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Abstract 

The pronunciation of word-final -en in Dutch constitutes a notable discrepancy between spoken 

and written Dutch for many speakers. Whether speakers pronounce -n at the end of the word 

depends on their region of origin, among a wide array of other factors. The rise of Twitter as a 

sociolinguistic data source provides a new opportunity to study the geographic distribution of 

word-final n-deletion and other non-geographic factors that influence its prevalence. The main 

research question guiding this study is: what can the examination of Twitter data tell us about 

the degree to which the occurrence of word-final n-deletion is distributed across the Netherlands 

and Flanders, and to what degree do internal and external linguistic factors influence its 

prevalence? The secondary research question was: to what degree is the use of Twitter data 

useful in mapping individual phonological features, especially in terms of the quality of the 

results? These questions were answered by automatically searching a large corpus of tweets in 

Dutch and submitting the resulting data to logistic regression and random forest classifier 

models. While we hypothesized that the resulting maps and results pertaining to the non-

geographic features would mirror those relating to word-final n-deletion in spoken language, 

we instead found evidence that word-final n-deletion as used on Twitter constitutes a separate 

phenomenon. Therefore, the use of Twitter data also did not prove fruitful in the study of 

phonetic features per se—however, it does open the door to further research on this newly 

discovered form of word-final n-deletion. 
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1. Introduction 

There are many notable discrepancies between written and spoken language. This is the case 

for most if not all codified languages today. Dutch is no exception. One of the main sites of 

discrepancy between spoken and written Dutch, as any new speaker will discover soon enough, 

is written word-final -en. This suffix has numerous functions, which includes signaling plural 

nouns, infinitives, and plural finite verbs. While its spelling might lead one to believe it should 

be pronounced like /ən/, it is most often realized as /ə/. To linguists, this phenomenon is known 

as word-final n-deletion. This study focuses on the occurrence of n-deletion1 in written language 

sourced from the social media platform Twitter. Specifically, it is concerned with attempting to 

map its geographical spread using statistical model predictions as a baseline. This section deals 

with the investigation of scholarly literature on the background of word-final n-deletion and on 

language use on Twitter. The first subsection of this introduction will focus on exploring word-

final n-deletion by going over existing literature detailing its history and the second subsection 

will explore the factors that are reported to influence its occurrence. Following this, Twitter as 

a new linguistic data source will be examined for its potential in the study of n-deletion. This 

section will conclude with an overview of the findings derived from the literature, which factors 

influencing n-deletion were selected to be included in the study, the research questions, and 

their corresponding hypotheses. In the section following this one, the methodology of the study 

will be laid out. This includes how the corpus of tweets was composed and how occurrences of 

n-deletion and n-retention were extracted from it, as well as the modeling and mapping methods 

applied to those occurrences. The section after that will display the findings that resulted from 

the reported analysis. The discussion that follows delves into the meaning of the results in 

relation to word-final n-deletion, the research questions, and hypotheses, followed by a 

discussion of the study’s limitations and suggestions for future research. The study is concluded 

with a summary of the main findings and their significance in terms of n-deletion and the study 

of language on social media in general. The appendices attached at the end of this study contain 

additional information—Appendix 1 contains plots of the linear regression odds ratios 

generated for this study, Appendix 2 contains more in-depth results per model factor, including 

histograms, and Appendix 3 contains a document confirming approval of this study by Radboud 

University’s humanities ethics assessment committee (EACH). 

 

1.1 The origins of word-final n-deletion 

While the exact period in which word-final n-deletion first arose in Dutch currently remains 

unknown, its first mention dates back to the 17th century. In his 1625 work on Dutch grammar, 

grammarian Christiaen van Heule (1625/1953) mentions that speakers in Holland (an area 

mostly coterminous with the modern-day provinces of North and South Holland) leave out the 

final /n/ when pronouncing words like huyze, stede, lande, loope, blijve and valle instead of 

pronouncing them as huyzen, steden, landen, loopen, blijven and vallen like other speakers in 

the Dutch language area (Van Heule, 1625/1953, p. 91). Important to note is that Van Heule 

(1625/1953) gives examples of word-final n-deletion in both nouns and verbs, indicating that it 

already constituted a phenomenon across multiple parts of speech by this time. That indicates 

it was certainly not limited to only certain words or phrases. Another fact to be noted is that 

Van Heule’s (1625/1953) opinion on the occurrence of word-final n-deletion in speech is 

decisively negative: he considers the use of words with their word-final /n/s deleted to be in 

conflict with the nature of the Dutch language (p. 91). This demonstrates that word-final n-

deletion likely finds its origins in speakers starting to drop word-final /n/ where they had 

previously not. A contemporary of Van Heule (1625/1953), Petrus Leupenius (1653/1958), in 

his discussion of verb conjugations, too, mentions that some have taken up the “bad habit” of 
 

1 The term “n-deletion” refers to word-final n-deletion specifically unless explicitly stated otherwise. 
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leaving the /n/ at the end of verbs ending on en unpronounced (p. 43). This confirms the 

presence of word-final n-deletion in verbs in some speakers and reinforces the assertion that 

word-final n-deletion was looked down upon at the time—or, more precisely, looked down 

upon by the scholarly community. 

Importantly, cases of word-final n-deletion or mentions thereof in this time period are 

not exclusive to the works of grammarians. Indeed, words normally ending on -en with dropped 

word-final ns are also found in letters written during the 17th and 18th centuries by persons 

from the regions of Holland and Utrecht: Van der Wal et al. (2012), after having taken it upon 

themselves to examine the writing of a number of Dutch women from different social classes, 

report that the letters of their upper-class author show no word-final n-deletion. They link this 

to the orthographic practices of authors of printed texts at the time, which also show no word-

final n-deletion. This, combined with Van Heule’s (1625/1953) clear disapproval of word-final 

n-deletion, all but certainly indicates it was not part of the standard language (to the degree to 

which a standard language can already be said to have existed during this time) in writing and 

speech. The letters of a lower-middle-class author in their set, however, systematically display 

written word-final n-deletion. Notably, the author’s application of word-final n-deletion 

appears to be highly regular and largely rule-based. She deletes 100% of the time in the case of 

plural nouns and finite verbs, 84% of the time in the case of infinitives, and 0% of the time in 

the case of past participles and singular nouns ending on en. While we do not know anything 

about this author’s spoken language directly, considering the non-standard status of word-final 

n-deletion in both spoken and written language at the time, the fact that word-final n-deletion 

appears in her writing likely indicates it was present in her spoken language as well. The n-

deletion patterns (or lack thereof) in the writing of these women indicate that the occurrence of 

word-final n-deletion during the 17th and 18th centuries was likely already highly regular in 

terms of rules and that it carried non-standard connotations. It should be noted, however, that 

Van der Wal et al.’s (2012) dataset is considerably limited in terms of the number of individual 

authors. This means that more thorough research is needed to paint a conclusive picture of the 

historical presence of word-final n-deletion in Dutch.  

 

1.2 Factors influencing the occurrence of word-final n-deletion 

To understand word-final n-deletion, knowledge of merely its historical context is not 

sufficient. It is equally important to examine exactly what factors possibly exert influence over 

its manifestation in a linguistic sense. Fortunately, word-final n-deletion has received quite 

some attention from the scholarly community. This attention manifests itself largely in the form 

of quantitative linguistic research projects, starting with a study by Ollevier (1959). While the 

original text of this unpublished paper has been lost to time, some of its findings and their 

implications can be retrieved from a small discussion article written by Pauwels (1969). In an 

effort to ascertain how Flemish speakers of Dutch render -en, Ollevier (1959) monitors radio 

broadcasts and Flemish university professors, leading to a sample of 335 Flemish standard 

Dutch speakers. Ollevier (1959) constructs his study to take into account differences between 

word types (nouns vs. verbs, strong past participles vs. other verbs, and stems vs. composite 

forms) and the type of sound following word-final -en (vowel, consonant, or a pause), but 

Pauwels (1969) does not report on any findings specific to these categories. Ollevier’s (1959) 

main finding is that his pool of subjects seems to be split roughly down the middle, with 85 

speakers deleting /n/ in over 50% of opportunities and 103 speakers maintaining /n/ in over 

50% of opportunities. Furthermore, around half of the participants had a deletion or realization 

rate of over 90%, indicating that many speakers have a clear preference. In a limited number of 

cases, Ollevier (1959) was able to explore the context of certain recordings, during which he 

found limited support that word-final n-deletion rates are affected by the genre in which the 

words are spoken, with the reading of texts within a broadcast context and poems leading to 
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lower rates of word-final n-deletion. According to Pauwels (1969), Ollevier (1959) concludes 

that word-final n-deletion has entered or is entering standard speech in Flanders, although it 

seems to be holding out in some more, as Pauwels (1969) puts it, “ceremonious” domains (p. 

218). 

A subsequent quantitative study on word-final n-deletion was conducted by Koefoed 

(1979), who studies a total of 120 minutes of Dutch broadcast radio recordings and supplements 

these with recordings of 10 participants who were instructed to read and repeat texts out loud. 

For every individual speaker, Koefoed (1979) computes an n-realization score that corresponds 

to the proportion of times each speaker realizes /n/ out of all total possible instances that a 

speaker could have realized /n/. He finds that the main factor in his data that influences the 

realization of /n/ is style, with /n/ being realized more often in cases where speakers are reading 

texts aloud, and /n/ being deleted more often in cases where speakers engage in spontaneous 

conversation. Notably, Koefoed (1979), too, notes that there is a large degree of inter-speaker 

variation, using the example of two female newsreaders who differ considerably in the number 

of times they realize /n/ to illustrate his point. Koefoed (1979) hypothesizes this might be due 

to a difference in dialect backgrounds between the speakers yet recognizes that investigating 

dialect background as a factor is not possible due to the limitations of his dataset. 

After the publication of the study by Koefoed (1979), studies with more complex 

designs begin to emerge. The first of these is a study by Van Oss and Gussenhoven (1984), who 

focus their attention on Dutch TV newsreaders and their n-deletion behavior, specifically with 

regard to nouns. They take into account a relatively large number of features. Firstly, they 

differentiate between singular (monomorphemic) nouns (e.g., deken (“blanket”)) and plural 

(polymorphemic) nouns (e.g., daken (“roofs”)). They report being unable to find a significant 

difference between the two categories in the vast majority of speakers. Secondly, Van Oss and 

Gussenhoven (1984) look at the type of sound that follows word-final en. They report that word-

final n-realization is most common immediately before a vowel, more so than immediately 

before a consonant or a pause. Lastly, they incorporate the age of the speakers into their design 

but only do so for their sample of newsreaders. They report a correlation between age and word-

final n-deletion, with younger speakers deleting more often than older speakers. They interpret 

this as a sign that word-final n-deletion is in the process of spreading through standard Dutch. 

Important to note is that, when examining the data on a per-speaker basis, they propose two 

different types of speakers: “deleters” and “inserters.” The speech of the deleters is marked by 

a high degree of word-final n-deletion, with speakers also deleting more /n/s in plural nouns 

than in singular nouns. The speech of the inserters is marked by a generally high degree of 

word-final n-realization, with /n/s being realized more often in plural nouns than in singular 

nouns. 

As part of her doctoral thesis on the speech of “locally prominent” (i.e., upper-middle-

class) speakers of standard Dutch in the Dutch towns of Middelburg, Roermond, and Zutphen, 

Voortman (1994) devotes a small section of her study to word-final n-deletion. In addition to 

considering the speakers’ towns of origin, Voortman (1994) examines both formal and informal 

conversations. Concerning formal contexts, she reports not finding any significant differences 

between the three towns: speakers from all towns almost always realize their /n/s, with the main 

percentage of n-deletion out of all possible instances being lower than 10%. Only in the case of 

the speakers from Zutphen was Voortman able to record informal speech. Here, /n/s are deleted 

more often than they are realized (77.4% of possible /n/s were deleted). This once again points 

to a difference in formality as an important factor in the deletion of word-final n. Voortman 

(1994) considers the formality effect a consequence of the speakers recognizing differences in 

style and shifting their speech accordingly, although she does not completely rule out the 

possibility that attention to speech might also have had an impact on her participants’ rate of 

deletion. 
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Another study of word-final n-deletion that forms part of a doctoral dissertation is that 

of Van de Velde (1996), who examines the spontaneous speech of radio reporters in both the 

Netherlands and Flanders. Unlike the authors of previous studies, Van de Velde (1996) attempts 

to limit the variation in ages of the reporters at the time of recording as much as possible, while 

only varying the dates of the recordings themselves. This effectively eliminates the possibility 

of age grading as a confounding factor in the investigation of the possibility of ongoing 

language change. Interestingly, contrary to previous studies, he finds no evidence that word-

final n-deletion is spreading in standard Dutch. What does match with the findings of previous 

studies is that speakers generally realize /n/ most often immediately before a vowel. Van de 

Velde (1996) also examines possible differences between the Netherlands and Flanders. While 

both Dutch and Flemish speakers exhibit relatively high rates of deletion, there is more inter-

speaker variation in the Flemish sample, with the groups of deleters and inserters showing up 

clearly within that set of speakers. He also finds an effect of the word category (in this case 

infinitive verb, finite verb, or plural noun) within the set of Dutch speakers and not among the 

Flemish speakers, but he simultaneously acknowledges that a more detailed study is required 

to make further claims regarding this factor. 

In a study that followed relatively soon after Van de Velde (1996), Van de Velde and 

Van Hout (1998) attempt to delve deeper into inter-speaker variation in n-deleting behavior. 

They also investigate the speech of standard Dutch radio speakers and their rate of word-final 

n-deletion. Instead of the two groups delineated by Van Oss and Gussenhoven (1984), Van de 

Velde and Van Hout (1998) differentiate four different types of speakers. The first of these is 

the “non-realisers.” This group is characterized by total word-final n-deletion, implying that 

they have no underlying rule for pronouncing the /n/ in -en anywhere. The second of these is 

the “liaisoners,” whose n-realization behavior resembles that of French liaison. They do delete 

/n/ before consonants and pauses, but they do generally exhibit some (anywhere from 13-67%) 

realization before vowels. For these speakers, n-realization is a post-lexical rule—i.e., it is not 

influenced by grammatical concerns like the morphological status of the word. The third group 

is a group named “deleters,” which should not be confused with the group with the same name 

as defined by Koefoed (1979). These speakers exhibit n-realizing behavior in all right-hand 

contexts. This behavior is affected by the morphological type of the word, with 

monomorphemic nouns having their word-final /n/ deleted less often. Lastly, there is the group 

of “pausers,” who realize /n/ most often before a pause, essentially transforming it into a 

discourse marker. The n-deletion rate of this group is also subject to a morphological effect. 

The study by Van de Velde and Van Hout (1998) symbolizes one of the first major successful 

attempts to tease out the different possible internal rule systems that determine word-final n-

deletion in speakers of Dutch. 

Van de Velde and Van Hout (2001) shift their attention to a different set of speakers. 

Instead of investigating radio broadcasts, they derive their speech data from a corpus of teachers 

from the Netherlands. This corpus is stratified by region, gender, and age. In addition to the 

demographic factors taken into account by the corpus itself, Van de Velde and Van Hout (2001) 

also incorporate word type into their study, differentiating between monomorphemic nouns, 

monomorphemic verbs, polymorphemic finite verbs, polymorphemic infinitive verbs, and 

spatial adjectives and prepositions. After subjecting the corpus to a thorough analysis, they 

uncover a regional difference: speakers in the North of the Netherlands realize /n/ more often 

than those in other parts of the country. They also report an age-gender interaction: young 

women seem to be deleting /n/ most often, while young men delete it least often. Age as a factor 

by itself was not significant, further bolstering the assertion that word-final n-deletion is not in 

a state of expansion. As for word type, word-final /n/s are realized most often in 

monomorphemic verbs, followed by monomorphemic nouns, polymorphemic finite verbs, 

spatial adjectives and prepositions, and finally polymorphemic infinitives.  
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After their 2001 study, Van de Velde and Van Hout (2003) expand their approach to 

include the right-hand context of the occurrences of -en, while also providing a more in-depth 

analysis of the data. An important finding is an interaction between country/region and gender: 

in the Netherlands, men realize /n/ more often than women, but the opposite is true for Flemish 

speakers. Van de Velde and Van Hout (2003) also explore more specific regional differences. 

They find that /n/-realization occurs mostly in the North of the Netherlands and in the provinces 

of West and East Flanders, which comprise the westernmost third of the region of Flanders. 

West and East Flanders also turn out to be home to the largest degree of inter-speaker variation, 

possibly due to hypercorrection. The so-called “suffix effect”—i.e., that word-final /n/ is 

realized more often in finite verbs than in non-finite verbs—only exists in the Netherlands. 

