
 

 

 

  

Tracing the Neurocognitive Sources of Communicative Challenges 

in Autism Spectrum Disorder 

  

  

Kexin Cai1 

Supervisors: Dr. Arjen Stolk1,2, Dr. Jana Bašnáková1, Dr. Saskia Koch1, Dr. Ivan Toni1 
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Autism Spectrum Disorder (ASD) is diagnosed on the basis of communicative challenges experienced in everyday 

interactions, yet the neurocognitive sources of those challenges remain largely unknown. A popular suggestion 

holds that autistic individuals struggle to predict other people’s behaviors, either due to a bottleneck in bottom-up 

sensory processing or an attenuated sensitivity to top-down priors when perceiving communicative behaviors. 

However, studies of predictive processing have produced mixed results in the perceptual domain, and few studies 

to date have investigated ASD predictive capabilities in the context of live social interaction. This dissertation 

takes the first steps to bridge this gap in assessing bottom-up and top-down contributions to interpreting genuinely 

interactive communicative behaviors in autistic and neurotypical individuals. I report the construction and 

validation of a theoretically grounded methodological framework that allows the simultaneous recording of eye 

gaze and electroencephalographical activity from pairs of participants engaged in dynamically unfolding 

communicative interactions. Predictive capabilities are assessed while participants solve a series of non-verbal 

coordination problems in the two-player Tacit Communication Game. A benefit of this novel communicative 

medium is that it offers the possibility to manipulate access to top-down priors during communicative 

interpretation by introducing coordination problems that are more easily solved in the light of previous interactions. 

Moreover, the computer-controlled interactions allow for temporally precise measurement of communicative 

behavior to determine any bottlenecks in bottom-up sensory processing. I demonstrate how eye tracking can be 

employed to assess bottom-up and top-down processing in this live social context through the use of qualitative 

and quantitative methods and potential methodologies that can be used to further investigate the neurocognitive 

sources of autistic communicative challenges.  
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Interactive context construction in human communication 

Everyday interaction, though smooth as it typically appears to be, is full of ambiguity, metaphor, implicature, and 

the occasional misdirection. We travel with the word’s uses through “a complicated network of similarities 

overlapping and criss-crossing” (Wittgenstein, 2010). How human minds manage to remain connected while they 

traverse these often unique paths is a key question at the roots of human sociality.  In a conversation, interlocutors 

with idiosyncratic conceptual worlds appear to cast their respective mental representations to each other, but it 

remains a mystery how one could catch the fleeting meaning casted by the other at the time of the delivery and 

how this cast-catch game lands the players on a “common ground” eventually—not necessarily agree on but at 

least converge on one issue. Plain sailing as daily communication is, it’s easy to overlook the complexity of the 

underlying problem, leading to previous attempts to carve the nature of human communication by reducing it to 

a signal transmission process. 

      Signal-centered frameworks. Starting from Shannon’s (1948) mathematical theory of communication, 

psychologists (e.g., Liberman & Mattingly, 1985) have comparably defined human communication as a system 

that consists of a sender and a receiver using coding and decoding mechanisms, respectively; and a physical 

medium for transferring signals. Recent empirical neuroscientific studies also attribute the retrieval and selection 

of the meaning to the signal itself, e.g., neural synchrony (Hasson et al., 2012), and shared sensorimotor 

associations (Pickering & Garrod, 2013; Pulvermüller et al., 2014) are the common mechanisms to implement 

information transfer. Admittedly the signal transmission view constitutes a consequential aspect of the essence of 

human communication. However, it cannot exclusively account for the nature of human communication; nor 

where its true complexity and distinctiveness reside. 

      Signal-centered frameworks implicitly or explicitly assume that communicators share the same set of pre-

defined coding-decoding rules, e.g., a common language (Akmajian, Farmer, Bickmore, et al., 2017), which is, 

however, neither a necessity nor sufficient condition for mutual understanding. The view is falsified by two 

contrasting types of observations in daily life, namely tourists’ successes and robots’ failures. The former 

elucidates the unnecessity of pre-defined coding-decoding rules for successful communication. Imagine a foreign 

tourist shopping in a supermarket in the Netherlands. At the counter, the cashier waves the receipt to her and asks, 

“Wilt u het bonnetje?”. The tourist cannot decode the speech signal without prior knowledge of Dutch, but drawing 

on inferences from her previous shopping experiences, and the current context—it happens after paying the bill, 

and the cashier is waving the receipt; the tourist grasp the gist of the question quickly and responds by waving her 

hands. This resolution of ambiguity emerges as early as when we learn a common language as an infant, who is 

essentially a tourist fresh off the boat. Robots’ failures, on the other hand, depicts a situation where sharing existing 

coding-decoding rules is not a sufficient condition for mutual understanding. Consider you are interacting with an 

artificial agent such as Apple’s Siri, “Hey Siri, I would like to go fishing, so where is the nearest bank?” Siri 

would recommend banks that offer financial services based on the statistical regularities rather than river banks 

in line with the current communicative context. Artificial agents have long built on the same guiding principles 

underlying signal-centered frameworks, namely that signals have stereotyped and fully predictable consequences 

(fixed-code fallacy, see Stolk et al., 2020). This approach neglects the interactive construction of context by virtue 

of seeking and confirming the evidence of mutual understanding. Moreover, Bayesian methods that rely on the 

prior cannot account for the fast catch of the interpretation of a signal without a clearly defined prior. And the 

https://www.zotero.org/google-docs/?xzveff
https://www.zotero.org/google-docs/?69mQgL
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deficiency in artificial agents cannot be ameliorated by more advanced engineering techniques without shifting 

away from Shannon-like signal-centered frameworks (Stolk et al., 2016). 

      Conceptual alignment framework. Mutual understanding, according to the conceptual alignment framework, 

is achieved by interaction members continuously interweaving and converging on shared context. The neglected 

process of interactive context construction in signal-centered accounts, or joint epistemic engineering (Stolk et al., 

2020), refers to a process that members of the interaction negotiate and create a dynamic shared conceptual space 

allowing for rapid resolution of ambiguities of multi-layered communicative signals (Stolk et al., 2016; Toni & 

Stolk, 2019). Construction of the shared conceptual space kicks in even before the conversation begins, as when 

communicators need to conceive of a context that allows their opening signal to be better understood than 

otherwise by a specific addressee (Stolk, Noordzij, Volman, et al., 2014), e.g., information on where the 

conversation takes place, assumption about the others’ knowledge; and keeps lively updated throughout (Stolk, 

Noordzij, Verhagen, et al., 2014). Here, the meaning of a word does not reside in or stably attached to the signal, 

but assimilates into the mutually inferred space—to create, delete or modify the elements; where the signal is 

merely the behavioral vehicle for probing and shaping that fleeting conceptual space defined by the ongoing 

interaction. By virtue of the interface for references, interlocutors’ inferred thoughts can be aligned to the current 

context and one another as well, enabling their quick resolution of ambiguities, converge on the same page and 

even invention of new temporary usage, leading to the final mutual understanding. The interactive and dynamic 

conceptual alignment account built on Marr’s computational view better explains smooth and effortless 

communication despite the ambiguous nature of meanings—the true vitality, complexity, and distinctiveness of 

human communication.  

      Neural evidence from a magnetoencephalography (MEG) study (Stolk et al., 2013) provided initial 

neuroscientific evidence for  the conceptual alignment framework, where the meaning of a signal is hatched by a 

fleeting conceptual space that is determined by the ongoing interaction. Three findings underpin the investigation. 

First, the observed neural activities were in the brain regions necessary for processing conceptual knowledge—

right temporal lobe (TL) and ventromedial prefrontal cortex (vmPFC). Second, communicative comprehension 

and production share the same patterns of neural activity, which directs to the same conversational context. These 

findings indicate that the observed neural activities were related to task features instead of different sensorimotor 

events. Third, the timing of the shared patterns preceded any communicative signal generated and interpreted as 

it is defined by the interaction instead of the signal itself. An ensuing dual-fMRI study (Stolk, Noordzij, Verhagen, 

et al., 2014) recorded two communicators’ brain activities simultaneously and found that the superior temporal 

gyrus (STG) became increasingly involved over time, and the synchronized inter-cerebral dynamics between two 

communicators was independent of signal occurrences, indicating the communicators’ adjustments of their shared 

conceptual space. These four findings empirically prove that a fleeting conceptual space is jointly established, 

continuously updated, and overall defined by the dynamic interaction, in favor of the conceptual alignment 

framework.  

      In sum, the theoretical and empirical considerations above suggest that human communication is better 

interpreted as a conceptual alignment challenge than a signal transmission problem. Here I consider the possibility 

to extend the conceptual alignment framework into the domain of autism—a disorder that is typified by 

communicative challenges during social interaction.  
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Communicative challenges in Autism Spectrum Disorder 

Autism Spectrum Disorder (ASD) is diagnosed based on communicative deficits in daily social interaction, and 

the core symptoms consist of poor social interaction quality as well as repetitive and restricted patterns of behavior 

(American Psychiatric Association, 2013). The deficits have been attributed to a core impairment in social 

cognition—representing mental states, also known as “theory of mind” or “mentalizing” (Baron-Cohen, Leslie, 

& Frith, 1985; Happé, 1993) and are most evident when intended and literal meanings diverge—irony or sarcasm 

(Zalla et al., 2014) or when it requires going beyond explicit statement—metaphor (Kalandadze, Norbury, 

Nærland, et al., 2016). An extensive amount of empirical evidence supports an alteration in theory of mind; 

concomitantly, quite a few fail to prove the universal impairment of mentalizing in ASD or even replicate seminal 

theory-of-mind findings (for a review, see Gernsbacher & Yergeau, 2019). Besides the classic atypical social 

cognition explanation, other main accounts include:  

     1. Social motivation and attention. The social motivation theory (Chevallier, Kohls, Troiani, et al., 2012) argues 

that motivation deficits can exert downstream effects on the development of social cognition, with the rationale 

that diminished social motivation and/or attention regardless of diagnosis starting in early childhood would hinder 

the child from receiving crucial social inputs, thus atypical social cognition is a consequence rather than a cause 

of disrupted social interest. A meta-analysis of fMRI evidence (Clements et al., 2018) found domain-general 

reward system dysfunction in ASD in favor of the social motivation hypothesis. Another meta-analysis of eye-

tracking studies indicated that individuals with ASD have overall reduced social attention compared to those with 

typical development (TD) (Chita-Tegmark, 2016).  

