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Abstract

This thesis is concerning itself with the question whether Neural radiance
fields (NeRF) can be used to perform super-resolution. The NeRF method
learns a scene representation by receiving images of said scene to train on.
As this representation receives information from multiple images we hy-
pothesise that the learned representation contains more information than
a single image does and could thus create accurate high-resolution outputs
while only training on low-resolution images.
We observe that the creation of HR images is quite possible, the quality of
these is however, only in very limited situations, comparable with interpo-
lation based super-resolution methods and significantly worse then state-of-
the-art methods.
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Chapter 1

Introduction

The idea of increasing the resolution of an image while accurately filling in
the missing details exists since a long time in fiction. A famous example
of this are scenes in criminal shows in which a technician is asked to zoom
in and enhance a picture of a CCTV camera which reveals a crystal clear
image of the zoomed-in area.

This concept however is more and more becoming reality in recent years, as
improvements in AI have brought up multiple promising algorithms in the
field of super-resolution and image processing in general.

In this thesis we inspect the super-resolution capability of NeRF [6] a neural
network based view synthesis algorithm. NeRF is a method that takes multi-
ple images of a scene to learn a volumetric representation of the given scene.
This representation is embodied by a dense feed-forward neural network
that fits a high-order function to the provided image data. A volumetric
rendering method can then be used to recreate images from the volumetric
representation by querying the neural network about information at certain
locations with specific viewing angles.

The NeRF model can render images at any desired resolution as it simply
uses its volumetric rendering method. This also means that it can render
images with a much higher resolution than the images used to train it.
The quality of these higher resolution images however, depends on how
accurate the high-order function, that is embodied by the neural network,
is at estimating the intermediate points for which the training data was not
precise enough.

Since this method is trained on images taken from multiple angles it is likely
that the resulting representation is more accurate than the representations
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of conventional interpolation based methods [2] which only have access to
information from a single image.

This thesis will therefore investigate how the NeRF method compares to
conventional interpolation methods as well as how it compares to state-of-
the-art, super-resolution methods.
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Chapter 2

Related Work

The problem that super-resolution (SR) tries to solve is to create or recon-
struct high-resolution (HR) images from low-resolution (LR) images. Many
different methods using different approaches have been explored to solve
this problem. Here we will shortly review a couple of them to gain a better
understanding of the problem.

2.1 Interpolation methods

A commonly used approach to solve this problem are interpolation based
methods. These methods scale up the LR image and fill in the missing
information via interpolation between the known pixels. Examples of these
methods are:

• Nearest-neighbor interpolation [2]
This method assigns each unknown pixel the value of the closest known
pixel. The resulting HR image is usually very similar to the LR image
since all new pixels have values that already existed in the image.

• Bilinear interpolation [2]
This method assigns new unknown pixels a value that is a weighted av-
erage of the closest known pixels. The weight of each pixel is based on
the linear distance of the unknown pixel towards each known pixel so
that a unknown pixel right next to pixel A receives an almost identical
value to pixel A and a pixel in the middle between A and B receives a
value that is exactly in between the values of A and B.
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• Bicubic interpolation [2][3]
In contrast to the other two methods that only take the closest known
pixels into account this method considers the 16 closest pixels and
applies a much more complex interpolation operation to them. This
results in this method producing smother images.

2.2 Neural network based methods

Although the mentioned interpolation based methods work, there is still a
lot of room for improvement. Via training on data sets, neural network
based approaches can implicitly learn patterns in up-scaling that are not
yet explicitly known.
In recent years such neural network based methods have started to outper-
form the more conventional interpolation based methods. The majority of
these methods, including the ones we compare our method with, are neural
networks that are pre-trained on large data sets with LR input and corre-
sponding HR output images. These networks are trained to minimize the
loss between their output and the HR images provided by the data set. The
resulting scale factor of the super-resolution is therefore for most models
specific to the data set they are trained on.

Some of these Methods are namely:

• SRResNet [4]
This is a deep convolutional neural network structure that uses mul-
tiple residual blocks to create HR images from its LR input images.

• EDSR [5]
This method is a improvement on the on SRResNet[4] which improves
the original performance by a changed structure of the the residual
blocks.

• WDSR [8]
Yet another iteration of the process, this model improves EDSR [5] by
allowing wider features within the residual blocks.

