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Abstract 

This thesis assesses the differences between the output of OpenFace and manual annotations 

of communicative and holistic facial signals. OpenFace is a software program that detects 

facial signals in videos of human faces as Action Units. These unit of facial movement are not 

always of interest for research. Human coders might only want to annotate communicative 

and holistic facial signals, instead of all visible signals. Video annotation is a time-consuming 

process to do manually, so automation is desired. This thesis explains how the output of 

OpenFace and annotations of communicative signals differ on conceptual level, goal, and 

features. These differences should be considered when using OpenFace for annotation of 

communicative and holistic facial signals. An attempt is made to transform the output of 

OpenFace into annotations of frowns, blinks, smiles, and gaze aversion by manually finding 

thresholds and constraints. A minimal agreement is reached between the transformed output 

and the manual annotations. The conclusion is that OpenFace can be used to automate the 

annotation of communicative facial signals, but only with the help of machine learning. 

Unbiased data is required for training, together with objective definitions of communicative 

facial signals. 
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Comparing OpenFace to Manual Annotations of Communicative Facial Signals 

Face-to-face communication between humans is multimodal. Speech on itself is of the 

auditory modality. Other modalities are introduced as nonverbal cues, like facial expressions 

and gaze direction (Hecht & Ambady, 1999). These nonverbal cues add a layer of information 

on top of what is being said or done, for example evoking the feeling of being addressed 

(Nagels, Kircher, Steines, & Straube, 2015) or allowing the prediction of the end of a speech 

turn (Holler, Kendrick, & Levinson, 2018). Facial signals can lead to a quicker and better 

understanding of speech (Kelly, Özyürek, & Maris, 2010; van Wassenhove, Grant, & 

Poeppel, 2005). For example, a question might be easier recognised as such when it is 

preceded or accompanied with raised eyebrows. This faster processing of multimodal signals 

might be facilitated by the application of Gestalt-like principles. The combinations of 

different signals are interpreted holistically and can be more easily tied to a specific meaning 

than unimodal signals (Holler & Levinson, 2019). Statistical regularities between certain 

communicative actions, like asking a question or giving a response, and facial signals should 

be discovered to better understand human communication and the perception of facial signals 

(Ripperda, 2019). 

The most straightforward way of discovering which facial expressions are used during 

conversation, is annotating recordings of face-to-face communication. This must be done by 

trained raters, to make the results as objective as possible. The expert raters only annotate the 

communicative facial signals. This means that signals that add extra information on top of 

speech are annotated, while facial signals that do not provide extra information or are caused 

by itches, twitches and other external factors are ignored. Both the training and the annotation 

procedure itself are time-consuming activities (Trujillo, Vaitonyte, Simanova, & Özyürek, 

2019). Automatically annotating video data would reduce the costs and eliminate any residual 

subjectivity. There are several software packages available for automatic facial signal 
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annotation. One of them is OpenFace. This open-source program is freely available for 

scientific purposes. OpenFace places facial landmarks on a recorded face and deduces the 

presence and intensity of facial signals by the displacement over time of these landmarks. 

However, OpenFace cannot simply replace manual coding, because it annotates every visible 

facial signal instead of only communicative signals. In practice, this leads to an over-

abundance of facial signal annotations from OpenFace compared to the manually annotated 

communicative signals. OpenFace could still be used to automate the annotation of 

communicative facial signals if a transformation from the output of OpenFace into 

annotations conceptually similar to the manual coding is possible. To assess this possibility, it 

is required to understand how the annotations of OpenFace differ from manual coding. 

This thesis will clarify these differences and assess how OpenFace and manual coding 

compare by answering the following research questions (RQs): 

RQ1: What are the differences between the automatically generated annotations of facial 

signals by OpenFace and the manually annotated communicative facial signals? 

RQ2: Can the output of OpenFace be transformed into annotations of communicative facial 

signals by applying manually picked thresholds and constraints? 

There is no hypothesis for RQ1 because it is an exploratory question. For RQ2, it is 

hypothesised that transforming the output of OpenFace into communicative facial signal 

annotation by merely manually picked rules is not possible. The output of OpenFace is large 

and person dependent, so to manually pick general thresholds is a too complex task. 

In Background, OpenFace and its output are described, followed by an overview of the 

manual communicative coding. Comparison contains an elaboration of the differences in 

working, output, and assumptions between OpenFace and manual coding, mostly relevant for 

RQ1. In Methods, the data and general procedure for altering the output of OpenFace to 

resemble more the manually annotated data are specified, followed by its Results. The 
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research questions are answered in the Discussion, accompanied with considerations about 

automating the annotation of communicative and holistic facial signals. The thesis is finalised 

with the Conclusion, with ideas for further research.  

Background 

OpenFace 2.0.5 

OpenFace is a software toolkit that can be used for annotating information about a recorded 

face. It is “intended for computer vision and machine learning researchers, affective 

computing community and people interested in building interactive applications based on 

facial behavior analysis” (Baltrušaitis, Zadeh, Lim, & Morency, 2018). OpenFace can take a 

still, video, or webcam stream as input (Figure 1). For every frame, it tries to detect a face. If 

successful, 68 facial landmarks are superimposed on the face tracking the contours (orange 

dots) and eyes (purple dots). From these facial landmark estimations, the facial expressions 

are deduced. Their presence (left column) and intensity (right column) are annotated.  

