapter 4. Term Extraction Results

well as recall, the KLIP method performs better. When Figure 4.3 is analyzed on
its own, it can be observed that the patternmodels with lower values for γ perform
better than those with higher values. This means that when no linguistic filters are
applied, it is better to give a low weight to the phraseness (KLP) or to leave it out
completely (set γ to 0.0).

Some examples of true positives with the KLIP-method without linguistic filter
are presented in table 4.12. Both besluit and appellant also occur in the top 3 of the
Log-Likelihood method. Hoger beroep does not occur high in the results of the Log-
Likelihood results. This is likely an example of a term that got a higher score as a
result of a high phraseness. The high phraseness is caused by the fact that it has a
the term consists of many words.

TABLE 4.12: True Positives found with KLIP and no linguistic filter

Pattern Translation KLIP
appellant(N) appellant .003137
hoger (ADJ) beroep(N) appeal .003050
besluit(N) decision .001425

Examples of false positives are presented in table 4.13. Like with the Log-Likelihood
method, these false positives with the highest values are no possible legal terms and
most likely the result of style differences between the newspaper corpus and the
verdict corpus.

Filter: Noun

The results for the noun filter are presented in Figure 4.4. For this filter, KLIP scores
better than the Log-Likelihood (see Figure 4.2).

As a result of the filter, all returned terms are have a size of 1 and therefore there
is no difference for the different values of γ. There are no results for γ = 1, as the KLP
is by definition equal to 0 for all unigrams.

Examples of false positives are presented in table . The fact that rechtbank is not in
the word list is curious and has been addressed above. The female words appellante
and eiseres are both not in the golden standard list, but their male versions are. These
are nice examples of words that would be desirable to have in a thesaurus at the
back-end of a search engine to know that the meaning of both words is essentially
the same.

A possible reason for beroep not being in the reference word list is that a beroep
means the same as hoger beroep, and most of the times is used in the latter form. This
is an example where the phraseness failed to do its job 4.12 since hoger beroep only
has a KLIP score of 0.00336 when the γ parameter is 1 and thus giving the maximum

TABLE 4.13: False Positives found with KLIP and no linguistic filter

Pattern Translation KLIP
van(P) from .008590
van(P) de(ART) from the .007139
heeft(V) has (3SG) .005854

4.3. Kullback-Leibler divergence for Informativeness and Phraseness 31

amount of weight to phraseness. In this case one would have expected a higher
KLIP score for hoger beroep. The fact that the KLIP is not higher means that beroep on
its own is a much used term and should therefore be part of the thesaurus.

TABLE 4.14: examples of false positives after applying the a filter that
selects single nouns

Pattern Translation KLIP
rechtbank court .00501
appellante female appellant .00401
beroep appeal .00401
eiseres female plaintiff .00366

Filter: Verb

The results for the Verb filter are presented in Figure 4.5. As is the case for the results
for no filter and the noun filter, the results are better than for the Log Likelihood.

Compared to the other KLIP-scores, the Verb Filter has rather low values for pre-
cision and recall. This is similar to the case with the Log Likelihood scores.

Examples of true positives are presented in table 4.15. First notable fact is that
there is a large difference between the KLIP of the highest true positive (gedaagde)
and the KLIP of the one but highest true positive (betrokkene).

Another remarkable result that was also visible in the results for the Log Likeli-
hood is that some of the best results are actually not verbs but derivatives of verbs.
This is a result of the fact that the automatic POS-tagger is not perfect.

TABLE 4.15: Examples of true positives after the Verb filter

Pattern Translation KLIP
gedaagde(N or ADJ) defendant .00284
betrokkene(N) involved party .00069
gegrond(ADJ) justified .00059
gegeven(N or ADJ or V) fact (or: given) .00033

Examples of false positives are in table 4.17. Curious about this is that both heeft
and is are content words and should not have a high KLIP. Bothverdachte and bestre-
den are words that could be in a legal thesaurus.

TABLE 4.16: My caption

Pattern Translation KLIP
heeft (V) has (2SG of have) .00439
verdachte (N or ADJ) suspect or suspicious .00197
is (V) is .00147
bestreden (ADJ or V) contested .00115

Filter: Noun Preposition Noun

Results in Figure 4.6. There are slight differences between the different values for γ,
but not as large as in the experiment with no filter.