Findings further include that the effect of the morpheme status of a word (i.e., monomorphemic 

vs. polymorphemic) is significant in both the Netherlands and Flanders. Van de Velde and Van 

Hout (2003) also report a so-called “focus effect,” which entails the phenomenon of speakers 

being more able to steer their language before pauses, which means that speakers are most likely 

to realize or delete /n/ before a pause, depending on which of those has their preference. They 

conclude their study by reaffirming their stance that there is no single, language-wide rule 

system behind the deletion of word-final /n/ and argue that out of all factors, right-hand context 

is likely to be the most significant. 

An honorable mention should be made of a study on n-deletion conducted by Goeman 

(2001), which provides the most in-depth information on the geographical spread of n-deletion 

in the Netherlands. However, Goeman (2001) investigates not only word-final n-deletion but 

also word-internal n-deletion and leaves Flanders out of the scope of his study. Therefore, the 

maps he generates are limited in their use for the study of word-final n-deletion in the Dutch 

language area. Nevertheless, considering their great level of detail, these maps deserve some 

attention. What follows is a brief summary of the main characteristics of some of those maps. 

The map showing n-deletion before a pause shows a low degree of deletion in the northern and 

eastern parts of the Netherlands, medium rates in the Randstad area, and very low rates in 

Brabant and Limburg. The map detailing the deletion of /n/ immediately before vowels shows 

relatively low rates of deletion throughout the country (0–42% deletion), but the lowest rate 

(28–42%) can be found in the western Randstad area. The map showing n-deletion before 

consonants show the highest rate of deletion occurs in the extreme south of the province of 

Limburg and that the lowest rate of deletion occurs in the North of the Netherlands, with the 

rest of the country falling somewhere between the two areas. The remaining maps that display 

specific word types all generally show the lowest rate of deletion in the North of the Netherlands 

and the lowest rates in the South and West of the Netherlands. As stated before, however, as 

word-internal n-deletion is also included in these maps, the data these maps display cannot be 

used to determine where word-final n-deletion occurs in the country to a high level of detail. It 

does, however, provide a general image of where word-final n-deletion is likely to occur, 

namely most often in the West and South of the Netherlands and the least in the North and 

North-East. 

To summarize, we can, based on the existing literature, distinguish a number of factors 

that are likely to influence word-final n-deleting behavior. The first of these is formality. 

Generally, speakers are more likely to realize word-final /n/ in formal settings and more likely 

to delete it in informal settings. Secondly, the right-hand context of -en seems to play an 

important role, with word-final /n/ being realized more often before vowels, although pauses 

allow for the speaker to express their preferred way of pronouncing -en more than other 

following contexts. Thirdly, the speaker’s region of origin influences word-final n-deletion as 

well, with speakers from the North and North-East of the Netherlands and speakers from West 

and East Flanders leaving /n/ undeleted most often. While a speaker’s age does not seem to be 

a significant factor by itself, it does exhibit interactions with gender and region, with (1) young 
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women deleting the most, and young men deleting the least, and (2) Dutch women deleting 

more than Dutch men, and Flemish men deleting more than Flemish women. The word type in 

terms of part-of-speech and morpheme status has an influence on the pronunciation of -en, with 

monomorphemic verbs ending on -en exhibiting the lowest degree of deletion, followed by 

monomorphemic nouns, polymorphemic finite verbs, spatial adjectives and prepositions, and, 

lastly, polymorphemic infinitives. All of these factors, however, are influenced by a speaker’s 

underlying set of rules. Based on those rules, speakers can be divided into non-realizers, 

liaisoners, deleters, and pausers. While a great deal of information has already been uncovered 

by scholars, it is also apparent that a more in-depth study of one or more of these factors has 

the potential to shed more light on the processes that influence word-final n-deletion. 

 

1.3 The potential of Twitter as a source of linguistic data 

One possible method of increasing knowledge of word-final n-deletion is to venture into new 

data sources. One of those potential new data sources is Twitter. It might seem like an unlikely 

candidate, as word-final n-deletion is mostly limited to spoken Dutch. However, some studies 

indicate that it might prove more useful than one would first be led to expect. This is because 

some users transpose features of their (colloquial) spoken language into the writing of the tweets 

they author. Hilte (2019), in her doctoral dissertation on the social media language habits of 

teenagers, elaborates on this orality principle. Authors of social media posts adapt their writing 

in a number of different ways to increase its orality (i.e., bring it closer to spoken language). 

They might, for example, leave out certain letters of a word to make it seem closer to its 

pronunciation in spoken language, they might add letters to indicate stress, or they might choose 

to choose certain lexemes that are more appropriate to spoken language. She also reports on the 

effects of gender and age, with women using more online-specific nonstandard forms than men 

and younger adolescents using more variation in spelling to express themselves. 

Over roughly the past decade, a number of linguistic studies specifically employing 

tweets as their principal source of data have sprung up that incorporate the possibility of aspects 

of spoken language carrying over onto Twitter. These studies indicate that the orality principle 

is also applicable to the written language used in tweets, and in a number of ways. The first of 

these is communication accommodation—i.e., the phenomenon that interlocutors tend to 

converge in terms of linguistic and other communicative aspects. A study by Danescu-

Niculescu-Mizil et al. (2011) delves into whether communication accommodation also occurs 

on Twitter. They construct a probabilistic framework based on, inter alia, stylistic markers in 

tweets, which they employ to measure communication accommodation. They find that the 

language of tweeters in a conversation tends to converge just like it has been shown to in spoken 

contexts. They emphasize the fact that this is the first time that communication accommodation 

has been tested outside of small-scale experimental settings, which already highlights one of 

the important advantages of using tweets: researchers have access to a gigantic pool of language 

data, the size of which would be utterly unapproachable by most “classic” linguistic data 

sources.  

Other studies that incorporate Twitter-sourced data into their design focus on 

sociophonetic variation. Eisenstein (2015) investigates a number of features associated with the 

dialect of African-American English in a corpus of 114 million tweets. Using logistic 

regression, he finds words that deviate from the orthographic standard and which approximate 

a more phonetic spelling (e.g., words that normally end on -ing being spelled with -in) are 

frequent and carry much of the social meaning of the non-standard or dialectal spoken forms 

they mirror. Notably, he reports that the rate at which words are spelled in a non-standard 

manner differs per word type (e.g., verbs vs. nouns). The phonological context of a word also 

seems to be a weaker factor when compared to its importance in spoken sociophonetic variation.  
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While Eisenstein’s (2015) study is largely quantitative in nature, qualitative approaches 

to sociophonetic orthographic variation on Twitter have also appeared. One such study is that 

conducted by Ilbury (2019). He focuses on the use of features normally belonging to African-

American English in the tweets of 10 gay British men. He argues that these men employ these 

features in order to construct what he calls a “Sassy Queen persona,” which relies on drawing 

upon stereotypical characteristics associated with African-American women like fierceness and 

sassiness. This demonstrates that, much like with linguistic variables in spoken language, 

orthographic variation in tweets can also be used to construct identities. 

The use of Twitter data has also proven useful in the study of style-shifting. Tatman 

(2015) directs her attention to the encoding of phonetic variants that carry specific social 

meaning in spoken language and their presence on Twitter. She specifically focuses on features 

common in white vernacular dialects of the US South and African-American English in her first 

set of tweets and features common to Scottish English in a second set of tweets. Based on the 

language use of one Scottish tweeter, whose tweets were examined in more detail, she 

determines that the use of socially meaningful phonetic spellings is sensitive to topic-based 

style-shifting, as is also the case for the spoken-language counterparts of the investigated 

spellings. It should be noted, however, that Tatman’s (2015) study remains cursory in that it is 

limited by its relatively small sample size. While the total number of sampled tweets is not 

explicitly stated, inspecting the presented graphs points to a sample size of around a few 

hundred tweets. Therefore, the study does not yet make full use of tweets’ potential in numbers. 

It does, however, pave the way for more large-scale studies focusing on style-shifting on 

Twitter. 

One of those more-large scale studies is a study by Shoemark et al. (2017). They focus 

on investigating the occurrence of topic-based style-shifting in a corpus of around 30,000 

Scottish Twitter users. This set consists of two different groups of users, with one group 

exhibiting a higher degree of use of Scottish-English. They incorporate around some 50 lexical 

variables into their study that represent standard English lexical items and their Scottish-English 

equivalents, such as don’t vs. dinny. They use a Latent Dirichlet Allocation topic model to 

divide the dataset into topic categories that were then manually labeled. They employ a mixed-

effects logistic regression model to process their data and find that the language use of both 

user groups is affected by the topic of a tweet. The groups did, however, differ in the degree to 

which they shifted, under which conditions they shifted, and toward which language they 

shifted. 

As it turns out, the study of the lengthening of sounds has also employed tweets as a 

valuable source of data. Gray et al. (2020) use a Twitter corpus to examine whether spoken 

language carries over into the written language of tweets. Their corpus consists of roughly 10% 

of English tweets between 2008 and 2016, collected using Twitter’s Gardenhose API. They 

specifically focus on “stretchable words,” like “duuuuude” and “yeeeees.” While their further 

investigation into these stretchable words lies outside of the scope of this paper, an important 

takeaway is that these stretchable words, too, resemble spoken language and are used in similar 

contexts. 

 

1.4 Using Twitter data to map linguistic features and languages 

Perhaps one of the most important factors indicating the potential of Twitter data to study word-

final n-deletion does not lie in the text of the tweets themselves. Instead, it lies in the meta-data 

associated with certain tweets and profiles to link certain users and, by extension, their writing 

to certain locations. There are two main possible sources for this location data: the location that 

is part of a user’s profile, which is self-provided and therefore rather error-prone, and GPS 

coordinates attached to individual tweets, which are more accurate but are also rarer. This 

section will examine linguistic studies that use these data sources to generate maps based on 
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certain linguistic features or languages. The studies are divided by what type of linguistic 

feature(s) they investigate: studies on lexical features will be discussed first, followed by studies 

delving into phonetic features, studies delving into morphosyntactic features, and, finally, 

studies that fall outside of these categories. It should be noted that these categories are 

sometimes rather vague, and the topics of some studies might bleed into other categories. 

Gonçalves and Sánchez (2014) focus on using lexical alternations (e.g., computadora 

vs. ordenador) to map variation in the Spanish language. They collect some 50 million Spanish-

language tweets, of which 750 thousand include geolocation metadata. They divide the Spanish-

speaking world up in a grid pattern based on latitudinal and longitudinal degrees, with each 

square having sides of roughly 25 km by 25 km at the equator. They cluster the users in their 

dataset using principal component analysis and uncover two major superdialects, which both 

span both Latin America and Spain. The first superdialect is centered around urban regions and 

is characterized by a high rate of innovation, while the second superdialect is centered mostly 

around rural regions and is much more conservative in nature. They further split the second 

superdialect into three regional dialect areas, which center around Spain, northern Latin 

America, and southern Latin America. This study represents the first large-scale effort to use 

Twitter location data to map linguistic features, but it is certainly not the last. 

Doyle (2014) directs his attention to the phrase needs done and so-called double modals 

(e.g., might could) in US English. While one could argue these double modals do not necessarily 

constitute lexical features, Doyle (2014) investigates them in much the same way one would in 

the case of lexical features by focusing on the occurrences of certain static phrases. He gathers 

tweets from the entire US and uses words like the and I in his search process to ensure the 

collected tweets form a solidly English base. An investigation into the prevalence of needs done 

reveals that its occurrence in the Twitter corpus lines up remarkably well with spoken language 

data. The same is true for the double modal data. Doyle (2014) attributes the success of these 

maps to his method: because of a lack of “negative data” (i.e., data on cases in which the phrases 

were not used), he uses what is known as Bayesian inversion in order to account for the overall 

distribution of the feature, not just the non-standard form. 

Eisenstein et al. (2014) focus not just on the occurrence of certain lexical items but also 

investigate the diffusion of those items. Their corpus, consisting of 107 million tweets authored 

in the US by some 2.7 million unique users, is used to trace the spread of new lexemes like ion 

(“I don’t”), af (“as fuck”) and ikr (“I know, right?”). They construct a system—whose exact 

workings lie outside of the scope of this paper—that includes a latent vector autoregressive 

model and logistic regression. They uncover several important factors that influence the rate 

and the path of lexical diffusion. While geographical proximity and the population size of a 

user’s town of residence have some influence, the most important factor is demographic 

similarity, especially race. Rather than some unified “netspeak” slowly arising through the 

internet, Eisenstein et al. (2014) argue that their data indicates that online language use mirrors 

the fault lines that exist between the different dialects of spoken US English. 

As is the case for two of the three previously discussed studies, Jones (2015) takes the 

United States to be his main area of investigation. His chief purpose is to investigate internal 

variation in African-American English, a topic that had up until that point been relatively 

neglected by scholars. He takes into account around 30 common words originating from 

African-American English and non-standard spellings of certain words and phrases that possess 

a considerable degree of use among African-Americans. Examples of these items include finna 

(“going to”), sumn (“something”), and yuon (“you don’t”). He attempts to collect at least 10 

thousand tweets for each item, in which he mostly succeeds. Using only the GPS data attached 

to specific tweets to determine users’ locations, he maps out the occurrences of these features 

and discovers that these maps exhibit apparent dialect regions within African-American English 

that differ in the degree to which spellings and lexical items are used. Importantly, these dialect 
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regions align with historical migration patterns. This indicates that, even though this study 

reveals “new” dialect regions, the existence of these regions is not likely to be spurious.   

Donoso and Sánchez (2017), like Gonçalves and Sánchez (2014), use a grid pattern to 

map their Twitter data. In many ways, the former seems to be a sequel to the latter. They both 

focus on alternations of Spanish lexical items, and they both seek to cluster their data to tease 

out dialect areas. In total, their corpus comprises around 11 million geotagged Spanish tweets. 

Donoso and Sánchez (2017) differ from Gonçalves and Sánchez (2014) in that they focus 

merely on Spain and exclude Latin America from their data. They also differ in their clustering 

methods, using cosine similarity and Jensen-Shannon divergence to divide their sample into 

two major clusters, measured over all lexical variants. These clusters, again, seem to differ in 

that one consists mostly of urban users, and that one consists mostly of rural users. 

If one were to shift their attention back to the United States once more, they would be 

directed to a study by Eisenstein (2017). He constructs a corpus of geotagged tweets that 

originate in the United States and range from the year 2009 to 2012, ending up with 114 million 

messages authored by 2.77 million individual users. What sets his approach apart from previous 

ones is that, instead of attempting to scour the data for the occurrence of pre-determined lexical 

variants, he sets out to explore the data without defining any lexical variables beforehand. He 

does this in the hopes of discovering dialect regions first, after which these regions can be 

explored for their distinguishing characteristics. This approach proves fruitful, and his process 

leads to dialect regions that in many ways seem to line up with dialect regions as defined by 

previous studies, although these maps are not a perfect match. A diachronic analysis also reveals 

that newer lexical items (including new abbreviations) like ard (“alright”) and ctfu (“crack the 

fuck up”) are rapidly spreading, which again indicates that Twitter data might also be useful for 

the study of lexical diffusion. He concludes by setting the exploration of areas outside of the 

US as a major priority, as these areas—especially those characterized by variation continua 

instead of discrete dialect regions—might also offer a considerable amount of useful 

information on lexical variation and diffusion. 

Grieve et al. (2018), too, direct their attention to the United States. They present a highly 

detailed study of lexical diffusion using Twitter. Their corpus is expansive, containing 980 

million tweets authored by 7 million unique users during 2013 and 2014. They focus on 54 

emerging lexical items, like mce (“man crush everyday”), notifs (“notifications”), and boolin 

(“hanging out”) and their orthographic variants. They map these lexical items’ cumulative 

relative frequency at different dates. These maps reveal that new lexical items tend to appear in 

a small number of regional hubs, after which these items spread along generally consistent 

pathways of distribution. The results indicate that an area’s cultural relevance is more important 

than population size when it comes to actuating lexical diffusion. Grieve et al. (2018) then 

conduct a multivariate spatial analysis, which leads them to distinguish five main regional 

patterns of lexical innovation. These regional patterns can be distinguished by which US macro-

region they span. 

Grieve et al. (2019), acting in accordance with Eisenstein’s (2017) recommendation to 

venture outside of the US, focus mainly on lexical variation in the United Kingdom. They 

assemble a corpus consisting of 180 million geolocated tweets authored by 1.9 million unique 

users. By their own admission, they leave this corpus completely unfiltered, stating that they 

“believe that modifying the corpus to make it more likely to show regional patterns is a highly 

subjective process that necessarily results in a less representative corpus” (Grieve et al., 2019, 

p. 4). They scan this unfiltered corpus for lexical alternations (like couch vs. sofa vs. settee) and 

use the spatial correlation coefficient L to compare their maps to the BBC Voices dialect survey. 