The coordinates of the head with respect to the camera are estimated as well (green box), just 

as the direction of the gaze (pink rods). These estimations are outputted in an CSV. Earlier 

Figure 1 

User interface of OpenFace
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versions of OpenFace struggled with non-frontal or occluded faces, or with low illumination 

conditions. Version 2.0 has improved on these situations, by training on datasets with partly 

occluded faces and using a different neural network architecture. 

The facial expressions are described in Action Units (AUs). Each AU is a different visually 

distinguishable facial movement. Their specifications are given in the manual of the Facial 

Action Coding System (FACS) (Ekman & Friesen, 1978). FACS was designed with the 

purpose to be useful in the detection of micro expressions (Ekman & Rosenberg, 2005), hence 

the smallest visible facial movements are annotated just like large, voluntary facial  

expressions, namely with the AUs. The intensity of an AU is given on a scale from A to E. 

OpenFace predicts 18 different AUs, which is not extensive. These are the AUs 

annotated in the training data of OpenFace. Overlaps exist between the AU labels of the 

different training datasets, allowing them to be used for training together (Baltrušaitis, 

Mahmoud, & Robinson, 2015). The resulting AUs and the muscles that are correspondingly 

contracted are listed in Table A1, Appendix A. The AUs are derived from the difference in 

geometry and appearance of the tracked face from the neutral expression. The neutral 

expression is assumed to be the median of the geometry and appearance of a face. 

OpenFace has been trained on two different kinds of datasets: one with AU presence 

annotations, and the other with AU intensity annotations. OpenFace contains two different 

models that are trained on these different data. A Support Vector Machine (SVM) annotates 

presence (0, 1) while a Support Vector Regressor (SVR) predicts the intensity on a scale from 

0 (no intensity) to 5 (maximum intensity). The two different models are independent of each 

other. All 18 AUs are predicted by both models, except AU 28, because there were no data 

available for training its intensity prediction (Elebash, 2020). Hence, only its presence is 

annotated. 
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Manual coding of facial communicative signals 

Facial communicative signals consist of facial expressions and eye gaze (Lang, 

Wachsmuth, Hanheide, & Wersing, 2012). Not all noticeable facial signals contribute to face-

to-face dialogue. Movements in the face caused by twitches and scratching have often no 

communicative value, nor expressions that are evoked by external sources, unrelated to the 

conversation. For example, moving the gaze in the direction of an unexpected sound is not 

communicative unlike averting gaze in a thoughtful manner. The facial movements purely 

resulting from speech do also not bear any communicative value on top of the meaning of the 

speech itself. Of course, these movements can be minimised or exaggerated to convey 

additional information, for example during smiling. In such a case, the movement becomes 

communicative. 

The manually coded annotations used in this thesis only describe communicative 

facial signals. The signals that the human annotators code for are listed in Table A2, 

Appendix A. To solely annotate communicative signals, more information is used than purely 

the visible movements, for example the context of the conversation or attributed intentions. 

Next to looking at communicativeness, the manual coding also codes holistic facial 

expressions. Holler and Levinson (2019) define holistic perception of messages as the 

integrated meaning of different perceived stimuli, possibly from different modalities. The 

resulting interpreted message has a meaning larger than the sum of its components. For 

example, a combination of raising the cheeks, squinting the eyes, and stretching the lips can 

be holistically interpreted as a smile. 

Automating the annotation of communicative and holistic signals with OpenFace is a 

challenge, because OpenFace makes no distinction between non-communicative and  

communicative signals and only the components of a holistic signal are annotated, instead of 

their combination. 
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 The presence annotations from OpenFace and the annotations resulting from manual 

coding for the same time frame and video can be seen in Figure 2 and 3. These images are 

screenshots from ELAN (“ELAN (Version 5.5) [Computer software],” 2019). 

Figure 2 

Action Unit presence annotation from OpenFace 

 

Figure 3 

Manual annotations of communicative and holistic facial signals 
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Comparison 

OpenFace has been designed with a different goal in mind than the human manual 

coders have, so a simple transformation from the output of OpenFace to annotations 

comparable to the manual annotations is not possible. In this section, the differences between 

OpenFace and manual coding are listed. Knowing what the differences are is required for 

assessing whether, to which extent, and how using OpenFace for automating the coding of 

communicative signals is possible. 

Conceptual Differences 

OpenFace annotates facial movements with Action Units (AUs), which are part of the 

Facial Action Coding System (FACS) (Table A1, Appendix A). Every AU stands for a 

specific visually discernible movement on the face. Hence, the intention of OpenFace is to 

annotate every movement that it detects. Which movements it detects or fails to detect will be 

discussed later. 