32 Chapter 4. Term Extraction Results

Examples of false positives are in table 4.17. These are examples we already saw
above at the Log Likelihood

TABLE 4.17: My caption

Pattern Translation KLIP
onderzoek ter zitting sitting of the court .00067
toepassing van artikel application of article .00052
college van burgermeester college of mayor .00024

Filters Combined

Comparison of KLIP

In table 4.18, the average precision is presented for each experiment with KLIP. As
expected, there is no differences between the gammas with the unigram filters, be-
cause the KLP is zero for every unigram. For the NPN-filter, a high gamma seems
beneficiary. At the filters where there is no fixed number of words in an n-gram (No
filter and Combined Filters), a low gamma of 0.2, ergo a low but nonzero weight for
the phraseness, is the best.

TABLE 4.18: Comparison of Results of KLIP

Gamma No Filter N V N P N Combined
0.0 .0981 .2199 .0705 .0299 .1832
0.2 .0958 .2199 .0705 .0335 .1840
0.4 .0931 .2199 .0705 .0367 .1810
0.6 .0740 .2199 .0705 .0383 .1745
0.8 .0517 .2199 .0705 .0394 .1670
1.0 .0333 0 0 .0395 .0395

4.4 Comparison of TeXSIS, Log Likelihood and KLIP

In table 4.19, for each method of term extraction, the Average Precision for no filters
and the filters combined is presented. This table shows that the KLIP method scores
best.

TABLE 4.19: Table that compares the different termhood measures.
in the case of KLIP, the result with the highest AP is presented (hence
the different values for γ). With TExSIS, no filters could be applied.

TExSIS Log-Likelihood KLIP
No Filter .0336 .0523 .0981 (γ = 0.0)
Combined Filter N.A. .1379 .1840 (γ = 0.2)

4.4. Comparison of TeXSIS, Log Likelihood and KLIP 33

(A) Precision

(B) Recall

FIGURE 4.1: Precision and Recall at N for TExSIS. The x-axis is N and
the y-axis the precision (A) or recall (B).

34 Chapter 4. Term Extraction Results

(A) Precision

(B) Recall

FIGURE 4.2: The precision at N and recall at N for the different filters
on the Log-likelihood data. The x-axis shows N and the y-axis the

precision (A) or recall (B).

4.4. Comparison of TeXSIS, Log Likelihood and KLIP 35

(A) Precision

(B) Recall

FIGURE 4.3: Precision and Recall at N for the KLIP-method. This
figure shows the results when no filters are applied. The x-axis shows
N and the y-axis the precision (A) or recall (B). The different lines

represent different values for γ

36 Chapter 4. Term Extraction Results

(A) Precision

(B) Recall

FIGURE 4.4: Precision and Recall at N when the Noun filter is applied.
The x-axis shows N and the y-axis shows precision (A) or recall (B).
There are more lines indicated in the legend than visible in the graph.
This is because all lines are the same and overlap. The different lines

in the legend represent different values for γ

4.4. Comparison of TeXSIS, Log Likelihood and KLIP 37

(A) Precision

(B) Recall

FIGURE 4.5: Precision and Recall at N when the Verb (Dutch POS-
tag = WW) filter is applied. The x-axis shows N and the y-axis shows
precision (A) or recall (B). There are more lines indicated in the legend
than visible in the graph. This is because all lines are the same and
overlap. The different lines in the legend represent different values

for γ

38 Chapter 4. Term Extraction Results

(A) Precision

(B) Recall

FIGURE 4.6: Precision and Recall at N when the Noun-Preposition-
Noun (Dutch POS-tag for Preposition = VZ) filter is applied. The x-
axis shows N and the y-axis shows precision (A) or recall (B). The

different lines represent different values for γ

4.4. Comparison of TeXSIS, Log Likelihood and KLIP 39

(A) Precision

(B) Recall

FIGURE 4.7: Precision and Recall at N when the filters are combined.
The x-axis shows N and the y-axis shows precision (A) or recall (B).

The different lines represent different values for γ

41

Chapter 5

Relation Finding Results

In this experiment different classifiers were tried. The classifiers aimed to predict
whether or not term pairs have a hypernym relation. Two types of classifiers (Sup-
port Vector Machine and Logistic regression) and two types of vectors (concatenated
vectors and offset vectors) are compared. The third tested variable was the type of
word2vec model used: skipgram or continuous bag of words.

In tables 5.1 and 5.2 the results for the continuous bag of words model (cbow)
and the skipgram model are presented.

TABLE 5.1: Precision Recall and F1-score for the CBOW model vec-
tors.

P1 R1 F11

Concat SVM .83 .81 .82
LogReg .79 .75 .77

Offset SVM .85 .76 .81
LogReg .75 .79 .77

TABLE 5.2: Precision Recall and F1-score for the Skipgram model.