2.3 Encoding of images in weights

Another recent trend that shows promise in accurately presenting 3D objects
is the representation of these objects within the weights of a network. Any
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3D object as well as any image can be represented by a high order function
which can be embedded in a neural network, so that the inputs to this
network would be the coordinates of a pixel while the output is the RGB
value of that pixel.

Following this general idea NeRF [6] was created. When this model renders
an image it takes a relative camera position and angle as input. Using this
position and angle it then casts, for every pixel, a ray through space and
samples values along this ray, from the volumetric representation embodied
by its neural network. These values are then combined to calculate the color
value of the pixel corresponding to that ray.
The neural network of the NeRF method expects x, y and z- coordinates as
well as two angles describing the viewing angle (only two angles are necessary
as the third rotation axis is fixed) as input. Based on this input the network
returns a RGBσ value that describes the color and density at that location.
This entire process is differentiable which enables us to optimize the weights
of the neural network via gradient descend, and thus learn the volumetric
representation of a scene by only providing images and camera angles.
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Chapter 3

Method

To test the performance of NeRF as a super-resolution method we have
designed an experiment. We create LR and HR images from a synthetic
scene. The LR images are used to train the NeRF model while the HR
images are used to evaluate the quality of the NeRF output. Figure 3.1
displays the general experiment setup.

25 camera positions
Blender
software

100 LR train images

25 HR test images

Train NeRF
Perform super-
resolution with
trained NeRF

25 HR NeRF images

Evaluate images using metrics

Figure 3.1: Experiment outline
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3.1 Gathering Images

Evaluating a super-resolution task requires LR images as well as HR images
of the exact same angle and scene. Since the NeRF model additionally
needs multiple images from different angles of the same scenes, it proves
quite effective to use synthetic scenes for the generation of these images,
as results from rendering engines are reliably reproducible and consistent.
For these reasons all the scenes that are used to evaluate the performance
of NeRF as super-resolution method are synthetic and rendered using the
Cycles render engine of the Blender software. We use 4 different scenes to
evaluate our model that are displayed in Figure 3.2.

Figure 3.2: The four scenes used to test our method. The lego and chair
scenes were taken from the original NeRF paper and the chalice and censer
scenes are taken from sketchfab. For the artists names refer to the acknowl-
edgements.

For each of our 4 scenes we create 100 LR images, with dimensions 400x400
pixels, that will be used to train the NeRF model, as well as 25 HR images,
with dimensions 1600x1600 pixels, that are used as the ground truth when
evaluating our results. All these images are taken from a slightly different
camera angle which are evenly distributed over a certain area that is specified
by the FOV angle that defines the maximum degree that a single camera
angle can deviate from the central camera angle.
We additionally create 25 LR images from the same angles as the 25 HR
images so that these 25 LR images can be used as input for the other super-
resolution methods we compare our method with. By doing this we ensure
that both, our method as well as the other methods, try to recreate the
same 25 HR images that act as our ground truth.
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Figure 3.3: Example of the LR training images that are taken from different
angles. Show are training images of the Lego and Chair scene.

3.2 Train NeRF

For every single scene we train a new NeRF model by giving it the 100 LR
images of the corresponding scene and train it for 200.000 iterations. This
has to be done for every scene separately since the model is encoding the
scene specific representation within its parameters. The value of 200.000
iterations was chosen based on the original NeRF paper [6], in which this
amount is suggested for the trained model to perform well.

For the training of all scenes, we sample 64 points for every ray we cast
through the scene. In every training step a batch of 1024 rays is processed
which correspond to 1024 random pixels of one random LR training image.
The network is optimized by using the Adam optimizer and is minimizing
the mean squared error across the batched pixels.

Although adjusting some of these hyper parameters could improve the per-
formance of NeRF, in regards to super-resolution, for the evaluation in this
thesis the model was used as described in the original paper.

3.3 Super-resolution with NeRF

We can now use the trained NeRF models to perform our super-resolution
task. To evaluate these models we will compare their output with the 25
HR ground truth images that were created as described in 3.1. We instruct
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each, scene specific, NeRF model to create images from the same camera
positions as the ground truth images.

To render an image of a embedded scene from a NeRF model, four parame-
ters have to be provided. The height and width of the image that should be
rendered, the focal length and the camera position. The focal length is set to
be the same focal length as was used when rendering all the training images,
while the camera position is set to the corresponding camera position of the
25 HR ground truth images. For the original task of NeRF, view-synthesis,
the height and width would be set to the same values as the training data,
namely 400x400. However since we want to perform super-resolution we set
these values to 1600x1600 for all of the 25 images we render with the NeRF
model per scene.