The results of their comparison show that there is generally a large degree of alignment between 

the Twitter and BBC maps, but they also suspect that low-to-mid L-values still indicate a 

significant degree of alignment, leaving some things to be desired. 
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Clearly, the use of Twitter data to map out the spread of certain lexical variables is by 

now relatively well-established. The same cannot be said for phonological features. Out of all 

Twitter-based mapping studies, only one focuses partly on phonological variation. Van 

Halteren et al. (2018) focus on lexical and phonological dialect features of Limburgish, a 

regional Germanic (group of) dialects in the Netherlands. Using the pre-existing TwiNL corpus 

of Dutch tweets (Tjong Kim Sang & Van den Bosch, 2013), selecting tweets authored between 

2011 and 2017, they end up with about 7200 users who exhibit some form of Limburgish in 

their tweets. Their knowledge-rich approach focuses on detecting 15 patterns that match the 

orthographic equivalent of Limburgish phonological forms and their standard Dutch 

counterparts, while their knowledge-poor approach focuses on trigrams. They smooth the 

resulting user scores over each user’s 99 nearest neighbors, with each neighboring user’s 

influence being proportional to the distance between the user and that neighbor. They also 

experiment with log-scale binning the scores, and the resulting maps of the individual 

phonological features line up considerably well with knowledge of the isoglosses of Limburgish 

that were established in previous studies. This study is especially relevant to this paper as it 

focuses on a phonological feature within the Dutch language area. 

Besides studies on lexical and phonological features, two studies dedicate themselves 

to studying morphosyntactic features. The first of these is Stevenson (2016). He focuses 

specifically on the different word orders associated with ditransitive constructions in English in 

the United Kingdom. These different word orders can be categorized into three types, namely 

PDAT (“Send it to me,” the most common variant), GTD (“Send me it”), and TGD (“Send it 

me”). He constructs a small corpus of 1416 geo-coded tweets originating from dates between 

November 2014 and March 2016. He maps the relative frequency of the constructions, and the 

resulting data matches existing dialect survey data decently well. He does, however, 

acknowledge the limited size of his dataset and emphasizes that his study is but a cursory 

exploration of the use of Twitter-based corpora and their relevance for the study of dialectal 

variation. 

The second study that focuses on mapping morphosyntactic variation is that of Willis 

(2020), which focuses on morphosyntactic variation in Welsh. He constructs a dataset of tweets 

in Welsh, taking into consideration both tweet-specific GPS data and user-supplied locations. 

His justification for doing so is that one cannot afford to discard too much data when dealing 

with smaller datasets. In the first section of his paper, he specifically inspects variation in the 

second-person singular informal pronoun. In the second section, he focuses on auxiliary bod 

(“to be”). In both cases, he also takes syntactic context into consideration. He maps the data 

using KDE (kernel density estimation) smoothing, which calculates the mean frequency within 

a kernel centered on a given point. The resulting maps line up with existing knowledge of these 

linguistic variants as they are distributed in spoken Welsh. Willis (2020) does point out that the 

frequencies of certain variants do not always accurately resemble those found in spoken 

language surveys, but this does not take away from the large degree of alignment between his 

Twitter-based maps and dialect survey maps. 

One study that is concerned with mapping linguistic data using Twitter does not limit 

itself to only one domain of features and instead incorporates lexical, phonological, and 

morphosyntactic features into its design. Ljubešić et al. (2018) construct a corpus of about 1.7 

million Serbo-Croatian geocoded tweets by 17 thousand unique users. The purpose of their 

study is to attempt to investigate the boundaries between the different varieties of the multi-

centric language Serbo-Croatian (including Serbian, Croatian, Montenegrin, and Bosnian). 

They consider a broad array of lexical, phonological, and morphosyntactic features that factor 

into a speaker’s position on the Serbo-Croatian continuum. They draw the geographical 

boundaries between the features they investigate, partly with the help of KDE smoothing. Their 

results show that Serbian and Croatian, as backed up by existing research, form the two 
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extremes of the Serbo-Croatian continuum, with other areas leaning more one way or the other 

depending on what feature is inspected. 

An honorable mention goes to the study by Abitbol et al. (2018), which attempts to link 

French Twitter data to socioeconomic status, age, location, time, and social networks (in the 

sociolinguistic sense of the word). Firstly, they map French socioeconomic survey data, after 

which they use Twitter data to map (a) a user’s rate of correct use of the French negation 

construction, (b) their rate of correct plural forms, and (c) their vocabulary size. They do this 

on the level of individual French departments. They compare their data to existing 

socioeconomic data and report that a higher degree of standard language use is correlated with 

a higher socioeconomic status. Furthermore, the South of France seems to be using more 

standard language than the North. 

Several important insights can be gleaned from these studies. Firstly, Twitter indeed 

seems to be a valid source of data in terms of linguistic geography. Secondly, its use offers an 

advantage in that it allows a researcher to investigate a pool of data that is orders of magnitude 

greater than “normal” spoken language survey data. However, extracting useful data from a 

Twitter corpus is not without its issues, and will likely require the use of smoothing and other 

statistical tools. Nonetheless, studies using tweets as a data source for mapping linguistic 

features almost unanimously produce at least partially valid maps in terms of their 

correspondence to previously collected data on spoken language. Considering the multitude of 

studies that have been able to successfully use tweets as a source of linguistic data, the same 

should be true for the study of word-final n-deletion, a prime example of phonetic variation. As 

previously discussed, Van der Wal et al. (2012) report word-final n-deletion surfacing in written 

language centuries ago, so it stands to reason it could be appearing in modern-day tweets. 

Indeed, a study on spelling variation on Twitter by Van Halteren and Oostdijk (2012) reports 

cases of word-final n-deletion showing up in Dutch messages on Twitter. Therefore, examining 

tweets—especially their associated GPS metadata—appears to be a possibly promising 

approach to studying word-final n-deletion in the Netherlands and Flanders. 

 

1.5 The present study 

The goal of this study is to map the occurrence of word-final n-deletion in tweets from the 

Netherlands and Flanders while taking into consideration as many factors as possible that could 

influence its rate of occurrence. The main research question guiding this study is: what can the 

examination of Twitter data tell us about the degree to which the occurrence of word-final n-

deletion is distributed across the Netherlands and Flanders, and to what degree do internal and 

external linguistic factors influence its prevalence? The utility of using Twitter data to map 

phonological features will also be investigated by attempting to answer the second research 

question: to what degree is the use of Twitter data useful in mapping individual phonological 

features, especially in terms of the quality of the results? 

Considering previous work on word-final n-deletion, hypothesis 1 is that the results will 

indicate that word-final n-deletion will prove to be most prevalent in the North and North-East 

of the Netherlands and the westernmost third of Flanders. Even though there will probably be 

considerable differences between spoken language and tweets, it is likely that, as we are 

inspecting the same phenomenon but in a different context, the non-geographical factors that 

influence n-deletion in spoken language will influence it online as well, and in much the same 

way. Therefore, hypothesis 2 is that word type, right-hand context, gender, and time will 

influence n-deletion in the same way that they influence word-final n-deletion in spoken 

language, with the possible exception of right-hand context, considering Eisenstein (2015) 

reports phonological context seems to have a weaker influence on Twitter. Considering the 

literature on using tweets as data for mapping linguistic features, hypothesis 3 is that Twitter as 

a data source will prove fruitful in the case of word-final n-deletion in that the geographic data 
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generated from the data will likely match with existing knowledge of the distribution of word-

final n-deletion to a considerable degree. It should be noted, however, that, contrary to this 

study, previous studies that employ Twitter data focus mostly on lexical features, which means 

this study will still, in some sense, be treading relatively new grounds. Therefore, whether 

hypothesis 3 will turn out to be congruous with reality remains less certain than is the case for 

hypothesis 1. The veracity of the hypotheses will be investigated by composing a large corpus 

of Dutch tweets, searching those tweets for relevant instances of word-final n-deletion, 

statistically analyzing those instances, and mapping the results. Specifically, our approach will 

be to map the degree to which users deviate from statistical predictions based on mostly non-

user-related features. The features that will be included in the analysis and which are based on 

the previously discussed literature are visible in Table 1. After the analysis, the results will be 

compared to and evaluated based on existing knowledge of word-final n-deletion, and their 

implications for future research will be discussed. 

 

 

 

Table 1: Discussed features and the status of their inclusion in this study 

Internal factors 

Factor Studies Inclusion 

Word type  

(part of speech and 

morphological 

complexity) 

Ollevier (1959), Van Oss and 

Gussenhoven (1984), Van de Velde 

(1996), Van de Velde and Van Hout 

(1998), Van de Velde and Van Hout 

(2003) 

Yes 

Genre Ollevier (1959), Koefoed (1979) No 

Style and/or formality Koefoed (1979), Voortman (1994) Partly  

(as standardness) 

Right-hand context Van Oss and Gussenhoven (1984), Van 

de Velde (1996), Van de Velde and Van 

Hout (1998); Van de Velde and Van Hout 

(2003) 

Yes 

External factors 

Gender Koefoed (1979), Van de Velde and Van 

Hout (2001), Van de Velde and Van Hout 

(2003) 

Yes 

Age Van Oss and Gussenhoven (1984), Van 

de Velde and Van Hout (2001) 

No 

Origin 

(geographical dimension) 

Voortman (1994), Van de Velde (1996), 

Van de Velde and Van Hout (2001), Van 

de Velde and Van Hout (2003) 

Yes 

Time  

(diachronic dimension) 

Van de Velde (1996) Yes 
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2. Method 

2.1 Corpus 

The essential first step in any research project employing Twitter data is determining from 

where to source the data. Two options were apparent: make use of a pre-existing corpus or 

collect new data specifically for this study. While it is true that the majority of the authors of 

the previously discussed Twitter-based studies construct their own corpus, this approach would 

have come with several drawbacks. The most important of these is that Twitter’s API only 

allows for the retrieval of 900 tweets every 15 minutes (Twitter Developer Platform, n.d.). This 

means that the collection of millions of tweets—a number that would be highly desirable, 

considering the advantages of using larger corpora—would have taken months. Secondly, the 

constraints imposed on the use of the Twitter data collection API are subject to the whim of its 

parent corporation. This meant that Twitter could have made the constraints on tweet collection 

more stringent during the data collection process, which would have unexpectedly interfered 

with the project. Therefore, the approach most suited to this study was making use of one or 

more datasets that were already available. 

Fortunately, Van Halteren et al. (2018) reported using a large-scale corpus of tweets 

containing Dutch texts. The corpus in question is TwiNL by Tjong Kim Sang and Van den 

Bosch (2013). While originally released in 2013, as of this study, the current version of the 

corpus spans a period from 2010 up to and including 2019. In total, it contains 2,528,720,239 

tweets authored by 64,955,636 users. Which such a wealth of data, the foremost concern was 

ensuring that all data used in the study was incorporated in an ethically defensible manner. In 

this case, that led to questions related to the public nature of Twitter. While, in theory, anyone 

is able to see public tweets, this does not mean that every tweet is authored with this fact in 

mind. Especially users with very few followers might consider their tweets more of a personal 

way of communicating than users with a large audience. It was essential, therefore, to devise a 

strategy to remove users from our dataset who had likely not intended for their tweets to be read 

and otherwise examined by a larger audience. Luckily, Twitter provided a built-in indicator of 

“publicness”: hashtags. A user can prefix a word or other string of unbroken characters with a 

“#” to allow other users to easily retrieve tweets related to a certain topic, essentially publicly 

indexing a tweet. Filtering based on hashtags allows for the creation of a corpus that consists 

only of users that have deliberately chosen to expose their writing to the larger community. 

Removing all tweets without hashtags, however, would have inevitably distorted the results of 

the study, as it would have considerably narrowed its focus in terms of the genre of the studied 

tweets. When a user uses a hashtag, they not only allow for anyone to quickly find a specific 

tweet but also the user account associated with that tweet, and thus all other public tweets made 

by that user. Therefore, the issue was fixed by, instead of filtering out all tweets without 

hashtags, filtering out all users that had never used a hashtag in any of their tweets whatsoever, 

leaving only users who had at one point knowingly exposed their account to the public eye. 

The as-of-yet unpublished TwiNT corpus (not to be confused with TwiNL), which was 

initiated by Stefan Grondelaers and collected by Jorrit Visser (2021), turned out to be a useful 

dataset here as well. This corpus consists only of tweets authored in and near the Netherlands 

and Flanders that contain one or more hashtags. However, this corpus is considerably smaller 

than TwiNL, containing 33,923,301 tweets by 1,043,804 users in total. In order to maximize 

the possible pool of data, combining TwiNT and TwiNL presented itself as the most expedient 

option. The approach for this study was to take the IDs for all users that appeared in TwiNT 

and to retrieve all other tweets by those users that appeared in the TwiNL corpus. This, 

combined with the fact that only derived data and not the tweets themselves were stored, left us 

with a large but ethically sound dataset of Dutch tweets. A request to construct and use the 

corpus as described here was submitted to Radboud University’s Ethics Assessment Committee 
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Humanities (EACH) and was granted approval (see Appendix 2). This corpus formed the base 

of the study from thereon out. 

2.2 Selecting users 

To ensure that there was enough GPS information per user for accurate location determination, 

all users with fewer than 10 geotagged tweets were removed from the dataset. For each of the 

remaining users, all locations that lay beyond one standard deviation from that user’s location’s 

mean were removed. Subsequently, all users for whom less than two-thirds of the original GPS 

tags remained were filtered out of the dataset as well. For the remaining users, a “home 

location” was calculated by taking the mean latitude and longitude of their remaining locations. 

If a user’s home location fell outside of the Netherlands or Flanders, they were also removed. 

While calculating a user’s home location in this manner is likely to lead to an accurate result, 

Van Halteren et al. (2018) point out a possible caveat: users who only tweet or only enable their 

location while on vacation. Therefore, to eliminate these vacationers, all users who tweeted 

only during three months of the year or fewer were also removed from the dataset.  

Another important factor in determining which accounts are relevant and which are not 

is the languages in which those users tweet. As this study is concerned with word-final n-

deletion in Dutch, users who do not or rarely tweet in Dutch were also filtered out. There were 

multiple possible sources that could be used to determine the languages in which users tweeted. 

While the TwiNL corpus included its own attempt to determine the language of each tweet, this 

classification was not suitable: part of our data consisted of tweets from the TwiNT corpus, 

which does not provide such data. Both corpora did, however, provide the language Twitter 

itself had tried to determine for each tweet. Therefore, the decision was made to only take into 

consideration Twitter’s own language classification. To ensure we had a dataset of sufficiently 

Dutch-writing users, only users who wrote in Dutch in two-thirds or more of their tweets were 

retained. 

After filtering the dataset, 1,043,804 users with a combined total of 1,066,595,715 

tweets remained in the dataset. 

2.3 Detecting word-final n-deletion 

After being filtered, the dataset was scanned for occurrences of word-final n-deletion and their 

non-deleted counterparts, firstly by employing regular expressions to find all words that could 

possibly constitute a case of either n-deletion or n-retention. After casting all text in lowercase 

and simplifying all emojis into one character (       ), the following regular expressions were used: 

• For occurrences of word-final n-retention followed by a vowel:  
\S+e+n+(?= +[aáàäeéèëiíìïoóòöuúùüyýÿ]) 

• For occurrences of word-final n-deletion followed by a vowel: 
\S+[aáàäeéèëuúùü]+h*(?= +[aáàäeéèëiíìïoóòöuúùüyýÿ]) 

• For occurrences of word-final n-retention followed by a consonant:  
\S+e+n+(?= +[qwrtpsdfghjklzxcvbnm]) 

• For occurrences of word-final n-deletion followed by a consonant:  
\S+[aáàäeéèëuúùü]+h* (?= +[qwrtpsdfghjklzxcvbnm]) 

• For occurrences of word-final n-retention followed by a pause:  

\S+e+n+(?= ?(?:$|\.|\,|\!|\;|\:|      )) 

• For occurrences of word-final n-deletion followed by a pause:  

\S+[aáàäeéèëuúùü]+h*(?= ?(?:$|\.|\,|\!|\;|\:|      )) 

Before filtering non-relevant hits, relevant information was recorded for each hit: 
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• User ID: unique identification number associated with the author of the tweet in which 

the occurrence was found 

• Tweet ID: unique identification number associated with the tweet in which the 

occurrence was found 

• Occurrence string: the detected word in question (e.g., dansen). 

• Standard version string: for occurrences of n-deletion, a non-n-deleted string was 

generated based on the occurrence string. 

• Deletion: whether the string consists of a word with word-final n-deletion or not. 

• Righthand context: whether the word in question is followed by a vowel, consonant, or 

pause (including emojis). 

• Standard, non-standard, and emoji counts: absolute measures used to determine the  

(non-)standardness of a tweet. Each non-emoji word of the tweet in which the 

occurrence was found was checked against the OpenTaal wordlist (Stichting OpenTaal, 

2020) in order to determine whether it was standard or non-standard. Emojis were 

counted separately from the standard and non-standard words. 

• Part of speech: the standard version string of each occurrence was compared to the 

CELEX lexical database (Baayen et al., 1995) in order to determine all its possible part-

of-speech categories. These categories were: (1) singular nouns, (2) plural nouns, (3) 

singular verbs, (4) plural verbs, and (5) spatial prepositions, adverbs, and adjectives. 