P1 R1 F11

Concat SVM .71 .83 .76
LogReg .78 .80 .79

Offset SVM .84 .78 .81
LogReg .74 .75 .74

Continous bag of words versus skipgram

When comparing the skipgram-model with the cbow-model, it appears that the con-
tinuous bag of words (cbow) model performs better than the skipgram model. Al-
though the differences are rather small, it is interesting that the cbow-model out-
performs skipgram-model, because previous studies (Baroni et al., 2012; Roller, Erk,
and Boleda, 2014) only reported the use of the skipgram model and did not report
results for the cbow model.

concatenation vectors versus offset vectors

The concatenation vectors outperform the offset vectors. This is contrary to the ex-
periment of Roller, Erk, and Boleda (2014), in which the offset vectors (or difference
vectors as they call it) have better results than the concatenation vectors.

42 Chapter 5. Relation Finding Results

SVM versus logistic regression

For the concatenation vectors, it differed what was the best classifier. For the CBOW
model, the SVM-classifier performed best, but for the skipgram-model, the logistic
regression classifier was the best for the concatenation vectors.

5.1 Error Analysis

5.1.1 Analysis of False Positives

In tables 5.3 and 5.4 overviews are presented of how the false positives are dev-
ided over the random negative examples (random pairs) and the inverse negative
examples (hypernym pairs that were inversed). These tables show the percentage
of the false positives belonging to both types of negative examples. The percentages
always sum to 100, because all false positives are necessarily one of both.

No claims can be made about the difference between the types of False positives.
For both skipgram and cbow models, the concat-svm classifier has a majority of the
inverse false positives. No other pattern seems to occur. This means that based on
these results, you can not say that the classifiers are not particularly better in one
type of negative example.

TABLE 5.3: Overview of the composition of the False Positives for the
cbow model vectors

% Random Examples % Inversion Examples
Concat SVM 22 78

LogReg 63 37
Offset SVM 78 22

LogReg 14 86

TABLE 5.4: Overview of the composition of the False Positives for the
skipgram model vectors

% Random Examples % Inversion Examples
Concat SVM 6 94

LogReg 17 83
Offset SVM 51 49

LogReg 65 35

In tables 5.5 and 5.6 the jaccard similarity between the different lists of false pos-
itives is presented. These tables show that the overlap between the lists is not very
high. This means that different classifiers recognize different pairs as hypernym
pairs.

In table 5.7, some examples of false positives are presented. This table is pre-
sented to give an idea of how the false positives look and emphatically not to show
a pattern, since no pattern was found.

5.1. Error Analysis 43

TABLE 5.5: Jaccard overlap between the different lists of False posi-
tives for the cbow models

Concat Offset
SVM LogReg SVM LogReg

Concat SVM 1 .50 .19 .25
LogReg .50 1 .23 .25

Offset SVM .19 .23 1 .28
LogReg .25 .25 .28 1

TABLE 5.6: Jaccard overlap between the different lists of False posi-
tives for the skipgram models

Concat Offset
SVM LogReg SVM LogReg

Concat SVM 1 .48 .31 .18
LogReg .48 1 .27 .24

Offset SVM .31 .27 1 .27
LogReg .18 .24 .20 1

TABLE 5.7: Examples of false positives.

Pair Translation Experiement

Random
Examples

spoorverkeer hittebron
railway
traffic

heat
source

CBOW-
LogReg-Concat

ommeloop exploiteerde circulation exploited
CBOW-
SVM-Concat

rits
jacht-
overeenkomst

zipper
hunting
agreement

CBOW-
LogReg-Offset

servicekosten roltrappen service charge escalators
Skipgram-
LogReg-Concat

Inverted
Examples

computer spelcomputer computer
game
console

CBOW-
LogReg-Concat

gezondheids-
schade

letselschade health damage injury
CBOW-
SVM-Concat

luchtvaartuig vliegtuig aircraft airplane
CBOW-
LogReg-Offset

pleegouder pleegvader foster parent
foster
father

Skipgram-
LogReg-Concat

45

Chapter 6

Discussion and Conclusion

6.1 Discussion: Term Extraction

Over all, the best method for extracting terms is the Kullback Leibler Divergence for
Informativeness and Phraseness (KLIP). This method reached an average precision
of .1840. This is lower than the results reported in Verberne et al. (2016). The result of
the KLIP was better than the result of the Log Likelihood (.1379) and TExSIS (.0336).
KLIP outperforming the Log Likelihood is in line with the results in Verberne et al.
(2016).

