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Abstract

Ugenda is an organization which aggregates event information from other

websites. A lot of work goes into selecting web pages which contain events,

as there is no fixed structure between different websites. Ugenda is searching

for ways of automating the process of event page selection. One approach is

to look at the text content of all webpages and automatically determine if the

pages contain an event based on the text content.

The text content of web pages is extracted by collecting the text inside

select HTML tags. The resulting text is represented by counting the different

words in the text and placing those counts in a vector. A dataset is created

by crawling (following links on web pages) a select number of websites and

performing manual classification (into classes event and other) in the resulting

pages. These pages are then transformed into a format which can be read

by the Weka datamining toolkit. Classification is performed by using three

different classifiers to achieve the best performance possible. Three different

weighting schemes are also used in order to enhance performance.

The results are in line with established literature: Classifiers can distin-

guish reasonable well between pages with events and other pages. However,

the performance is not yet good enough for use by Ugenda.

Additionally, a similar case was investigated by assimilating a random sam-

ple of non-event web pages (not restricted by the selected websites by Ugenda)

and a number of event web pages from multiple websites, where each web-

site only provides a single event page. Pre-processing was done analogously to

the previously mentioned process. Classification of this dataset is, on average,

more difficult and thus yields worse performance.

Possible improvements are discussed. The document representation could

be changed to include phrases or concepts. The classification algorithms can

possibly be tuned further and the collected datasets are too small to draw

solid conclusions.
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Chapter 1

Introduction

Ugenda is one of the leading cultural calendar websites in the area of Nijmegen1. Ugenda
aggregates content from venues in and around Nijmegen. The organization provides
users with a single website where they can get information on cultural events. These
events can range from theatre shows and concerts to musicals or local art exhibitions.
Ugenda’s website also provides reviews of events and interviews with local art enthusiasts
in addition to the online calendar containing all local events.

Figure 1.1: A screenshot from Ugenda’s website

One of main activities performed by Ugenda is collecting event related information
from other websites. Venues put event information on their websites so that their po-
tential customers can keep up-to-date with activities at the venue. Editors from Ugenda
have to retrieve this information: they visit the venue websites and manually extract
the date, location and description of local events, which they then put in Ugenda’s on-
line calendar. There are over 100 different venues, so this task is very time consuming.
Although Ugenda has taken some steps to automate this process by using a manually
trained web scraper, a lot of progress can still be made to further automate the event
extraction process.

1http://www.ugenda.nl

1

http://www.ugenda.nl


2 CHAPTER 1. INTRODUCTION

Ugenda has to go through a number of steps in order to fill their website with events.
First, editors identify websites which belong to venues in the Nijmegen area. Every
website which has been identified as a venue website then needs to be searched for events.
Some websites have a fixed structure, such that events always appear in exactly the same
location on the website. Other sites do not have such a structure and extracting events
from those websites can be more time-consuming. Lastly, the editors take the pages which
contain events and transform the information on the web page into something Ugenda
can place on the website. For instance, Ugenda requires a date and time, a description
and a category or genre (e.g. musical, concert, theatre show).

Set of
websites

Collect web pages

Set of
web pages

Contains
event?

Set of
webpages
containing

events

Set of
webpages

not
containing

events

Collect information from page

Name,
date, time,
description

yes

no

Figure 1.2: A schematic overview of Ugenda’s process to collect event information.
This is simplified: In reality, editors can use knowledge about the structure of websites
to shorten the process.

The process on identifying webpages which contain an event from the set of all web
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pages in a domain can be represented as a classification problem [4]. Assuming there is a
set of all web pages in and around Nijmegen (similar to those identified by the editors),
every web page has to be labeled. In this case, those labels would be “contains event”
and “does not contain an event”, respectively. See the highlighted part of figure 1.2 for
a graphical overview. The process of labeling these web pages is commonly referred to
as classification. The aim of this project is to create a program which can automatically
classify a set of web pages into a set containing events and a set which does not contain
events. Automatic classification has the advantage that no humans are required to find
new web pages which contain events, so that Ugenda can focus more of their resources
on reviews, interviews, or other content.

There are numerous different approaches to automate this classification problem. For
instance, one approach could be to keep track of the HTML structure of the website. The
place of relevant information in the tree could be marked, allowing for retrieval across
multiple web pages assuming they have the same structure. However, websites do not
always have a rigid structure and this structure could be subject to change. Another
approach could be to use information available in the Unique Resource Identifier (URL)
of the page. For instance, if a URL contains the word “event”, it is very likely that the
page contains an event.

In this thesis, I will show how I have approached creating a representative data set,
converting web pages to a suitable representation and training a classifier to recognize
web pages which contain events. I will distinguish two separate cases:

1. Identifying events from a data set containing all web pages from a fixed set of
websites

2. Identifying events from a data set containing one event web page for each website,
and random other pages.

The first case is the one which is most important to Ugenda. Ugenda already has a list
of websites from where they regularly get events. Assuming that all web pages belonging
to a website can be retrieved, the classifier needs to identify those pages that contain
an event. Ugenda does not have huge computational resources to their disposal, so a
proposed solution should not only be effective but also efficient. The solution is regarded
as effective if it reduces the amount of web pages the editors have to go through, ideally
to only web pages which contain events. The research question for this case is formulated
as follows:

Q1: How can a classifier be trained to distinguish between web pages with event
and other web pages when the web pages come from a set of domains?

The second case is the one which is particularly interesting from a research perspective.
Can a classifier represent the abstract concepts which belong to an event? This differs
from the first case, where the classifier can possibly learn from the structure of event web
pages2, not the content. Thus, the second research question is is formulated as follows:

Q2: How can a classifier be trained to distinguish between web pages with
event and other web pages when these web pages are sourced randomly from
the internet?

2This can be caused by the fact that a single website has a number of event web pages which are
similar in structure. The classifier could then learn that structure, instead of the content of the event
(date, time, location)
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In chapter 2, I will first provide relevant background literature behind web page classi-
fication and text classification along with recent approaches to the both the classification
problems. Chapter 3 shows the methods used in building an event classifier. This chap-
ter also shows the process in creating a suitable data set as well as attempts to improve
performance. Chapter 4 contains the results for both the research questions mentioned
earlier and chapter 5 contains the conclusions to the research questions and discussion.