Manual coding takes place on another conceptual level. Namely, not all atomic 

movements that are defined in the FACS are coded separately. Instead, the more general, 

higher level movements are considered (see Table A2, Appendix A). The goal of manual 

coding is also different from the goal of OpenFace. Namely, only the movements that add 

meaning to what the speaker is communicating to an addressee are annotated, opposed to 

annotating every perceivable movement. The annotation is done from the perspective of an 

addressee. Only what this addressee is assumed to perceive is annotated. 

Besides the level of movement and the goal of the annotations, OpenFace and manual 

coding also differ in the features they can annotate. OpenFace does not distinct between 

unilateral or bilateral movements, while the manual coding does. Unilateral facial signals can 

bear different meaning form their bilateral counterparts, for example raising one eyebrow can 

express disapprovement or judging something questionable, while raising both brows can 
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show surprise. Also, while OpenFace does track the position of the head in three-dimensional 

space and estimates the direction of the eye gaze of the tracked face, it does not annotate any 

head movements or gaze aversions. Manual coding does however allow for their annotation, 

of course only when communicative. 

The differences between OpenFace and manual coding in level, goal and features are 

visualised in Figure 4. 

Figure 4 

Schematic visualisation of the differences in coding between OpenFace and manual coding 

Note. A blue bar represents an annotation. 1. Difference in level: OpenFace codes a larger 

facial expression (i.e. smile) as separate Action Units, while manual coding makes one 

holistic annotation for it. 2. Difference in goal: If a facial signal is communicative, both 

OpenFace and the manual coding annotate it (AU9 and nose wrinkle). When a signal is not 

communicative, only OpenFace annotates it (AU25 and no annotation for ‘Lips pressed 

together’). 3. Difference in features: next to facial expressions, manual coding annotates other 

communicative signals, for example head shifts. OpenFace does not have AUs that describe 

this feature. 
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Overcoming the Differences 

To assess whether the annotations of OpenFace can be used to automate coding of 

communicative and holistic signals, their differences in coding level, goal and features should 

be overcome. 

Coding Level. The low-level atomic movements annotated by OpenFace can be 

combined to higher level, as-perceived-by-human annotations. This should be done based on 

the relations between the Action Units and holistic codes. These relations can be found in 

several ways: 

Obvious Relations. Action Units describing the movement of a specific region of the 

face have a relation to a more holistic code of the same region. For example, AU1, 2 and 4 

each describe eyebrow movements. Hence, they have a relation with the general holistic tier 

‘Eyebrow’. Meanwhile, AU1 and 2 code for respectively inner and outer brow raises, and 

hence bear a relationship with the higher-level codes that stand for eyebrow raises (‘raised’, 

‘unilateral raised’, etc.). 

Anatomic Relations. The FACS describe which facial muscles are contracted during 

which Action Unit (Farnsworth, 2019). Meanwhile, the criteria of the holistic codes allow for 

determining which facial muscles are involved by which holistic movement. A relation 

between an AU and a holistic code exist when they involve the same muscle contractions. For 

example, the manual code ‘Squint’ has contraction of one or both eyelids as a criterium. 

AU44 also codes for a squint and uses the muscle orbicularis oculi pars palpebralis, but 

OpenFace does not annotate this action unit. It does however annotate AU6 and AU7 which 

use the same muscle as AU44. Hence, it there might be a relation between the squint and AU6 

and AU7, respectively the cheek raiser and lid tightner. 

Statistical Relation. OpenFace uses two models to generate the annotation of Action 

Units; an SVR regression model (AU_r) for intensity and an SVM classification model 
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(AU_c) for presence, as explained in Background. Both the models are imperfect and make 

mistakes, as will be discussed further below. Simply combining the by AU_c annotated 

presence of AUs and renaming them to the holistic tiers is bound to result in many false 

positives and false negatives. More complex criteria might however allow for a 

transformation from the automatic OpenFace output to holistic annotations. It is possible that 

a tier of holistic annotation corresponds to a specific pattern in the output of OpenFace, for 

example a combination of minimal activations of AU_r (thresholds) together with the 

presence or absence of certain AUs according to AU_c.  

Coding Goal. While OpenFace is trained to detect all discernible facial movements, 

manual coding merely annotates the perceivable facial movements that have a communicative 

value, which means that the movement adds value to what the speaker is saying. To transform 

the output of OpenFace to communicative annotations, detected Action Units that are not part 

of a communicative facial signal should thus be discarded. Two things that could be done to at 

least remove a part of the non-communicative annotations are: 

Remove Speech Artefacts. Predominantly AU25 and AU26, but also other Action 

Units, are present during vocal speech. From the output of OpenFace, the frames in which the 

recorded participant is speaking can potentially be filtered out by a trained algorithm, by using 

AU_r or the facial landmarks around the mouth. These frames should then not be completely 

disregarded; during speech, communicative signals can still be produced, also with the mouth 

(think of imitating another person or smiling while talking). Special criteria could be set for 

the frames in which the participant is speaking, for example higher thresholds for the output 

of AU_r related to Action Units around the mouth. 