The TExSIS tool performing this poorly is remarkable. In Macken, Lefever, and
Hoste (2013) a precision of .58 is reported for term extraction in Dutch texts. One of
the reasons for this low performance could be that the background corpus in TExSIS
is the Europarl corpus. And as Europarl consists of transcriptions of the law making
process in the European Union, there might be quite some juridical terms in this
corpus.

Another disadvantage of TExSIS, was that it could not handle the size of the full
corpus, which required selecting a subcorpus and even that subcorpus had to be
split into 4 parts. This splitting and later the aggregating of the results is not good
for the result.

It would be interesting to see how the results would improve if those problems
could be overcome and TExSIS would be optimized for term extraction in the legal
domain. I expect that plugging another background corpus in TExSIS would not be
a problem, and a more memory friendly implementation of TExSIS could help the
corpus size problem. Or otherwise, TExSIS could be installed on a computer with
more memory.

The problem is that the TExSIS software is not open source, which makes it hard
to experiment with it. The results in this thesis were acquired by sending the owners
of TExSIS the corpus and let them run it through TExSIS.

Recall

There are a lot of False negative in all the experiments. This leads to a low recall.
The main cause for this was that many of the terms did not occur in the foreground
corpus. This might have to do with the fact that only verdicts and no other text types
were used. As Van Opijnen and Santos (2017) notes, there are many different types
of legal documents. Some words are just not likely to appear in some text types.
Verdicts are especially a type of text that needs to be readable by people that are not
legal experts. As a result of this, jargon can be avoided.

The solution to this problem is using a larger foreground corpus containing a
larger variety of legal texts. For example, also add text types academic literature,

46 Chapter 6. Discussion and Conclusion

blogs and textbooks. By using a larger variety of texts more legal terms will be
present automatically. The size of the background corpus should not really impact
the quality of the term extraction methods (Knoth et al., 2009). However, I think it
would be sound to increase the size of the background corpus accordingly to the
increase of the foreground corpus.

Precision

Also the high number of false positives influenced the result. The high number of
false positives caused a low precision. One of the causes for the high number of false
positives was the quality of the golden standard list. Manual inspection of the false
positives showed that many of the terms marked as false positives were actually
legal terms, but were not present on the list of juridischwoordenboek.nl.

One thing that this shows is that it is indeed difficult to make a complete word
list by hand, since there are always therms that are forgotten. This means that an
automatic unbiased system could be of good assistance when creating a word list
and therefore there is a legitimate need for a term extraction engine.

To better evaluate a term extraction system however, a larger word list should
be used. Combining legal word lists for different sources might be a good way to
accomplish this. Furthermore, it is advisable to always do a manual inspection of
the results for the precision and recall measures do not always accurately reflect the
true quality of a system for the reason described above.

Apart from the incorrect false positives, there were also a large amount of actual
false positives. Part of these could be solved by using larger corpora and fine tuning
parameters. However, I suspect that only that is not enough. For this reason I would
propose a more thorough study to the filters. The aim of this study would then be
to find the best filters for filtering out the false positives. Such filters could either be
linguistic filters or something like a binary classifier that classifies whether or not a
term is a legal term. This classifier could work on features like occurrence, length or
even on embedding features.

6.2 Discussion Relation Extraction

The results of the relation extraction match the results in previous literature. Com-
pared to the most similar studies that also train binary classifiers, the F1 score of
.81 is higher than the .76 from Baroni et al. (2012) and also close to Roller, Erk, and
Boleda (2014) who report a maximum average accuracy of .84. (Which is more or
less comparable with the precision of .85 in this thesis.)

A big problem with the system presented in this thesis is that it is not a relation
extraction system: It is a classifier. The classifier could be used to extract relations,
but it will perform worse than the classifier on its own. A system using this classifier
to find hypernyms would work like this: To find a hypernym for a given legal term,
this term must be paired up with all other legal terms and for every pair individually,
it must be determined whether or not it is a hypernym pair. This theoretically means
that, when one pair is paired up with 1000 other pairs and classified with a precision
of .84, there are 160 false positives for this term. This means that the system will
return a list of about 160 terms, of which only one1 is the correct hypernym. A recall

1assuming that every term has only one hypernym.

http://www.juridischwoordenboek.nl/

6.3. Future Research 47

of .81 would mean that in 19 per cent of the terms, the correct hypernym is not even
present in this list of 160 terms.