      2. Executive function. Communicative challenges, especially pragmatic deficits in ASD are shown to arise 

from a deficit in executive function (for a meta-analysis, see Demetriou, Lampit, Quintana, et al., 2018). The 

atypical executive dysfunction hypothesis (Hill, 2004; Pennington & Ozonoff, 1996) includes difficulties in set-

shifting, response inhibition, and working memory. Recent empirical evidence suggests that autistic use of 

referring expressions can be impacted by cognitive flexibility and working memory simultaneously (Malkin & 

Abbot-Smith, 2021). 

      3. Motor function. The motor deficits account is based on the notion that early motor abilities can set the stage 

for the development of social interaction and communicative skills (Bhat et al., 2012; Mody, Shui, Nowinski, et 

al., 2017). Since motor dysfunction is an early emerging component of the ASD phenotype (Thomas, Davis, 

Karmiloff-Smith, et al., 2016), vulnerability in motor function early in development (LeBarton & Landa, 2019) 

can lead to atypical language and social behaviors.  

      4. Communication cues. Autistic individuals possess intact socially relevant action perception, indicating they 

are perceptually capable of distinguishing between subtle nonverbal cues, though they often fail to exploit them 

during real-life social interaction (Cusack et al., 2015, but see Bolis & Schilbach, 2018 for argument of an imparied 

action prediction). Yet, impaired genetically-driven social visual engagement—the active seeking of social 

information in autistic children (Constantino, Kennon-McGill, Weichselbaum, et al., 2017) and atypical 

integration of verbal and non-verbal communication cues (Jung, Tu, Lang, et al., 2019) can account for 

communicative challenges in ASD.  

      5. Perceptual function. The atypical perceptual function is not part of the diagnostic criteria yet and neither 

the nature nor the connection with core communicative symptoms is clear. Classic theories suggest that autistic 

individuals exhibit impaired global processing (Booth & Happé, 2018), enhanced local processing (Mottron et al., 
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2006), and a preference for detail (Koldewyn et al., 2013). Recent perceptual inference accounts emphasize 

autistic individuals’ attenuated priors in predictive processing (for a review, see Stark, Stacey, Mandy, et al., 2021). 

Empirical evidence (Chambon, Farrer, Pacherie, et al., 2017) indicated an atypical interplay between top-down 

priors and bottom-up sensory processing when predicting and understanding others’ actions in autism, which can 

be an explanation for autistic challenges in inferring mental states. However, recent evidence (Feigin, Shalom-

Sperber, Zachor, et al., 2021) showed that autistic individuals showed an increased influence of prior choices 

instead of prior stimuli, thus challenging the “hypo-priors” view.  

      Other novel accounts include a non-deficient-based perspective (Casartelli, Federici, Fumagalli, et al., 2020; 

Davis & Crompton, 2021), arguing that the mismatch of interaction styles between autistic and neurotypical 

interlocutors lead to bidirectional communicative challenges. These multifaceted accounts and mixed empirical 

results highlight the current situation that a systematic and deep understanding of autistic communicative 

challenges is still lacking, either from a perspective of cause or intervention. Yet, understanding communicative 

challenges in autism may ultimately uncover new targets for interventions aimed at improving autistic individuals’ 

experiences within social interaction. Prior to introducing the methodological framework developed as part of this 

thesis project, here I propose a novel neurocognitive account for autistic communicative deficits by extending 

considerations from the conceptual alignment framework to the domain of autism.  

      Extending conceptual alignment as a novel neurocognitive account. As theoretically and empirically 

suggested by the conceptual alignment framework (Stolk et al., 2016), neurotypical individuals rely on a jointly-

built conceptual space to resolve inherently ambiguous communicative symbols. We hypothesize that autistic 

individuals’ communicative challenges can possibly be explained within this conceptual alignment framework—

their difficulties creating, utilizing, and/or updating the fleeting conceptual space result in their inability to resolve 

the pervasive ambiguities in communicative signals and vulnerability in everyday interactions. Wadge et al. (2019) 

explored the possibility initially by embedding autistic individuals in an interactive and dynamic social setting 

(Stolk, Verhagen, et al., 2013) that precludes the use of pre-existing shared representations (e.g., linguistic and 

gestural emblems, facial expressions). The behavioral study suggested that autistic individuals’ communicative 

challenges cannot be simply traced to altered sensory processing, motor performance, interaction memory, social 

motivation or attention, or cognitive perseveration, which exclude most aforementioned main accounts for 

communicative challenges in ASD. Rather, autistic individuals struggled to align their conceptualizations of 

communicative behaviors with their conversation partner when resolving the ambiguity of those behaviors 

required referencing their recent communicative history. However, the altered perceptual function account has 

not been disentangled from the intended interpretation in this behavioral analysis, thus the cognitive sources of 

the communicative challenges in ASD have not been fully elucidated. It remains unknown whether the observed 

autistic deficiency originates from a difficulty with the top-down process of utilizing the shared conceptual space 

or merely an altered bottom-up perceptual function.  

      Zooming into the altered perceptual function account, previous studies framed in the context of predictive 

processing are based on the theory that reciprocal top-down and bottom-up message implements hierarchical 

probabilistic inference on the source of sensory stimulation (Clark, 2013; Friston 2005). The ramification swept 

across a range of hypotheses about various brain functions, including those implicated in autism, e.g., perceptual 

or sensorimotor, social and cognitive or learning domain (for a review, see Palmer, Lawson, & Hohwy, 2017). 

Recent models of Bayesian inference incorporate estimates of environmental volatility, e.g., the change of causes 
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of sensory input over time (Lawson Mathys & Rees, 2017; Mathys et al., 2014) with the rationale that the finer 

mechanism underlying context-dependent adjustment of sensory weightings can be a key to understanding social-

cognitive processes in autism where inferring others’ mental states is required (Palmer, Seth, et al., 2015). 

Empirical results suggest that autistic individuals struggle to predict others’ behaviors due to higher-weighted 

incoming sensory signals and attenuated prior expectations; Pellicano & Burr (2012) suggest a chronically 

reduced precision of prior beliefs underlying autistic sensory symptoms; similarly, Van de Cruys et al. (2014) 

argue that an increased and inflexible weighting of prediction errors underpin social or nonsocial autistic traits. 

In contrast, one study (Tewolde et al., 2018) found no difference between neurotypical and autistic children 

regarding anticipating changes in dynamic objects, suggesting no pervasively different predictive mechanism in 

autism; autistic individuals do not show attenuated prediction compared with neurotypical individuals either 

during processing linguistic constructs (Brennan et al., 2019; Zhou et al., 2019); recent evidence further challenges 

the “hypo-priors” view by separating the influence of prior choices and prior stimuli (Feigin, Shalom-Sperber, 

Zachor, et al., 2021). To complicate the picture further, even the nature of predictive processing is still under 

debate, e.g., Friston et al. (2013) argue that the communicative deficits are not due to a failure of prediction but a 

failure of metacognition to instantiate top-down predictions during perceptual synthesis. The mixed results thus 

require a closer examination of perceptual inferences in autism and a clearer disentanglement between putative 

perceptual effects and intended interpretation on communicative challenges in autism from a perspective of 

conceptual alignment.  

      It should be noted that the top-down process in this project refers to the downstream effect of the ability to 

utilize the shared conceptual space on communicative (mis)alignment while the bottom-up process represents the 

effect of altered perceptual function including both priors and likelihood precision on the communicative 

challenges. A previous study (Wadge et al., 2019) explored the interpretive compatibility of the conceptual 

alignment framework for autistic communicative challenges but has not excluded the possibility of altered 

perceptual function. The cognitive source of observed deficient conceptual alignment in autism can come from 

bottom-up perceptual processing—e.g., atypical interaction between priors and likelihood precision, instead of 

intended top-down processing suggested by the conceptual alignment framework. Therefore, aiming to test the 

reliability of the proposed conceptual alignment account underpinning the autistic communicative deficits, the 

bottom-up and top-down contributions are assessed through the use of dual eye trackers in the current study by 

embedding pairs of participants with ASD or TD in a live setting that affords genuinely interactive real-time 

communicative behaviors.  

 

Methodological framework 

Social interaction pervades all aspects and all stages of our daily life, from learning babbling from birth to sharing 

ideas and experiences with others later in our life. Paradoxically, most previous studies aimed at understanding 

human communication appear to minimize demands on achieving mutual understanding through the medium of 

scripted utterances and isolated sentences in a non-interactive lab environment (Schilbach, Timmermans, Reddy, 

et al., 2013; Wheatley et al., 2019), limiting the inferences that can be drawn about the mechanisms underpinning 

human communication. Empirical evidence further shows that neural and cognitive processes differ between a 

second-person context—truly interactive setting, and a third-person setup—traditional observation of social 
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stimuli (Redcay & Schilbach, 2019), necessitating a shift from social observation to a dual-brain approach. A 

multi-person interactive setting that adapts a simultaneous dual-brain approach can open the possibility to 

investigate how interlocutors reciprocally negotiate and cooperate as well as adapt and align their beliefs to each 

other; furthermore, it can shed light on social impairment as when behavioral performance patterns and/or 

underlying neural mechanisms diverge between individuals with social disorder and typical development (Wadge 

et al., 2019; Quiñones-Camacho, Fishburn, Belardi, et al., 2021). Here, by embedding pairs of participants in an 

experimentally controlled and computer programmed novel platform, pairs of autistic individuals’ emergent 

dynamics in real time are measured by dual eye trackers to examine the cognitive sources of communicative 

(mis)alignment.  