Chapter 2

Previous Research in Web Page
Classification

Web pages are different from text documents. Web pages are based on HTML, a struc-
tured language, which is used to define the location and type of different elements on
the page. Text documents typically do not have such a structure. Web pages can also
contain images, interactive elements and forms. The extra information available on a web
page causes classification methods on web pages to differ from classification methods on
text documents. However, because I primarily focus on the text content of websites, text
classification methods are still relevant when classifying web pages.

Qi [23] identifies three major differences between web page classification and text
classification. Text classification research is commonly based on a pre-defined corpus
of text, with a fixed authoring style. For instance, title comes first, followed by the
introduction, followed by the main bod and a conclusion. In contrast, web pages do not
adhere to any style rules and vary wildly in structure (aside from the structure of HTML).
Secondly, web pages contain a strict structure which allows the page to be rendered to
the screen, whereas any formatting is usually stripped away when a text is inserted into
a corpus. Lastly, web pages also contain links to other sites and are placed in a context
of other web pages. Text documents typically can not refer to other text documents in
the way web pages do.

In order to be able to understand approaches to text or web page classification, it
is important to provide a proper formalization of the supervised classification process.
Supervised classification entails that the class label for each point in the data set is known
before classification, while this is not the case in unsupervised classification.

First, let there be a data set D of size m, which consists of data points in a represen-
tation consisting of n features. Let there also be a set of classes C. The class (or multiple
classes) of each data point in D is known.

The task of classification now, is to assign some class c from C to each data point in
D in such a way that the through classification assigned classes correspond to the known
classes as much as possible. The goal is to find a function f which maps from the n input
features of each data point to a class from C. Note that it is possible to assign multiple
classes to each data point1. The idea is that if we can maximize the effectiveness of f (in
terms of some evaluation metric, see further down), f can be used to assign a class to a
new data record with high probability that the classification is correct.

There are multiple types of classification. Most of the methods mentioned below

1Sebastiani [27] refers to this as a “multi-label classification”

5
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perform hard classification. A hard classifier assigns one or more classes to each of the
input data points. A soft classifier assigns a degree of evidence that a input data point
belongs to a specific class. Each input document is assigned a set of probabilities, where
each probability denotes the chance that the document belongs to a certain class.

2.1 Text Classification

Sebastiani [27] provides an overview of approaches (researched before 2002) in text clas-
sification. He distinguishes two different approaches of text classification: A Knowledge
Engineering (KE) approach and a machine learning (ML) approach. The knowledge en-
gineering approach consists of manually defining rules on which to classify a document
(see equations 2.1 and 2.2 for two examples of rules). This requires that there is an expert
who can manually define all rules required in order to achieve a satisfactory performance.
The other, more modern approach learns document features from a set of example doc-
uments and builds a classifier according to identified features for each class. Because the
practical implementation of the machine learning approach is much more feasible in real
world applications, this approach has grown in popularity. Sebastiani compares multiple
machine learning based approaches, including (but not limited to) Support Vector Ma-
chines (SVM), decision trees or rules, and neural networks. The author shows that ML
based models can perform similarly to trained professionals, perform well with a large
number of documents and can aid existing human classifiers.

contains(T, tennis) ∧ contains(T, football)→ is sport article(T ) (2.1)

contains(T, Mickey)∧ contains(T, Mouse)∧ contains(T, Minni)→ is Disney article(T )
(2.2)

2.1.1 Document representation

Sebastiani [27] mentions that the most common approach to model documents in text
classification is the use of the “Bag of Words” model. In this model, documents are
represented as a vector of the total number of word occurrences in the document. See
figure 2.1 for an example. In order to create this Bag of Words every input document needs
to be separated into tokens. This process strips away all punctuation and formatting, so
that only words remain.

a aa b a b aa
aa b a b b

VD = (#a,#aa,#b)
VD = (3, 3, 5)

Figure 2.1: An example of the Bag of Words model, with the docu-
ment D on the left and the vector representation of D on the right

More recently, Ikonomakis et al. [11] have shown different problems can arise when
classifying text documents. First, they shown that classifying an arbitrary number of
documents leads to a huge number of different words in the data set. The Bag of Words
model mentioned earlier can lead to extremely long vectors, increasing with the size of
the input documents and the number of input documents. Reducing the length of the
document vectors is called Dimensionality Reduction. One of the ways to reduce the
dimensionality of text document vectors is stemming (Lovins, 1968 [21], see Willett, 2006
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[34] for a more recent approach). Lovins defines stemming as “a computational procedure
which reduces all words with the same root”. Stemming can reduce the number of distinct
words in a document by finding all words which have the same stem. For example,
“introduced” and “introducing” have the same stem “introduce”.

Another approach is based on the fact that a text document often contains words
which do not have direct influence on the content or sentiment of the text. Those words
can be conjunction words (and, but, because, therefore, etc. etc.), words which have a
high frequency in documents independent of the class or category of the document, or
words used frequently in language in general. Removing those words is called stopping.
Most recent text classification research involves some form of stopping.

After stemming and stopping procedures, an important step is transforming the input
document vectors into term vectors which contain more useful information. A function
which transform an input document vector into an more informative vector is called a
weighting scheme. A popular weighting scheme is “term-frequency inverse-document-
frequency” (tf-idf ) (idf first introduced by Sparck-Jones [29], later extended with tf by
Salton and McGill [25]).

tfidf(tk, dj) = #(tk, dj) ∗ log(
|D|

#Tr(tk)
) (2.3)

In equation 2.3, tfidf(tk, dj) denotes the output of the weighting scheme. tk denotes the
kth term in the j th document d. |D| denotes the total number of documents, whereas
#Tr(tk) represents the total number of documents which contain term tk. It is clear
from the equation that the tfidf -value of a term t in a document d is dependent on the
number of times it occurs in d, multiplied by the logarithm of the ratio of total documents
and documents containing t. This leads to an intuitive function which decreases when
the frequency of a term is large and when that term is also present in a large number
of documents. Terms which occur very often in a single document but not in other
documents consequently have a high tf-idf -frequency, as these terms are likely to be very
specific for that document. These high tf-idf -frequency terms can be used to describe
the document and possibly the class of the document.