Threshold Minimum AU Duration. The length of Action Units can be given a 

minimum duration threshold. This leads to that very briefly detected Action Units can be 

disregarded and not be transformed into communicative annotations. Such thresholds could be 
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based on minimum length of communicative facial signals. The pitfalls here are that 

OpenFace might fail to annotate the complete duration of an Action Unit, or that a minimum 

duration for a communicative facial signal does simply not exist. 

Coded Features. Some of the manual annotations, like Eyebrow movements, can be 

unilateral (i.e. raising one eyebrow as opposed to both). OpenFace does not distinct between 

unilateral or bilateral occurrence of AUs. This could be overcome by using the facial 

landmark position output. For every supposed movement that could be unilateral, the 

movement of the relevant landmarks can be compared between the left and right side of the 

face. If the displacement of one side is small enough compared to the other side that it is 

neglectable, then the movement can be considered unilateral. Otherwise, it is bilateral. 

Head movements and gaze aversion are also annotated with manual coding. The 

FACS contains action units for these movements, but the models of OpenFace are not trained 

to detect them. Both head and gaze movements should be hidden in the positional part of the 

output of OpenFace, however. In Methods, it is described how gaze aversion annotations have 

been extracted from the output of OpenFace. 

Flaws of OpenFace 

So far, the ideas proposed to transform the output of OpenFace into annotations of 

holistic and communicative facial signals assumed that the output is correct. Its output is 

however far from perfect. Baltrušaitis et al (2018) report that the Action Unit intensity 

prediction of OpenFace often outperforms other AU detection methods. The correlation 

coefficients reported are from a comparison with the DISFA dataset. This dataset features 

recordings of participants watching a 4-minute long video with fragments specially chosen to 

evoke spontaneous facial expressions (Mavadati, Mahoor, Bartlett, Trinh, & Cohn, 2013). 

This is a more stable situation than a free face-to-face conversation, because the participants 

fixate on the screen and do not speak. Even though OpenFace has been trained on data 
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featuring speech as well, the question remains how well the reported correlations hold for 

conversational videos. 

When OpenFace annotates a signal wrongly, it is either a false positive (FP) or a false 

negative (FN). For FPs, an Action Units presence is detected while the respective movement 

does not occur in the input. For FNs, OpenFace fails to detect an Action Unit visible in the 

input. A direct cause for either FPs or FNs is difficult to pin down from the output alone. Both 

AU presence and intensity models take the landmark positions, normalised for the current 

person, as input. These landmarks are the output of a neural network preceding in the 

OpenFace pipeline and hence not the objective truth. If the landmarks are placed wrongly, 

then the AU annotations are wrong as well. This is one possible cause of both FPs and FNs. 

Another cause linked to the facial landmarks is not their wrong placement, but a warped view 

of the face. For example, when somebody looks downward, the eyes might not be visible 

anymore and the landmarks above and below the eye might be practically overlapping (Figure 

5). This is then interpreted as a blink, while in fact the participant does not blink, or it is 

impossible to decide from the footage whether there is a blink or not. So, occlusions by 

moving the head or blocking vision with a limb or an object can result in wrong annotations. 

Theoretically, these mistakes can be filtered out by detecting when the head is turned away 

from the camera, by the coordinates of the facial landmarks. In Methods, an attempt to reduce 

the amount of falsely annotated blinks by using the output from both models is described. 

Figure 5 

Frame from a video which OpenFace annotates as blink, but is actually gaze aversion 

  



15 
 

To transform the output of OpenFace to holistic and communicative signal 

annotations, both the classification and regression model for AUs should be used. Sometimes 

one model fails to detect an AU while the other picks up on it. False positives can partially be 

filtered out as well, by ignoring all positive presence annotations when the intensity is too 

low. What ‘low’ is, has to be determined for each AU separately, because the intensity 

outputted by OpenFace does differ between the AUs. Some AUs can have an intensity above 

0, even when the AU is not present on the face. OpenFace normalises the AU intensity for 

each specific video by subtracting the nth percentile (which is nowhere defined specifically) of 

intensity from all output. This correction might not be effective if the dynamic range of an AU 

is small (Baltrušaitis, 2019). Other AUs are rarely ascribed an intensity other than 0. Any sort 

of thresholding should be person dependent as well, because the extent to which some AUs 

are annotated can vary a lot between persons. For example, for some faces, AU4 (brow 

lowerer) is detected in a great part of the recording. For others, AU4 is rarely annotated. This 

inter-person difference makes simple thresholding of intensity to filter out false positives 

difficult. 

It is also possible that both the presence and intensity model fail to detect a visible 

facial movement. False negatives like these cannot be accounted for, because they cannot be 

distinguished from a neutral face from the output alone. 

When OpenFace detects a visible movement, it can still make mistakes in determining 

the onset and offset of the respective AU. These mistakes are still undesirable, because a 

human would still have to check every resulting annotation for the correct placement in time. 