3.4 Evaluate images via metrics

To evaluate the performance of our method we then compare the output of
the trained NeRF model with the 25 HR ground truth images that were ren-
dered in 3.1. The way we compare them is using three different metrics that
are commonly used to evaluate super-resolution tasks. The same methods
where used in the original NeRF paper [6] as well.

• PSNR (Peak signal-to-noise ratio)
This metric takes two images of the same dimensions and compares it
using the mean squared error over all pixels. The mean squared error
is then normalized by the maximum value a pixel can have (MAX in
the formula) and then converted into a logarithmic scale.

MSE =
1

mn

m−1∑
i=0

n−1∑
j=0

(I(i, j) −K(i, j))2

PSNR = 10 · log10

(
MAX2

I

MSE

)
• SSIM [7] (Structural similarity)

This metric compares two images using the averages, variances and co-
variance over the whole image. By doing this SSIM reflects correlations
within the two images instead of simply the absolute error like the
PSNR or MSE do. The values SSIM can have are between 0.0 and 1.0
where a 0.0 indicates no similarity at all and a 1.0 indicates that the
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two images are identical.

SSIM(x,y) =
(2µxµy + c1)(2σxy + c2)

(µ2xµ
2
y + c1)(σ2xσ

2
y + c2)

µi = average of i

σ2i = variance of i

σij = covariance of i and j

ci = (kiL)2

L = maximum value a pixel can have

k1 = 0.01 k2 = 0.03

• LPIPS [9] (Learned Perceptual Image Patch Similarity)
This metric compares two images by calculating their ”perceptual sim-
ilarity” which is doing a better job at representing human perception
about the similarity of two images rather than methods like PSNR and
SSIM. The way LPIPS does this is by harvesting the functionality of
convolutional neural networks.

3.5 Super-resolution with other Methods

The methods we will be comparing with NeRF were already briefly intro-
duced in 2 and are namely:

• Nearest-neighbor interpolation

• Bilinear interpolation

• Bicubic interpolation

• EDSR (state-of-the-art)

• WDSR (state-of-the-art

All these methods expect a single LR images as input to produce a single
HR image as output. So to properly compare them to our NeRF model we
provide each one of them with with the 25 LR images that we created in 3.1
as input. These images have the exact same camera positions as our 25 HR
ground truth images so the resulting output are the best attempt of these
methods to estimate the ground truth. Just like for our NeRF method we
evaluate all of our results using the three metrics described in 3.4.
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Chapter 4

Results

For all the results in this section it stands that the NeRF scenes where
trained for 200k training iterations with a FOV angle of 20° unless otherwise
specified.

4.1 General results

Comparing the HR images the NeRF model creates with the human eye it
is quite apparent, that the images are not as clear as the images created by
the state of the art models EDSR and WDSR. However no clear decision
can be made, only using the human eye, regarding the differences between
NeRF and interpolation based methods. Example outputs of this can be
seen in Figure 4.1 (More output images can be seen in Appendix A).
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Figure 4.1: Output of all compared methods of the in red highlighted area
of the 4x up-scaled Chair scene. Both ”SOA” methods are neural network
based state-of-the-art methods and all methods indicated by the ”Inter” are
conventional interpolation based methods.

The metric results that are displayed in Figure 4.2 indicate that the NeRF
model performs worse than any other method in the PSNR and SSIM metric.
NeRF seems to be roughly comparable to the interpolation based methods
while still being considerably worse then the state of the art models in re-
gards of the LPIPS metric.
In regards of statistical significance we find that all methods are perform-
ing significantly better in regards of PSNR and SSIM. In terms of the
LPIPS metric we also see that NeRF is performing significantly worse than
the state-of-the-art methods as well as the nearest neighbor interpolation
method. NeRF is however performing significantly better than the linear
and bicubic interpolation methods in regards of LPIPS. (This can be seen
in Table 4.1)

More output images and more detailed values can be found in Appendix A
and Appendix B.
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Figure 4.2: Box plot displaying the performance of all the different methods
for each of the metrics. Every single box represents the averaged results from
8 different scenes. In this and all following box plots, the boxes represent
the 1/4 and 3/4 quartiles and the median is represented by the orange line
in the boxes. The whiskers span the entire range of all data points. Outliers
are defined as being more or less then 3/2 times larger/smaller then the
corresponding quartile. (Note that the y-axis of the LPIPS graph is inverted.
In LPIPS lower scores indicate better performance and the inversion is done
to keep the interpretation, that a value higher in the graph represents better
performance, consistent.)