Lastly, documents in a data set often have varying lengths. If the previously mentioned
weighting scheme were to be used, the weight of a term would be dependent on the length
of the document the term occurs in. For example, a term ω which occurs 6 times in a
document of length 10 has a tf of 6, where as the same term in a document of length 20
would have a tf component of 3. Assuming that the idf component is constant, the tf-idf
for ω differs between the two document while they contain ω equally as much. A solution
to this is normalization: Add another component into the formula which counteracts the
effect of document length differences:

tfidf(tk, dj) =
#(tk, dj)

|dj|
∗ log(

|D|
#Tr(tk)

) (2.4)

where the tf component is divided by the length of document j. Note that there are
many other forms of normalization with regards to tf-idf, for example a different strategy
is using the maximum term count, replacing the |dj| component with the biggest term
frequency in document dj before weighting.
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Alternative Document Representation

In addition to the Bag of Words model, different document representation models have
been researched. These models aim to add information which is not present in the Bag of
Words model, like sequences of words which often occur in a document. However, adding
more information can lead to a more sparse document representation which causes the
model to be more computationally demanding. The challenge is to manipulate the model
in such a way that it is still computationally feasible.

The Bigram document representation model aims to incorporate sequences of words.
One of the drawbacks of the Bag of Words model is the fact that it does not take words
sequences into account, only word frequency. It effectively ignores information about
words groups which occur together frequently in documents. The Bigram model tries to
solve this by either adding a number of relevant bigrams calculated from the dataset [30]
or using bigrams exclusively. However, extensive research into including phrases (bigrams
or phrases of length n n-grams) into the classification process ([33], earlier research by
Lewis, 1992 [19]) shows that n-grams only increases performance in few, select cases.

The next step in classifying text documents after a suitable representation is reached
is either feature extraction, feature transformation or a combination of both.

2.1.2 Feature Extraction

Feature extraction (also known as feature selection) consists of selecting a number of
elements from the input vector in such a way that the resulting vector still contains
enough information to successfully classify the vectors. The major advantage of feature
extraction is dimensionality reduction, which leads to better classifier performance and
reduced over fitting. Feature selection can not be efficiently performed by considering
all possible subsets of features. A heuristic should be used to determine the optimal
subset of features. Forman [6] shows that the selection of a feature extraction method
depends heavily on the input data set and the desired performance (see further down for
an overview of analyzing classifier performance).

Forman provides an elaborate overview of feature extraction methods. Relatively
simple feature evaluation metrics are described such as Acc and DFreq as well as methods
like Chi-squared or Information Gain. The application of these methods to a data set
should lead to a ranking of features on usefulness so that choice can be made to select
a number of most useful features. He also proposes a new feature extraction method,
Bi-Normal Separation, which uses the statistical z -score in combination with the false-
positive ratio and the true-positive ratio of a feature. The false/true-positive ratio of a
feature can be defined as the number of documents in the data set which contain this
feature (term) and have either a positive classification or a negative classification. This
number is then divided by the total number of document with a positive or negative
classification.

Forman shows that feature extraction in combination with a SVM classifier only leads
to increased performance in a few cases. SVM classifiers already perform well with a large
number of input features. The proposed BNS method does provide some performance
improvements, however, as it scored better than the other methods on recall, f-measure
and accuracy (see the “Performance Evaluation” section).

More recently, Yang et al. [35] have shown that a feature extraction method (CMFS)
based on the relative occurrence of a term in a category combined with the number of
categories and the number of input documents improves performance. Yang shows that
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this method often selects features which are also selected by a number of other feature
selection method, effectively combining the best features from these methods. Using
a Naive Bayes classifier or a SVM, extracting features using CMFS often leads to an
improvement in f -measure but not in all cases and not with all data sets.

Chandrashekar and Sahin [1] provide a recent survey on feature extraction methods.
Their main conclusion is that using feature selection always benefits the user of classifier.
This can be in the form of gaining more information about the data set, improved classifier
performance or identification of useless features. They also show that feature selection
can be used to enable the use of classification algorithms which usually require lots of
computational power, like neural networks.

2.1.3 Feature Transformation

Feature transformation consists of combining elements of the input document vector into
a single, new element. A feature transformation function transforms input vectors (data
points) into output vectors, which may contain data of the same type as the input data
but may also contain data of a new type. An example of this is mentioned by Sebastiani
is clustering: transforming a set of input features into a cluster, which aims to represent
the concept or similarity between the words.

Another example of feature transformation is Latent Semantic Analysis (or Latent
Semantic Indexing). This technique tries to map the terms in a data set into concepts,
so that documents can be compared based on the concepts which they contain. This
circumvents the problem that words can have multiple meanings, as well as the problem
that a concept can be represented by a multitude of words. LSA is performed by observing
which words often occur together in a document and then mapping concepts to each of
the document in the dataset. Documents can now be compared by the concepts they
contain.

However, LSA has two drawbacks. Firstly, LSA requires a large input dataset in order
to accurately extract concepts. Secondly, due to the size of the dataset, performing LSA
and using it to classify documents takes a large amount of computational resources. A
recent interpretation of LSA by Wang et al.[32] attempts to solve these two problems by
paralellizing the indexing process of concepts and allowing for stream calculations of the
concepts. This last addition allows for quick processing of documents, saving time and
requiring less computational power.

An example of combining feature extraction and transformation can be found in the
paper by Uğuz [31]. The goal of the paper is to test the combination of feature selection
using Information Gain followed by feature extraction using a Genetic Algorithm followed
by Principal Component Analysis. The author shows that combining feature extraction
with feature transformation can be very effective.

To recapitulate, after transforming input documents into a suitable representation
and optionally performing feature extraction or transformation, we now have a a repre-
sentation as shown in figure 2.2.

2.1.4 Performance evaluation of Text Classifiers

Before introducing different methods of classification, evaluation of those methods needs
to be understood. Text classifiers are evaluated by comparing the output of the classifier
on a test set with known classes for the test set. A naive approach to evaluate performance
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Zm,n =

t0 = alpaca t1 = bear · · · tm = zebra
d1 0.1 0.8 · · · 0.23
d2 0.2 0.95 · · · 0.36
...