This information was stored as true/false for each category. 

• Trema: whether the standard version of the occurrence ends on ën instead of en. This 

information is relevant when filtering out forms that have a vowel before en that could 

influence the status of that en. For example, a word like alleen (“alone”) ends on een 

(/en/) and should thus be filtered out, while a word like reeën (“roe deer”) still ends on 

(/ən/) and should therefore be maintained. 

• Bigrams: bigrams in which the relevant word was found within the tweet. 

• Trigram: the trigram in which the occurrence was found in the Tweet, with the 

occurrence in the middle position. 

• Standard trigram count: number of times the trigram with the standard form of the 

occurrence occurred in all tweets made by users still in the corpus. 

• Partial trigram count: number of times the trigram without specifying the middle part of 

the trigram occurred in all tweets made by users still in the corpus. 

• Standard trigram frequency: the standard trigram count divided by the partial trigram 

count. 

• Lengthening: whether the occurrence displayed lengthening of the word-final 

morpheme or not (e.g., danseeeee or dansennnnn instead of danse(n)). 

• Date (day, month, year): on which date the tweet in which the occurrence was found 

was posted. 

• Hour of the day: on which hour of the day the tweet in which the occurrence was found 

was posted. 

• User’s tweet count: total number of tweets in our corpus posted by the user who posted 

the tweet in which the occurrence was found. 

• User’s tweets per day: mean tweets per day of the user who posted the tweet in which 

the occurrence was found, computed over all dates between the user’s first tweet and 

their last. 

• User’s possible gender: determination of each user’s gender was based on an internship 

project by Blonk (2021). She developed a classifier that categorized TwiNL users into 

one of four categories, namely male (certain), male (unsure), female (certain), and 

female (unsure). This classifier relied mostly on Dutch first name lists, with each user 
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being classified chiefly according to the full name they provided on their profile and 

their username. She reports that when manually inspecting a smaller sample for the 

purposes of error analysis, taking into account all four categories led to a recall of 0.925 

and a precision of 0.800. 

Using this data, false positives (i.e., detected occurrences that do not really constitute cases of 

n-deletion or their non-deleted equivalents) and occurrences that proved to be too ambiguous 

were removed. Firstly, all words ending on -ie, -ien, -ui were removed, as these were found not 

to be possible endings for n-deletion to occur. Then, using the OpenTaal wordlist (OpenTaal, 

2022), cases of possible deletion which constituted words by themselves were removed, along 

with their standard version and other deleted variants. Any occurrence that occurred in dwyl’s 

(2022) English word list was also removed to prevent any erroneous categorization of an 

Anglicism as a relevant occurrence, along with other deleted and non-deleted instances of that 

word in the dataset. Furthermore, words ending on -een that do not normally have a trema were 

also removed, as these words do not normally end on / ən/ in spoken Dutch. Lastly, the data 

was manually inspected by taking a random sample and by looking at the most frequent 

instances of (suspected) deletion in the data. Any word that did not constitute an actual case of 

deletion was removed from the data, along with what would have been its deleted and non-

deleted variants, were it actually a case of deletion. This process of filtering left a total of 

99,219,859 occurrences, 1,571,055 (1.58%) of which constituted n-deleted words. After 

filtering, the following additional variables were calculated for each occurrence: 

• Proportion of deletion: the number of cases of deletion in the corpus out of all cases 

with the same standard form 

• User deletion: how many times a user has deleted the n out of all detected n-deletions 

and n-retentions. 

• Word frequency: how many times this word occurs in the set of n-deletions and n-

retentions (includes both standard and non-standard versions of the word) 

2.4 Pre-processing and statistical modeling 

In order to assess the influence of the measured variables, the data was submitted to a number 

of statistical models. For the purposes of the analysis, a table was created in which each 

occurrence was represented as a separate row, with columns representing the features listed 

above in the list of calculated variables. Because was no major variation in deletion between 

days of the week and months of the year, these two variables were excluded from the set. The 

variables user ID, tweet ID, bigram string, trigram string, occurrence string, and standard 

version were excluded from the set, as these were not suitable for the purpose of statistical 

analysis. The variables dealing with right-hand context, grammatical category, user gender, 

year, and hour were converted into dummy variables with 0 or 1 for each possible value 

because, while they could technically be represented by one numerical variable, they do not 

constitute scalar variables. The scores dealing with the standard trigram frequency were 

replaced by their z-score because they exhibited a normal distribution. The variables dealing 

with standard trigram count, partial trigram count, user tweet count, and word frequency had 

their scores recalculated by taking the natural logarithm of that score plus 0.0000001 to avoid 

undefined values. This was done because their distributions were skewed toward higher values. 

Furthermore, for each column, its values were centered around 0 by subtracting their mean from 

all values, after which all values were divided by the column’s highest absolute value, yielding 

columns with a minimum possible value of -1 and a maximum possible value of 1. This was 

done to increase the compatibility of the data with models that are sensitive to the scales of the 

features. 
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Following standard methodology for separating training and test data, we applied ten-

fold cross-validation. In order to ensure occurrences originating from the same user were not 

divided across folds, the folds were generated based on the final digit of each occurrence’s 

author’s user ID, with IDs ending on 0 becoming fold 0, etc., yielding ten folds. Furthermore, 

to prevent information leakage, for each training set, the variables word frequency and the 

proportion of deletion were recalculated over the training set (i.e., the data excluding the test 

fold). If the frequency was zero for a certain occurrence, it was set to the mean frequency in the 

dataset over which the new frequencies were calculated. 

Because cases of non-deletion were highly overrepresented when compared to deletions, 

the decision was made to train the model on downsized data. For each fold, the number of non-

deletions was reduced to the number of deletions by randomly sampling non-deletions until the 

number of deletions and non-deletions was equal, after which the remaining non-deletions were 

discarded. This downsizing did not affect variables like the users’ deletions, which were 

calculated over the non-downsized data. 

The first of the employed statistical models was a logistic regression, which was 

conducted in the R programming language, using the glm(family = "binomial") function of its 

stats package for statistical modeling (R Core Team, 2020). This model was used because of 

its ability to predict binary categorical variables. In our case, that variable was whether or not a 

certain occurrence constitutes n-deletion or not. The use of a so-called Poisson regression, 

which can be used for discrete non-negative count data, was also considered. Using this type of 

regression does remain a viable alternative for further inquiries, though, on the condition the 

data is not downsized. This was determined to be a less optimal solution, however, as we were 

working with downsized data. A logistic regression model was fit to all features remaining in 

the dataset, with the exception of the user’s deletion score, as this would have meant using the 

likelihood to delete to predict deletion, which would have constituted a contamination when 

calculating scores for mapping purposes. The same data was subjected to a random forest 

classifier as well, which also allows for the prediction of categorical variables. Specifically, use 

was made of the Python programming language (The Python language reference, 2019) and 

the package scikit-learn (Pedegrosa et al., 2011), with default settings for the classifier being 

retained. The use of a multilayer perceptron classifier was also considered, but an initial 

exploration would only yield overconfident error-prone predictions, after which it was decided 

to proceed with just the logistic regression and random forest classifier. After this, the same 

logistic regression and random forest classifier models were fit again, this time with the user’s 

deletion score included, in order to assess whether the user’s propensity to delete offers a 

significant contribution to the predictions. Finally, the two models were re-run with both the 

user’s deletion score smoothed on the basis of their 2000 nearest neighbors (see the section 

below for further explanation). This was done in order to ascertain whether any possible 

geographic effect exists on the distribution of n-deletion in our data. 

After running the analyses, for each model, the cut-off point yielding the best 

classification based on the raw prediction scores was calculated. This was done based on the 

false rejection rate (FRR) and false acceptance rate (FAR) by calculating the so-called equal 

error rate (EER), the point at which the FRR and the FAR are equal. The cut-off point was 

selected to approximate the EER to four decimals. 

 

2.5 Mapping the data 

After running the first statistical analysis, maps of the Netherlands and Flanders were created 

in order to visually represent any possible geographical influence on the distribution of n-

deletion. This was done using R (R Core Team, 2020), specifically using the packages 

SDMTools (VanDerWal et al., 2014), ggplot2 (Wickham, 2016), and RANN (Arya et al., 2019). 

Firstly, a deletion score for each user was computed per model, as described below: 
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1. For each raw value, which fraction of positive cases in our test data has a lower and 

which has a higher value is mapped, and which fraction of negative cases has a lower 

and which has a higher value is mapped as well. If for any of these fractions the result 

is 0, it is set to 1 / number of positive cases if the fraction represents positive cases and 

to 1 / number of negative cases if the fraction represents negative cases. 

2. For each score, if the fraction of positive cases with a lower value is larger than the 

fraction of negative cases that have a higher value, then (with poslower denoting fraction 

of positive cases with a lower value and neghigher the fraction of negative cases that have 

a higher value): 

log2

𝑝𝑜𝑠𝑙𝑜𝑤𝑒𝑟

𝑛𝑒𝑔ℎ𝑖𝑔ℎ𝑒𝑟
 

Otherwise, the normalized score is equal to: 

−log2

𝑛𝑒𝑔ℎ𝑖𝑔ℎ𝑒𝑟

𝑝𝑜𝑠𝑙𝑜𝑤𝑒𝑟
 

3. The ranges of the positive and negative values are linearly mapped separately by 

dividing by the most positive or most negative score respectively, so that the final 

normalized score is in the range from -1 to 1. By design, this yields scores in which the 

FAR is equal to the FRR, which means they are both equal to the EER. 

4. Scores higher than 0 are categorized as deletions and scores lower than 0 are categorized 

as non-deletions. 

It should be noted that these scores were computed based on the test data. While, in principle, 

they should have been done leave-one-out, with 99 million cases in each fold, any possible 

information leak should remain negligible at worst. After normalizing per fold, the same steps 

were carried out over all folds combined. As for the results of the random forest classifier, the 

predictions were heavily skewed toward 0 and 1. Values around 1 were not distinguishable 

because of the limited number of decimal digits. Fortunately, scikit-learn provides both deletion 

and non-deletion predictions, so at least one useful value per prediction is guaranteed. If the 

probability of deletion is smaller than 0.5, the adjusted score equals: 

log2(𝑝𝑟𝑜𝑏𝑑𝑒𝑙 + 0.000000001) 

Otherwise, it is equal to: 

−log2(𝑝𝑟𝑜𝑏𝑛𝑜𝑛𝑑𝑒𝑙 + 0.000000001) 

After this procedure, the adjusted random forest scores were fed into the same steps as described 

before as if they were raw logistic regression scores. After the scores for both the logistic 

regression and random forest classifier models were computed, scores per user ID were 

calculated for the purposes of mapping n-deletion. For every map, each user was represented 

by one point on the map, placed on their calculated home location. The mapped score was 

calculated using the following formula: 

𝑠𝑐𝑜𝑟𝑒 =  ln
𝑑𝑒𝑙𝑒𝑡𝑖𝑜𝑛𝑠𝑎𝑐𝑡𝑢𝑎𝑙 + 1

𝑑𝑒𝑙𝑒𝑡𝑖𝑜𝑛𝑠𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 + 1
 

The reason additive smoothing with a value of 1 was used was to avoid any possible cases 

where there might occur a division by zero. A logarithmic scale was applied to increase the 

sensitivity to smaller differences in score at the lower end of the scale. After this, the scores 

were scaled to fit between 0 and 1: 

𝑠𝑐𝑜𝑟𝑒𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑠𝑐𝑜𝑟𝑒 − 𝑠𝑐𝑜𝑟𝑒 𝑚𝑖𝑛

𝑠𝑐𝑜𝑟𝑒𝑚𝑎𝑥 − 𝑠𝑐𝑜𝑟𝑒𝑚𝑖𝑛
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After calculating the scores, the choice was made to represent each user as a separate point on 

a blank map of the Netherlands and Flanders. While some studies chose to aggregate scores by 

administrative division (e.g., Grieve et al. (2019)) or divide the area into equally sized 

rectangles (e.g., Donoso and Sánchez (2017)), the choice was made here to mirror the approach 

employed by Van Halteren et al. (2018). Mapping each user as an individual point allows for 

maps that accurately represent in which places users are most concentrated, minimizing any 

major possible visual effects of outliers in low-density areas. Because geographically close 

individual users sometimes differed greatly in scores, a smoothing method was applied, which 

was based on Van Halteren et al. (2018): for each user, a score was produced for k of its 

geographically closest neighbors, with maps being generated for k = 100 and 2000 in addition 

to an unsmoothed map. This score was calculated as follows: for each of the k nearest neighbors 

separately, the following subscore was calculated, with distance indicating the distance between 

that neighbor and the user for which the eventual score is being calculated, and distancemax 

indicating the distance between the user for which the eventual score is being calculated and 

the farthest selected neighbor: 

𝑠𝑢𝑏𝑠𝑐𝑜𝑟𝑒 =  
−0.99 ∗ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑚𝑎𝑥
 

After these subscores were calculated, the final score was computed by taking the mean of all 

subscores. For each map, a histogram with 10 bins was included to show the distribution of the 

scores. The bin which constituted the mode and its associated points on the map were colored 

black in order to establish a middle line, while scores in the bins below were colored blue and 

scores in the bins above were colored red, with a bin’s color gaining in intensity proportionately 

to the bin’s distance from the mode. 
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3. Results 

3.1 Statistical models 

The first logistic regression, which excluded the users’ tendency to use deletions, yielded an 

EER of 0.1947. The second logistic regression, which included the users’ tendency to use 

deletions, yielded an EER of 0.1175. The third logistic regression, which included the users’ 

smoothed scores but no their tendency to use deletions, yielded an EER of 0.1993. The mean 

odds ratios by feature and model, calculated over the feature log odds and over all 10 folds, are 

visible in Table 3.1. Figures of the plots of the feature’s odds per model instance are visible in 

Appendix 1. Odds for the features hour_23, righthand_vowel, and year_2019 are shown as NA 

because they were excluded from the analysis due to that they would cause singularities—i.e., 

their contents are already fully described by other variables in the data. 

Table 3.1: Odds ratios per feature calculated over mean log odds over all 10 folds of the three 

logistic regressions by instance. Significance is indicated by *** for features that had a 

significance level of p = 0.0001 and ** for p = 0.001, while features without an asterisk always 

had a significance level of p > 0.05 

Feature Odds ratios 1 Odds ratios 2 Odds ratios 3 

(Intercept) 0.3296*** 0.1452*** 0.2853*** 

CELEX_A 2.2144*** 2.1050*** 2.2136*** 

CELEX_M 1.0873*** 1.0925*** 1.0873*** 

CELEX_N 1.1813*** 1.0249 1.1822*** 

CELEX_V 1.8951*** 2.2371*** 1.8946*** 

CELEX_W 1.9590*** 1.5880*** 1.9590*** 

deleted_proportion 9.05×1010*** 7.72×108*** 9.07×1010*** 

hour_0 1.1138*** 1.0502** 1.1137*** 

hour_1 1.2981*** 1.1232*** 1.2981*** 

hour_2 1.4437*** 1.1647*** 1.4439*** 

hour_3 1.5107*** 1.2119*** 1.5104*** 

hour_4 1.3492*** 1.1047*** 1.3488*** 

hour_5 1.0561 0.9759*** 1.0572 

hour_6 0.8398*** 0.9118*** 0.8395*** 

hour_7 0.8917*** 0.9816 0.8914*** 

hour_8 0.6631*** 0.7835*** 0.6631*** 

hour_9 0.5906*** 0.7165*** 0.5907*** 

hour_10 0.6344*** 0.7386*** 0.6344*** 

hour_11 0.6676*** 0.7636*** 0.6677*** 

hour_12 0.7081*** 0.7879*** 0.7082*** 

hour_13 0.7069*** 0.7998*** 0.7068*** 

hour_14 0.7019*** 0.7987*** 0.7019*** 

hour_15 0.7215*** 0.8152*** 0.7216*** 

hour_16 0.7483*** 0.8372*** 0.7482*** 

hour_17 0.7885*** 0.8746*** 0.7882*** 

hour_18 0.8346*** 0.9107*** 0.8345*** 

hour_19 0.8122*** 0.9118*** 0.8122*** 

hour_20 0.8098*** 0.9262*** 0.8097*** 

hour_21 0.8573*** 0.9623** 0.8574*** 

hour_22 0.9298*** 0.9806 0.9294*** 
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hour_23 NA NA NA 

lengthening_yn 5.4189*** 6.3556*** 5.4195*** 

righthand_consonant 1.0035 1.0563*** 1.0034 

righthand_pause 2.5373*** 2.8692*** 2.5369*** 

righthand_vowel NA NA NA 

standard_trigram_count_log 0.0611*** 0.0410*** 0.0611*** 

standard_trigram_frequency_z 0.0919*** 0.1095*** 0.0919*** 

trema_yn 0.000 0.0000 0.0000 

trigram_partial_count 0.5265*** 0.6604*** 0.5265*** 

tweet_emoji_count 1.64×108*** 15.8943*** 1.60×108*** 

tweet_nonstandard_count 6.38×106*** 1.45×108*** 6.41×106*** 

tweet_standard_count 0.0031*** 0.0101*** 0.0031*** 

user_gender_Mcertain 0.8174*** 0.9375*** 0.8154*** 

user_gender_Mmaybe 1.3075*** 1.1597*** 1.3017*** 

user_gender_Vcertain 1.1147*** 1.2743*** 1.1123*** 

user_gender_Vmaybe 1.5390*** 1.4659*** 1.5343*** 

user_tweetcount_log 0.0806*** 0.7877*** 0.0810*** 

user_tweetsperday 3.05×1010*** 2.4136** 1.24×1010*** 

word_frequency_log 1.2570*** 1.2072*** 1.2568*** 

year_2010 8.9072*** 6.2614*** 8.9224*** 

year_2011 14.7696*** 7.1664*** 14.7743*** 

year_2012 15.7885*** 6.3232*** 15.8051*** 

year_2013 11.9104*** 4.7325*** 11.9200*** 

year_2014 5.4447*** 2.9980*** 5.4424*** 

year_2015 2.5940*** 1.9927*** 2.5914*** 

year_2016 1.7118*** 1.4188*** 1.7095*** 

year_2017 1.2820*** 1.1240*** 1.2800*** 

year_2018 0.9852 0.9005*** 0.9838*** 

year_2019 NA NA NA 

user_deletion NA 4.80×1010*** NA 

user_smoothed NA NA 1.3292*** 

 

For the first logistic regression, almost all mean log odds had a coefficient of variation (i.e., the 

standard devation divided by the mean value) that was less than 0.1. The coefficients of 

variation for user_gender_Vmaybe, hour_6, righthand_pause and year_2019 were higher than 

0.1, but this was because the mean values for these variables were very close to 0. For 

word_frequency_log, the coefficient of variation was also higher (0.12), but here the fluctuation 

in value is likely due to its odds being the highest (and therefore more prone to fluctuations).  