Metric values Significance vs NeRF

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR SSIM LPIPS

Nearest 30.62 0.994 0.032 7.8 · 10−3 7.8 · 10−3 0.015

Linear 31.45 0.995 0.039 7.8 · 10−3 7.8 · 10−3 7.8 · 10−3

Bi-cubic 32.10 0.996 0.038 7.8 · 10−3 7.8 · 10−3 0.015

EDSR 34.10 0.997 0.018 7.8 · 10−3 7.8 · 10−3 7.8 · 10−3

WDSR 34.10 0.997 0.018 7.8 · 10−3 7.8 · 10−3 7.8 · 10−3

NeRF 28.75 0.988 0.038 - - -

Table 4.1: This table contains the metric values that are averaged over all
images of 8 scenes for all methods in addition to the p-values of a Wilcoxon
signed-rank test that compared the results per scene of each method with the
the results per scene of the NeRF method. Statistically significant p-values
are highlighted in red. (Threshold for significance is 0.05)
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4.2 Improvement through training

As described in 4.1 the NeRF model is not performing very well. Considering
options to improve the performance of the NeRF model, the amount of
training iterations comes quickly to mind.

All the NeRF models mentioned before were all trained for 200.000 training
iterations. The original NeRF paper states this amount as a good ”time to
performance” ration but it is still the case that more training time improved
performance of NeRF for its original task. Thus it is likely that the same
would be the case for the task of super-resolution.

Figure 4.3: Plotted here are the averaged results from 4 different scenes
given by a NeRF model trained for 200.000 iterations and one that was
trained for 500.000 iterations (Note that LPIPS y-axis is inverted).

In Figure 4.3 we see that PSNR and SSIM only indicate a minimal improve-
ment of performance while LPIPS shows a notable improvement. In regards
of statistical significance we see that the 500.000 iterations model performs
significantly better across all scenes in the LPIPS metric. For the PSNR and
SSIM metrics the results show a significant difference in all but one scene.
The values and statistical significance can be seen in Table 4.2.

The increase in training time however does not change anything regarding
how NeRF compares to the other methods as depicted in Figure 4.4, NeRF is
still last in PSNR and SSIM and around the same as the other interpolation
based methods in LPIPS.
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Scenes Iterations Metric values Significance

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR SSIM LPIPS

200k 27.74 0.986 0.033
Lego

500k 27.81 0.986 0.032
3.3 · 10−4 5.6 · 10−4 6.0 · 10−8

200k 28.52 0.990 0.035
Chair

500k 28.56 0.990 0.034
1.2 · 10−3 2.7 · 10−5 6.0 · 10−8

200k 30.00 0.994 0.037
Chalice

500k 30.15 0.994 0.035
6.0 · 10−8 6.0 · 10−8 6.0 · 10−8

200k 27.98 0.989 0.041
Censer

500k 28.01 0.989 0.040
0.101 0.055 6.0 · 10−8

Table 4.2: This table shows the over images averaged results per scene for
both a NeRF model trained for 200.000 interations as well as one trained for
500.000 iterations. Additionally show are the p-values of Wilcoxon signed-
rank tests that indicate whether there was a significant difference between
the two models. Statistically significant p-values are highlighted in red.
(Threshold for significance is 0.05)

Figure 4.4: Performance of NeRF trained for 500.000 iterations vs other
methods. All boxes represent the averaged results form 4 different scenes
(Note that LPIPS y-axis is inverted).

4.3 Improvement through different FOV angle

Another factor that can be changed is the Field of View (FOV) angle which,
as described in 3.1, defines how far apart the camera angles for the LR and
HR images that are being created from the scene can be.
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In all the results shown so far this FOV angle was 20°. Now the question is
how the super-resolution performance is impacted should we decrease this
angle while still providing the same number of training images. Presum-
ably this could increase performance since all the image data will be closer
together and thus more dense.

Figure 4.5: Plotted here are the averaged results from 4 different scenes
given by a NeRF model trained with images that have a FOV angle of 20°
and another NeRF model that was trained with images that have a FOV
angle of 5° instead (Note that LPIPS y-axis is inverted).