...
...

. . .
...

dn 0.9 0.34 . . . 0.12

Figure 2.2: Representation of input documents after stemming, stop-
ping, tokenizing and applying a term weighting scheme. Note that m
denotes the number of unique terms found throughout all documents
and n the number of documents. Terms do not need to be in lexico-
graphical order. Note that this is a fictional example to illustrate the
representation.

is to calculate the ratio of correctly classified documents versus the total number of
documents. Although this can give a broad idea of how the classifier performs, this
accuracy is heavily dependent on the distribution of classes in the test set. If the test
set contains 99 documents of class c1 and 1 document of the class c2, the classifier would
score 99% on accuracy if it simply assigns c1 to all input documents, without needing
to do any classification work. Using accuracy as measure for performance would give
the impression that the classifier performs very well even though it does not classify at
all. A better approach is to define measurements for every class in the data set, so that
performance can be evaluated more precisely.

Two simple measures are most often used: precision (see equation 2.5) and recall (see
equation 2.6). These two measures are not independent of the classes in which a classifier
needs to classify. Precision for a class ci can be defined as the number of true positives
for that class (the number of documents which are classified under c1 and also have the
label c1) as a ratio of the sum of the true positives of that class with the false positives
for that class. Concisely: The ratio of positive classifications which are correct. A high
precision for c1 implies that the classifier is very good at classifying documents under c1
correctly.

Recall is similar to precision, with the distinction that it is a ratio of the total number
of documents with class ci which have been classified correctly or have been misclassified.
Concisely: The ratio of positive classification which should have been classified as true.
A high recall for class c1 implies that the classifier is able to effectively classify documents
into class ci.

High recall combined with low precision means that the algorithm classifies data points
into class ci effectively, but that the ratio of correct classification for ci is low. Low recall
combined with high precision means that the algorithm misses a lot of document which
belong to ci, but that almost all document classified into ci actually have the ci label.

Precision and recall are often combined in the f -measure. This combination allows
summarizing the performance of a classifier into a single value. In equation 2.7, precision
and recall can be balanced by using a parameter β. This allows for emphasizing either
the importance of recall or the importance of precision.

precisionci =
TPci

TPci + FPci

(2.5)

recallci =
TPci

TPci + FNci

(2.6)
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fci =
(1 + β2) ∗ precision ∗ recall

(β2 ∗ precision) + recall
(2.7)

Sokolova and Lapalme [28] provide an elaborate overview of performance measures
used in classification. They conclude that performance evaluation metrics differ based
on their invariance properties, that is if a change in TP/TN/FP/FN numbers leads
to a change in the selected evaluation measure. They note that different evaluation
metrics should be chosen when classifying human communication (letters, forum posts)
as opposed to document classification (newspaper articles, blog posts).

2.1.5 Classification Algorithms

Support Vector Machines
Introduced originally by Cortes and Vapnik [5], Support Vector Machines allow solving
complex classification problems. To solve classification problems which are not linearly
separable (a single straight line can not be drawn between classes), SVMs use a kernel trick
in order to map the input vectors into a higher dimensionality space which transforms
the problem into a linearly separable one in this higher dimension. By transforming this
line back into the original space, a curved line is created which can be used to perform
classification.

A function which performs this mapping is called a kernel. Multiple kernels are possi-
ble, ranging from relatively simple, fast ones like a linear kernel to more computationally
expensive kernels like Radial Basis functions. Choosing a kernel appropriate to the clas-
sification problem is important, as different kernels achieve different results and require
different amount of computational power.

Depending on the chosen kernel, parameters can be adjusted to allow for optimization.
For example, the Radial Basis kernel has a γ parameter, whereas a Polynomial kernel has
γ, coefficient and degree parameters. Finding the optimal combination of parameters is
often achieved by some form of search: Trying out different combination of values and
recording the performance.

Joachim [12] provides a guide for text classification using SVM classifiers. He shows
that SVMs perform well in when classifying text documents and can easily accommodate
the high dimensionality of the input vectors. He also notes that SVMs tend to find good
parameter values automatically when the method from the paper is used.

Regression
Regression is strictly speaking not a classification method. Regression consists of esti-
mating a output real value according to a input vector of real values. In the special case
of logistic regression the output is not a real value but a set of probabilities. Each mem-
ber i of the output set of probabilities represents the probability that the input vector
belongs to the class i. Text classification can be achieved by assigning the class which
corresponds to the highest probability to the input document, often using a threshold.

Logistic regression has proven to be quite effective at text classification. Genkin et
al. [8] have used logistic regression in combination with a Gaussian distribution to ini-
tialize the model parameters. Their Lasso Logistic Regression proved to be effective at
categorizing text data, with performance equivalent or better than a SVM in almost all
tested data sets. They do seem to hint that their Lasso model takes more time to train
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than other models.

Neural Networks
Neural Networks are a popular connectionist [10] model often used to solve complicated
learning problems. Their main advantage, the ability to represent abstract concepts, is
caused by the presence of hidden layers in the network2. A neural network mimics the
human brain in terms of architecture, which can provide insights into how the human
brain learns and operates.

Figure 2.3: A visual representation of a node in a neural network. Originally created by
Chrislb, CC BY-SA 3.0, from https://commons.wikimedia.org/w/index.php?curid=

224555

Neural networks consist of interconnected layers, which have nodes (see figure 2.3).
Inputs to the network can, depending on the weight to each input node, cause input nodes
in the network to activate if a certain threshold is reached and propagate the activation
further into the network. The activation serving as input to a number of nodes in the
next layer. Most neural networks have the structure of an input layer, followed by 0 or
more hidden layer followed by an output layer.

Nodes are connected with weights to the nodes in the next layer. Updating those
weights can change the propagation of activation and thus the output of the network as
a whole. Training a neural network is effectively adjusting those weights in such a way
that the output of the network matches the expected output as much as possible.