      Measuring live communication in the lab. Capturing emergent dynamics during human communication in 

the lab poses a challenge to the establishment of an experimentally effective communicative platform, which is 

supposed to preserve an intended key component in natural conversation—dynamic conversational context while 

controlling and/or excluding the other irrelevant components simultaneously, e.g., communication channel, pre-

existing conventions, spontaneous turn-taking, etc. A recent effective approach (Selten & Warglien, 2007; Stolk 

et al., 2013) involves participants in the Tacit Communication Game (TCG, Figure 1A), a platform that is 

computer programmed and experimentally well-controlled. Compared to natural dialogue, TCG serves as a novel 

medium that (1) adapts novel communicative signals that minimize participants’ access to pre-existing 

conventions commonly used in daily communication (e.g., a common idiom, body emblems, facial expressions), 

thus providing control over communicators’ shared cognitive history; (2) contains only one single communication 

channel—moving geometric shapes on the screen, thus providing control over communicators’ interactive 

environment; (3) assigns experimentally-controlled roles, communicator or addressee, to each of the two players 

alternatively, allowing the assessment of shared and unique processes across production and comprehension. 

However, as TCG preserves the intended key component that is shared with natural dialogue—dynamic 

conversational context, it enables the investigation into shared conceptual space where fleeting idiosyncrasies of 

an ongoing interaction are mutually negotiated and defined. 

      The game allows manipulating access to top-down priors by virtue of so-called Known and Novel trial types. 

In previously trained known trials, representations of specific goals or strategies have been established as the prior. 

In contrast, for novel trials that haven’t been presented before, two players are supposed to invent and converge 

on idiosyncratic strategies to solve the communication problem together without any reference to pre-existing 

conventions, thus the emergent alignment of newly-created strategies cannot follow from a Bayesian inference 

process but rather from a top-down process that reflects a fleeting conceptual alignment. Therefore, by contrasting 

conceptual alignment between known and novel trials as well as groups of participants with ASD and TD, the 

contribution of altered perceptual function account and conceptual alignment account can be quantified and 

disentangled.  

 

 

Figure 1. Live eye tracking in the two-player Tacit communication Game (TCG). A. Sequence of events during an example communicative 

interaction. The joint goal of the players is to reproduce a target configuration of their two assigned geometric shapes) shown to one of the 

players only, namely the “communicator” of that interaction (phase 1). This requires the communicator to move his shape in a way that 

conveys to the other player, the “addressee”, the target location and orientation of her shape (phase 2). The communicator has 10 seconds to 
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achieve this by virtue of otherwise unrestricted translations and rotations of his shape on the game board, while also ensuring his final position 

matches the position indicated by the target configuration. For example, he might visit the addressee’s target location (number 1 action), step 

out in the direction of her shape’s target orientation (2), and proceed to his own target position (3). Given that the addressee cannot see the 

target configuration, she needs to infer her target position and orientation from the communicator’s movements. Note that the shown solution 

is only one among several possible solutions, and that rapidly extracting the gist of the shape movements, like words in everyday interaction, 

might rely on shared dynamic priors. After the addressee has moved her shape into her inferred target position (phase 3), feedback is presented 

to both players on their joint success (phase 4). TCG was programmed and delivered via MATLAB software. Adapted from Stolk et al. 2016. 

B. Eye scanpath during an example communicative interaction (pair 1, trial 33). It can be seen from the scanpath in the top panel that the 

communicator’s fixation leads both his own movements (phase 2) and the movements made by the addressee (phase 3). By contrast, as shown 

in the bottom panel, the addressee’s scanpath trails the communicator’s movements (phase 2). Fixation locations are indicated  with circles 

containing a plus sign, with circle size corresponding to the duration of the fixation. Saccadic movements are indicated with colored traces, 

with trace color corresponding to the temporal order of the saccade. The numbers outside the gameboard correspond to the phases of the game 

in panel A. 

 

      Using eye tracking to dissociate top-down and bottom-up processes in communication. Eye-mind link 

(Just & Carpenter, 1980; Rayner & Reingold, 2015) indicates that the structure of the eye determines its high 

acuity vision limited to a small portion of the visual field—fovea, leading to our tendency to direct the fovea to 

the currently processed stimulus. Thus, the measurement of pupil dilation and gaze position is a noninvasive 

indicator of spontaneous responses concurrent with stimulus presentation without requirement of overt responses 

(Tamietto et al., 2009). Furthermore, since eye movements are controlled by an extensive and distributed system 

(Chita- Tegmark, 2016; Wang et al., 2015), they can be perturbed by altered neural processing (Carter & Luke, 

2018). Pupillometry studies, measuring pupil size and reactivity, is based on the theory that autonomic nervous 

system alterations was suggested to be present in ASD (Hellmer & Nyström, 2017) and predictive of 

communicative deficits (Porges, 2005; for a meta-analysis, see Vries, Fouquaet, Boets, et al., 2020). In parallel, 

gaze direction as a rapid and automatic process triggers reflexive shifts in visual attention (Watanabe, Miki, & 

Kakigi, 2002), thus atypical gaze direction patterns in autism can affect capturing of attention and place a barrier 

in childhood development (Jones et al., 2008). For example, children with TD prefer to look faces in the eyes 

while autistic children preferentially orient their eye gaze on surroundings that are less relevant to social 

interaction (Zwaigenbaum et al., 2005). Through the use of eye trackers, the altered perceptual function account 

for autistic communicative challenges can be directly examined by comparing addressee’s gaze movement 

spatiotemporal patterns during pre-target movement intervals, where contextual effects of top-down priors are 

expected to remain constant.. In contrast, the conceptual alignment account can be tested through the comparison 

of gaze patterns during post-target movement intervals, where top-down priors are likely to alter the course of 

gaze behavior through context-mediated identification of communicatively relevant portions in movement. 

Specifically, we predict that the Novel and Known conditions differentially affect gaze behavior during post-target 

movement intervals but not during pre-target intervals. 

      Previous studies involving analysis on gaze position usually adopt indicators such as area of first fixation 

(Schneider et al. 2013), fixation duration to the areas of interest (AOIs) (Amso et al., 2014), etc. Yet, these 

indicators are not compatible with current real-time TCG where AOIs—geometric shapes occupy relatively small 

areas and are moving around all the time. More importantly, they are unable to capture the emergence of mutual 

understanding during dynamically unfolding communicative interaction. Here, I explore the possibility that eye 

fixations can shed light on the cognitive processes underlying emergent dynamics of communicative behaviors 

by drawing inferences from their continuous variation of spatiotemporal patterns. The attempt can break fresh 
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ground in preliminarily qualifying and quantifying emergent mutual understanding using eye-tracking methods 

as well as diving into the distinguished patterns that autistic individuals present, thus enabling tracing the 

neurocognitive sources of communicative challenges in autism. Besides, a preprocessing pipeline was established 

based on MATLAB toolbox FieldTrip which enables removing artifacts and outliers (e.g., blink and eyelid signal, 

drift, linear trend, etc.) as well as converting raw eye tracking data into more readily interpretable fixation time 

series.  

 

Current project 

      The current project is mainly dedicated to open up the possibility to investigate neurocognitive sources of 

autistic communicative challenges both technically and theoretically. Technically speaking:  

(1) An eye-tracking preprocessing pipeline was built for cleaning both pupil size and gaze position data in 

terms of various artifacts and/or outliers, e.g., blink, drift, linear trend, etc. The pipeline is based on 

FieldTrip, an open-source MATLAB toolbox dedicated to the analysis of electrophysiological time series 

data. 

(2) Preliminary qualitative and quantitative methods were built and tested for gaze position datasets while 

one promising advanced quantitative method was proposed.  

(3) TCG platform was constructed and validated to allow for capturing real-time dynamically unfolding 

communicative interaction from simultaneous recording of both dual eye gaze and dual-EEG data. 

      Theoretically, we closely examine and disentangle whether autistic communicative challenges originate from 

their difficulty aligning meaning with others when referencing recent communicative history is required (top-

down process, conceptual alignment account) or merely an altered perception function (bottom-up process, 

altered perceptual function account).  

 

Eye-tracking Methods 

Datasets 

The current eye tracking dataset consists of recordings from  22 TD and 18 ASD individuals, obtained from an 

ongoing project combining dual-fMRI and eye tracking. Eye tracking data was collected simultaneously using an 

MRI-compatible Eyelink 1000 plus equipment (SR-research) from the left eye with a sampling frequency of 1000 

Hz. The physical width and height of the MRI-compatible screen are 698.4 mm and 392.9 mm and the eye-screen 

distance is 1340 mm since participants viewed the screen via an IR-reflective mirror in the MRI scanner. A five-

point calibration and validation was performed once before the start of TCG (see arguments below that multiple 

calibration during the TCG is not preferred). Luminance was matched throughout TCG. Pupil size was recorded 

in terms of area with the unit being pixels and recorded resolution being 0.1% of the diameter. Eye positions were 

recorded in terms of gaze positions, which are actual positions on the display screen (1920*1080 pixels) and fully 

compensated for head position and distance from the display. The original .EDF format data was converted to .asc 

files using a EDF2ASC software provided by SR-research company for further processing in MATLAB.  
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Preprocessing 

Raw data recorded by eye trackers contains plenty of undesirable features, especially in the current combined 

fMRI-eye tracking study. The special difficulties of MRI-dependent eye tracking acquisition arise since the 

preparation of scanning—participant positioning within the head coil for the optimal camera visibility. The 

positioning is more complicated compared to a normal fMRI study as the optimal configuration is only accessible 

while participants are pushed into the scanner, where lighting and camera visibility of the eye can then be 

confirmed. Beside, a compromise between screen visibility for the participant and eye visibility for the camera 

should always be determined. The situation can be more complicated if the participants are using MR-compatible 

glasses, as the reflection of IR spotlight on the lens surface should be avoided by carefully adjusting the angle of 

glasses. The participants may need to slightly move the head in the head coil during preparation to satisfy the 

quality of eye tracking while the in-scanner adjustment is however undesired in terms of the pursuit of immobility 

for MR image quality. Thus the initial positioning can take a longer time than usual MRI preparation and 

sometimes eye tracking quality is sacrificed for optimal MR image quality. Besides, the difficulty also presents in 

the form of multiple calibration failures especially when the initial positioning is suboptimal. Reflected in the data 

quality, the suboptimal positioning or calibration can introduce more tracklose samples, reduced spatial precision 

and inaccurate automated detection of eye movement events, as the latter is highly-dependent on eye movement 

velocity, thus artificial velocity change resulted from positioning can disturb the detection (Hanke, Mathôt, Ort et 

al., 2019).  