We compared the performance of the NeRF model that was trained with a
FOV angle of 20° with another NeRF model that was instead trained with
a FOV angle of 5°. The results of this comparison can be seen in Figure 4.5.
The 5° version of the NeRF model is performing notably better with a strong
statistical significance in every of the three metrics. As can be seen in Table
4.3, all the results per scene have very low p-values and thus show a very
significant difference in all metrics, with exception of the Lego scene, where
the significance is not as strong.
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Scenes FOV Metric values Significance

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR SSIM LPIPS

20° 27.74 0.986 0.033
Lego

5° 28.02 0.987 0.031
5.6 · 10−3 0.012 0.011

20° 28.52 0.990 0.035
Chair

5° 28.87 0.991 0.032
6.0 · 10−8 6.0 · 10−8 6.0 · 10−8

20° 30.00 0.994 0.037
Chalice

5° 30.25 0.994 0.033
6.0 · 10−8 6.0 · 10−8 6.0 · 10−8

20° 27.98 0.989 0.041
Censer

5° 28.35 0.990 0.036
6.0 · 10−8 6.0 · 10−8 6.0 · 10−8

Table 4.3: This table shows the over images averaged results per scene for
both a NeRF model trained with a FOV angle of 20° as well as one trained
with a FOV angle of 5°. Additionally show are the p-values of Wilcoxon
signed-rank tests that indicate whether there was a significant difference
between the two models. Statistically significant p-values are highlighted in
red. (Threshold for significance is 0.05)

In Figure 4.6 we can also see that the NeRF model now always outperforms
the bicubic and bilinear method in the LPIPS metric. Meaning that to
human perception, the NeRF method with a FOV of 5° produces images
that are closer to the ground truth. However in regards of PSNR and SSIM,
although better than before, the NeRF method is still outperformed by all
other methods.

Figure 4.6: Performance of NeRF trained with a FOV of 5° vs other methods.
All boxes represent the averaged results form 4 different scenes (Note that
LPIPS y-axis is inverted).

18



Chapter 5

Discussion

We have found that the NeRF model can indeed be used as a super-resolution
method. The performance of this method however is worse in the PSNR
and SSIM metric than all other compared methods. The NeRF method
also performs worse than the state-of-the-art methods in the LPIPS metric,
while performing similar or better (given a small enough FOV angle), than
the interpolation based methods, in this metric.

It is surprising to see that the NeRF model receives a worse PSNR and SSIM
score than nearest neighbor interpolation since the trained NeRF model in
essence is just a complex multi dimensional function which by definition is
performing some kind of interpolation. Thus it is somewhat unexpected to
see that nearest neighbor interpolation is outperforming NeRF.

5.1 Shortcomings of the experiment

A potential reason for this could be the fact that the 25 HR images that
are being used to evaluate performance have mostly different camera angles
than the 100 LR training images the NeRF was trained on (Only 4 of the
25 HR images align with angles of the 100 LR training images).
This means that the NeRF model is effectively performing two tasks for
most of the 25 HR images. Firstly it is performing novel view-synthesis, the
task NeRF was originally designed for, followed by the super-resolution task.
Each task likely introduces its own amount of errors which could accumulate
and could be the cause of why NeRF is outperformed in PSNR and SSIM
by nearest neighbor interpolation.
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We have performed an analysis on one of the scenes (Lego scene) whether
there is a significant difference between the metric values of, by NeRF pro-
duced, HR images that are taken from camera positions that the NeRF
model was trained on and, also by NeRF produced, HR images with camera
positions that where not trained on. The results of this can be seen in Figure
5.1. Using a independent T-test, we could not find a significant difference in
any of the metrics between training and testing images (p-values of 0.42 for
PSNR, 0.48 for SSIM and 0.69 for LPIPS). Thus we have found no evidence
that proved this shortcoming, however before being able to conclude that
there is indeed no shortcoming, additional tests would have to be performed.

Figure 5.1: Box plot displaying the metric results of HR images created by
NeRF method trained on the Lego scene. Shown are both the 100 camera
positions that where used for training and the 25 camera positions that
where used for testing (Note that LPIPS y-axis is inverted).

A solution to this potential shortcoming would be to repeat the experiment
where the camera positions of the 25 HR images for each scene are a subset
of the camera positions of the 100 LR training images.