For the second logistic regression, the only features with a coefficient of variation higher than 

0.1 were hour_0, hour_4, hour_5, hour_7, hour_22, user_tweetcount, year_2017, and 

year_2018. For all of these features, except user_tweetcount, this was determined to be due to 

the fact that their mean values lie so close to 0. For user_tweetcount, the reason high standard 

deviation between folds remains unclear, although it is likely tied to the large size of its odds 

ratio. For the third logistic regression, the only features with log odds with a coefficient of 

variation higher than 0.1 were righthand_consonant, user_gender_Vcertain, year_2018, and 

smoothed_score. For all these scores, this high coefficient of variation was determined to be 

due to the fact that their mean values lie so close to 0. 
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The first random forest classifier model, which excluded the users’ tendency to use deletions, 

yielded an EER of 0.1625. The second random forest classifier model, which included the users’ 

tendency to use deletions, yielded an EER of 0.0844. The third random forest classifier model, 

which included the users’ smoothed scores but no their tendency to use deletions, yielded an 

EER of 0.1625. The mean importances by feature, calculated over all 10 folds, are visible in 

Table 3.2. 

Table 3.2: Feature importances of the random forest classifiers 

Feature Importances 1 Importances 2 Importances 3 

CELEX_A 0.000911 0.000421 0.000659 

CELEX_M 0.001592 0.000941 0.001041 

CELEX_N 0.00019 7.81×10-5 0.000261 

CELEX_V 7.48×10-5 6.56×10-5 5.96×10-5 

CELEX_W 0.001094 0.000831 0.000733 

deleted_proportion 0.117215 0.089307 0.113801 

hour_0 4.47×10-5 9.27×10-5 9.38×10-5 

hour_1 0.000227 9.56×10-5 0.000102 

hour_2 3.58×10-5 1.54×10-5 7.11×10-5 

hour_3 1.06×10-5 1.32×10-5 3.46×10-5 

hour_4 4.73×10-6 2.76×10-6 5.34×10-6 

hour_5 3.27×10-6 2.27×10-6 2.32×10-6 

hour_6 2.70×10-6 2.71×10-6 2.12×10-6 

hour_7 7.93×10-6 4.24×10-6 7.50×10-6 

hour_8 1.01×10-5 5.19×10-6 9.76×10-6 

hour_9 6.87×10-5 1.99×10-5 4.52×10-5 

hour_10 1.07×10-5 1.45×10-5 3.41×10-5 

hour_11 6.24×10-6 5.46×10-6 7.14×10-6 

hour_12 4.17×10-6 2.72×10-6 3.43×10-6 

hour_13 4.25×10-6 3.10×10-6 2.98×10-6 

hour_14 5.53×10-6 3.11×10-6 3.20×10-6 

hour_15 4.62×10-6 2.52×10-6 3.81×10-6 

hour_16 2.92×10-6 2.45×10-6 3.78×10-6 

hour_17 3.71×10-6 2.84×10-6 2.75×10-6 

hour_18 4.06×10-6 3.29×10-6 3.12×10-6 

hour_19 2.97×10-6 2.94×10-6 3.97×10-6 

hour_20 7.55×10-6 3.94×10-6 5.04×10-6 

hour_21 5.51×10-6 3.49×10-6 3.11×10-6 

hour_22 1.01×10-5 4.63×10-6 8.67×10-6 

hour_23 2.08×10-5 1.00×10-5 4.51×10-5 

lengthening_yn 0.010888 0.006522 0.008731 

righthand_consonant 0.002216 0.00187 0.004166 

righthand_pause 0.011971 0.005864 0.014352 

righthand_vowel 0.001301 0.000872 0.00167 

standard_trigram_count_log 0.378005 0.251139 0.370387 

standard_trigram_frequency_z 0.139049 0.111933 0.15023 

trema_yn 3.67×10-5 1.83×10-5 3.10×10-5 

trigram_partial_count 0.150242 0.083449 0.154183 
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tweet_emoji_count 0.000493 0.000202 0.000482 

tweet_nonstandard_count 0.014458 0.010851 0.013427 

tweet_standard_count 0.062083 0.032518 0.056514 

user_gender_Mcertain 0.001598 0.000882 0.001758 

user_gender_Mmaybe 7.71×10-5 2.26×10-5 6.97×10-5 

user_gender_Vcertain 0.000349 0.000131 0.000378 

user_gender_Vmaybe 0.000772 0.0003 0.000418 

user_tweetcount_log 0.021916 0.011545 0.020528 

user_tweetsperday 0.005694 0.004254 0.010166 

word_frequency_log 0.007608 0.008907 0.011264 

year_2010 1.31×10-5 1.52×10-6 8.43×10-7 

year_2011 0.005663 0.003347 0.005252 

year_2012 0.01341 0.006468 0.011039 

year_2013 0.005661 0.003558 0.006852 

year_2014 0.001006 0.000283 0.000596 

year_2015 0.006864 0.003881 0.006834 

year_2016 0.008167 0.003545 0.008747 

year_2017 0.010603 0.003648 0.009916 

year_2018 0.00986 0.005208 0.009098 

year_2019 0.008412 0.003159 0.005682 

user_deletion NA 0.3437 NA 

user_smoothed NA NA 0.0001700 

 

It should be noted that, although very low, when compared to the mean scores themselves, the 

standard deviations were very high. The mean coefficient of variation (i.e., the standard 

deviation divided by the mean value) for the first instance was 0.58, 0.62 for the second 

instance, and 0.57 for the third instance. In Appendix 2, all results for each feature are reported 

individually, including histograms and results from both logistic regressions and random forest 

classifiers. 
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3.2 Maps 

This subsection contains the maps generated using the scores calculated on the basis of the 

model predictions and the users’ deletion scores. A higher score indicates a higher degree of 

deletion. On the maps, the scores are divided into 10 bins with an equal range. Black indicates 

the bin with the most scores within it, while blue indicates scores lower than this bin and red 

scores higher than this bin. For each image, the top part displays a map of the Netherlands and 

Flanders with the users’ locations indicated with points and their corresponding scores indicated 

through the described color scheme. The bottom section contains a histogram of the users’ 

scores divided into ten bins, also colored according to the same scheme. Table 3.3 contains the 

maps generated based on data derived from actual model classifications by different smoothing 

levels. To assess the quality and validity of the maps resulting from the use of the smoothing 

algorithm, three additional maps were generated for the logistic regression predictions and a 

smoothing level of k = 2000 for which the order of the score column had been randomized. 

These maps are visible in Table 3.4. 
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Table 3.3: Maps of deletion score by model and smoothing level 

 Unsmoothed Smoothed (k = 100) Smoothed (k = 2000) 

Logistic regression 

   

Random forest 
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Table 3.4: Maps with randomized scores based on the logistic regression at k = 2000 

Randomization 1 Randomization 2 Randomization 3 
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4. Discussion 

The results have yielded a number of important insights, and it is imperative to discuss them 

thoroughly. Firstly, the generated maps will be discussed, after which the different model 

instances will be contrasted, individual features will be interpreted, the research questions will 

be answered, the limitations of this study will be discussed, and recommendations will be made 

for future research. 

 

4.1 Maps 

At first glance, the maps generated based on the scores fed into the smoothing algorithm seem 

to display areas that clearly differ in terms of how much n-deletion occurs in them. However, 

more closely inspecting the maps generated based on the predictions from the logistic 

regression and the random forest classifier, particularly those with k = 2000, reveals something 

remarkable: especially in the larger cities, like Amsterdam, the maps generated from the data 

provided by the two models contradict each other. One could be inclined to suspect that perhaps 

somewhere along the process, the polarity of the data might have been reversed. This is 

unlikely, however, as there are some regions between the maps that do match, such as the area 

around the city of Nijmegen. Instead, the contradictions between the maps seem to derive from 

the fact that the shapes and locations of the clusters that result from the smoothing are in many 

cases almost completely dissimilar in shape and size. Indeed, there appears to be almost no 

relation between what the maps are picturing. 

This could have a number of different causes. On the one hand, it could be that the 

smoothing algorithm is simply pulling the regional patterns regions out of thin air, in that it is 

magnifying what essentially constitutes noise in the data into larger regions. On the other hand, 

it could be possible that there is some sort of major difference in the way the models predict n-

deletion, in which case the issue does not lie with the smoothing algorithm. The most expedient 

way to assess the nature of this issue is to randomize the link between the observed scores and 

the user IDs and to map that data, as has been done for the logistic regression data above. If the 

algorithm truly is to blame, we would expect to see maps that mirror the non-random maps in 

terms of the pattern of clustering and coloration in general, while individual clusters would not 

line up with the non-random maps. If the issue lies with the model predictions themselves, then 

we would expect the maps of the randomized data to display completely different clustering 

patterns, if they even display clusters at all.   

An inspection of the randomized smoothed maps tells us that they closely resemble the 

non-randomized maps in terms of the size and coloration of their clusters. This strongly 

indicates that the non-randomized maps are showing us nothing more than magnified noise. 

Therefore, it is highly likely that this issue is the root of the marked difference between the 

maps based on the logistic regression predictions and the maps based on the random forest 

classifier predictions, rather than some issue with one or both of the models. In order to confirm 

or nuance the likely inability of the smoothing algorithm to yield usable maps in our case, it is 

important we also compare the results of the statistical models trained on data that included the 

smoothed scores to the results of the other instances in which this data was not included. 

 

4.2 Comparing model instances 

The different logistic regression models on the one hand and the random forest models on the 

other will first be discussed separately. Comparing the first logistic regression model—i.e., the 

base model—with the second one—i.e., the model that includes the user’s deletions as a 

feature—reveals a number of large differences. Firstly, the second model has a considerably 

more favorable EER at 0.118 when compared to the first model’s EER of 0.195. Secondly, 

inspecting the odds ratios reveals that the features like the user’s tweets per day and the number 
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of emojis used in the tweet have considerably lower odds ratios in the second model. While the 

implication of each feature’s odds ratios will be discussed on a per-feature basis in the next 

section, this indicates that including the user’s deletion behavior in the model has considerable 

predictive power. The feature user_deletion itself, when included, had a massively high odds 

ratio of 4.80×1010. Considering this, the feature explains part of what the tweets per day and 

emoji count at first explained in the first model, and in a way that leads to a much lower EER. 

This result is not surprising, as this essentially only implies that including a user’s deletion rate 

in the model allows for that user’s deletions to be more accurately predicted. However, also 

having this second model allows us to contrast it with the third model, namely the model that 

includes the smoothed user scores. The logistic regression that included the smoothed user 

deletion score and not the unsmoothed one (like in the second model) was remarkably similar 

to the first model, both in EER and in the individual features’ odds ratios. This points in the 

direction of the smoothed user scores (and therefore the resulting maps) not possessing any 

useful information on the deletion behavior of users. Otherwise, one would expect the model to 

improve considerably upon its inclusion. 

Practically the same is true for the random forest models. The second random forest 

model which included user deletion scores performed considerably better than model one in 

terms of EER (0.1625 for model one and 0.0844 for model two), and the importance of deletion 

in the second model was very high (0.3437 out of 1). The third model, which included the 

smoothed user deletion scores, had the same EER as model 1 at 0.1625. Notably, the 

importances between model one and model three do differ more than in the case of the logistic 

regression models, but it should be noted that most have a relatively high coefficient of variation 

and lie close to 0.0. This means the importances are likely to vary between relatively similar 

models, so this is not a reason for concern. 

What the comparisons of these models reveal is that the unsmoothed user deletion score 

does notably lower the EER, but that the smoothed user deletion score does not. This means 

that the smoothing has caused the scores to lose their explanatory power in terms of predicting 

n-deletion. Seeing as the smoothing was carried out on a geographical basis, this could have 

multiple explanations. It could be that either n-deletion is not spread geographically in written 

language on Twitter like it is in spoken language, or that our method was not sufficiently able 

to capture this geographical relationship. Considering that a method very similar to ours has 

proven to be successful in the past (Van Halteren et al., 2018), the former seems more likely. It 

should be noted that this certainly does not preclude the latter. 

  

4.3 Factors 

Discussing each feature entered into the models separately is likely to provide important 

insights. In this section, the odds ratios of the logistic regressions will be emphasized, and 

specifically those of the first model. The reason for not emphasizing the random forest 

importances more is that while they do say something about how much a feature contributed to 

the model, it does not show any directionality—in other words, it is not apparent from the 

importances whether an increase in the value of a feature leads the model to predict deletions 

with a higher or lower likelihood. Nonetheless, as the importances of each model add up to the 

value of 1, they still provide information on the role each feature had in the model in direct 

comparison with the other features, something which is not the case for the odds ratios. One 

issue is that certain features have very high importances others have very high odds ratios. This 

means that the scores for the features with smaller importances or odds ratios will be very small, 

meaning that the odds ratios and importances will be most useful during the interpretation of 

features with very high scores. 

The first features to be subjected to a closer inspection are those that relate to the word 

type, i.e. the features starting with CELEX. Inspecting the histogram of CELEX_A (i.e., spatial 
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adjectives and prepositions) reveals that, when comparing the plot for all occurrences with the 

one containing only deletions, there is a slightly higher incidence of 1 for this feature when 

looking at the deletions only. The odds ratio in the first model is around 2.2, which also indicates 

that the presence of CELEX_A = 1 generally tends to lead to more deletion. The feature has a 

low importance score of about 0.001 in the first random forest model. CELEX_N (i.e., singular 

nouns) displays a slightly higher incidence of CELEX_N = 1 in the case of deletions only, 

although this difference does not stand out. The odds ratios are all around 1.2 for this feature, 

which points to this feature not being very predictive of deletion either positively or negatively. 

Its random forest importance score is also low (about 0.0002), which is lower than for 

CELEX_A. The histogram for CELEX_M (i.e., plural nouns) shows a much more pronounced 

difference between all cases and deletions only: the histogram for all cases shows the values of 

CELEX_M = 0 and CELEX_M = 1 distributed roughly 4:3, while the plot with only deletions 

shows that the features are much closer to being 1:1. This indicates a notably higher presence 

of CELEX_M = 1 relative to CELEX_M = 0 in the case of deletions only. However, this is 

contradicted by the feature’s corresponding odds ratio, which hovers slightly under 1.1 for all 

three logistic regression models. Its importance score is about 0.0016, which does place it 

higher than CELEX_A and CELEX_N. The histogram for CELEX_V (i.e., singular verbs) does 

not display any difference between the plot containing all occurrences vs. the plot containing 

only deletions in terms of the relative distribution of the values of the feature, but, importantly, 

the odds ratio for CELEX_V are about 1.9, which would indicate a higher rate of deletion in the 

case of CELEX_V = 1. It does, however, have an importance score that is much lower than the 

other CELEX features, at around 7×10-5. Lastly, inspecting the histogram for CELEX_W (i.e., 

plural verbs) shows that, in the case of deletions only, there is a slightly lower incidence of 

CELEX_W = 1, which would indicate that its presence generally leads to fewer deletions. This 

is contradicted by the odds ratio, which is roughly equal to 1.9 for models one and three, and 

1.5 for model two. Its importance lies around 0.001, which is higher than CELEX_A, CELEX_V, 

and CELEX_N, but lower than CELEX_M. 