      Based on aforementioned difficulties in acquiring eye tracking data with optimal quality and the obtained 

suboptimal eye tracking data compared with MRI-independent acquisition, preprocessing is highly required to 

compensate and to extract intended components buried by concurrent noise or artifacts for further analysis. Yet 

the definition of artifacts is highly dependent on the context—what constitutes undesirable features in one 

paradigm can be the signal of interest in another study. For example, eye blinks are usually considered detrimental 

to recorded signal since pupil dilation or gaze position can not be measured during a blink, and blinks are often 

followed by a prolonged pupil constriction (Knapen et al., 2016), but blink rate or duration can also be an indicator 

of fatigue that is of interest in another context (Stern, Boyer, & Schroeder, 1994; Marandi et al., 2018). In other 

words, preprocessing steps aimed at eliminating effects of artifacts and outliers can vary contingent upon 

experimental paradigms.  

      In contrast with other eye-tracking studies that usually perform calibration at the beginning of every block, 

such as static picture viewing (Wang et al., 2015), the TCG is dedicated to capturing continuously unfolding 

communicative interaction throughout, thus interrupting the task when substantial drift is detected is not an option. 

Yet the pursuit of an intact interactive process brought up an apparent drift and a linear trend artifact with the 

degrading of the eye tracker calibration over time, possibly due to participants’ fatigue or subtle head movements, 

which unfortunately cannot be controlled perfectly in practice. Reflected in the density of positions (Figure 2B 

top row, heatmap of original v.s. filtered data and detrended data), the drift blurred the original edge of the TCG 

game board, presenting a cloud-like and less-sharp structure compared with the filtered data excluding the drifts; 

the linear trend diverts the whole TCG game board towards the left bottom. Quantitatively, the 10s-moving 

average of x eye position decreases over time while the 10s-moving standard deviation (SD) of both x and y eye 



10 

positions increase with time (Figure 2B bottom row, original data), indicating the degradation of the eye tracker 

calibration and gradual drift of eye positions. Therefore, a high-pass filtering method is required for the removal 

of the gradual change of positions over time and the detrending method for the linear trend. Besides, other 

components such as blink and eyelid signal, spurious pupil size, positions with abnormal velocity are all 

considered as artifacts in TCG, which, along with outlier positions, will be excluded by the established 

preprocessing pipeline below.  

      Current commercial eye tracker companies provide proprietary software for preprocessing eye data (e.g., Tobii 

Pro Lab by Tobii, Data Viewer by SR-Research, etc.), yet the tools include only basic processing of data neglecting 

some functions crucial for our paradigm, e.g., blinks and eyelid signal correction or a time-course visualization. 

Other guidelines (Kret & Sjak-Shie, 2018; Mathôt et al., 2018) or open-source toolbox (e.g., CHAP based on 

MATLAB for pupillometry data, see Hershman et al., 2019; ETRAN based on R for eye movement data, see 

Zhegallo & Marmalyuk, 2015; GazeParser based on PsychoPy, see Sogo, 2013, etc.) do not offer tools that allow 

correcting some types of artifacts such as drifts or linear trends in TCG, which are virtually unavoidable during 

unconstrained communicative interactions. In the remainder of the thesis, a preprocessing pipeline (Figure 2A) 

will be introduced, which is specially developed for the data at hand—yet it can also be applied to other datasets 

troubled by similar artifacts. It builds on functionalities contained in the open-source FieldTrip toolbox 

(Oostenveld et al., 2011), which was designed for the analysis of brain time-series data (e.g., electro-

/magnetoencephalographic signals), and constitutes a platform that can be readily extended to deal with pupil and 

eye gaze time-series. Further analysis will also be carried out in the platform, thus it can smooth the transition 

from data preprocessing to analysis and visualization. The pipeline entails the aforementioned artifacts and outliers 

rejection and four additional optional modules that allow offline position recalibration, fixation extraction, 

heatmap visualization, and time-course visualization, respectively. Note that the construction of subject m-files 

that contain subject-specific details (Figure 2A, pink area with solid frame) is required initially for batch 

processing which is convenient to systematically examine the outcome of analysis (for details, see Oostenveld et 

al., 2011). The below demonstration of the effect of preprocessing on data cleaning is based on one actual 

neurotypical dataset with suboptimal quality.  

 

Figure 2. Preprocessing pipeline for eye-tracking data. A. Preprocessing flowchart. Dotted frames denote one-time steps and dark orange 

blocks represent interactive cleaning sessions storing reusable parameters in subject-specific matlab annotation files. Blue squares and green 

circles indicate the type of information used in cleaning, being either pupil size or gaze positions. B. Depiction of effects of each preprocessing 

step on the data (one neurotypical participant). The top row is the overall heatmap—density of positions in the whole TCG. From left to right: 

heatmap of original, de-blinked, filtered, detrended, and fully preprocessed data. The superimposed 3-by-3 grid represents the TCG game 

board. The color bar indicates fixation count. Note the origin of all heatmaps shown  in this thesis is in the left top corner, consistent with the 

convention of the Eyelink acquisition system.  

       

      Blink detection and removal. The most stringent solution to blink artifacts is to remove trials with blinks 

(Weiskrantz, Cowey, & Barbur, 1999), yet the relatively long trial (~15s) in TCG determines that the method 

would cause high data loss and even leave no trials left. Another commonly used method (Sirois & Jackson, 2012) 

assumes that the appearance of a blink is immediate, thus regarding the first missing value as the moment the 

blink starts and the recurrence of value as the end of the blink. However, as eyelid movement is not instantaneous, 

blinks are supposed to be characterized by a sharp decrement in pupil size, followed by an interval of missing 

data, then another rapid increase in pupil size (Caffier, Erdmann, & Ullsperger, 2003). In terms of gaze positions, 
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eyelid artifacts are also detrimental to capturing true position variations (Figure 3A, blink detection). The method 

that only considers missing samples as blink leaves the eyelid artifacts unremoved, leading to artificial differences 

in pupil size and gaze positions between conditions. Therefore, the preceding and following eyelid distortions to 

blinks are supposed to be detected and manipulated concurrently with missing values. Other algorithms that take 

eyelid signal into account either use a fixed wider window (Satterthwaite et al., 2007) or a fixed cutoff based on 

the velocity of change in pupil size (Mathôt, 2013) with the assumption that blinks are presented in similar patterns, 

which is however not true even within the same dataset (Caffier et al., 2003). Here, a more accurate pupillometry 

noise-based algorithm (Hershman et al., 2018) is adapted to include eyelid artifacts. The algorithm is based on the 

idea that the pupillometry signal recorded by the eye tracker is small-amplitude and high-frequency (above 20 Hz) 

fluctuations, resulting from measurement error inherent in the image-processing algorithms of eye tracking device 

instead of the physiological process since the latter, on the contrary, is characterized by relatively slow frequencies 

(Nowak, Hachoł, & Kasprzak, 2008). This kind of measurement error is eliminated when countering strong 

signals—the rapid movement of the eyelid during shutting and reopening, thus providing an opportunity to 

accurately detect the eyelid signal through the start and end of the measurement noise. In this project, the blink 

and eyelid signal detection is based on pupil size data and then applies the on/offset to position data, visualized 

by a data browser function contained in the FieldTrip toolbox (Figure 3A, left panel, pink areas). The manual 

selection function can be enabled in the data browser which would allow us to manually determine the neglected 

blinks or correct wrongly chosen ones. Yet, the manual selection wasn’t applied to this dataset because of the 

already near-perfect accuracy.  

      After obtaining the relatively accurate on/offset of the blink and eyelid signal, the artifacts can either be 

removed—marked as nan (not a number) or interpolated using a linear or cubic-spline method (Mathôt, 2013). 

Comparing blink removal and blink interpolation method (Figure 3, heatmap of data after blink removal v.s. data 

after blink interpolation), it turns out that interpolation method would create another undesirable artifact 

“freeze”—highlighted curves or straight lines in the heatmap, especially when a large amount of data is 

interpolated. Besides, blink removal won’t affect the results as long as missing data is not denoted as real 0 pupil 

size or gaze positions measurement. Therefore, blink artifacts or other missing data in the dataset received no 

special treatment but were marked as nan, which can be ignored in further analysis based on MATLAB. Yet the 

interpolation method (e.g., cubic-spline method) can still be useful for other studies. In this case, the choice 

between linear (Cohen et al., 2015) versus cubic interpolation (Mathôt, 2018) can have negligible effect 

considering the short duration of the blinks. Yet note that smoothing is usually performed before interpolation if 

a cubic-spline method is chosen (Geller et al., 2020).  

 

 

Figure 3. Blink and related eyelid artifact detection and resolution. A. Visualization of original data with blink and eyelid signal (left), data 

with blink and eyelid artifact removal (middle), and data with blink and eyelid artifact interpolated (right) via an interactive databrowser. B. 

Heatmap of gaze positions contrast between original data and manipulated data—with blink and eyelid artifact removed or interpolated. 

Highlighted straight lines or curves can be observed in the heatmap if missing samples originating from blinks were interpolated.   