This is why systems that search directly for hypernyms (Hearst, 1992; Agichtein
and Gravano, 2000; Fu et al., 2014, a.o.) might be better options. A downside of these
systems is that they tend to have a low recall (Hearst, 1992; Agichtein and Gravano,
2000) or that they are really complex in the case of Fu et al. (2014). Which one of the
the reasons why I preferred the classifier for this thesis.

6.3 Future Research

In the first place, future research could focus on optimizing the main two parts of
a thesaurus learning engine described in this paper. Further directions of future
research could be studies in how the current systems could be effectively used in the
industry.

6.3.1 Optimizing Term Extraction

For optimizing the term extraction, experiments can be done with adding more cor-
pora to include more juridical terms and this way improving the recall. The precision
could be improved by experimenting with more filters. Instead of the linguistic fil-
ters, a classifier can be used to classify whether or not a term is a legal term. Possible
features in this classifier could be embedding features, but also less abstract features
like occurrence count, POS-tag, length or words in the context.

This way the first (extraction) stage could be optimized for recall and the second
(filter) stage could be optimized for precision.

6.3.2 Optimizing Relation Extraction

A possible way to improve the classifiers presented in this thesis could be to combine
them. As the Jaccard indices showed, there was not much overlap between the true
positives of the different classifiers. So by combining the results of the classifiers, the
recall could be improved.

A more subtle way of combining the classifiers would be in a voting system
where every system can vote on a solution for each pair and pairs with the highest
votes are presented first. This might result in a better balance between precision and
recall.

Other improvements that could be investigated are using a larger corpus to train
the word2vec models. This will improve the quality of the vectors. Furthermore,
studies could be done to the effect of the different hyper parameters of word2vec on
the results.

A more explorative study would be looking whether the training material should
be legal in nature. It would be an interesting experiment to look whether hypernym-
relations in the hyperspace of word2vec could be generalized: whether the relations
in the legal domain are similar to relations in the biomedical or the general domain.
If this would indeed be the case, corpora and thesauri from other domains than the
legal domain could be used in training a legal relation classifier. The benefit of this is
that multiple corpora from different domains could be combined. This would lead
to a sudden increase of the amount of data available to train the classifier.

48 Chapter 6. Discussion and Conclusion

6.3.3 Thesaurus Learning in Practice

The systems presented in this paper are not good enough to work autonomously. Let
alone, to form an autonomous thesaurus learning engine. For this reason I would
propose a system that has a human in the loop. Such a system would assists a human
in making a thesaurus.

In the case of the term extraction, the system would propose a list of words and
the human expert only has to say which terms in the list are legal terms. This way
the computer speeds up the work of the thesaurus maker for judging words takes
less effort than coming up with legal terms oneself.

One thing that must not be forgotten is that in real life, we would not have to
start at zero. There are already many word lists around. For this reason, the sys-
tem only would have to suggest terms that are not in existing word lists yet. This
would significantly reduce the amount of human effort that has to be done. There-
fore it would be even better to have a system that helps with updating an existing
word list than creating an entire new one. Only in some rare cases when a word list
must be created for a total new (sub) area, it would be desirable to start from scratch.

The same strategy can be applied to the relation extraction. For finding relations
autonomously, the system performs too poor. However, a system could be devised
that makes suggestions to a thesaurus maker. The classifier should be trained on
existing thesauri, but as the thesaurus maker adds more pairs to the thesaurus, the
classifier could be retrained with the new pairs added to the training data. This way
the automatic assistant gets better as the thesaurus grows in size.

6.4 Conclusion

In this thesis, two components of a thesaurus learning system where studied; term
extraction and relation classification. For term extraction, terms were scored with
their termhood value and then sorted accordingly. Kullback Leibler Divergence for
Informativeness and Phraseness (KLIP) appeared to be the best termhood measure.
However, lots of improvements should be made before it is practically useful for
term extraction.

Also for relation extraction, further research is necessary: In this thesis I was able
to train a classifier that could classify whether to terms have a hypernym relation.
This system scored as good as previous studies on this task. The classifier as such,
however is not yet a relation extraction system. Therefore, the classifier is not ready
to be used in practice. Future research should reveal how the system best could be
used for relation extraction.

The main two research questions in this thesis were:

1. What is the best method for extracting legal terms from a Dutch verdict cor-
pus?

2. What is the best method for relation classification on Dutch legal terms?

The answer to the first question is: The best method for extracting legal terms from a
Dutch verdict corpus is via the KLDIV method.

The answer to the second research question is: The best method for classifying re-
lations between Dutch legal terms is concatenating word vectors trained from a cbow-model
and classifying them with an SVM-classifier.