Too long annotations have a too early onset or too late offset. Both the classification and 

regression model can annotate too long annotations. Both cases could be improved by looking 

at the rate of change of the intensity if AU_r has outputted anything different than 0. The 

onset of an AU is marked by an increase of the intensity. Then the AU can last for an arbitrary 
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amount of time, with the ending marked with a decrease in intensity back to the level before 

the onset. The rise and fall in intensity can be detected by thresholding its rate of change. This 

can be used to automatically adjust the begin and end points of the annotations. An 

application of this idea is described in Methods. 

Short annotations can be considered messy in comparison to the manual annotations. 

However, it should be considered that the goal of OpenFace is to detect every single facial 

movement, even the ones that a human would not consciously notice in face-to-face 

communication. This is why the abundance of annotations is not inherently bad. From the 

perspective of the purpose of OpenFace, it might be more useful to overannotate than to risk 

having false negatives. 

Methods 

To see whether a transformation from the output of OpenFace to annotations of 

communicative and holistic signals was possible, it was tried to clean up AU4 (brow lowerer) 

and AU45 (blink), next to detecting smiles and gaze aversion. 

Dataset 

The manual data used for assessing the transformation were 63 videos of 24 

participants (16 females, 8 males) involved in 3 different tasks. The videos were around 20 

minutes long each and recorded at 25 frames per second. They were manually annotated on 

the occurrence of a question or a response, which yielded 2434 annotation windows with an 

average length of 6.80 seconds (standard deviation of 2.99 seconds). Total duration of the 

windows together is 35 minutes and 58.6 seconds. The manual annotations and the output of 

OpenFace had been cropped to these coding windows, to prevent that values outside of the 

windows influence the outcome of any comparison. The data are not publicly available. 

Before altering the data, the AU intensity and presence for all frames with a 

confidence lower than 0.97 were removed.  
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Approach 

Cleaning up AU4 was a demonstration of a simple threshold. AU4 was chosen for this 

demonstration, because manual inspection showed that AU4 was annotated as ‘present’ too 

frequently, while its intensity was usually above 0. A threshold for 2.5 had been chosen: AU4 

is annotated only when its intensity (regression model of OpenFace AU_r) was 2.5 or higher. 

The output of the presence model (classification model of OpenFace AU_c) was ignored. The 

resulting annotations were merged into one if they were 1 or 2 frames between them. The 

remaining annotations of 1 or 2 frames long were dropped. The final AU4 annotations were 

compared to the manual annotations ‘frown’, ‘frown-raised’ and ‘unilateral-frown-raised’. 

Changing the annotations of AU45 was done by using the rate of change of the 

intensity output. AU45 was often annotated too long by OpenFace, for example when a 

participant was looking downward, causing the eyes to be hidden from the camera by the 

eyelid. At those instances, it was often still possible to visually discern blinks from the video 

recording, because movement of the eyelid and around the eye is still recorded. This might be 

reflected in the outputted intensity of AU45 by AU_r. The value of the rate of change for a 

frame t is the slope of the regression line of the points t-2, t-1 and t, calculated with the 

function linregress from (“scipy.stats.linregress,” 2019). A blink would finally be annotated if 

frame had a rate of change above 0.3, followed within 10 frames by a rate of change smaller 

than -0.3 with two frames later higher than -0.2. The resulting AU45 annotations were 

compared with the manual annotation ‘blink’.  

Smiles were not explicitly annotated by OpenFace, while it is part of the manual 

annotations. For the extraction of smiles, the intensity outputted for AU6 (cheek raiser), 

AU12 (lip corner puller) and AU14 (dimpler) were used, because a rise in intensity for these 

three AUs was noticed on several manually checked smiles. The mean and standard deviation 

for all three AU intensities within one recording were calculated. The start of a smile 
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annotation was when the intensity of all three AUs is more than their respective standard 

deviation higher than their respective mean. An annotation ended when one of the intensities 

of one of the three AUs got below its mean instead of below the initial threshold, because the 

intensity of a smile could wear off towards the end and should not be ended too early. To 

smooth out the start of the annotations, the onset was moved to the first preceding frame 

where all three AUs are above their mean intensity. 

Just like smiles, gaze aversion was not annotated by OpenFace, though an estimate of 

the direction of gaze was part of the output. The mean and standard deviation of the x and y 

gaze angle were calculated for the output of OpenFace for one recording. A frame was 

annotated as ‘gaze aversion’ when the x or y gaze angle differed respectively 1.3 and 1.5 of 

their standard deviation from their mean. Resulting annotations of less than 4 frames (< 0.16 

s) were dropped. The remaining annotations were concatenated when separated by only a 

blink (AU45) or when less than 11 frames apart from another, because that was the maximum 

length for a blink in the altered blink annotations. 

Any resulting annotation shorter than 3 frames ( < 0.12 s) was dropped. 