5.2 Shortcomings of NeRF model

Another problem is that the internal representation of NeRF renders pixels
based on single rays that it casts through 3D space, this shortcoming is
described in detail and addressed in the Mip-NeRF paper [1]. The problem
is that the pixel of an image does not represent a concrete ray of light but
rather the average of rays that fall on this specific pixel. The NeRF model
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can therefore not properly dissect the averaged information that a single
pixel contains. This fact likely hinders NeRF from fully integrating the
detail that multiple images from different angles provide. This is depicted
in Figure 5.2.

A solution to this problem was already introduced in the Mip-NeRF paper
[1] as also briefly explained in Figure 5.2. Therefore the only adjustment
that has to be done to the experiment is to use the Mip-NeRF method as
base instead of the original NeRF method.

Figure 5.2: NeRF works by extracting point-sampled positional encoding
features (shown here as dots) along each pixel’s ray. Those point-sampled
features ignore the shape and size of the volume viewed by each ray, so two
different cameras imaging the same position at different scales may produce
the same ambiguous point-sampled feature, thereby significantly degrading
NeRF’s performance. In contrast, Mip-NeRF casts cones instead of rays and
explicitly models the volume of each sampled conical frustum (shown here
as trapezoids), thus resolving this ambiguity. (This figure was taken from
the Mip-NeRF paper [1])

5.3 Hyper-parameter optimization

Aside from fixing the shortcomings mentioned above, experimenting with
different hyper-parameters for the NeRF model could also have a significant
impact on performance. We already touched on changing the amount of
training iterations and different FOV angles, however the experimentation
on these was not exhaustive. There are also still a lot of parameters that we
have not experimented with, for example:

• The Number of LR training images (100 were used in this thesis)

• The Super-resolution scale factor (4x was used in this thesis)
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• The number of points sampled along a ray cast by the NeRF per pixel.
(64 were used in this thesis)
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Chapter 6

Conclusions

Although the NeRF model can be used as super-resolution method it is out-
performed by conventional interpolation based and state-of-the-art methods
in regards of PSNR and SSIM. Concerning LPIPS the NeRF method is ca-
pable of outperforming interpolation based methods given a narrow FOV
angle. State-of-the-art methods however are still significantly better regard-
ing the LPIPS metric regardless of any investigated FOV angle.
There are however multiple known potential shortcomings, with known pos-
sible solutions, to the NeRF model and the experiment that should first be
fixed before a conclusive decision about the super-resolution performance of
the NeRF model can be made.

Acknowledgements

I would like to thank Ruben van Bergen for the support he has given me as
supervisor. Additionally I would like to thank the Blend Swap users Hein-
telnisse (lego) and 1DInc (chair) as well as the sketchfab users re1monsen
(chalice) and cyberdan (censer) for the 3D models that where used to train
and test the NeRF model.

23



Bibliography

[1] Jonathan T. Barron, Ben Mildenhall, Matthew Tancik, Peter Hedman,
Ricardo Martin-Brualla, and Pratul P. Srinivasan, Mip-nerf: A multi-
scale representation for anti-aliasing neural radiance fields, 2021.

[2] Cambridge in Colour, Digital image interpolation.

[3] Robert G. Keys, Cubic convolution interpolation for digital image pro-
cessing, IEEE Transactions on Acoustics, Speech, and Signal Processing
vol. 29, no. 6, pp. 1153–1160 (1981).

[4] Christian Ledig, Lucas Theis, Ferenc Huszár, Jose Caballero, Andrew
Cunningham, Alejandro Acosta, Andrew Aitken, Alykhan Tejani, Jo-
hannes Totz, Zehan Wang, and Wenzhe Shi, Photo-realistic single im-
age super-resolution using a generative adversarial network, 2017 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2017,
pp. 105–114.

[5] Bee Lim, Sanghyun Son, Heewon Kim, Seungjun Nah, and Kyoung Mu
Lee, Enhanced deep residual networks for single image super-resolution,
The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) Workshops, July 2017.

[6] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T.
Barron, Ravi Ramamoorthi, and Ren Ng, Nerf: Representing scenes as
neural radiance fields for view synthesis, ECCV, 2020.

[7] Zhou Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli, Image quality
assessment: from error visibility to structural similarity, IEEE Transac-
tions on Image Processing 13 (2004), no. 4, 600–612.

[8] Jiahui Yu, Yuchen Fan, Jianchao Yang, Ning Xu, Xinchao Wang, and
Thomas S Huang, Wide activation for efficient and accurate image
super-resolution, arXiv preprint arXiv:1808.08718 (2018).