49

Bibliography

Adam Wyner Raquel Mochales-Palau, Marie-Francine Moens and David Milward
(2010). “Approaches to Text Mining Arguments from Legal Cases”. In: Semantic
processing of legal texts: Where the language of law meets the law of language. Ed. by
Enrico Francesconi et al. Berlin: Springer. Chap. 4, pp. 60–79.

Agichtein, Eugene and Luis Gravano (2000). “Snowball: Extracting relations from
large plain-text collections”. In: Proceedings of the fifth ACM conference on Digital
libraries. ACM, pp. 85–94.

Aitchison, Jean, Alan Gilchrist, and David Bawden (2000). Thesaurus construction and
use: a practical manual. Psychology Press.

Aletras, Nikolaos et al. (2016). “Predicting judicial decisions of the European Court
of Human Rights: A natural language processing perspective”. In: PeerJ Computer
Science 2, e93.

Aronson, Alan R, Thomas C Rindflesch, and Allen C Browne (1994). “Exploiting a
large thesaurus for information retrieval”. In: Intelligent Multimedia Information
Retrieval Systems and Management-Volume 1. Le Centre de Hautes Etudes Interna-
tionales D’Informatique Documentaire, pp. 197–216.

Baroni, Marco et al. (2012). “Entailment above the word level in distributional se-
mantics”. In: Proceedings of the 13th Conference of the European Chapter of the As-
sociation for Computational Linguistics. Association for Computational Linguistics,
pp. 23–32.

Bhogal, Jagdev, Andrew MacFarlane, and Peter Smith (2007). “A review of ontology
based query expansion”. In: Information processing & management 43.4, pp. 866–
886.

Bosch, Antal van den et al. (2007). “An efficient memory-based morphosyntactic tag-
ger and parser for Dutch”. In: LOT Occasional Series 7, pp. 191–206.

Coulthard, Malcolm and Alison Johnson (2009). An introduction to Forensic Linguis-
tics: Language in Evidence. Routledge.

Deerwester, Scott et al. (1990). “Indexing by latent semantic analysis”. In: Journal of
the American society for information science 41.6, p. 391.

Dozier, Christopher et al. (2010). “Named Entity Recognition and Resolution in Le-
gal Text”. In: Semantic processing of legal texts: Where the language of law meets the
law of language. Ed. by Enrico Francesconi et al. Berlin: Springer. Chap. 2, pp. 27–
43.

Espinosa-Anke, Luis et al. (2016). “Supervised distributional hypernym discovery
via domain adaptation”. In: Proceedings of EMNLP, pp. 424–435.

Francesconi, Enrico et al. (2010). Semantic processing of legal texts: Where the language
of law meets the law of language. Vol. 6036. Springer.

Frantzi, Katerina T and Sophia Ananiadou (1999). “The C-value/NC-value domain-
independent method for multi-word term extraction”. In: Journal of Natural Lan-
guage Processing 6.3, pp. 145–179.

Fu, Ruiji et al. (2014). “Learning Semantic Hierarchies via Word Embeddings.” In:
ACL (1), pp. 1199–1209.

50 BIBLIOGRAPHY

Gelbukh, Alexander et al. (2010). “Automatic term extraction using log-likelihood
based comparison with general reference corpus”. In: Natural Language Processing
and Information Systems, pp. 248–255.

Hearst, Marti A (1992). “Automatic acquisition of hyponyms from large text cor-
pora”. In: Proceedings of the 14th conference on Computational linguistics-Volume 2.
Association for Computational Linguistics, pp. 539–545.

Hiemstra, Djoerd, Stephen Robertson, and Hugo Zaragoza (2004). “Parsimonious
language models for information retrieval”. In: Proceedings of the 27th annual inter-
national ACM SIGIR conference on Research and development in information retrieval.
ACM, pp. 178–185.

Hoge Raad (2012). Runescape Arrest. Online. URL: \url{http://deeplink.rechtspraak.
nl/uitspraak?id=ECLI:NL:HR:2012:BQ9251}.

Jarmasz, Mario (2012). “Roget’s thesaurus as a lexical resource for natural language
processing”. In: arXiv preprint arXiv:1204.0140.

Jing, Yufeng and W Bruce Croft (1994). “An association thesaurus for information
retrieval”. In: Intelligent Multimedia Information Retrieval Systems and Management-
Volume 1. LE CENTRE DE HAUTES ETUDES INTERNATIONALES D’INFORMATIQUE
DOCUMENTAIRE, pp. 146–160.

Jungiewicz, Michał and Michał Łopuszyński (2014). “Unsupervised keyword extrac-
tion from Polish legal texts”. In: International Conference on Natural Language Pro-
cessing. Springer, pp. 65–70.