Reliability evaluation 

Cohen’s kappa κ measures interrater reliability corrected for chance agreement, i.e. κ 

“is the proportion of agreement after chance agreement is removed from consideration” 

(Cohen, 1960). It was obtained for each of the four annotation types and their manual 

counterparts with the use of ELAN 5.5 (Hellwig et al., 2020). This statistic was also 

calculated for the original presence output of OpenFace for AU4 and AU45. ELAN 5.5 

implemented easyDIAg (Holle & Rein, 2015) for the calculation. Annotations were marked as 

overlapping when at least 60% of the longest from the pair coincided with the other 

annotation. The resulting values of κ were interpreted as a degree of agreement (McHugh, 

2012).  
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Results 

AU4 and Frowning 

The global agreement matrices created by ELAN are shown in Table B1, Appendix B. 

There is no global agreement between the presence annotations of OpenFace AU4_c 

and the manual frowning annotations (κ = 0.0175 , κmax = 0.3122, raw agreement (RA) = 

0.1345). For frown presence, κ = 0 (κmax = 0.0995, RA = 0.5659), while for frown absence κ = 

0 (κmax = 0.7123, RA = 0.4730). 

After thresholding of the AU4 intensity in the OpenFace output, it has a minimal 

global agreement with the manual annotations  (κ = 0.2730, κmax = 0.8300, RA = 0.6840). For 

frown presence, κ = 0.0737 (κmax = 0.7835, RA = 0.8562), while for frown absence κ = 0.5149 

(κmax = 0.9092, RA = 0.8228). 

AU45 and Blinking 

The global agreement matrices created by ELAN are shown in Table B2, Appendix B. 

There is initially also no global agreement between the presence annotations of 

OpenFace AU45_c and the manual blinking annotations (κ = 0.1531, κmax = 0.8365, RA = 

0.3037). For blink presence, κ = 0.0452 (κmax = 0.7608, RA = 0.6228), while for blink absence 

κ = 0.2608 (κmax = 0.9710, RA = 0.6438). 

After using the rate of change of the AU45 intensity in the OpenFace output, it has a 

minimal global agreement with the manual annotations (κ = 0.3329, κmax = 0.9421, RA = 

0.5141). For blink presence, κ = 0.4518 (κmax = 0.9640, RA = 0.7742), while for blink absence 

κ = 0.4783 (κmax = 0.9616, RA = 0.7402). 

AU6, 12, 14 and Smiles 

The global agreement matrices created by ELAN are shown in Table B3, Appendix B. 

 The smiles extracted from the intensity of AU6, AU12 and AU14 in the OpenFace 

output and the manual smile annotations have a global interrater reliability of κ = 0.2058 (κmax 
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= 0.5487, RA = 0.4101), which stands for a minimal agreement. For smile presence, κ = 

0.1778 (κmax = 0.4503, RA = 0.6996), while for smile absence κ = 0.3532 (κmax = 0.8104, RA 

= 0.6737). 

Eye Gaze Estimation and Gaze Aversion 

The global agreement matrices created by ELAN are shown in Table B4, Appendix B. 

The gaze aversion annotations extracted from the gaze angle in the OpenFace output 

and the manual gaze aversion annotations have a global interrater reliability of κ = 0.1750 

(κmax = 0.8525, RA = 0.3685), which stand for no agreement. For gaze aversion, κ = 0.0616 

(κmax = 0.7688, RA = 0.6587), while for no gaze aversion κ = 0.3114 (κmax = 0.9796, RA = 

0.6565). 

Discussion 

RQ1, “What are the differences between the output of OpenFace and the manual 

codes”, is answered by the contents of Comparison. The difference between the annotations 

outputted by OpenFace and the manual annotations are the conceptual level of the used codes, 

the coding goal, and the coded features. There are no straight-forward similarities between 

OpenFace and manual coding, except the annotation of blinks. More complex relations 

between the output of OpenFace and the manual annotations could be discovered with enough 

ground truth manual data. 

The results from the attempt to transform the output of OpenFace show that the 

automatic annotations can be improved with respect to the manual codes, positively 

answering RQ2, “Can the output of OpenFace be transformed into manual annotations by 

manually applying thresholds and constraints?”. Both blink and frown annotations are 

improved from no agreement between the output of OpenFace and manual annotations to a 

minimal agreement. For only the positive annotations of frowns, the agreement after the 

transformation is still negligible with κ = 0.0737. However, the maximum theoretical value of 
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κ has increased from κmax = 0.0995 to κmax = 0.7835. This means that an agreement on 

positive frown annotations between the original OpenFace output and the manual annotations 

was not possible, due to the differences in their marginal distributions. In this specific case, 

OpenFace made 4915 positive annotations of frowns, while the manual annotators had only 

detected 405 frowns. After the transformation of the automatic output, only 648 automatic 

positive frown annotations remained. The distribution of positive frown annotations over the 

videos had become more similar to manual coding. 

Smiles were extracted with a minimal agreement as well. The extracted gaze aversion 

annotations have no agreement to the manual annotations. 

The shown improvements refute the hypothesis that transforming the output of 

OpenFace into communicative and holistic annotations is impossible. However, the 

improvements are not great enough to automate their coding with OpenFace. These results 

were obtained by manually inspecting the corpus of data and picking thresholds that yielded 

promising results on single, handpicked instances. This is not the way to go when automating 

the annotation of communicative signals. Machine learning should be used to find patterns 

between the output of OpenFace and the communicative, holistic annotations. 