A key disadvantage of a neural network lies in the fact that, without proper hard-
ware, networks are often very slow to train [22] dependent on the size and structure of
the network. The size of the input layer of the neural network depends on the size of
the input vector. The input vector can get very large in the case of text classification, so
proper feature extraction methods or feature transformation methods are required. Lam
and Lee [18] have shown however that it is possible to effectively use neural networks in
text classification. The authors found the most effective feature transformation method
to be Principal Component Analysis. A different disadvantage is that a neural network is

2Hidden layers are not a strict requirement of neural networks. They do enable to network to solve
linearly inseparable problems

https://commons.wikimedia.org/w/index.php?curid=224555
https://commons.wikimedia.org/w/index.php?curid=224555
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not as easy to interpret by humans as e.g. a decision tree. The meaning of the input and
output layers can be determined, however the hidden layers do not have a fixed meaning.
This meaning is learned from the dataset and is more difficult to understand.

Bayesian Classifiers
Probabilistic learning methods are based on the idea that, given a class c, the values of
features can be predicted from the data set. Classification then happens by applying
Bayes’ rule

P (Y = c|F ) =
P (F |Y = c) ∗ P (Y = c)

P (F )
(2.8)

where P (Y = c|F ) denotes the probability that class c belongs to feature-value set F . A
class value is then assigned by selecting the class with the highest probability. By the
conditional independence assumption, the denominator can by calculated by summing
over P (w|c), for all items w in the feature set.

Major advantages of Bayesian classifiers are speed, ease of implementation and rela-
tively good performance. A disadvantage is the independence assumption. Words in a
text are often not independent. In practice, classifiers that do not check this assumption
are called Naive Bayes classifiers.

An example of text classification by Chen [2] shows that feature selection can be very
effective when using a Naive Bayes classifier.
Decision Trees
Decision trees provide an intuitive, easy to understand way to classify documents into
one or more categories. Decision trees work by choosing a term in the document vector
and splitting the data into two parts: One part which contains the same value for the
chosen term and one with different values. For each of the two splits, the procedure is
repeated recursively until all remaining parts only contain documents of the same class.

Decision trees have the advantage that the output can be easily interpreted by humans.
Decision trees are also able to deal with varying formats of input data, are relatively quick
and often require little data preprocessing. A disadvantage is that decision trees require
pruning else they are very sensitive to over fitting. A pruning parameter needs to be
determined which takes away from the speed of the algorithm.

Johnson et al. [14] use decision trees in conjunction with a new transformation method
to decision rules to classify texts. The authors showed that their method could reach a
precision of 92.8 percent and a recall 89.1 percent on a single dataset. Their method was
also robust and could even classify mislabelled input data into the correct category.

2.1.6 Recent Text Classification Research

Text classification has a wide range of possible applications. For example, Sarker et al.
[26] have shown that text classification combined with Natural Language Processing can
be used to detect symptoms of an adverse drug reaction. They use a SVM classifier and
data from Twitter, DailyStrength and an annotated corpus of text to speed up detection
of unpredicted reactions to new drugs as they are brought on the market. They also
explicitly note that the use of multiple data sources (corpus) can improve performance
when the sources contain similar data.

Lai et al. [17] use multiple Neural Network types to classify texts. They use a
recurrent neural network to be able to store text data inside the network. In order to
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account for the fact that terms which occur later in a document have more influence on
a recurrent neural network, the authors add a convolutional component which allows fair
classification without putting more emphasis on words which occur later. They report
that their model performs better than classic text classification methods (e.g. a Bag of
Words approach combined with logistic regression), while also being quick to train on a
relatively basic computer.

2.2 Web page classification

Web page classification is different from text classification, because of the availability of
more information and more diverse information. Classifiers can potentially use the URL
of the web page, the frequency of HTML tags, the content of the tags, etc. etc. The
multitude of potential inputs for a classifier has lead to a big number of approaches.

Kan [15] uses features extracted from the URL of a web page. He shows that, using
Maximum Entropy classification or a SVM, URL features can be used to successfully
classify web pages into 4 categories. He achieves similar performance to text-based clas-
sification with an accuracy of about 76% using only information extracted from the URL
and and accuracy of about 81% when adding the text content of the web page.

A web page classification approach closely related to text classification is the approach
by Riboni [24]. Just like in text classification, a document is represented by the words
contained in the document. However, due to the fact that HTML is structured and
the assumption that some elements are more important than others, the terms can be
weighted according to the location of the term. This Structured Weighting Approach
assigns a bigger weight for a document term when in occurs in a HTML tag considered
to be more important like META, TITLE and various headings. The author shows that
this weighting technique improves performance when compared to classical text based
weighting techniques.

Chen and Hsieh [3] use combine two separate classifiers to classify a text representation
of websites. One classifier uses latent semantic analysis to provide a suggested class,
where the other uses a web page feature selection method to provide a classification.
These two classifications are then combined into a final judgement. The authors show
that their voted classification approach outperforms other classification methods, even in
a relatively small data set.
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Methods

I have chosen to use the Weka datamining toolkit [9] to perform classification. Weka
provides a wide range of classification algorithms and data manipulation tools and filters.
This allows for easy comparison and experimentation.

3.1 Dataset

First, a suitable dataset needs to be created. It should be a representative sample of web
pages encountered during web crawling. It should also be fairly large: Performance of a
classifier can only be measured realistically when there is no under or over fitting in the
dataset or when measures have been takes to prevent under or over fitting.

3.1.1 RQ1: identifying events in a domain

Given that Ugenda is interested in events in the area of Nijmegen, this dataset only has
to contain web pages from around Nijmegen. Ugenda has provided a list of domains in
which they are interested. I have used a Bash-script to crawl these domains and extract
all web pages from the web server. Due to memory constraints, the script only visits
pages which are at maximum three links from the main website. The script only visits
and saves those links which are on the same domain as the input website, in order to
prevent links to scripts, advertisements and other websites. See code listing 3.1 for the
script.

The script outputs a file with a sorted list of URLs encountered in the domain. After
some examination, some of these URLs can quickly be classified as not containing an
event due to the way the URL is formatted (See figure 3.1 for some examples). For all
other websites, the URLs need to be manually visited and filtered into events and other
web pages.