 

      Drift and linear trend removal. As explained above, our pursuit of continuous capture of unfolding 

communicative interaction throughout TCG restrained calibration during the task, which brought up apparent 
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artifacts in terms of gaze positions—drift and linear trend. These artifacts are progressive displacement of fixation 

registrations over time, possibly caused by participants’ subtle movement of head or pupil dilation, which can not 

be avoided or controlled perfectly, even in a laboratory setting. As a result, position data is getting less accurate 

as the experiment proceeds. This effect can be exacerbated in the context of TCG, where the stimuli are not static 

and no calibration was performed between trials or blocks. As further analysis entails a closer examination of 

synchronization of gaze positions and stimulus footprints, a relatively accurate mapping of gaze positions to the 

absolute location of TCG game board is required—though not necessarily to be perfect because the following 

correlation analysis tolerates the systematic deviation (i.e., overall deviation to one direction) to a certain extent. 

Therefore, a band-pass filter between 0.01 Hz and 2 Hz is applied to the dataset initially to get rid of drifts that 

blur the edge of the game board in the heatmap (Figure 2B, original v.s. filtered data). Then detrending is adapted 

to further remove the linear trend over time and drag the center of gaze positions to the absolute coordinates of 

the center of the TCG game board in the heatmap (Figure 2B, filtered v.s. detrended data), thus achieving a 

relatively accurate mapping of systematically distorted gaze positions to the stimuli positions.  

      An additional optional module in the preprocessing pipeline is provided to perform offline recalibration of 

positions through best-fitting linear transformation (Vadillo et al., 2015). This approach requires the knowledge 

of ground truth in specific experiments that participants tend to look at one position at a certain time point since 

the offline recalibration method is based on a transformation matrix calculated by coordinates of the presented 

stimulus and at least 5-10 fixations that are likely to be directed to the stimulus. Compared with previous offline 

recalibration methods, e.g., calculating the disparity between fixation and the closest stimulus on the screen 

(Zhang & Hornof, 2011), this linear transformation approach has the flexibility to stretch or contract the fixation 

space and enables multiple trial-based recalibrations. Compared with above-mentioned filtering or detrending 

methods, the linear transformation approach is able to correct intra-trial drifts in a short term instead of slow drifts 

over time. Yet the additional recalibration method wasn’t practically applied to the current TCG dataset as the 

filtering and detrending have already achieved good enough results (Figure 2B, detrended column), and additional 

recalibration based on participants’ probable intended positions can bring undesired artificial difference or offset 

interesting difference of characteristics between individuals with ASD and TD. However, it can serve as a 

potential option for other studies troubled by the intra-trial drift problem.  

      Interactive artifacts definition and removal. Detection of squint and jump artifacts and position outliers is 

customized to each dataset through the medium of an interactive histogram—squint and jump artifacts, or an 

interactive heatmap—position outliers, that allows dragging on the plot to exclude spurious pupil size, positions 

with abnormal velocity and/or positions outside the TCG game board (Figure 4). The subject-dependent criterion 

is based on the idea that pupil sizes and gaze positions are inherently heterogeneous across experiments or 

individuals. Previous commonly used method includes converting data to z score based on mean and SD calculated 

for each trial or participant separately (Cohen et al., 2015; Wainstein et al., 2017). Then z score values above 

and/or below a user-defined threshold will be removed. The current subject-dependent method based on the 

distribution avoids the pre-defined and fixed criterion across different datasets or mandatory exclusion of partial 

data even it’s good enough, thus reserving the flexibility to determine the cutoff contingent on each participant’s 

idiosyncratic standard of normal range of pupil data (Mathôt et al., 2018). For example, based on the histogram 

of pupil area below (Figure 2A, left panel), it’s reasonable to remove pupil area less than 800 and greater than 

2700. Note that the typical range of pupil area is 800 to 2000 units, thus the current distribution is possibly caused 
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by a recording distortion. But since the pupillometry data requires further baseline correction or z-score conversion, 

the relative changes matter more than absolute values. All removed data is marked as nan consistent with the 

manipulation of blink and eyelid artifacts.  

      Squints are defined as spurious pupil sizes that are not realistic, caused by not fully open or closed eyelid or 

temporarily distorted recording (Figure 4A, left panel). The size of the human pupil ranges from around 2 to 8 

mm while the intra range variances are mostly caused by the luminance of the environment and distance to 

fixation—pupil dilates in response to decreased brightness and increased distance (for a review, see Mathôt, 2018). 

The third account that is of interest exists, namely the psychological process that “activates the mind” (Goldwater, 

1972) but with a far smaller effect on pupil size compared to the former two accounts. Therefore, to capture the 

subtle effect of the desired psychological process out of uninformative noise, controlling over two former accounts 

was performed during data acquisition. Additionally, removal of artificial pupil size is also required to avoid 

contaminating the potential capturing of the subtle psychological effect. The squint problem is less detectable in 

the dataset than blinks which are at least marked as missing data by eye trackers, yet through the current medium 

of an interactive histogram, those pupil sizes that appear much less frequently can be regarded as artificial and 

removed from further analysis (Figure 4B, left panel). Besides, in pupillometry studies, the unrealistic change of 

pupil size is supposed to be considered as well. The size of the pupil changes at most by a factor of about 4 or 

around 16 in terms of pupil surface (McDougal & Gamlin, 2008), indicating any change above the range could 

result from a distorted recording. As we did not include the pupillometry aspect in the current analysis, the function 

of removing abnormal velocity of change of pupil size is to be developed in the future versions of the 

preprocessing pipeline.  

      Jumps are defined as gaze positions with abnormally high velocity (Figure 4A, middle panel), possibly caused 

by sudden stimulus-irrelevant saccades during participants’ distracted moments, and calculated by the square root 

of the sum of squares of x and y positions minus those at one previous time point. The exclusion of jumps prepares 

a relatively clean dataset containing informative gaze position data that is more probable to be relevant to the 

stimulus presentation. The dragging method is the same as squint manipulation and the distribution of an example 

jump-excluded datasets were presented in the middle panel in Figure 4B.  

      Outlier gaze positions with coordinates that fall outside the actual size of the screen—1920*1080 pixels in 

this study, can be removed as outliers by enabling the function of a bounding box (Figure 4 right panel, red frame). 

Further definition and exclusion of user-defined area, e.g., TCG game board consisting of gaze positions in the 

heatmap, can be achieved by dragging the edge of the area of interest, i.e., dotted orange straight line, to the edge 

of the screen with the direction pointed by the dotted orange arrows.  

 

 

Figure 4. Interactive definition and removal of artifacts and outliers. A. Artifacts and outliers definition via a graphic user interface. Original 

distribution of pupil area (squint definition), position velocity (jump definition) and heatmap of original position (outlier definition) is 

displayed sequentially, allowing users to drag the plot, i.e., start from the dotted orange line towards the direction of the arrow to exclude 

spurious pupil size, position with abnormal velocity and positions outside screen or TCG game board. The unit of pupil area is pixels and the 

typical range is 800-2000 units, though this distribution may differ per subject. The red frame in the heatmap represents the actual size of the 

screen frame (1920*1080 pixels). B. Distribution and heatmap after removal of artifacts and outliers. The white area within the read frame 

indicates no data point exists.  
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      Optional modules. Besides the above-discussed position recalibration function provided additionally by the 

preprocessing pipeline, time-course visualization (e.g., Figure 3A) and heatmap visualization (e.g., Figure 3B) 

can also be utilized to achieve a better overview of the dataset or examination of the data quality. The rest fixation 

extraction module directly imports eye movement definition from the eye tracker’s online parser, which analyzes 

eye position data into meaningful events and states, e.g., saccades, fixations, and blinks. Here, saccades are defined 

by the combination of three indicators—motion threshold of 0.15 (degrees), velocity threshold of 30 (degrees/sec), 

and acceleration threshold of 8000 (degrees/sec2). Except for missing samples that are marked as blinks, saccades 

and fixations were defined and presented alternatively in the recorded files. The function of fixation and saccade 

extraction enables clear visualization of the scanpath that is informative in terms of the number of fixations and 

saccades, position and duration of each fixation, as well as saccadic path and sequence during the stimulus 

presentation (e.g., Figure 1B, scanpath was plotted against footprints of geometric shapes). Through the 

observation of scanpath, the gaze movement spatiotemporal patterns can be qualitatively identified and 

quantitatively accessed between individuals with TD and ASD. Future versions of the pipeline can include offline 

eye movement definition methods, e.g., a deep-learning approach introduced by Startsev, Agtzidis, & Dorr (2019) 

that avoids user-defined thresholds (i.e., hand-tuned parameters in eye tracking settings) and allows more fine-

grained differentiation between fixation and more saccade-like smooth pursuit events or compensating the 

possible misdefinition of events in suboptimal datasets.  

      Trial definition and status report. After removal of a series of drifts and outliers from continuous data by 

following the steps above, the ft_definetrial function and a paradigm-specific trialfun script in the FieldTrip 

toolbox can be used to define trials. Finally, the status report will display the percentage of samples marked as 

nan in the current dataset. Subjects who have more than 20% missing data (nan) can be considered for exclusion 

(Winn et al., 2018). This exclusion criterion left 17 TD datasets and 14 ASD datasets for further analysis. 

 

Preliminary observations 

With artifacts-free datasets at hand, further investigation of the research problem—neurocognitive sources of 

autistic communicative challenges, appears to be more approachable. As suggested in the introduction, the 

comparison of the addressee’s spatiotemporal patterns of gaze positions in pre-target movement intervals can 

examine the altered perceptual function account since contextual effects of top-down priors are expected to remain 

constant. Similarly, the conceptual alignment account can be tested via a comparison of the addressee’s gaze 

patterns in the interval of post-target movement, during which top-down priors are likely to alter the gaze pattern 

through the context-mediated realization of the communicatively relevant portions in movement, i.e., the 

addressee learns from the previously established shared context that the communicator has finished instructing 

and starts to complete his/her own configuration, though the clutch cannot be explicitly told. To be specific, I 

hypothesize that (1) pre-target movement intervals witness no significant difference of addressee’s gaze patterns 

between Novel and Known or ASD and TD, while the latter is tenable if altered perceptual function count cannot 

fully explain the autistic communicative challenges; (2) regarding post-target movement intervals, if the 

conceptual alignment consideration can be a potential explanation, different addressee’s gaze patterns can be 

found between conditions, which can serve as an indicator that the extent of exploitation of shared context differs 
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between the novel and known trials, or individuals with ASD or TD. To test the hypotheses, one barrier that is 

still in the way is our lack of a previously well-established approach to recognize or further compare 

spatiotemporal patterns of gaze positions that can mark the emergence of understanding both qualitatively and 

quantitatively. Here, I report attempts to establish a theoretically-reasonable and practically-viable approach to 

capture the emergence of understanding in the TCG platform and a few preliminary observations when applying 

the method to current ASD and TD datasets.  