When trying to interpret the results for word type, one runs into discrepancies between 

the histograms and the odds ratios for certain features, as has become apparent above. However, 

it is still possible to interpret the results in the places where these discrepancies do not manifest 

themselves. Generally, it seems that a word being a possible spatial preposition or adjective 

indicates a higher chance of deletion, which is also true for plural nouns and singular verbs. 

Singular nouns seem to be neutral in this respect, while plural verbs remain the most difficult 

to interpret. In our case, the category of “plural verb” is mostly congruous with the category of 

“polymorphemic verb.” The literature on n-deletion in spoken language, however, makes the 

distinction between infinitives and participles, which we were not able to do. As shown by Van 

de Velde and Van Hout (2001; 2003), these two sub-categories can have significantly different 

rates of deletion, and it is possible that this plays a role in the ambiguity of the results for plural 

verbs. According to Van de Velde and Van Hout (2001; 2003), the order from least deletion to 

most deletion is monomorphemic verbs, monomorphemic nouns, polymorphemic finite verbs, 

spatial adjectives and prepositions, and polymorphemic infinitives. Therefore, there is not much 

agreement between deletions per word type in our data and deletions per word type in spoken 

Dutch. 

The interpretation of deleted_proportion—the feature dealing with how much a word is 

deleted out of all cases—is relatively more straightforward. In its histogram, the main difference 

between all occurrences and deletions only is that the deletions-only plot has more scores in the 

higher 0.02-1.0 area of scores, while the plot with all occurrences had a relatively higher 

concentration in the far low end of scores (0.0-0.02). The deletions-only histogram does display 

a small peak near 1.0. This constitutes words that were deleted in 100% of cases that they (or 

their standard version) appeared. A manual inspection of the data reveals that these words are, 
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in large part, forms that are likely to be very rare (e.g., Eucalpyten, “Eucalyptus trees”) and a 

small number of given names that should have been filtered out (e.g., “Thyrza”) but which were 

missed during previous inspections. Generally, according to the histograms, the deletions 

exhibit a higher deletion proportion score. This is confirmed by the odds ratios in all three 

models, which range from about 8×108 in the case of the second model (when the users’ 

deletions scores are added) to about 9.05×1010 in the case of the first and third models. This is 

an enormously large value. While the directionality of the odds ratio does not surprise us, its 

sheer size does—we do not currently have an explanation as to why this and similarly large 

odds ratios in the results are so astronomically large. Its predictive power is also affirmed by 

the random forest importances, which all hover around 0.1 The results clearly exhibit that a 

higher deleted_proportion predicts a higher likelihood of deletion. Of course, this statement 

practically amounts to the truism “more deletion means more deletion,” but its importance for 

this study does not lie in the implications of its inclusion and more in its usefulness in allowing 

for the creation of more accurate predictions and determining the relative value of the other 

features. This also ties into why deleted_proportion’s odds ratio decreases as user_deletion is 

added—some of the (likely user-specific) predictive power of deleted_proportion is more 

accurately described by user_deletion. 

The next group of features is those that deal with the hour of the day. Rather than repeat 

the odds ratios and importances for each feature separately, a more general description of how 

their values change throughout the day will suffice. The odds ratio of hour_0 starts off at about 

1.1, moving to a peak of 1.5 at hour_3, after which it hits 0.83 at hour_6 and hits the lowest 

point at about 0.59 at hour_9. It then slowly increases until it hits 0.92 at hour_22, with hour_23 

being selected as the reference category by the regression. The histogram does not have any 

directly visible discrepancies between all occurrences and deletions only. All hour features 

exhibited a low importance, ranging from about 3×10-6 to 0.0002 in the first model. If we focus 

on the odds ratios, we see that the chance of deletion is highest during the night, with a low 

point in the mornings, after which it slowly increases in the afternoon. A possible explanation 

for this is that Twitter accounts belonging to companies tweet mostly during the day, and those 

accounts are very unlikely to exhibit n-deletion in their tweets. It could also be that young 

people, who are more likely to stay up late, exhibit more n-deletion, causing the odds ratios to 

increase during the night. Notably, Hilte (2019) reports that young adolescents tend to use 

spelling variations more often than older adolescents expressing themselves online. 

Furthermore, if we look at the odds ratios for the second model, we notice that those values 

deviate much less from 1.0. This indicates that the influence of the time of day is tied to user-

specific properties, which is likely to be at least in part the factor of age. 

As for lengthening_yn, the most notable indicator of its relationship with deletions lies 

in the histogram. While lengthened words are exceedingly rare when taking into account all 

occurrences, they are much more clearly present when looking at deletions only. The odds ratio 

of the feature is also high at about 5.4. Its importance is also notable at about 0.01. These results 

clearly show that the presence of lengthening also increases the likelihood of that occurrence 

being deleted. There are multiple possible explanations. Firstly, a lengthened word is by 

definition non-standard orthographically. The same is true for n-deletion. In that sense, both 

types of spelling variation are connected. Secondly, the fact that n-deleted words end on a vowel 

might also play a role, as word-final vowels lend themselves more readily to lengthening in 

speech than consonants (compare danseee vs. dansennn for example). It is likely that both 

factors play a role in lengthening_yn’s positive predictive power in relation to n-deletion. 

The features dealing with right-hand context do not display any difference between 

deletions and all occurrences. As for the odds ratios, right-hand vowel was the reference 

category, consonant has an odds ratio of about 1.0, and right-hand pause forms the aberration 

with an odds ratio of about 2.5. The consonant and vowel features have low importances, but 
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the pause feature has a notable importance of about 0.01. While the histogram shows no clear 

difference, the odds ratio for the pause feature would lead us to believe that the presence of 

pauses to the right of the word leads to more deletion. Here, too, there are multiple possible 

explanations. Firstly, according to Van de Velde and Van Hout (2003), the focus effect could 

play a role in how speakers realize word-final n before pauses. However, while this effect exists 

in spoken language, it is not likely to be at play here. In addition to the fact that Eisenstein 

(2015) reports that phonological factors play a smaller role on Twitter, we have already 

established that region likely does not influence the use of n-deletion on Twitter. Therefore, it 

seems unlikely that another aspect of spoken language, namely the importance of right-hand 

context, plays a part here. There is an alternative explanation that seems more likely. Because 

emojis following occurrences were also categorized as pauses, and the odds ratios for the emoji 

count feature (to be discussed in more detail later in this section), it could also be that the right-

hand pause feature in essence simply captures the same type of relationship. This is further 

supported by the fact that there does not seem to be a major difference in how right-hand vowels 

and consonants are connected to deletion behavior—if factors relating to spoken language were 

at play here, one would expect them to behave similarly to how they behave in speech as well.  

The next feature is the standard trigram count. While it is somewhat difficult to make 

out at first glance, the histogram does show some differences between all occurrences and only 

deletions. Most importantly, the values for the deletions only are more concentrated at the low 

end of the range of values in terms of frequency. The odds ratios, which approximate 0.06, also 

indicate that it predicts less deletion as it increases in value. Strikingly, the importance of the 

feature in the random forest models is very high, measuring at about 0.37 for the first model. 

This relationship is interpretable as showing that if a specific context (including the word itself) 

occurs more often, that means that word is less likely to be deleted. There is no straightforward 

explanation of this relationship, but there is a possibility. Seeing as a higher value of 

word_count indicates somewhat more deletion (discussed in detail below), the frequency of 

occurrence of the word itself cannot play a role here. Instead, the key must lie in the context. If 

we reverse how we characterized the relationship into the insight that rare contexts are more 

likely to be deleted than common ones, we reach a possibility: companies and bots are known 

to often tweet the same sentences many times. These accounts are less likely to exhibit non-

standard language use, which is especially true for company accounts. Therefore, a possible 

explanation for that the fact that a higher standard trigram count means less deletion is that the 

results are skewed by company and bot accounts. 

The feature dealing with the partial trigram account exhibits a similar relationship to n-

deletion. Inspecting the histogram reveals that values on the lower end are more common when 

looking at just the deletions. The odds ratio is about 0.53, which is lower than for the standard 

trigram count, but this still indicates less deletion as the partial trigram count increases. The 

importance for this feature is high as well, at about 0.15. It would make sense to interpret this 

feature in a similar way to the standard trigram count, as we explained the relationship of that 

feature to n-deletion as being mostly dependent on its context and not on the word itself, which 

is exactly what the partial trigram count is supposed to capture. Here, too, then, the decrease of 

the likelihood of n-deletion occurring as the value of the feature increases could possibly be 

due to the influence of bot and company accounts. 

The next feature to be examined is standard_trigram_frequency. The histogram reveals 

that, when taking into account deletions only, the occurrences seem to be more clustered around 

the low end of the range of the standard trigram frequency. This implies less n-deletion as the 

value of the feature increases. The odds ratios confirm this image, being around 0.09. The 

importance is considerable, just as with the other two trigram features, at 0.15. Here, too, 

interpreting this relationship is not a simple task. As we already know, for both the feature 

concerning standard trigram count and the feature concerning partial trigram count, the 
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likelihood of a deletion occurring decreases as the value of these features increases. The 

standard trigram frequency measures something different, however—namely, how likely a 

word is to occur in its specific trigram-based context. If a word almost always occurs in a certain 

trigram—which would lead to a high value for this feature and therefore likely less deletion—

its context is probably considerably rare. As we know a higher word frequency leads to a higher 

rate of deletion, it is also to be expected that words that are rarer exhibit less deletion. In that 

sense, it is likely that word_frequency and standard_trigram_frequency are inversely related, 

which would explain the standard trigram frequency’s relationship with n-deletion in our 

models. 

The feature that is concerned with whether a word would occur with a trema in standard 

orthography is perhaps the most difficult to interpret. In its histogram, trema_yn = 1 is so rare 

it is not visible. Furthermore, the odds ratio for this feature in all three models is 0.000. This is 

in all likelihood an effect of its rarity, as this implies trema_yn = 1 never occurs with deletion. 

Therefore, the presence of a trema in standard orthography for a certain occurrence is so rare 

that this feature cannot be interpreted. 

The next feature is the number of emojis in the tweet in which the occurrence was found. 

The histogram does not display any immediately noticeable difference between all occurrences 

and deletions only. However, on closer inspection, it seems that there seems to be a higher 

frequency of occurrences for deletions at the higher end of the range of the emoji count. It is 

important to note that we are dealing with the values of the feature after being subjected to a 

logarithm. Therefore, higher values are likely to have a larger effect than what the histogram 

might indicate. The odds ratios of this feature are also extremely large, measuring around 

1.6×108. Its importance for the random forest models measures at a low 0.0005. In any case, 

however, a higher emoji count is certainly predictive of more n-deletions occurring. There are 

multiple possible explanations for this that do not necessarily preclude one another. Firstly, 

emojis have a distinctly expressive function. It is certainly possible for n-deletion in the case of 

Twitter to carry a similar meaning. Seeing as n-deletion is likely not firmly tied to n-deletion in 

spoken language, this different function could potentially play an important role. Furthermore, 

the emoji count could also be tied to the age of the speakers. As has already been established, 

an age effect for the use of n-deletion on Twitter is a real possibility, and it stands to reason that 

something similar is the case for the use of emojis, with younger users employing them more 

often. Notably, the odds ratio for this feature decreases to about 15, a very large reduction. This 

supports the effect of the feature being user-related. Furthermore, it could also be that the use 

of emojis is somehow correlated with non-standard language use in general. However, which 

of these possibilities is the most influential factor in the relationship between the emoji count 

and n-deletion is not apparent. 

The next feature is the number of non-standard words counted in the tweet in which the 

deletion occurred. It is very similar to the previously discussed feature in that its histogram also 

shows a slightly higher relative frequency of deletions in higher values, while also being a 

logarithmic plot. Here, too, then, the histogram seems to point toward a positive correlation 

between non-standard word count and n-deletion. This is confirmed by a similarly high odds 

ratio of about 1.6×106. Its importance is relatively higher than the emoji count, however, at 

about 0.05. The relationship between the count of non-standard words and n-deletion seems 

rather obvious: as n-deletion in written language is itself an example of non-standard language 

use, it would make sense that it is correlated with other forms of non-standard language use. 

The only puzzling fact is that the feature has a higher odds ratio (around 1.5×108) for the second 

logistic regression. Why the inclusion of user deletion leads to a higher odds ratio for this 

feature remains inexplicable for now. 

For the feature dealing with the number of standard words in the tweet in which an 

occurrence was found, the histogram exhibits a clear difference between all occurrences and 
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deletions only. Relative to all occurrences, the deletions taper off at a much lower value of 

tweet_standard_count. At approximately 0.003, the odds ratio reveals practically the same 

information. It is not surprising that this feature seems to be inversely related to the non-

standard count in terms of their effect on n-deletion: just as more non-standard forms predict 

more n-deletion (which is itself a form of non-standard language use), it is logical that an 

increase in standard language use would predict a lower incidence of n-deletion. 

The results for the features relating to the user’s predicted gender are the next to be 

examined. As for the histogram, it is difficult to detect a difference between the plot of all 

occurrences and the plot of deletions only. The odds ratios, however, do reveal a contrast. Taken 

over the whole, the features predicting the user to be male led to lower odds ratios than the 

features predicting the user to be female. Notable is that the “maybe” categories both also scored 

higher than the “certain” categories. All features exhibited a relatively low importance score in 

the random forest models. An exact explanation for why the “maybe” categories led to more n-

deletion is not certain, but it might be related to how Blonk (2021) categorized uncertain cases. 

In any case, these results imply that men are less likely to exhibit n-deletion on Twitter than 

women. While it is likely that the n-deletion patterns that have shown up in our Twitter data do 

not directly relate to n-deletion in spoken language, these results line up with what Van de 

Velde and Van Hout (2003) reported about n-deletion behavior of speakers from the 

Netherlands in particular. Seeing as users from the Netherlands are more heavily represented in 

our data than those from Flanders, this connection holds water. Hilte (2019) provides an 

interesting insight into the use of non-standard language online by adolescents in terms of a 

gendered difference: she reports that while male users tend to use more “traditional” non-

standard language forms online, the female users use more expressive online-specific non-

standard language. This lines up with the relationship between n-deletion and the incidence of 

emojis (the expressive function) and the idea that n-deletion online constitutes something 

separate from n-deletion in spoken language. 

The next feature is the user’s number of tweets. An investigation of the histogram 

indicates that, when only taking deletions into account, the plot is more heavily slanted toward 

the lower values—i.e., toward fewer tweets. The odds ratio, which hovers around 0.08, also 

indicates that a higher number of tweets for a user means less deletion. Interestingly, for the 

second regression, the odds ratio is much closer to 1, at 0.78. It is likely that the user’s deletion 

score took on most of the explanatory power of this feature, as both are user-specific. The 

importance is also relatively notable at 0.02. The reasons for this relationship between tweet 

count and n-deletion could once again be related to company and bot accounts. These accounts, 

which are much less likely to n-delete, are also much more likely to tweet in general. While a 

possible effect of age could also be possible here, with Van Halteren (2021) reporting that many 

young Dutch people have left Twitter around 2014, and who therefore likely have a lower tweet 

count, the inclusion of the year in which the tweet was published should already account for 

this effect. Therefore, the influence of company and bot accounts remains the most likely factor 

here. 

The other feature that deals with the number of a user’s tweets, namely 

user_tweetsperday, displays the opposite relation to n-deletion. An inspection of the histogram 

reveals that for the plot with only deletions, there are relatively more values in the middle-to-

high range. The odds ratio confirms this relationship at a staggering value of 3×1010. Notably 

though, in the second logistic regression model, the odds ratio is only about 2. The importance 

scores were somewhat notable but not particularly high, ranging from 0.005 to 0.01 between 

the models. These results are interesting in that they are positively correlated with n-deletion, 

while the raw number of tweets was negatively correlated. The key to explaining this difference 

probably lies in how tweets per day were calculated—this feature takes into account only the 

window of time in which the user was active. Therefore, a user who tweeted intensely in during 
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a short window of time will probably have a high tweets per day score but a low total tweet 

count. That group could be youth users, who in large part left Twitter around 2015. However, 

as the year is also included as a factor, the model should have accounted for that effect. Looking 

at it from the opposite direction, however, is also useful: a user that tweets relatively often over 

a longer period of time does not delete as much. Again, company accounts could play a role 

here, as they are much less likely to use non-standard language and are highly active over long 

periods of time. 