Kageura, Kyo, Keita Tsuji, and Akiko N Aizawa (2000). “Automatic thesaurus gen-
eration through multiple filtering”. In: Proceedings of the 18th conference on Compu-
tational linguistics-Volume 1. Association for Computational Linguistics, pp. 397–
403.

Katz, Daniel Martin, Michael J Bommarito II, and Josh Blackman (2017). “A general
approach for predicting the behavior of the Supreme Court of the United States”.
In: PloS one 12.4, e0174698.

Knoth, Petr et al. (2009). “Towards a framework for comparing automatic term recog-
nition methods”. In: Conference Znalosti.

Koehn, Philipp (2005). “Europarl: A parallel corpus for statistical machine transla-
tion”. In: MT summit. Vol. 5, pp. 79–86.

Lenci, A, S Montemagni, and V Pirrelli (2006). “NLP based ontology learning from
legal texts”. In: Proceedings of LOAIT ’07 II Workshop on Legal Ontologies and Artifi-
cial Intelligence Techniques, pp. 113–129.

Levy, Omer et al. (2015). “Do Supervised Distributional Methods Really Learn Lexi-
cal Inference Relations?” In: HLT-NAACL, pp. 970–976.

Liu, Yi-Hung and Yen-Liang Chen (2017). “A two-phase sentiment analysis approach
for judgement prediction”. In: Journal of Information Science, p. 0165551517722741.

Luo, Bingfeng et al. (2017). “Learning to Predict Charges for Criminal Cases with
Legal Basis”. In: arXiv preprint arXiv:1707.09168.

Macken, Lieve, Els Lefever, and Veronique Hoste (2013). “TExSIS: Bilingual termi-
nology extraction from parallel corpora using chunk-based alignment”. In: Ter-
minology. International Journal of Theoretical and Applied Issues in Specialized Com-
munication 19.1, pp. 1–30.

Mikolov, Tomas, Wen-tau Yih, and Geoffrey Zweig (2013). “Linguistic regularities in
continuous space word representations.” In: hlt-Naacl. Vol. 13, pp. 746–751.

Mikolov, Tomas et al. (2013a). “Distributed representations of words and phrases
and their compositionality”. In: Advances in neural information processing systems,
pp. 3111–3119.

\url{http://deeplink.rechtspraak.nl/uitspraak?id=ECLI:NL:HR:2012:BQ9251}
\url{http://deeplink.rechtspraak.nl/uitspraak?id=ECLI:NL:HR:2012:BQ9251}

BIBLIOGRAPHY 51

Mikolov, Tomas et al. (2013b). “Efficient estimation of word representations in vector
space”. In: arXiv preprint arXiv:1301.3781.

Moens, Marie-Francine (2001). “Innovative techniques for legal text retrieval”. In:
Artificial Intelligence and Law 9.1, pp. 29–57.

Pedregosa, F. et al. (2011). “Scikit-learn: Machine Learning in Python”. In: Journal of
Machine Learning Research 12, pp. 2825–2830.

Pennington, Jeffrey, Richard Socher, and Christopher D Manning (2014). “Glove:
Global vectors for word representation.” In: EMNLP. Vol. 14, pp. 1532–1543.

Quaresma, Paulo and Teresa Gonçalves (2010). “Using Linguistic Information and
Machine Learning Techniques to Identify Entities from Juridical Documents”. In:
Semantic processing of legal texts: Where the language of law meets the law of language.
Ed. by Enrico Francesconi et al. Berlin: Springer. Chap. 3, pp. 44–59.

Rayson, Paul and Roger Garside (2000). “Comparing corpora using frequency pro-
filing”. In: Proceedings of the workshop on Comparing Corpora. Association for Com-
putational Linguistics, pp. 1–6.

Reynaert, Martin, Camp, and M Van Zaanen (2014). “OpenSoNaR: user-driven de-
velopment of the SoNaR corpus interfaces”. In:

Roller, Stephen, Katrin Erk, and Gemma Boleda (2014). “Inclusive yet Selective: Su-
pervised Distributional Hypernymy Detection.” In: COLING, pp. 1025–1036.

Salton, Gerard and Christopher Buckley (1988). “Term-weighting approaches in au-
tomatic text retrieval”. In: Information processing & management 24.5, pp. 513–523.

Tomokiyo, Takashi and Matthew Hurst (2003). “A language model approach to keyphrase
extraction”. In: Proceedings of the ACL 2003 workshop on Multiword expressions: anal-
ysis, acquisition and treatment-Volume 18. Association for Computational Linguis-
tics, pp. 33–40.