      Qualifying the emergence of understanding in eye tracking. The first step to investigate the eye tracking 

marker of emergence of understanding during communicative interaction without any previous knowledge or 

reference is to look for the potentially shared patterns across participants in actual datasets. Paired participants’ 

scanpath against respective stimulus footprint per trial were plotted to obtain a general and intuitive view of 

communicative relevant dynamic gaze behavior (Figure 5 presents an example pair). Stimulus footprints were 

classified into four categories—pre-target movement, on-target adjustment, post-target movement (both during 

the phase of communicator’s moving), and addressee’s moving. The pre-target movement was defined as the 

communicator's initial landing of the addressee's target location; and the on-target adjustment refers to the period 

after the communicator has arrived at the addressee’s target location but before the communicator leaves for 

his/her own target location, during which the communicator usually attempts to develop idiosyncratic strategies 

to indicate addressee’s target orientation (e.g., Figure 1A, the step-out movement). Note the on-target adjustment 

can be absent in a few simple trials that do not require rotation indication, e.g., the trial displayed in Figure 5. The 

above two categories constitute a communicative movement, indicating that the communicator attempts to deliver 

relevant information via the shape movement. In contrast, post-target movement, also called instrumental 

movement, indicates that the communicator aims to leave for his/her own target location with the desired 

orientation after completing the aforementioned communicative movement, thus the movement doesn’t entail 

communicatively informative meaning. The above three categories are all in the experimental phase of 

communicator’s moving, thus the division is not predefined or fixed, but highly dependent on trial types, individual 

communicators, and the ongoing interaction. Besides, to test the altered perceptual account versus conceptual 

alignment account, the intervals of the most interest are communicator's communicative and instrumental 

movement. Therefore, a coarse manual annotation of categories was performed based on the criteria described 

above to extract the pre-target movement and post-target movement.  

      Three spatiotemporal synchronization patterns of scanpath and stimulus footprints were then identified. (1) 

Tracking mode. The tracking mode describes a scenario in which an individual’s scanpath closely tracks the 

stimulus footprint. It commonly presents when no contextual information can be referred to and no prediction can 

be made contingent on the current situation, e.g., addressee’s scanpath in the pre-target movement (Figure 5). (2) 

Contenting mode. The tracking mode was found especially in the addressee’s scanpath in the post-target 

movement interval, which marks a situation where the addressee understands the intended location the 

communicator tries to indicate though not explicitly be told. The manifestation and time spent before realization 

can vary among different individuals or even trials depending on the extent the addressee understand and exploit 

the shared context, e.g., the addressee in Figure 5 (addressee’s scanpath, post-target movement) shows a pattern 

that after watching the communicator's pre-target movement, the gaze position stays close to the resolved target 

location at the first two steps instead of continuing tracking closely of stimulus footprints as in the pre-target 

interval, then the eye trace keeps shifting between the target location and communicator’s current location. The 
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mode is named “contenting” because the addressee’s eye patterns—regardless of the specific manifestation of 

patterns—indicate that they usually stop closely tracking the footprints once they feel they have understood the 

intended target location and orientation. Besides, it’s theoretically unnecessary for the addressee to concentrate 

on communicative-irrelevant instrumental moving as well. Another manifestation of the contenting mode can be 

that the addressee stares at the target location and does not move gaze anymore after the emergence of 

understanding. (3) Predicting mode. The predicting mode is characterized by the situation that scanpath precedes 

the stimulus footprints. This mode usually appears in the condition with strong prediction, e.g., one is observing 

his/her own shape movement with the knowledge of intended location in mind—the communicator in Figure 5 

during the post-target moving stares at the target position long before s/he actually moves the shape there. Another 

example is the communicator’s scanpath during the phase of addressee moving when the communicator has a 

strong prediction over the position that the address is supposed to land and perhaps is actively checking if the 

addressee has understood or not.  

      Through the classification of movement categories and spatiotemporal synchronization patterns, a more 

organized way of description can be developed. From my observation, the pre-target movement mainly consists 

of the single pattern of tracking mode in the addressee’s scanpath due to a lack of contextual information. Without 

access to the target configuration or any other clues, the addressee has to rely on the communicator’s steps to 

resolve the target location, which, reflected by the gaze behavior, is close tracking of the presented stimulus 

footprints. Yet, as the addressee is aware of the geometric shapes assigned to the communicator once the pre-

target movement starts, the addressee can have some predictions on the difficulty of the current trial. However, in 

the post-target movement, the synchronization patterns become more complicated with the additional effect from 

contextual information which may vary between types of trials, individuals, and even occasional random factors. 

Yet the different manifestations of the synchronization patterns obtain shared traits, one of which is the less 

correlated scanpath with stimulus footprints, probably resulting from either the unnecessity to attend to the current 

presented stimulus or a higher cognitive process such as actively zooming out to consider a broad picture instead 

of simply driven by the presented stimulus. Thus, a closer investigation of the correlation between the addressee’s 

scanpath and stimulus footprints can potentially provide deeper insight into the eye-tracking marker of the 

emergence of understanding in the TCG platform and further, the potentially different pattern between individuals 

with ASD and TD. Though a more systematic manual annotation of different movement categories and 

spatiotemporal synchronization patterns is required in the future to draw a more tenable conclusion as well as to 

compare and validate the qualitative and quantitative analysis, preliminary attempts can already be made to 

examine the validity of a potential quantitative approach—cross-correlation to measure the similarity between 

spatiotemporal synchronization patterns.  

Figure 5. Overlays of scanpath and stimulus footprint during a successful trial of a neurotypical participant pair. The trial’s target configuration 

is shown on the right. Fixation locations are indicated with circles containing a plus sign, with circle size corresponding to the duration of the 

fixation. Saccadic movements are indicated with colored traces, with trace color corresponding to the temporal order of the saccade. Pre-target, 

post-target components in the communicator moving period were annotated manually. The most interesting eye tracking component is the 

addressee's scanpath (bottom panel) during the communicator moving interval, i.e., the addressee is watching the communicator moving the 

shape. At this moment, the communicator is also watching his/her own movement (top panel). (1) In the pre-target moving interval, the 

communicator moves the shape to the addressee’s target location, thus forming a communicative moving to the addressee. Without any other 

clues, the addressee has to closely track the communicator’s shape movement to infer her target location. Reflected in the scanpath (bottom 

panel, pre-target row), the addressee follows the communicator’s movement downwards initially and then rightwards. (2) In the post-target 

moving interval, the communicator starts to move the shape to his/her own target location with desired orientation, which is not communicative 
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but constitutes an instrumental moving. Thus it’s theoretically not necessary for the addressee to follow the stimulus footprints anymore 

(bottom figure, post-target row), e.g., the addressee seems to be staring at the resolved target location initially (first two steps) and then 

switches to a distinctive pattern that involves constant shift between addressee’s target location and communicator’s current location (the third 

to sixth step) and finally gives up following the shape and lands on his/her target location (the seventh step). Note that this is only one of many 

possible patterns that are observed in the post-target phase compared with the relatively undiversified pre-target phase occupied by the closely-

tracking pattern.  

      Cross-correlation as a quantitative method. Cross-correlation, also known as the sliding dot product, is an 

approach to measure the similarity of two time series as a function of the displacement of one relative to the other. 

The two outputs—correlation coefficient (ccf) and time lag can provide a closer insight into the examination of 

the synchronization of scanpath and stimulus footprints. To be specific, the ccf is an indicator of the extent of 

point-wise similarity of two series, e.g., the level of similarity between the coordinates of scanpath and stimulus 

footprints; and the time lag is an indicator of the preceding or lagging pattern between two time series, e.g., the 

scanpath slightly precedes the stimulus footprints indicating a tracking mode and the reverse can reflect a 

predicting mode instead. A combination of low ccf and long time lag can indicate the scanpath’s lost track of 

stimulus footprints. Furthermore, based on the previous qualitative observation that pre-target movements mostly 

consist of a single tracking mode while post-target movements are more diverse in terms of the variety of 

spatiotemporal synchronization modes (e.g., different manifestation of contenting mode), the cross-correlation 

method seems to be promising to capture the similarity of patterns quantitatively.  

     Cross-correlation was then performed on both intervals (pre-target and post-target movement) respectively 

between the addressee’s scanpath and stimulus footprints per participant on a trial-by-trial basis. Then inter-trial 

and inter-subject values that above or below 3 SD from mean in terms of correlation coefficient or time lag were 

excluded as outliers. Figure 6A demonstrates an example of the variance of ccf after outliers exclusion, either in 

terms of inter-subject variance per trial or inter-trial variance per subject. Note that the exclusion of outliers in 

analyses of time lag or other intervals was performed similarly but not plotted here. Then mixed ANOVAs were 

performed on both ccf and time lag with the between-group factor (levels ASD and TD) and the within-group 

factor trial type (levels Novel and Known).  

      Pre-target synchronization. Novel trials obtain significantly higher ccf (Figure 6B) than known trials (F 

(1,30) = 23.057, p < 0.001**) but no difference was found between individuals with ASD and TD (F (1,30) = 

1.977, p = 0.170) and the interaction between the two variables is insignificant either (F (1,30) = 1.584, p = 0.218). 