The next feature is the count of the standard version of the word in our corpus. Its 

histogram reveals no clear difference between all occurrences and deletions only. Some peaks 

occur in different locations on the x-axis, but there is no general pattern of difference between 

the two. The odds show that it is slightly predictive of more deletion at 1.25. Its importance 

ranges from 0.005 to 0.01. This means that words that are rarer are generally also n-deleted less, 

and that more common words are generally n-deleted more often. There are multiple possible 

reasons for this effect. Firstly, perhaps non-deleters, who tend to use more standard language, 

have also enjoyed a higher level of education, and, as a result, have a wider vocabulary. Those 

rare items are then also less frequently deleted because of their users. Secondly, it is possible 

that certain words are rare enough that they are never deleted at all. For those words, which 

have a very low frequency, the model would predict deletion to be very unlikely, causing the 

effect for word frequency. These two possibilities do not exclude one another, and there is no 

reason to believe only one of them is the cause of the effect. 

We will now direct our attention to the features dealing with the year in which the tweet 

in which the occurrence was found was published. The histogram does not show any significant 

difference between all occurrences and deletions only. It does show the highest number of 

occurrences in general occurred between 2013 and 2016. The odds, however, are much higher 

for the earlier years (2010-2014), with a peak at 2011 and 2012 with an odds ratio of about 15. 

This decreases to about 5 for 2014 and 2 in 2015, finally going below 1 in 2018. 2019 was the 

reference category. The importances all range from about 0.005 to about 0.01, except for 2010. 

This is likely due to there being a low number of samples for that year in particular, as is visible 

in the histogram. If we direct our attention to the odds for the purposes of interpretation, we 

could also make a connection to young people leaving Twitter en masse around 2014, as this 

year and the decline in the likelihood of deletion line up. This is further supported by the fact 

that the total number of occurrences decreases after this year as well, pointing at a general 

decrease in activity on Twitter. As the number of tweets decreases, so does deletion. However, 

as there is no way to get the actual ages of the users in our dataset, the veracity of this 

explanation will remain unconfirmed for now. 

The interpretation of the user’s deletion score is relatively straightforward, as we have 

already discussed the second model specifically. Its histogram shows many more scores on the 

higher end in the case of deletions only, and its odds ratio is also astronomical at approximately 

4.8×1010. Its importance in the second random forest model is also very high at 0.34. The 

relationship here is clear, as a higher presence of deletions will naturally lead to a higher 

likelihood of deletions. One observation one can make, however, is that many deletions’ users 

delete very often, as there is a higher frequency of values as the value of user_deletion increases 

when compared to the histogram with all occurrences. Inspection of the data shows that those 

users indeed delete very often, even in cases in which they have a very high total number of 

tweets. This indicates that word-final n-deletion is a persistent component of the language use 

of a large section of those who employ word-final n-deletion on Twitter. Considering deletions 

only, for the users closer to a score of 0.0 for user_deletion, in many cases their score 

approached 0.0 but never quite reached it, as the presence of one deletion would automatically 

indicate a score higher than 0.0. Those cases represent users that use word-final n-deletion very 
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sparingly. Therefore, while for one group of users word-final n-deletion seems to be a persistent 

part of their online writing, for another its use is limited only to certain instances. 

Lastly, the user’s smoothed score will be subjected to interpretation. The histogram does 

not show much of a difference between deletions only and all occurrences. The only difference 

is that there seem to be slightly more deletions at the higher end of the histogram, but not by 

much. If the smoothed score was truly predictive of the user’s deletion behavior, one would 

expect to see more of a difference. The odds show that the smoothed score based on the 

regression predictions is slightly predictive of n-deletion at approximately 1.3, and the 

smoothed scores generated based on the random forest predictions exhibit a rather low 

importance score of about 0.0002. As discussed before when examining the third regression 

and random forest models, this effectively shows that the smoothed scores possess no major 

explanatory power anymore when compared to the raw user deletion scores. In other words, 

taking geography into account through the smoothing procedure, the link between the scores 

and n-deletion is effectively lost. This points to the smoothing algorithm essentially amplifying 

noise in the data to construct the regional groupings visible in the generated maps. 

 

4.4 Answering the research questions and hypotheses 

Now that all of the results have been examined, we have stable footing to answer the research 

questions and evaluate their concomitant hypotheses. The first research question was: what can 

the examination of Twitter data tell us about the degree to which the occurrence of word-final 

n-deletion is distributed across the Netherlands and Flanders, and to what degree do internal 

and external linguistic factors influence its prevalence? With regards to the first section of that 

question, namely the part dealing with using Twitter to investigate the geographical distribution 

of n-deletion, we hypothesized that results would indicate that n-deletion is most prevalent in 

the North and North-East of the Netherlands and the westernmost third of Flanders and that it 

is likely that online language use (like n-deletion) will mirror n-deletion in spoken language. 

Within the context of this study, this hypothesis must be discarded. The results show no 

connection between word-final n-deletion in spoken language and word-final n-deletion on 

Twitter in terms of geography. While it is possible that our method was not able to grasp that 

connection, previous studies like Van Halteren et al. (2018) have shown that methods very 

similar to ours have been able to capture other linguistic phenomena. Here, however, the 

generated maps seem to display nothing more than amplified noise, and the smoothed scores—

which represent the geographical dimension of word-final n-deletion—do not notably improve 

model predictions, unlike the raw user deletion scores. Therefore, the examination of Twitter 

data was not able to tell us anything about the degree to which word-final n-deletion in spoken 

Dutch is distributed geographically. As for online n-deletion, the results tell us that it is likely 

not regionally bound. 

The second hypothesis dealt with the remaining section of the first research question. It 

conjectured that other non-geographical factors that influence n-deletion in spoken language 

also influence it in the cases of our Twitter dataset. Firstly, according to our results, n-deletion 

on Twitter is least likely for singular nouns, followed by plural nouns, singular verbs, and spatial 

adjectives and prepositions. The position of plural verbs remains uncertain. According to the 

literature, monomorphemic verbs (equivalent to singular verbs in our study) are deleted least, 

then monomorphemic nouns (equivalent to singular nouns in our study), followed by 

polymorphemic finite verbs, spatial adjectives and prepositions, and finally polymorphemic 

infinitives (Van de Velde & Van Hout, 2003). While some similarities exist between the 

literature and our study, the orders differ from each other to a large degree. Secondly, our study 

reveals that n-deletion on Twitter is not influenced by whether they are followed by a vowel or 

a consonant, but it only occurs more if it is followed by a pause. It should be noted, however, 

that this was likely an effect of categorizing emojis as pauses. Therefore, it is likely that right-
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hand context does not influence the occurrence of n-deletion on Twitter at all. On the contrary, 

in spoken language, n-deletion is certainly influenced by right-hand context. While differences 

exist between speakers, generally there is more deletion before consonants than vowels, and 

speakers are more likely to use their preferred pronunciation before pauses (Van Oss & 

Gussenhoven, 1984; Van de Velde, 1996; Van de Velde & Van Hout 1998; 2003). Thirdly, 

there seemed to be a higher degree of congruence between the influence of gender on n-deletion 

on Twitter and in spoken language. Generally, on Twitter, n-deletion seemed most likely for 

women and the least likely for men. According to Van de Velde and Van Hout, (2003), Dutch 

women delete more often than Dutch men, while the opposite is true for Flemish speakers. 

Considering the fact that the majority of our users have their location in the Netherlands, it 

would make sense for the Twitter data to match. However, there is also an alternative 

explanation—the exhibited gender pattern also matches with Hilte’s (2019) study that found 

that male adolescents tend to use more traditional forms of non-standard language while female 

adolescents tend to use more expressive and online-specific forms. This expressivity also ties 

into n-deletion’s frequent occurrence in tweets with emojis. Lastly, time was also studied as a 

factor. While older studies hypothesized that n-deletion was a change in progress (Van Oss & 

Gussenhoven, 1984), most relatively recent studies report this is not likely (Van de Velde, 

1996). While our study found some change in the prevalence of n-deletion on Twitter, this is 

more likely linked to a change in social dynamics on Twitter than due to any ongoing language 

change in society. Considering all of these features, it seems that n-deletion in spoken language 

and on Twitter exhibit notable discrepancies, and it is likely that n-deletion on Twitter is not a 

projection of spoken language to online spaces but rather a separate phenomenon, similar to the 

expressive online language use as described by Hilte (2019). 

The second research question was: to what degree is the use of Twitter data useful in 

mapping individual phonological features, especially in terms of the quality of the results? We 

hypothesized that Twitter as a data source would prove fruitful in the case of word-final n-

deletion in that the maps generated on the basis of the data would likely match with existing 

knowledge of the distribution of word-final n-deletion to a considerable degree. In our case, 

this turned out not to be true. It is unlikely that the generated maps represent n-deletion as a 

phonological feature in spoken Dutch. Instead, it seems that the n-deletion that occurs in Dutch 

tweets constitutes a separate phenomenon with a distinctively expressive function. While our 

approach, therefore, did not prove useful in mapping phonological features, it did prove useful 

in studying online n-deletion through the features submitted to the models. While this study’s 

original aim was not met, it has opened the door toward further study of this phenomenon. 

 

4.5 Limitations 

While it has yielded some intriguing results, this study was not without its limitations. Firstly, 

the selected phenomenon—namely, word-final n-deletion in Dutch—proved to be rather 

complex, with a large number of different factors influencing its occurrence. Future studies 

would do wisely in selecting a phenomenon whose influencing factors are already clearly 

established in the literature in case they are mostly focused on ascertaining the effectiveness of 

the use of Twitter data in studying spoken language phenomena. Otherwise, the perceived 

effectiveness of the data source might be influenced by the unclear nature of the factors that 

influence the use of the feature. Secondly, our data source needs to be discussed. The only 

limitation here is that we relied, in part, on an as-of-yet unpublished corpus, namely TwiNT. 

While it did prove to be a very useful data source, it is still inaccessible to other researchers. In 

the spirit of openness and reproducibility, we hope that this source will be released sometime 

in the near future. Thirdly, our set of mechanisms to detect cases of n-deletion or realization 

could have been more fine-tuned. An inspection of our data reveals that, even though it does 

not constitute a form of n-deletion but a non-standard lexeme, the word fissa (“party”) was not 
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excluded from our set of deletions. This issue could have been avoided by a more thorough 

manual examination of the data. Another option would have been to select a limited number of 

n-deleted words and their standard forms and to search the corpus specifically for those, but 

this would have likely severely limited the size and scope of our dataset. Therefore, attempting 

to include as many different n-deleted and realized words remains the most desirable. 

As far as the selection of the features themselves is concerned, it is true that some of the 

features indeed displayed a very high predictive ability. However, different choices could have 

still led to more accurate predictions. Firstly, the features that dealt with the occurrence of 

emojis, standard words, and non-standard words all represented the absolute number of 

incidences and not the proportion of words in the tweet that belonged to that category. A relative 

approach instead of an absolute one could have potentially further increased their already high 

predictive ability. Secondly, the non-standard count also included the n-deletions themselves. 

Obviously, this constitutes an information leak. However, this was missed during the data 

collection. Excluding the deletions and other occurrences from the (non-)standard counts would 

have been wiser in terms of preventing information leaks. Thirdly, the emoji count feature only 

included emoji characters and not so-called emoticons, like :-D. Seeing as they have very 

similar functions, adding emoticons to the emoji count would have made sense. On another 

note, more features could have also been added, most notably the length of the tweet. While 

there it is not likely that there is a connection between n-deletion and tweet length, there may 

very well be one anyway. Lastly, in addition to the continuous features, the categorical features 

were also scaled and centered. While this likely did not have an effect on this model, it does 

constitute an unnecessary transformation. As increasing the number of transformations of the 

data increases the risk of accidentally altering the data in some unexpected or otherwise 

undesirable way, this should have been avoided. 

The modeling procedure was not without its issues either. Firstly, only a logistic 

regression and a random forest classifier were employed. Of course, there are many more types 

of prediction models that could have yielded more accurate predictions. While the scope of the 

study forced us to focus on the most promising model types, the inclusion of more models could 

have yielded more insightful results. Furthermore, only downsized data was used for the 

training phase of the models. While this was a useful procedure because of the rarity of n-

deletion in our dataset, downsizing is not the only option to tackle this issue, as other types of 

models are more adept at handling this issue. The best way to handle imbalanced data, however, 

depends greatly on the specifics of the study (for a survey and discussion on this issue, see Kaur 

et al., 2020). In addition, the feature importances of the random forest results, while somewhat 

useful in determining which features had a very large influence on the predictions, were less 

useful for interpreting the features with a relatively small impact. This was also adversely 

affected by the high degree of variances in these features between folds. This, again, means 

other models could also have been considered that would have avoided the issue of very small 

importances. Something similar was the case with the odds ratios for the most predictive 

features in the logistic regression models, which in some cases approached dozens of billions 

in size. Because these odds ratios were so unexpectedly massive, there is no saying how these 

features have affected the features with lower odds ratios. Running instances of the models with 

the outliers in terms of importance and odds ratios removed could have provided a clearer image 

of the features with lower importance and odds scores. Lastly, one possible issue is that the 

models were provided with a large number of different features. While it is desirable to take as 

many factors into account as possible, it is likely that entering fewer features would have made 

the interpretation of those remaining features more straightforward and less error-prone. 

Notwithstanding these issues, the models that we did choose to employ still yielded very useful 

information. 
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A different approach to the mapping of the results could also have been taken. Firstly, 

we used a k-nearest-neighbors smoothing approach. This brings with it the possibility that more 

densely populated areas pull in less densely populated areas into their clusters, perhaps 

disproportionately so. The only way to figure this out, however, is to incorporate other 

clustering methods to see if there are any noticeable differences between the approaches. 

Secondly, in this study, each user was mapped as a separate point. This was useful for showing 

the density of the users, but we could have also employed a strategy like the aggregation of 

users by either equally sized rectangles on the map or by administrative division (like 

municipalities). However, considering that previous studies like Van Halteren et al. (2018) have 

employed a similar approach successfully, whether those other approaches would have proven 

useful remains to be seen. 

All of the suggestions made above are recommendations for future studies to take into 

account. We also intend to explore word-final n-deletion on Twitter and our data further and 

will focus on tackling this study’s limitations. This includes attempting to use different types 

of models, ameliorating feature-specific issues, and being more selective with those features. 

Beyond that, we also recommend that future studies delve into other phonological features, 

possibly in different languages as well, to further evaluate the use of Twitter-sourced data in 

sociolinguistic research. This study also showed a promising influence of gender specifically 

on online language use, and sociolinguistic studies beyond those that focus on mapping 

particular features would do well to attempt to take this factor into account. 
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5. Conclusion 

The goal of this study was to map the occurrence of word-final n-deletion in tweets from the 

Netherlands and Flanders while taking into consideration as many factors as possible that could 

influence its rate of occurrence. The main research guiding the study was: what can the 

examination of Twitter data tell us about the degree to which the occurrence of word-final n-

deletion is distributed across the Netherlands and Flanders, and to what degree do internal and 

external linguistic factors influence its prevalence? We hypothesized that n-deletion on Twitter 

would mirror n-deletion in spoken Dutch in that it would be most prevalent in the North and 

North-East of the Netherlands and the westernmost third of Flanders. This hypothesis could not 

be confirmed. While this could possibly be due to the methods employed, it is likely that n-

deletion in spoken Dutch and n-deletion on Twitter constitute separate phenomena, with the 

latter not being regionally bound and having a distinctive expressive function. We also 

hypothesized that non-geographical factors that influence n-deletion in spoken language would 

also influence n-deletion on Twitter in the same way. However, as with the answer to the first 

hypothesis, the results indicate that n-deletion in spoken language and on Twitter are mostly 

influenced differently by the same factors. The secondary research question was: to what degree 

is the use of Twitter data useful in mapping individual phonological features, especially in terms 

of the quality of the results? Here, our hypothesis was that the use of Twitter data would prove 

fruitful in the mapping of phonological features (word-final n-deletion in our case). While the 

results showed that specifically mapping these features was not able to get at the distribution of 

n-deletion in spoken Dutch, as this likely constitutes a separate phenomenon. At the same time, 

the results did prove to be useful for the study of online n-deletion, which includes the fact that 

it is likely not regionally bound. However, they were also unusual in that the odds for some of 

the features included were astronomically high, something which could not be explained.  

Future studies delving into word-final n-deletion and similar ones should devote special 

attention to feature selection and the modeling and mapping procedures. Nonetheless, this study 

constitutes the first report of n-deletion as an expressive online phenomenon and lays the 

foundation for future studies on this topic. 
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Appendix 1: Plots of feature odds 

This appendix contains odds ratio plots for all three logistic regression models, created using 

the sjPlot package (Lüdecke, 2022) in the R programming language (R Core Team, 2020).  