An artificial neural network (ANN) could look at the output of OpenFace for a 

window of frames simultaneously and output the likeliness for any of the manual tiers. 

Recurrent neural networks would especially be suitable. These ANNs can take time-series as 

input and store relevant information in their memory, to use in its analysis of future input. 

Input can also be of arbitrary length. This kind of learning is called supervised learning and 

requires ground truth target data (i.e. manual annotations) to learn the weights of the ANN. 

Without ground truth data, unsupervised learning algorithms are an option. These algorithms 

find patterns in the data they are trained on, and cluster the data. The resulting clusters should 

then be assessed manually to see if any of the clusters approximate any of the manual tiers. 
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Machine learning is not used in this thesis, because of the lack of unbiased ground 

truth data. The manual annotations used to obtain the results presented in this thesis only 

described questions and responses, which might contain biases about which facial expressions 

occur together with other expressions (i.e. during questions and responses). Using these for 

training an algorithm that has to recognise communicative signals from any conversational 

video input could lead to a biased algorithm.  

With machine learning, one has to be careful to prevent over- or underfitting. The 

different manual tiers might be unbalanced, with some tiers occurring more frequently than 

others. Sparsity of (certain tiers of) annotations might make naïve supervised learning 

difficult. Since the pipeline of OpenFace also contains neural networks, its output is not 

ensured to be correct. In the case that OpenFace fails to detect Action Units, no relation will 

be found between its output and the manual annotations. However, even when OpenFace is 

imperfect, a transformation from its output to holistic tiers is theoretically possible. Training 

could also be performed on the positions of the facial landmarks detected by OpenFace. This 

would eliminate the problems caused by possible mistakes by OpenFace in its Action Unit 

recognition. 

Another point of discussion is the degree to which the manual annotations can be 

regarded as ‘truth’. The smile extraction presented in this thesis resulted in an overabundance 

of positive smile annotations, compared to the holistically annotated smiles. It could be that 

these extra annotations are simply false, but it could also be possible that faint smiles are 

really visible. The human annotator could have not considered it a smile enough, or not 

communicative enough, to make an annotation of it. It is important to set clear rules about 

what to annotate as a smile and what not. If somebody is happily telling a story and showing 

signs of smiling all the time, should the total duration be annotated as smiling? Or should only 

the moments on which the smile gets stronger than average be annotated? These kinds of 
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considerations should be made for any communicative signal to eliminate subjectivity as 

much as possible. Several videos should all be coded by different human coders. These results 

should be compared to assess the interrater reliability between the human coders, and to 

discover if subjectivity is playing a part. Even with training data which have been accepted as 

true, it might be impossible to extract communicative facial signal annotations from the 

output of OpenFace without an objective definition of communicative signals. Furthermore, 

OpenFace generates its output based only on video data. To determine communicativeness, 

maybe more than only the visual domain is required. Possibly, the context of the ongoing 

dialogue is essential information. If this is the case, then OpenFace can never be used to fully 

automate the annotation of communicative facial signals with solely its current input. 

The methods in this thesis did not address the problems caused by occlusions, either 

by averting the face away from the camera, or by blocking it with a limb or object, for any 

facial signal other than blinking. Problems caused by moving the face could be overcome by 

detecting the pitch, yaw and roll of the head. It should be possible to do this from the output 

of OpenFace, especially after normalising the 3D facial landmark coordinates with respect to 

the distance to the camera. The proportions between the landmarks on opposite sides of the 

face are indicative of the pitch, yaw and roll of the head. Apart from directly being applicable 

for the annotation of head movements, knowing how the head is moved can be used to filter 

out mistakes in Action Unit or other signal recognition. 

If the recorded participant has the freedom to reposition themselves in their chair or to 

walk around, it should be taken into consideration that not all changes is head location are 

necessarily head movements. This might not be discernible anymore from merely the output 

of OpenFace. The 3D output of OpenFace is in respect to the camera. So, if somebody moves 

their body closer to the camera, and thereby their head too, without shifting their head 

forward, it can be seen in the estimated coordinates that the face has moved closer to the 
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camera. When the participant does not move their body, but shifts their head forward, their 

face also appears closer to the camera. From merely the output, a distinction between these 

two situations cannot be made. It should however be possible to extract the movement up to a 

certain extent. 

Automating the recognition of communicative signals is worthwhile. It would 

overcome the subjectivity between different raters, is faster and eliminates the time and 

financial means required to train the raters. Research after communicative signals is required 

in order to understand the underlying cognitive mechanisms of holistic perception and to 

discover the relations between different speech acts, facial signals, and emotions. Increased 

understanding of these topics is useful in learning about social understanding of people with 

autism or other disorders. Also, in the field of human-computer interaction, digital faces can 

be improved when supporting their synthesised speech with communicative facial signals, 

while improving the understanding of human input to digital systems.  