In terms of the indicator of time lag (Figure 6C), neither between-group (F (1,30) = 0.385, p = 0.540) or within-

group(F (1,30) = 2.002, p = 0.168) difference was found. Yet, when comparing the trendlines (left panel) that 

represent trend of ccf with the progress of trials between conditions, a significant main effect of trial type (F (1,30) 

= 1076.524, p < 0.001**) and a significant main effect of group (F (1,30) = 96.653, p < 0.001**) were found 

while the interaction is also significant (F (1,30) = 48.193, p < 0.001**). Besides, the main effect of trendline of 

time lag is also significant (trial type, F (1,30) = 84.786, p < 0.001**; group,  F (1,30) = 47.445, p < 0.001**), 

but the interaction is not yet significant (F (1,30) = 2.513, p = 0.116).  

      The findings are consistent with our hypothesis that during the pre-target interval when the communicator is 

demonstrating the addressee’s target location, the addressee has minimal prediction and no contextual clues. In 

this case, the addressee’s spatiotemporal synchronization is presented in the form of the single tracking mode, 

leading to the observed similar time lag between the novel and known conditions—the differences between trial 
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types only lie in the manipulation of communicative context. Yet a significantly higher ccf in novel trials was 

found, which can reflect the prediction of difficulty of the trials since the addressee has already obtained the 

knowledge of both player’s assigned geometric shapes in the pre-target interval. For example, if the addressee is 

assigned a triangle but s/he sees the communicator is moving a circle during the pre-target moving interval, the 

addressee can know that it will be a tough trial as the communicator will have to use idiosyncratic strategy to 

explain the target orientation of the addressee’s triangle instead of simply rotating the shape. Thus the prediction 

of difficulty of trials can lead to an allocation of more effort into tracking the communicator’s shape and trying to 

make sense of the movement. As the novel trials are designed to force players to create new strategies without 

shared communicative context, the difficulty of novel trials is significantly higher than that of known trials. 

Reflected in gaze behavior, the addressee may concentrate on a smaller area around the moving shape in novel 

trials, leading to the current higher ccf in novel trials compared with known trials. The significant difference of 

ccf in the contrast between the novel and known trials can also suggest that ccf can be an indicator of trial difficulty 

while difficult trials can observe an increased ccf between the addressee’s scanpath and stimulus footprints. 

Besides, the decreasing trend of ccf and increasing trend of time lag as the trial proceeds can reflect a decreased 

subjective trial difficulty over time. The decreased ccf and/or prolonged time lag implies that the addressee is 

probably adopting a looser tracking mode—though still higher or longer than those in post-target interval (Figure 

7). It can also suggest that the addressees with previous procedural experience can be more comfortable exploiting 

available information (e.g., from the assigned shapes) to predict and complete the communicative interaction.  

     Individuals with ASD and TD present a similar significant contrast pattern between Novel and Known in terms 

of either ccf (Figure 6B) or time lag (Figure 6C) indicator, potentially suggesting that the perceptual function 

involved in TCG is not altered as neurotypical individuals. Yet in terms of the trend over time, the significant 

main effect of group in both ccf and time lag suggests that they obtain different patterns. Compared with 

neurotypical individuals, autistic individuals show a lower velocity of change during known trials—either 

decreasing in terms of ccf or increasing in terms of time lag overtime but a higher velocity of change during novel 

trials. For neurotypical addressees, the maintenance of short time lag and high ccf (closely tracking mode) in novel 

trials throughout but a rapid change of velocity of time lag or ccf (switch to contenting mode earlier and earlier 

over time) in known trials reflect a well-balanced allocation of cognitive resources according to different context. 

The trait requires (1) a quick judgement of the difficulty of the current trial based on the only clue—assigned 

shapes to both players; (2) the ability to flexibly adjust the gaze pattern accordingly. Therefore, neurotypical 

individuals are more flexible between the switch of conditions—they are able to quickly judge the difficulty of 

the current trial and adjust the gaze patterns to the option that they feel reasonable to use (effortful tracking mode 

v.s. relaxing contenting mode) even if the novel and known trials keep alternating throughout. On the contrary, 

autistic individuals don’t seem to either actively judge the difficulty of the current trial or determine which gaze 

pattern should be made soon, or both. However, the different patterns between groups regarding trends do not 

necessarily reflect an altered perceptual function, but can be a higher cognitive ability—decision making. 

Therefore, the between-group significance of trends shown in the pre-target interval does not indicate that autistic 

perceptual function is altered. On the contrary, the insignificance of overall time lag values between groups despite 

the significant trends over time renders the evidence more possible to support an unaltered perceptual function in 

ASD.  
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Figure 6. Cross-correlation of addressee’s scanpath and stimulus footprints during pre-target movement intervals. A. Demonstration of two 

boxplots for inter-subject variance per trial and inter-trial variance per subject, where variance represents the variance of correlation coefficient 

(ccf) after exclusion of outliers (red plus sign, above 3 SD from mean). The bottom blue curve represents SD over time. B. Comparison of the 

correlation coefficient between conditions, i.e., ASD v.s. TD and Novel v.s. Known. In the left panel, the red and blue circles represent ccf per 

trial for novel and known trials, respectively. The red and blue straight lines on the top panel indicate the mean value of ccf across all trials 

after initial subject-wise averaging in novel and known conditions. The dotted black lines are trend lines, indicating the change of ccf over 

trials. In the right panel, a bar plot with error bar and mean value for each participant between conditions is presented. Novel trials obtain 

higher ccf than known trials in both groups (F (1,30) = 23.057, p < 0.001**). As for the trenda significant main effect of trial type (F (1,30) = 

1076.524, p < 0.001**) and a significant main effect of group (F (1,30) = 96.653, p < 0.001**) were found while the interaction is also 

significant (F (1,30) = 48.193, p < 0.001**) C. Comparison of the time lag (ms) between conditions. The legend is the same as B but reflecting 

the time lag between the addressee’s scanpath and stimulus footprints. Positive time lag implicates that stimulus footprints appear before the 

corresponding scanpath while the negative indicates the reverse. Error bars represent s.e.m. (TD num =17, ASD num = 14). * p < 0.05; ** p 

< 0.001.  

 

      Post-target synchronization. Significant difference of ccf was observed in the contrast between Novel and 

Known conditions (F (1,30) = 8.042, p = 0.008*), yet neither between-group difference (F (1,30) = 0.065, p = 0.8) 

nor interaction was found significant (F (1,30) = 0.615, p = 0.439). Regarding the indicator of time lag, a 

significant main effect of trial type was found (F (1,30) = 5.542, p = 0.026*)  while the main effect of group (F 

(1,30) = 0.018, p = 0.894) or interaction (F (1,30) = 0.009, p = 0.924) was not significant. As for the trendline, 

main effects of trial type and group were significant in terms of the indicator of ccf (F (1,30) = 71.976, p < 0.01**;  

F (1,30) = 4.795, p = 0.031*) or time lag (F (1,30) = 165.987, p < 0.001**; F (1,30) = 7.772, p = 0.006*), while 

neither interaction is significant (F (1,30) = 0.432, p = 0.513; F (1,30) = 0.283, p = 0.596).  

      The findings are consistent with our hypothesis in the sense that the presence of diverse spatiotemporal 

synchronization patterns during the post-target phase will produce overall decreased ccf compared with those in 

pre-target phase (Figure 6). This is probably due to the addressee’s switch to a contenting mode after the 

emergence of understanding and then stop closely tracking the communicator’s less informative instrumental 

movement. Yet the significant high ccf in known trials compared with novel trials can be mixed results out of a 

combination of effects of prediction on trial difficulty and the potential shared contextual knowledge, especially 

considering that the Novel v.s. Known contrast of ccf is also significant in the pre-target interval (Figure 6B). 

These entangled effects indicate that ccf may not be an option for representing the emergence of mutual 

understanding but an indicator of prediction on the difficulty of trials based on assigned shapes, or a general 

indicator of top-down processes. In contrast, the significant Novel v.s. Known contrast of time lag during and only 

during the post-target period suggests that the time lag, as a measurement of temporal synchronization, can capture 

the synchronization pattern that distinguishes between pre-target and post-target period, thus marking the 

emergence of understanding. Specifically, the time lag during post-target moving in novel trials dramatically fell 

to near 0 especially in neurotypical participants (Figure 7B) compared to around 50 in pre-target moving, creating 

the significant difference between novel and known trials. This can reflect a difficulty to exploit enough contextual 

information in novel trials to alleviate the burden of stimulus-driven tracking of the communicator’s movements, 

because new shared strategies (i.e. method to indicate the addressee’s target orientation) are supposed to be 

established in novel trials by negotiating and the mutual understanding can take quite a few rounds to achieve.  
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      In terms of the trends over time, similar trends of decreased ccf and prolonged time lag (except for the opposite 

trend of shortened time lag over time for TD in novel trials, Figure 7B, left middle panel) is observed in the post-

target interval. The main effect of trial type was significant regarding the trends, indicating that individuals tend 

to obtain a steeper decrease of ccf in novel trials than known trials, which can be caused by (1) addressee’ tendency 

to stare at the target place in case s/he forgot the newly resolved location and/or orientation in difficult novel trials; 

(2) addressee’s zooming out behavior during the gap to look at a broader picture to understand the communicator’s 

intent. Based on the argument above, ccf entails a mixture of multiple processes, thus the potential reason 

underlying the trending pattern can not be elucidated with current information at hand. Besides, regarding the 

trend of time lag, the known trials here observe an apparent difference from that in the pre-target movement that 

the time lag increases with a higher velocity over time, suggesting that more diverse spatiotemporal patterns are 

utilized in the post-target interval and the addressee’s ability to detect the clutch  as early as possible is better over 

time. Due to the atypical decreasing trending pattern for TD in novel trials (Figure 7B, left middle panel), no 

conclusion can be drawn from the trends regarding the marker of understanding or the distinguished pattern 

autistic individuals may exhibit. This will be discussed in the discussion section.  