After manual classification, text was extracted using a Java program. For every
link, the program retrieves the HTML, finds all HTML tags which usually contain text
(<p>, <h>, <h1>, <h2>, <h3>, <h4>, <h5>, <h6>) and saves the text content to a
file. The program maintains the separation between events and other web pages.

As the dataset needs to be used with the data mining toolkit Weka, all separate files
need to be converted to a format that Weka can use directly. Weka provides a utility
program which converts a directory of text into the format accepted by Weka1 called

1Attribute-Relation File Format (ARFF), see http://weka.wikispaces.com/ARFF for an overview
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#!/usr/bin/env bash

start_url=$1

domain=$(echo $1 | awk -F/ ’{print $3}’)

touch "output/$domain"

echo "outputfile: output/$domain"

output="$(wget -e robots=off --force -html --spider --

recursive --level=3 --convert -links -H --domains=$domain

--page -requisites --html -extension $start_url 2>&1)"

echo "Done crawling .."

#grep "^\-\-" | awk ’{ print $3 }’

echo "${output}" | grep "^\-\-" | awk ’{ print $3 }’ | grep -

v "\.gif\|png\|jpg\|css \|\.js\|JPG\|ico \|\. pdf$" | sort |

uniq > "output/$domain"

Listing 3.1: The script used to crawl websites. It can be used by invoking the script
with full web address as the first argument: “./crawler.sh http://www.lux-nijmegen.nl/”

• http://www.delindenberg.com/winkelwagen/toevoegen/44028?ie9=3398690934

• http://www.lux-nijmegen.nl/info/over-lux/

• http://www.museumhetvalkhof.nl/bezoekinformatie.html

Figure 3.1: Some urls which can not be classified as an event solely from the URL

TextDirectoryLoader.

With the data in ARFF format, the text data can be converted to a document vector
using the built in filter StringToWordVector. This filter has a lot of options which can
be used to simplify text classification. I configured the filter to remove stopwords from
the dataset2, to output word frequencies and to differentiate between capital and normal
letters. The filter can also “try to keep n words”, which I set to 5000 due to memory
limitations (The program has to be able to fit the whole set into memory). Applying
a filter lead to a data set like mentioned in figure 2.2: A vector of words and their
frequencies with a length of about 5000.

I order to evaluate if the classifier is overfitting, I also included some random pages
from Wikipedia. If the performance were to dramatically decrease after adding the pages,
it is probable that the algorithm overfits3. I have chosen to create 5 different datasets,
each with a different set of Wikipedia articles ranging from 0 articles (the original dataset)
to 1100 added articles. The articles were retrieved by using the Special:Random4 function
that Wikipedia provides. Note that the articles retrieved were in Dutch.

2See appendix 5.1.4 for the words used
3This is not really a problem for RQ1, as the set of pages contains a fixed number of websites
4By visiting https://en.wikipedia.org/wiki/Special:Random, Wikipedia redirects to a random

article

https://en.wikipedia.org/wiki/Special:Random
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Dataset Events Other Wikipedia Articles Number of Attributes (terms)
1 1203 5445 0 5105
2 1203 5445 300 5054
3 1203 5445 500 5129
4 1203 5445 800 5109
5 1203 5445 1100 5058

Table 3.1: Overview of the datasets used in case 1. The number of attributes differ
between the datasets due to the way the StringToWordVector filter works.

3.1.2 RQ2: identifying abstract event page properties

The creation of the data set for the second case two in very similar to case one, with a
few important differences:

• Events were crawled “by hand”: I manually searched for Dutch venues and theaters
and saved the event URLs to a file. I only selected one distinct event page for each
venue.

• The other web pages were obtained through the use of Google and a Dutch dictio-
nary. I selected a number of random words from the dictionary. For each of those
words, I used the Google search engine with the locale and location set to Dutch
to retrieve about 10 web pages. This is repeated until the desired number of web
pages has been achieved. This process was automated.

After obtaining the URLs, the rest of the procedure is exactly the same as that for
case 1. The dataset consisted of 187 different event websites and 5057 random websites
from Google.

3.2 Classifier selection

Literature shows that different datasets yield different results depending on classifiers,
that is there is no single classifier which performs best on all datasets. This is why I
selected three classifiers: a Naive Bayes classifier, a SVM (of C-SVC type) and a C4.5
Decision Tree classifier. By performing classification with three classifiers I hope to find
the one that performs best.

I chose these specific classification methods because literature shows they can be
trained quickly, perform well and in the case of SVM and Decision Tree can be tuned to
enhance performance.

3.3 Training, Optimizing and Evaluation

I trained the classifiers by feeding the different datasets into Weka and performing clas-
sification with one of the three selected classifiers. In the case of SVM, I performed
GridSearch to search for the best combination of cost and ε values. This yielded the best
performance at a cost value of 1.0 and an ε value of 1∗10−4. The training and evaluation
was performed on a computer with a 3.4 GHz Core i5 4690 CPU with about 6 gigabytes
of RAM available for the Weka toolkit.
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A baseline performance was obtained by using the raw, non-normalized frequencies
as input to the classifier. In addition, a tf-idf weighting scheme was used to enhance
performance as is common in text classification research.

After evaluating the performance of these two weighting schemes, I added a third
scheme developed by Liu et al. [20]. This scheme aims to enhance performance of
unbalanced datasets by including information about class membership. The weighting
formula can be expressed as follows:

w(i, j) = tf(ti, dj) ∗ log(1 +
A

B
∗ A
C

)

where:

A = Number of documents belonging class ci where ti occurs at least once

B = Number of documents not belonging to class ci where ti occurs at least once

C = Number of documents of category ci which do not contain ti

This scheme enhances the tf-idf scheme intuitively: The idf component is replaced
by a component which is dependent on the distribution of terms across classes. This
component increases in value when a term has a high predictive value for a class, that is
A is high while B and C are low.

The results of the classification algorithm are be analysed by comparing the f-measure,
recall, and precision value for each classifier for each dataset. In order to get representative
results, I used 10-fold cross validation which negates the effects of an overfitted classifier
on performance evaluations. n-folds cross validation works by dividing the dataset into
n different subsets. The classifier is then trained using n− 1 sets as training set and one
of the remaining set as test set. This is repeated n times, so that each set has been used
as test set exactly once.