Conclusion 

 The differences between the output of OpenFace and the manual codes (RQ1) are the 

conceptual level of the used codes, the coding goal, and the coded features. RQ2, “Can the 

output of OpenFace be transformed into manual annotations by manually applying thresholds 

and constraints?”, does not receive a binary answer in this thesis. It is demonstrated that the 

output of OpenFace can be transformed into a format more similar to manual codes of 

communicative and holistic facial signals. However, the improvement is minimal. The output 

of OpenFace contains so many variables, that it is impossible for a human to find relations 

between the output and manual coding that generalise to all videos in the dataset. Since 

OpenFace does not take context into account for its result, it remains the question whether it is 

every possible to separate the communicative annotations from the non-communicative 
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output. More precise understanding of what makes a facial signal communicative or not is 

essential in the process of automating the annotation of communicative signals. 

It is recommended to continue the automation with machine learning techniques (e.g. 

recurrent neural networks). The data used in this thesis were not used for training a model that 

can be used for videos of conversations in general, because the data were specific to windows 

of questions and responses in the video and are hence biased. In future research, a model 

could be made from this data particularly for question and responses video excerpts. If a more 

general model is desired, less biased training data should be collected first.  
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Appendix A 

Table A1 

AUs predicted by OpenFace and the corresponding muscles 

AU Description Facial muscle 

1 Inner Brow Raiser Frontalis pars medialis 

2 Outer Brow Raiser Frontalis pars lateralis 

4 Brow Lowerer Corrugator supercilii, Depressor supercilii 

5 Upper Lid Raiser Levator palpebrae superioris 

6 Cheek Raiser Orbicularis oculi pars palpebralis 

7 Lid Tightner Orbicularis oculi pars palpebralis 

9 Nose Wrinkler Levator labii superioris alaquae nasi 

10 Upper Lip Raiser Levator labii superioris 

12 Lip Corner Puller Zygomaticus major 

14 Dimpler Buccinator 

15 Lip Corner Depressor Depressor anguli oris 

17 Chin Raiser Mentalis 

20 Lip Stretcher Risorius platysma 

23 Lip Tightener Orbicularis oris 

25 Lips Part Labii inferioris, mentalis, orbicularis oris 

26 Jaw Drop Masseter, temporalis, internal pterygoid 

28 Lip Suck Orbicularis oris 

45 Blink Levator palpebrae superioris, orbicularis 

oculi, pars palpebralis 
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Table A2 

Tiers and annotations used for manual communicative signal coding 

Tiers Entry values Criteria 

Gaze - Speaker averts gaze 

Blink - Brief closure of the eye 

Squint - Contraction lower (and upper) eyelid(s) 

Eyes-

widening 

- Upper lid movement that opens eye wider than 

usual 

Eyebrows Raised Upward movement 

Unilateral-raised Upward movement of one eyebrow 

Lowered Downward movement without contraction in the 

middle 

Frown Contraction in the middle with or without 

downward movement 

Frown-raised Contraction in the middle with upward 

movement 

Unilateral-frown-raised Contraction in the middle with upward 

movement of one eyebrow 

Nose-

wrinkle 

- Contraction on top of the nose 

Mouth Lips pressed together Thinning 

One/both corners pulled 

back 

Stretch 

One/both corners pulled 

down 

Upside-down smile 
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Tiers Entry values Criteria 

Lips pursed Formed like for a kiss 

Smile Combined with speech, hence not pure laughter 

Unilateral smile Smile on one side of the mouth 

Note. Gaze estimation is no AU, but an estimation by OpenFace of the direction of the gaze.  
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Appendix B 

Table B1 

Global agreement matrices for AU4_c and frown-related manual annotations, and for the 
altered AU4 and frown related manual annotations 

OF output Manual annotation ‘frowns’ 

frown no frown Unmatched 

Original AU4_c 

frown 150 1262 4209 

no frown 18 1650 4441 

Unmatched 321 1333 - 

Altered AU4 

frown 86 4 603 

no frown 30 4596 690 

Unmatched 347 489 - 
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Table B2 

Global agreement matrices for AU45_c and manually annotated blinks, and for the altered 
AU45 and manually annotated blinks 

OF output Manual annotation ‘blink’ 

blink no blink Unmatched 

Original AU45_c 

blink 2072 1006 5295 

no blink 18 6048 4893 

Unmatched 3761 3568 - 

Altered AU45 

blink 4080 10 2417 

no blink 14 7770 2726 

Unmatched 2759 3205 - 
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Table B3 

Global agreement matrix for smile annotations derived from the output of OpenFace, and 
manually annotated smiles 

OF output Manual annotation ‘smile’ 

smile no smile Unmatched 

Smiles extracted from OF output 

smile 840 392 2548 

no smile 40 3970 2435 

Unmatched 544 961 - 

 

Table B4 

Global agreement matrix for gaze annotations derived from the output of OpenFace, and 
manually annotated gaze aversion 

OF output Manual annotation ‘gaze’ 

gaze away gaze not away Unmatched 

Gaze aversion extracted from OF output 

gaze away 972 578 2606 

gaze not away 220 4544 2427 

Unmatched 1705 1917 - 

 

 