24



[9] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver
Wang, The unreasonable effectiveness of deep features as a perceptual
metric, CVPR, 2018.

25



Appendix A

More output images

The following figures display highlighted areas of the scenes for our the
different scenes.

Figure A.1: Examples of output for all 8 scenes that were used to evaluate
the NeRF model trained for 200.000 iterations with a FOV angle of 20°.
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Figure A.2: Examples of output for all 4 scenes that were used to evaluate
the NeRF model trained for 500.000 iterations with a FOV angle of 20°.

Figure A.3: Examples of output for all 4 scenes that were used to evaluate
the NeRF model trained for 200.000 iterations with a FOV angle of 5°.
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Appendix B

Detailed results

In the following tables the per scene results are documented each table con-
tains the results for one or the three metrics used to evaluate the methods.

front facing Scenes (20°) back facing Scenes (20°) front facing Scenes (5°)
Lego Chair Chalice Censer Lego Chair Chalice Censer Lego Chair Chalice Censer

nearest 29.21 30.33 31.11 29.61 29.60 31.51 31.05 32.42 29.37 30.22 31.11 29.48

linear 30.011 30.91 32.04 30.51 30.44 32.38 31.95 33.31 30.17 30.83 32.06 30.38

bi-cubic 30.64 31.50 32.68 31.24 31.04 33.06 32.59 33.99 30.81 31.43 32.69 31.11

EDSR 31.90 33.69 34.42 33.32 32.65 36.19 34.17 36.15 32.34 33.64 34.46 33.18

WDSR 31.90 33.69 34.42 33.32 32.65 36.19 34.17 36.15 32.34 33.64 34.46 33.18

NeRF 200k 18.65 28.52 30.00 27.98 27.33 29.71 30.02 30.73 28.02 28.87 30.25 28.35

NeRF 500k 18.66 28.56 30.15 28.01 - - - - - - - -

Table B.1: This table contains all results for the PSNR metric averaged over
all images of the specific scene.

front facing Scenes (20°) back facing Scenes (20°) front facing Scenes (5°)
Lego Chair Chalice Censer Lego Chair Chalice Censer Lego Chair Chalice Censer

nearest 0.990 0.993 0.995 0.992 0.993 0.994 0.996 0.996 0.990 0.993 0.995 0.992

linear 0.992 0.994 0.996 0.994 0.994 0.995 0.996 0.997 0.992 0.994 0.996 0.994

bi-cubic 0.993 0.995 0.997 0.995 0.995 0.996 0.997 0.997 0.993 0.995 0.997 0.995

EDSR 0.995 0.997 0.998 0.997 0.997 0.998 0.998 0.998 0.995 0.997 0.998 0.997

WDSR 0.995 0.997 0.998 0.997 0.997 0.998 0.998 0.998 0.995 0.997 0.998 0.997

NeRF 200k 0.986 0.990 0.994 0.989 0.988 0.991 0.994 0.994 0.987 0.991 0.994 0.990

NeRF 500k 0.986 0.990 0.994 0.989 - - - - - - - -

Table B.2: This table contains all results for the SSIM metric averaged over
all images of the specific scene.
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front facing Scenes (20°) back facing Scenes (20°) front facing Scenes (5°)
Lego Chair Chalice Censer Lego Chair Chalice Censer Lego Chair Chalice Censer

nearest 0.026 0.031 0.034 0.043 0.030 0.029 0.035 0.032 0.026 0.031 0.034 0.042

linear 0.037 0.037 0.040 0.045 0.044 0.034 0.041 0.037 0.038 0.038 0.040 0.045

bi-cubic 0.036 0.035 0.039 0.043 0.044 0.032 0.040 0.035 0.037 0.036 0.039 0.043

EDSR 0.017 0.016 0.021 0.018 0.022 0.011 0.022 0.017 0.018 0.016 0.021 0.018

WDSR 0.017 0.016 0.021 0.018 0.022 0.011 0.022 0.017 0.018 0.016 0.021 0.018

NeRF 200k 0.033 0.035 0.037 0.041 0.043 0.030 0.038 0.035 0.031 0.032 0.033 0.036

NeRF 500k 0.032 0.034 0.035 0.040 - - - - - - - -

Table B.3: This table contains all results for the LPIPS metric averaged
over all images of the specific scene.
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