Van Gompel, Maarten and Antal Van Den Bosch (2016). “Efficient n-gram, skipgram
and flexgram modelling with Colibri Core”. In: Journal of Open Research Software
4.1.

Van Opijnen, Marc and Cristiana Santos (2017). “On the concept of relevance in legal
information retrieval”. In: Artificial Intelligence and Law 25.1, pp. 65–87.

Velardi, Paola, Stefano Faralli, and Roberto Navigli (2013). “Ontolearn reloaded: A
graph-based algorithm for taxonomy induction”. In: Computational Linguistics
39.3, pp. 665–707.

Venturi, Giulia (2010). “Legal Language and Legal Knowledge Management Appli-
cations”. In: Semantic processing of legal texts: Where the language of law meets the law
of language. Ed. by Enrico Francesconi et al. Berlin: Springer. Chap. 1, pp. 3–26.

Verberne, Suzan et al. (2016). “Evaluation and analysis of term scoring methods for
term extraction”. In: Information Retrieval Journal 19.5, pp. 510–545.

Verheugt, J.W.P. (2013). Inleiding in het Nederlandse recht, zeventiende druk. Boom Ju-
ridische Uitgevers.

Voorhees, Ellen M (1994). “Query expansion using lexical-semantic relations”. In:
Proceedings of the 17th annual international ACM SIGIR conference on Research and
development in information retrieval. Springer-Verlag New York, Inc., pp. 61–69.

Řehůřek, Radim (2015). Word2vec & friends. https://youtu.be/wTp3P2UnTfQ.
Weeds, Julie et al. (2014). “Learning to distinguish hypernyms and co-hyponyms”.

In: Proceedings of COLING 2014, the 25th International Conference on Computational
Linguistics: Technical Papers. Dublin City University and Association for Compu-
tational Linguistics, pp. 2249–2259.

https://youtu.be/wTp3P2UnTfQ

52 BIBLIOGRAPHY

Wong, Wilson, Wei Liu, and Mohammed Bennamoun (2007). “Determining termhood
for learning domain ontologies using domain prevalence and tendency”. In: Pro-
ceedings of the sixth Australasian conference on Data mining and analytics-Volume 70.
Australian Computer Society, Inc., pp. 47–54.

Yang, Christopher C and Johnny Luk (2003). “Automatic generation of English/Chinese
thesaurus based on a parallel corpus in laws”. In: Journal of the Association for In-
formation Science and Technology 54.7, pp. 671–682.

	Abstract
	Introduction
	Problem Description
	The Legal Domain
	Aim of the thesis
	Research Questions
	Outline of the thesis

	Related work
	Language Technology in the legal domain
	Thesaurus and Ontology Learning
	Term Extraction
	Measuring Termhood
	Informativeness
	Phraseness

	Relation Extraction and Relation Classification
	Pattern Based Approaches
	Word Embeddings
	Finding Hypernyms by Projecting embedding vectors
	Supervised methods for hypernym

	Methodology
	Term extraction
	Datasets
	Foreground Corpus
	Background Corpus
	Preprocessing

	TeXSIS
	Log Likelihood
	Kullback-Leibler divergence for informativeness and phraseness
	Linguistic Filters
	Evaluation

	Relation Extraction
	Datasets
	The Thesaurus
	The Corpus

	The Word2Vec Models
	Features
	Negative Examples
	Data Split
	Overview Descriptives

	Classifiers
	Evaluation
	Jaccard Overlap

	Term Extraction Results
	TExSIS
	Log-Likelihood
	No filter
	Filter: Noun
	Filter: Verb
	Filter: Noun Preposition Noun (NPN)
	Filter: Adj N
	Filter: SPEC
	Combination of Filters
	Comparison of filters

	Kullback-Leibler divergence for Informativeness and Phraseness
	No filter
	Filter: Noun
	Filter: Verb
	Filter: Noun Preposition Noun
	Filters Combined
	Comparison of KLIP

	Comparison of TeXSIS, Log Likelihood and KLIP

	Relation Finding Results
	Continous bag of words versus skipgram
	concatenation vectors versus offset vectors
	SVM versus logistic regression

	Error Analysis
	Analysis of False Positives

	Discussion and Conclusion
	Discussion: Term Extraction
	Recall
	Precision

	Discussion Relation Extraction
	Future Research
	Optimizing Term Extraction
	Optimizing Relation Extraction
	Thesaurus Learning in Practice

	Conclusion