 

 

Figure 7. Cross-correlation of addressee’s scanpath and stimulus footprints during post-target movement intervals. Legends are the same as 

Figure 6. A. Comparison of the correlation coefficient between conditions, i.e., ASD v.s. TD and Novel v.s. Known. Significant difference of 

ccf was observed in the contrast between Novel and Known conditions (F (1,30) = 8.042, p = 0.008*). B. Comparison of the time lag (ms) 

between conditions. Known conditions obtain prolonged time lag compared with Novel conditions (F (1,30) = 5.542, p = 0.026*). Error bars 

represent s.e.m. (TD num =17, ASD num = 14). * p < 0.05; ** p < 0.001.  

 

 

Discussion 

The current preliminary findings capitalize that a method that can quantify the spatiotemporal pattern information 

is crucial to capture the desired emergence of understanding in TCG platform (e.g., time lag in cross-correlation 

method) instead of simple correlation coefficient values, which can be contaminated by other neurocognitive 

effects. Yet the current quantitative method of time lag is still too coarse to capture some subtle but not trivial 

information, e.g., a more fine-grained classification of movement behaviors. For example, neurotypical 

individual’s time lag in novel trials (Figure 7B) shows a decreasing trend over time and even reaches a negative 

value at the last few trials, thus with the addressee’s scanpath leading the communicator’s movement. This 

observation challenges our previous assumption that only a larger positive time lag can reflect the higher cognitive 

processes, e.g., zooming out for a broader picture. Instead, the data shows a possibility that neurotypical 

addressees perform so excellently in the communicative task that they can even predict the communicator’s 

behavior during the post-target stage. This raises a technical question that how can we confirm that the counter-

intuitive decreasing trend observed in neurotypical participants instead of the increasing trend found in autistic 

individuals in the post-target stage is a reflection of successful communication. It’s certain that additional 

behavioral data of trial-by-trial feedback indicates that neurotypical participants perform better in the 

communicative task than autistic participants. But a more sensitive measurement is still required for traits that can 

only be measured by eye tracker, e..g, specifically at which step the addressee suddenly understands the 
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communicator’s intention; how does addressee process communicator’s on-target adjustment. Besides, most 

trends except for the above-discussed one show a decreased trend in terms of ccf and increased trend in terms of 

time lag in both pre-target and post-target intervals while the between-subject or within-subject contrasts are all 

significant in both intervals. Therefore, though we have confirmed the validity of time lag in characterizing the 

overall difference of contrast between novel and known trials as well as pre-target and post-target intervals, the 

time lag indicator did not perform well regarding the trend over time. Based on the considerations above, a more 

fine-grained, dynamic and sensitive measurement of spatiotemporal pattern similarity is supposed to be 

established for allowing the capture of the communicative dynamics over time.  

 

A more fine-grained quantitative method 

      As our optimal goal is to compare the similarity of scanpath and stimulus footprints to look for the pattern that 

potentially marks the emergence of understanding in the TCG platform, thus the essence of the question can be 

categorized as pattern comparison, where the pattern can be regarded as three-dimensional—x and y coordinates 

and time. With the term “pattern”, we implicitly deliver a request that the optimal approach is supposed to be 

invariant to translation, scaling or even rotation as these pattern-irrelevant traits can vary between trials and 

individuals, thus exerting an undesired effect on the results. The currently applied indicators such as correlation 

coefficient, are sensitive to noise or outliers. Though an outlier exclusion was applied in the study, it remains 

unknown to what extent the current results are driven by noise. The previous eye tracking studies that include 

scanpath comparison into analysis focus on the comparison between two scanpath where eye tracking-related 

features can be extracted and compared (Anderson et al., 2015), yet I am mostly interested in the scanpath-

footprints relationship that has potential to mark the emergence of understanding. Therefore, an approach from 

the pattern recognition domain namely canonical time warping is considered to enable the capture of dynamic 

scanpath patterns relatively to stimulus footprints.  

      Canonical time warping method. The canonical time warping method (CTW, Zhou & De la Torre, 2009) is 

a combination of dynamic time warping (DTW) and canonical correlation analysis (CCA). DTW is an algorithm 

to measure the similarity between two time series which may vary in speed and can be of different lengths. The 

former trait allows us to quantify the dynamic change of spatiotemporal patterns even in one segment (continuous 

warping), e.g., switching from tracking mode to contenting mode. In contrast, the indicator time lag in cross-

correlation can only produce one value given two user-defined segments. The latter trait enables the possibility to 

use the original number of stimulus footprints and gaze data instead of stretching the two time series beforehand. 

DTW offers a more flexible and dynamic measurement in the temporal domain, while the CCA extracts the real 

patterns from irrelevant noise in the spatial domain. Canonical warping distance is invariant to translation, scaling, 

and rotation, which is quite preferable for my eye tracking datasets, not only in the sense that it allows the capture 

of real patterns without detrimental noise but also in terms of freeing the datasets from potential contamination of 

drifts artifacts. As I explained before, the eye tracking datasets suffer from an unignorable influence of drifts and 

linear trends as no inter-trial calibration was performed during data collection out of the pursuit of continuous 

interactive communication. Yet the application of CCA is similar to performing a position recalibration provided 

as an optional module in the preprocessing pipeline, which is based on linear transformation. At the same time, 
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there is no need to worry about the side effects brought by the position recalibration, e.g., create artificial 

differences between conditions or cancel out desired traits. An updated version of CTW (Zhou & De la Torre, 

2016) further enables the comparison between multi-modal sequences. The new characteristic allows us to regard 

stimus footprints as an area instead of purely a point in the center position. In sum, CTW, as the combination of 

the temporal flexibility in DTW and spatially pattern extraction in CCA, provides a promising approach to 

quantitatively examine the spatiotemporal synchronization patterns of scanpath and stimulus footprints.  

 

Dual-EEG methods 

      Methodological opportunities to further examine the neurocognitive sources of autistic communicative 

challenges can also be manifested from the electrophysiological perspective. While eye tracking studies reveal 

the emergence of understanding via identifying and comparing different spatiotemporal synchronization patterns 

of scanpath and stimulus footprints, a dual-EEG setup can enable the delineation of temporal and spectral 

properties of conceptual mis/alignment in individuals with ASD and TD, thus illuminating the neural mechanisms 

underlying autistic communicative challenges. To be specific, if the conceptual alignment account is true, autistic 

pairs may have difficulty using the newly-established shared communicative context, which will lead to a lower 

neural alignment in novel trials compared with neurotypical individuals.  

      Based on the above assumption, a dual-EEG setup (Figure 8A) was established via the connection of two EEG 

labs at Donders Center for Cognitive Neuroimaging (DCCN). Paired participants can thus sit individually in each 

lab and communicate via the same TCG platform on the screen. Pilot studies were performed before formal data 

collection for a sanity check (Figure 8B). The purpose of the sanity check is to examine the validity of the dual-

EEG setup via investigation of underlying brain oscillations. With the same frequency band between 8 and 12 Hz, 

posterior alpha power is considered to indicate visual activities while the central mu power reflects sensorimotor 

activities. Then a cross-correlation was performed and 8-12 Hz power coefficient was found to be most evident 

over central and posterior regions. Similar results were also observed in terms of the indicator of time lag—

channels with the most synchronized trials are in central and posterior regions. Therefore, the dual-EEG setup is 

successful in terms of simultaneous display of visual stimulus and recording of motor response. The project was 

presented at the Project Proposal Meeting at DCCN in April. To date, five pairs of neurotypical datasets have been 

collected. Further analysis of the electrophysiological datasets can provide deeper insight into the question of 

neurocognitive sources of autistic communicative challenges.  

Figure 8. Dual-EEG setup and sanity check. A. Demonstration of dual-EEG setup in practice (left) and example trials showing successful 

simultaneous recording (right). The sender precedes the receiver in terms of sensorimotor activities as the sender presses the buttons before 

the receiver; but synchronizes with the receiver in terms of visual activities, indicating the successful simultaneous display of visual stimulus. 

B. Synchronization of posterior alpha power and central mu power measured by cross-correlation. The most evident 8-12 Hz power coefficient 

appears over central and posterior regions (left). Channels with the most synchronized trials (with black dotted frame) are also in central and 

posterior regions (right), indicating visual and sensorimotor synchronization. Heatmap shows the distribution of time lag of trials per channel, 

and the right topography plots the central time-lag bins. The TCG setup in a dual-EEG platform is successful.  

 

Conclusion 
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To trace the cognitive sources of communicative challenges in ASD, i.e., altered perceptual account v.s. 

conceptual alignment account, a live communication platform (TCG) in combination with eye tracking methods 

were established to capture both the emergence of understanding and the potential difference in terms of 

spatiotemporal synchronization patterns between individuals with ASD and TD. Specifically, to achieve clean eye 

tracking datasets, a preprocessing pipeline was built initially to exclude all kinds of artifacts and outliers observed 

in the actual datasets (e.g, blinks and eyelid signal, drifts, etc). Without previous knowledge of the eye tracking 

marker of understanding during TCG, a qualitative method was then applied to classify the moving behaviors into 

four categories, identify three kinds of spatiotemporal synchronization patterns of scanpath and stimulus footprints, 

and form hypotheses to enable the examination of both emergence of understanding and autistic individuals’ 

potential different gaze patterns. Then a quantitative approach of cross-correlation was applied to the moving 

intervals of interest while one of the outputs—time lag that can differentiate between different synchronization 

patterns was shown to be a more valid indicator compared with the correlation coefficient. This validation is based 

on a within-group contrast and then applies to the ASD v.s. TD contrast. Preliminary evidence inclines towards 

an unaltered perceptual function in ASD but lacks further evidence to confirm the shared conceptual account for 

autistic communicative challenges, possibly due to the current coarse quantitative method that neglects subtle but 

not trivial characteristics during communicative interaction. Therefore, a  more advanced and fine-grained 

quantitative method was then discussed theoretically to suggest the potential fitness and benefits. Finally a 

combined dual-EEG and eye tracking study set up and validation were reported to further open the possibility to 

investigate the neurocognitive sources of communicative challenges in ASD from an electrophysiological 

perspective.  
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