Observing that the dataset is quite unbalanced (the ratio of events to other pages
is small) cost weighted evaluation and sampling can be used to improve performance.
However, cost-weighted evaluation (the notion that each type of classification error made
by the classifier has a different weight and that the classifier can be optimized according
to the sum of these weights) did not yield significant improvements. Sampling (selecting
or re-using documents from the dataset) also did not improve performance.

In addition to the methods described above, I have tried a number of different opti-
mization techniques to see if they would improve performance. Feature extraction using
either Gain ratio as subset evaluator, Principal Component Analysis or Latent Semantic
Analysis did not yield promising results. PCA and LSA both took extremely long, in the
case of LSA never terminating without running out of memory. The Gain ratio subset
evaluator did result in a optimal subset of parameters though this set decreased classifier
performance.

A classifier which I expected to yield good results was a Multilayer Perceptron (a
simple neural network). The parameters which can be optimized here are the number of
hidden layers and the learning rate. Increasing the number of hidden layers seemed to
improve performance marginally. However, increasing the number of hidden layers lead
to an increase in training time. I stopped experimenting with a Multilayer Perceptron
when I could not approach the performance of a SVM in approximately the same training
time, and experimenting became difficult.

Combining multiple classifiers using AdaBoost [7] also proved to be too time consum-
ing.
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Results

4.1 RQ1

The measured f, recall and precision scores can be found in table 4.1. All classifiers
performed above chance level.

Classifier Wiki CWS tf-idf Frequencies
f-value p r f-value p r f-value p r

Bayes 0 0,728 1 0,573 0,644 0,525 0,832 0,618 0,771 0,515
SVM 0,728 1 0,572 0,727 0,801 0,666 0,523 0,364 0,929
C4.5 Tree 0,725 1 0,569 0,704 0.922 0,633 0,737 0,661 0,832
Bayes 300 0,677 1 0,512 0,637 0,517 0,831 0,616 0,756 0,52
SVM 0,734 1 0,58 0,728 0,805 0,665 0,537 0,378 0,929
C4.5 Tree 0,734 1 0,58 0,707 0,797 0,635 0,745 0,672 0,836
Bayes 500 0,666 1 0,499 0,629 0,508 0,827 0,602 0,718 0,519
SVM 0,753 1 0,604 0,733 0,808 0,671 0,543 0,383 0,937
C4.5 Tree 0,752 1 0,603 0,708 0,791 0,641 0,757 0,7 0,825
Bayes 800 0,632 1 0,462 0,615 0,488 0,831 0,602 0,718 0,519
SVM 0,744 1 0,593 0,726 0,805 0,661 0,542 0,386 0,914
C4.5 Tree 0,743 1 0,591 0,708 0,799 0,636 0,736 0,66 0,83
Bayes 1100 0,592 1 0,42 0,581 0,448 0,827 0,595 0,743 0,496
SVM 0,737 1 0,583 0,729 0,806 0,665 0,53 0,37 0,933
C4.5 Tree 0,735 1 0,581 0,703 0,795 0,631 0,725 0,642 0,832

Table 4.1: Raw results from research question one. Note that Frequencies denotes the
raw frequencies, not processed by any weighting scheme. The Wiki column denotes the
amount of added Wikipedia articles.

Plotting the results shows that the SVM and Decision Tree classifier are not really
affected by the added Wikipedia articles. The naive Bayes classifier shows a small decrease
in performance which may be attributes to the addition of Wikipedia articles.

19
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Figure 4.1: Results for the C4.5 decision tree classifier

Figure 4.2: Results for the Support Vector Machine classifier
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Figure 4.3: Results for the Naive Bayes classifier

CWS tf-idf Frequencies
Average f -measure 0,712 0,685 0,627
Average Precision 1,000 0,708 0,595
Average Recall 0,555 0,710 0,758

Table 4.2: Performance averages over the used weighting scheme

Overall, the custom weighting scheme performed best when measuring performance
using the f -measure, due to the fact that the precision is always 1,000. However, when
using recall as evaluation metric both tf-idf and raw frequencies outperform the custom
weighting scheme.

Bayes SVM Dtree
Average f -measure 0,6259 0,6676 0,7385
Average Precicion 0,8321 0,7271 0,8006
Average Recall 0,5064 0,7268 0,7314

Table 4.3: Peformance averages over the used classifier

Table 4.3 shows that the C4.5 decision tree and the naive Bayes classifier perform
best based on averages. The C4.5 decision tree achieves the best f -measure and recall,
the Naive Bayes classifier the best precision.

The different classifiers vary in terms of training time. The Naive Bayes’ classifier
was the fastest (training took about 5 seconds), followed by the SVM with a training
time around 10 seconds. The Decision Tree took longer in the cases of the frequencies
and tf-idf weighting schemes, but was almost as fast in the case of the custom weighting
scheme. This was also reflected in the size of the tree, which was decreased by a factor
10 when applying the custom weighting scheme.
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4.2 RQ2

Bayes SVM Dtree
Average f -measure 0,107 0,682 0,460
Average Precision 0,057 0,857 0,667
Average Recall 1,000 0,682 0,351

Table 4.4: Result when using the tf-idf weighting scheme

Bayes SVM Dtree
Average f -measure 0,128 0,701 0.505
Average Precision 0,069 0,850 0.632
Average Recall 0,947 0,596 0.421

Table 4.5: Result when using no weighting scheme

Bayes SVM Dtree
Average f -measure 0,163 0,000 0,000
Average Precision 0,089 0,000 0,000
Average Recall 1,000 0,000 0,000

Table 4.6: Result when using the custom weighting scheme

The tables show that a SVM classifier performed best in the tf-idf case and when
no weighting scheme was applied. It is remarkable that applying the custom weighting
scheme causes the SVM and decision tree to be unable to classify anything. Also re-
markable is the fact that applying the tf-idf scheme reduced performance compared to
no weighting scheme (from a size of about 200 to 20) .



Chapter 5

Discussion

5.0.1 Conclusion RQ1

The results show that the performance of the classifier is comparable with what can be
found in the literature. In the fixed-domain case, Support Vector Machines performed well
when considering that recall is more important to Ugenda than precision1. A classifier
with high recall and mediocre precision can still be used to reduce the input dataset in
size.

The custom weighting scheme from [20] has improved precision in all cases except
one: the case which combined a C4.5 tree with a tf-idf weighting scheme.

Overall, performance between datasets and classifiers varies. There is no single clas-
sifier which performs the best across the board. There is also no weighting scheme which
performs best across the board. This leads to the conclusion that the choice of classifier
and weighting scheme must be made based on the dataset which they are applied on and
the results obtained in the previous section.

With regards to Ugenda, it seems that an Decision Tree classifier is most appropri-
ate considering the high average recall, especially combined with the custom weighting
scheme. This insures that the amount of web pages Ugenda needs to examine is reduced.
However, a lot of improvements need to be made in order for an effective application in
Ugenda’s workflow.

5.0.2 Conclusion RQ2

A SVM classifier works reasonably well in identifying events. One observation of note is
that the CWS did not yield any useful results when using the SVM or C4.5 classifier. The
results show that it is possible to distinguish event pages from other web pages. Further
research should be done to improve performance.

5.1 Discussion

There are a some discussion points to be considered regarding the dataset, approach and
chosen classifiers.

1A high recall implies that all events in the dataset are actually classified as events. This ensures that
no events are missed.

23
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5.1.1 Dataset

First, both cases could suffer from a lack of data, either in the number of attributes
(terms) or the number of documents. Datasets commonly used in the literature, for
example the Reuters-21578 dataset which contains 21758 documents, often contain more
documents. However, due to the fact that the type of classification in this thesis is binary
classification, the number of documents in the dataset may be sufficient. A dataset needs
to contain sufficient samples for each class for it to be able to accurately represent that
class. There are fewer classes in binary classification, which can result in a lower total
number of documents required in order to represent all classes.

The datasets used in RQ1 could be extended. Currently, they contains 6 different
websites which provide about 5000 web pages. Adding more websites to a dataset can
lead to a less overfitted classifier, a better idea of how the classifier would perform in
reality and possibly better performance. Performance increases could be achieved when,
by virtue of the added websites to the dataset, the classifier starts to recognize the features
of events, not the features of the structure of web pages containing events.

The Wikipedia articles which were added to this dataset aimed to give an idea about
the level of overfitting in the dataset. There was a slight trend in the results which in-
dicated that more Wikipedia articles decreased performance. It should be investigated
whether this is also the case when more than 1100 articles are added to the database.
Adding other web pages to evaluate the level of overfitting is a possibility, although then
the dataset is very similar to the one used in RQ2.

A similar point to the one made earlier can be made for the second dataset, where the
number of events pages is very small. The number of event pages should be increased, so
that the classifier can learn the abstract event concepts like date, time and place. The
way the pages are collected can also be improved. The RQ2 dataset now contains a lot
of Dutch dictionary websites due to the fact that the queries are words from a dictionary.
This could have the effect that the dataset is not representative for web pages encountered
during random web crawling.

5.1.2 Web page extraction

The web page extractor program only extracts a small set of HTML elements from the web
page. Elements which do not commonly contain text are not extracted from the web page,
while these elements could contain text which is important for the classification process.
Including this lost information could improve (or degrade) classification performance.
Perhaps some visual selection method, which extracts the text which is shown on screen,
could provide a more accurate textual representation of the page.

The script used to collect the web pages follows three links from the base website. For
example, the program follows a “More Info” link on the first page, a “Accomodations”
link on the second page and a “Appartments” link on the third page. It collects the
URLs of pages visited, but does not follow links on the third page. This limitation was
imposed to decrease the number of web pages found so that they could still all fit in
computer memory. This limitation could cause the removal of important webpages and
further research should be done without limitations on the crawling depth.
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5.1.3 Classifiers

Optimizing the classifiers (where applicable) was done by systematically trying different
combinations of parameters and choosing the best combination. It is possible that the
found parameters for SVM are not yet optimal. A similar observation should be made
with regards to the decision tree classifier. The tree which resulted from the training
process should be pruned before it can be applied to real world, new data. This will
ensure that the tree is not over fitting. The relatively good performance in case one may
be caused by the fact that the tree is not pruned enough.

5.1.4 Possible Improvements

There is a range of possible improvements which could be made to improve performance
and power:

• Neural networks are very promising. Used as classifiers they are able to represent
abstract concepts and have proven to be effective at text classification [18] when
combined with a dimensionality reduction technique. Given more powerful hard-
ware and more time, neural networks could be used to effectively classify web pages
and extract events.

• A characteristic of the datasets used in both cases is that they are both unbalanced:
The number of events is much lower than the number of non-events. Aside from
dataset manipulations (sampling) or evaluation techniques (cost weighted evalua-
tion), the classifier can also be adapted to solve this problem. Kondratovich [16]
and Joachims[13] have shown that a different type of SVM classifier can be used to
tackle the problem of unbalanced data sets. This TSVM classifier can learn from a
relatively small sample of data and extend the learned features to a bigger dataset,
allowing for better performance when classifying unbalanced data sets.

• Latent Semantic Analysis has been used as a feature transformation method to
find abstract concepts found in documents instead of terms and their frequencies.
As mentioned in the methods section, LSA proved to be very computationally
intensive with the given dataset and was consequently discarded as effective or
efficient optimization technique. It would be useful to see whether using LSA would
improve performance given enough time and computation power.

• All methods mentioned above assume a Bag of Words document representation
model. A different representation, like a bigram or n-gram representation could
improve performance. However, literature shows that the expected performance
increase is not very high. In addition, finding n-grams and including them in a
dataset increases the dimensions of the input vectors, increasing the training time.
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Appendix A: Stopwords

aan

afd

als

bij

dat

de

den

der

des

deze

die

dit

dl

door

dr

ed

een

en

enige

enkele

enz

et

etc

haar

het

hierin

hoe

hun

ik

in

inzake

is

je

met

na

naar

nabij

niet

no

nu

of

om

onder

ons

onze

ook

oorspr

op

over

pas

pres

prof

publ

sl

st

te

tegen

ten

ter

tot

uit

uitg

vakgr

van

vanaf

vert

vol

voor

voortgez

voortz

wat

wie

zijn
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