Figure 1: Odds plot for the first model instance with all features included. The features 

user_tweetsperday and deleted_proportion had odds that were too large to be displayed. 
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Figure 2: Odds plot for the first model instance with the features with the highest odds 

removed. 
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Figure 3: Odds plot for the second model instance with all features included. The features 

tweet_nonstandard_count, user_deletion and deletion_proportion had odds that were too 

large to be displayed. 
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Figure 4: Odds plot for the second model instance with the features with the highest odds 

removed. 
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Figure 5: Odds plot for the third model instance with all features included. The features 

tweet_nonstandard_count and deletion_proportion had odds that were too large to be 

displayed. 
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Figure 6: Odds plot for the third model instance with the features with the highest odds 

removed. 
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Appendix 2: Results per model feature 

This appendix contains the results of the study per feature, including odds ratios, importances, 

and histogram plots. Each feature has one plot that contains two overlapping histograms: the 

first histogram, shaded blue, concerns the frequency of the values for a certain feature in the 

entire set of occurrences (i.e., deletions and non-deletions combined); the second, shaded in 

orange, concerns the frequency of the values for a certain feature in only the set of deletions. 

Because the latter histogram is overlaid on the former, the choice was made to make the orange 

histogram partly transparent. In places that the bars of the two histograms overlaps, this results 

in a brownish color. It should be noted that the two histograms make use of the same x-scale 

but differ in their y-scale: the y-scale for the first (blue) histogram can be found to the lefthand 

side of the plot, and the y-scale for the second (orange) histogram can be found to the righthand 

side of the plot. In order more clearly differentiate the two histograms from each other, the 

upper limit of the y-scale for the deletion histograms were increased proportionally by one third 

relative to its default value, meaning the bars for the orange deletion histograms are visually (in 

most cases) lower than those for the blue histograms. Lastly, for some plots, additional 

transformations were carried out (e.g., a logarithmic scale). In those cases, how the plot was 

altered is stated explicitly directly below the image. 
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CELEX_A 

Statistics for CELEX_A 

Metric Log odds 

(regression) 

Coef. of var. 

(regression) 

Odds ratio 

(regression) 

Importance 

(ran. for.) 

Coef of v. 

(ran. for.) Instance 

1 0.79499 0.00652 2.2144 0.000911 0.92998 

2 0.74430 0.01056 2.1050 0.000421 0.85289 

3 0.79462 0.00656 2.2136 0.000659 0.69219 

 

Histogram of CELEX_A 
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CELEX_N 

Statistics for CELEX_N 

Metric Log odds 

(regression) 

Coef. of var. 

(regression) 

Odds ratio 

(regression) 

Importance 

(ran. for.) 

Coef of v. 

(ran. for.) Instance 

1 0.166623 0.02584 1.1813 0.00019 0.69714 

2 0.02461 0.27976 1.0249 7.81×10-5 0.46342 

3 0.16739 0.0257 1.1822 0.000261 0.9712 

 

Histogram of CELEX_N 
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CELEX_M 

Statistics for CELEX_M 

Metric Log odds 

(regression) 

Coef. of var. 

(regression) 

Odds ratio 

(regression) 

Importance 

(ran. for.) 

Coef of v. 

(ran. for.) Instance 

1 0.083686 0.02281 1.0873 0.00019 0.63986 

2 0.08844 0.02407 1.0925 7.81×10-5 0.41376 

3 0.08370 0.02273 1.0873 0.000261 0.5425 

 

Histogram of CELEX_M 
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CELEX_V 

Statistics for CELEX_V 

Metric Log odds 

(regression) 

Coef. of var. 

(regression) 

Odds ratio 

(regression) 

Importance 

(ran. for.) 

Coef of v. 

(ran. for.) Instance 

1 0.639289 0.01538 1.8951 7.48×10-5 0.5968 

2 0.80516 0.01488 2.2371 6.56×10-5 0.44174 

3 0.63900 0.01523 1.8946 5.96×10-5 0.70537 

 

Histogram of CELEX_V 
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CELEX_W 

Statistics for CELEX_W 

Metric Log odds 

(regression) 

Coef. of var. 

(regression) 

Odds ratio 

(regression) 

Importance 

(ran. for.) 

Coef of v. 

(ran. for.) Instance 

1 0.672452 0.00438 1.9590 0.001094 0.48377 

2 0.46247 0.00672 1.5880 0.000831 0.6917 

3 0.67243 0.00434 1.9590 0.000733 0.39187 

 

Histogram of CELEX_W 
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deleted_proportion 

Statistics for deleted_proportion 

Metric Log odds 

(regression) 

Coef. of var. 

(regression) 

Odds ratio 

(regression) 

Importance 

(ran. for.) 

Coef of v. 

(ran. for.) Instance 

1 25.22862 0.01027 9.05×1010 0.117215 0.12346 

2 20.46463 0.01161 7.72×108 0.089307 0.31199 

3 25.23111 0.01024 9.07×1010 0.113801 0.20004 

 

Histogram of deleted_proportion 
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hour 

Statistics for hour_0 

Metric Log odds 

(regression) 

Coef. of var. 

(regression) 

Odds ratio 

(regression) 

Importance 

(ran. for.) 

Coef of v. 

(ran. for.) Instance 

1 0.107739 0.0565 1.1138 4.47×10-5 0.80704 

2 0.04896 0.15704 1.0502 9.27×10-5 2.231 

3 0.10772 0.05674 1.1137 9.38×10-5 107389 

 

Statistics for hour_1 

Metric Log odds 

(regression) 

Coef. of var. 

(regression) 

Odds ratio 

(regression) 

Importance 

(ran. for.) 

Coef of v. 

(ran. for.) Instance 

1 0.260906 0.03566 1.2981 0.000227 1.22007 

2 0.11615 0.04688 1.1232 9.56×10-5 1.60533 

3 0.26088 0.03615 1.2981 0.000102 0.71542 

 

Statistics for hour_2 

Metric Log odds 

(regression) 

Coef. of var. 

(regression) 

Odds ratio 

(regression) 

Importance 

(ran. for.) 

Coef of v. 

(ran. for.) Instance 

1 0.367222 0.02456 1.4437 3.58×10-5 0.6817 

2 0.15248 0.05012 1.1647 1.54×10-5 0.70054 

3 0.36733 0.02476 1.4439 7.11×10-5 117472 

 

Statistics for hour_3 

Metric Log odds 

(regression) 

Coef. of var. 

(regression) 

Odds ratio 

(regression) 

Importance 

(ran. for.) 

Coef of v. 

(ran. for.) Instance 

1 0.4126 0.02022 1.5107 1.06×10-5 0.82919 

2 0.19222 0.05525 1.2119 1.32×10-5 1.30171 

3 0.41236 0.02062 1.5104 3.46×10-5 0.91614 

 

Statistics for hour_4 

Metric Log odds 

(regression) 

Coef. of var. 

(regression) 

Odds ratio 

(regression) 

Importance 

(ran. for.) 

Coef of v. 

(ran. for.) Instance 

1 0.299511 0.04425 1.3492 4.73×10-6 0.70188 

2 0.09961 0.11616 1.1047 2.76×10-6 0.881 

3 0.29922 0.04448 1.3488 5.34×10-6 0.65606 

 

Statistics for hour_5 

Metric Log odds 

(regression) 

Coef. of var. 

(regression) 

Odds ratio 

(regression) 

Importance 

(ran. for.) 

Coef of v. 

(ran. for.) Instance 

1 0.054618 0.25457 1.0561 3.27×10-6 0.83649 

2 -0.02438 -0.55802 0.9759 2.27×10-6 0.46454 

3 0.05558 0.2542 1.0572 2.32×10-6 0.56512 
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Statistics for hour_6 

Metric Log odds 

(regression) 

Coef. of var. 

(regression) 

Odds ratio 

(regression) 

Importance 

(ran. for.) 

Coef of v. 

(ran. for.) Instance 

1 -0.17454 -0.0701 0.8398 2.70×10-6 0.84725 

2 -0.09238 -0.06246 0.9118 2.71×10-6 0.47914 

3 -0.17491 -0.06998 0.8395 2.12×10-6 0.47338 

 

Statistics for hour_7 

Metric Log odds 

(regression) 

Coef. of var. 

(regression) 

Odds ratio 

(regression) 

Importance 

(ran. for.) 

Coef of v. 

(ran. for.) Instance 

1 -0.11464 -0.05576 0.8917 7.93×10-6 0.46775 

2 -0.01861 -0.28795 0.9816 4.24×10-6 0.55807 

3 -0.11498 -0.05519 0.8914 7.50×10-6 0.67629 

 

Statistics for hour_8 

Metric Log odds 

(regression) 

Coef. of var. 

(regression) 

Odds ratio 

(regression) 

Importance 

(ran. for.) 

Coef of v. 

(ran. for.) Instance 

1 -0.41077 -0.01262 0.6631 1.01×10-5 0.8773 

2 -0.24403 -0.00911 0.7835 5.19×10-6 0.72016 

3 -0.41084 -0.01258 0.6631 9.76×10-6 0.55989 

 

Statistics for hour_9 

Metric Log odds 

(regression) 

Coef. of var. 

(regression) 

Odds ratio 

(regression) 

Importance 

(ran. for.) 

Coef of v. 

(ran. for.) Instance 

1 -0.52654 -0.00833 0.5906 6.87×10-5 1.40294 

2 -0.33334 -0.00912 0.7165 1.99×10-5 0.81447 

3 -0.52649 -0.00836 0.5907 4.52×10-5 0.82553 

 

Statistics for hour_10 

Metric Log odds 

(regression) 

Coef. of var. 

(regression) 

Odds ratio 

(regression) 

Importance 

(ran. for.) 

Coef of v. 

(ran. for.) Instance 

1 -0.45506 -0.0064 0.6344 1.07×10-5 0.70062 

2 -0.30295 -0.00715 0.7386 1.45×10-5 1.76574 

3 -0.45507 -0.00646 0.6344 3.41×10-5 1.08788 

 

Statistics for hour_11 

Metric Log odds 

(regression) 

Coef. of var. 

(regression) 

Odds ratio 

(regression) 

Importance 

(ran. for.) 

Coef of v. 

(ran. for.) Instance 

1 -0.40407 -0.00826 0.6676 6.24×10-6 0.60161 

2 -0.26967 -0.01398 0.7636 5.46×10-6 0.57007 

3 -0.40398 -0.00824 0.6677 7.14×10-6 0.86485 
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Statistics for hour_12 

Metric Log odds 

(regression) 

Coef. of var. 

(regression) 

Odds ratio 

(regression) 

Importance 

(ran. for.) 

Coef of v. 

(ran. for.) Instance 

1 -0.3451 -0.00801 0.7081 4.17×10-6 0.47876 

2 -0.23843 -0.02293 0.7879 2.72×10-6 0.63739 

3 -0.34508 -0.00817 0.7082 3.43×10-6 0.32193 

 

Statistics for hour_13 

Metric Log odds 

(regression) 

Coef. of var. 

(regression) 

Odds ratio 

(regression) 

Importance 

(ran. for.) 

Coef of v. 

(ran. for.) Instance 

1 -0.34689 -0.01444 0.7069 4.25×10-6 0.43971 

2 -0.22335 -0.01914 0.7998 3.10×10-6 0.48822 

3 -0.34706 -0.01466 0.7068 2.98×10-6 0.52955 

 

Statistics for hour_14 

Metric Log odds 

(regression) 

Coef. of var. 

(regression) 

Odds ratio 

(regression) 

Importance 

(ran. for.) 

Coef of v. 

(ran. for.) Instance 

1 -0.35391 -0.00814 0.7019 5.53×10-6 0.47202 

2 -0.22479 -0.00891 0.7987 3.11×10-6 0.51541 

3 -0.35400 -0.0083 0.7019 3.20×10-6 0.59415 

 

Statistics for hour_15 

Metric Log odds 

(regression) 

Coef. of var. 

(regression) 

Odds ratio 

(regression) 

Importance 

(ran. for.) 

Coef of v. 

(ran. for.) Instance 

1 -0.32648 -0.01007 0.7215 4.62×10-6 0.39003 

2 -0.20433 -0.01699 0.8152 2.52×10-6 0.45471 

3 -0.32629 -0.01028 0.7216 3.81×10-6 0.44423 

 

Statistics for hour_16 

Metric Log odds 

(regression) 

Coef. of var. 

(regression) 

Odds ratio 

(regression) 

Importance 

(ran. for.) 

Coef of v. 

(ran. for.) Instance 

1 -0.28989 -0.01181 0.7483 2.92×10-6 0.419 

2 -0.17774 -0.01229 0.8372 2.45×10-6 0.40105 

3 -0.29009 -0.0121 0.7482 3.78×10-6 0.33729 

 

Statistics for hour_17 

Metric Log odds 

(regression) 

Coef. of var. 

(regression) 

Odds ratio 

(regression) 

Importance 

(ran. for.) 

Coef of v. 

(ran. for.) Instance 

1 -0.23764 -0.01037 0.7885 3.71×10-6 0.39529 

2 -0.13401 -0.02448 0.8746 2.84×10-6 0.33189 

3 -0.23799 -0.01042 0.7882 2.75×10-6 0.51708 
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Statistics for hour_18 

Metric Log odds 

(regression) 

Coef. of var. 

(regression) 

Odds ratio 

(regression) 

Importance 

(ran. for.) 

Coef of v. 

(ran. for.) Instance 

1 -0.18075 -0.02331 0.8346 4.06×10-6 0.55364 

2 -0.09351 -0.05465 0.9107 3.29×10-6 0.30522 

3 -0.18092 -0.02356 0.8345 3.12×10-6 0.8935 

 

Statistics for hour_19 

Metric Log odds 

(regression) 

Coef. of var. 

(regression) 

Odds ratio 

(regression) 

Importance 

(ran. for.) 

Coef of v. 

(ran. for.) Instance 

1 -0.20797 -0.01908 0.8122 2.97×10-6 0.24178 

2 -0.09232 -0.02881 0.9118 2.94×10-6 0.26818 

3 -0.20799 -0.01941 0.8122 3.97×10-6 0.52809 

 

Statistics for hour_20 

Metric Log odds 

(regression) 

Coef. of var. 

(regression) 

Odds ratio 

(regression) 

Importance 

(ran. for.) 

Coef of v. 

(ran. for.) Instance 

1 -0.21098 -0.00915 0.8098 7.55×10-6 0.41492 

2 -0.07671 -0.05364 0.9262 3.94×10-6 0.81257 

3 -0.21112 -0.00922 0.8097 5.04×10-6 0.34348 

 

Statistics for hour_21 

Metric Log odds 

(regression) 

Coef. of var. 

(regression) 

Odds ratio 

(regression) 

Importance 

(ran. for.) 

Coef of v. 

(ran. for.) Instance 

1 -0.15396 -0.0232 0.8573 5.51×10-6 0.71783 

2 -0.03846 -0.09563 0.9623 3.49×10-6 0.3906 

3 -0.15381 -0.02327 0.8574 3.11×10-6 0.35042 

 

Statistics for hour_22 

Metric Log odds 

(regression) 

Coef. of var. 

(regression) 

Odds ratio 

(regression) 

Importance 

(ran. for.) 

Coef of v. 

(ran. for.) Instance 

1 -0.07278 -0.02613 0.9298 1.01×10-5 0.54723 

2 -0.01958 -0.19288 0.9806 4.63×10-6 0.20681 

3 -0.07320 -0.02561 0.9294 8.67×10-6 0.51064 

 

Statistics for hour_23 

Metric Log odds 

(regression) 

Coef. of var. 

(regression) 

Odds ratio 

(regression) 

Importance 

(ran. for.) 

Coef of v. 

(ran. for.) Instance 

1 NA NA NA 2.08×10-5 0.914 

2 NA NA NA 1.00×10-5 0.84837 

3 NA NA NA 4.51×10-5 1466 
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Histogram of hour 
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lengthening_yn 

Statistics for lengthening_yn 

Metric Log odds 

(regression) 

Coef. of var. 

(regression) 

Odds ratio 

(regression) 

Importance 

(ran. for.) 

Coef of v. 

(ran. for.) Instance 

1 1.689897 0.00683 5.4189 0.010888 0.47808 

2 1.84933 0.0053 6.3556 0.006522 0.35149 

3 1.69000 0.00674 5.4195 0.008731 0.44006 
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Histogram of lengthening_yn 

 

Note that the y-axes of the histogram have been broken twice in order to allow the low 

frequency of lengthening = 1 for the blue histogram to remain visible. 

  



63 

 

righthand 

Statistics for righthand_consonant 

Metric Log odds 

(regression) 

Coef. of var. 

(regression) 

Odds ratio 

(regression) 

Importance 

(ran. for.) 

Coef of v. 

(ran. for.) Instance 

1 0.003459 0.36743 1.0035 0.002216 0.33489 

2 0.05477 0.03143 1.0563 0.00187 0.58309 

3 0.00342 0.37245 1.0034 0.004166 0.64685 

 

Statistics for righthand_pause 

Metric Log odds 

(regression) 

Coef. of var. 

(regression) 

Odds ratio 

(regression) 

Importance 

(ran. for.) 

Coef of v. 

(ran. for.) Instance 

1 0.931115 0.00398 2.5373 0.011971 0.18131 

2 1.05402 0.00376 2.8692 0.005864 0.27486 

3 0.93094 0.00396 2.5369 0.014352 0.43791 

 

Statistics for righthand_vowel 

Metric Log odds 

(regression) 

Coef. of var. 

(regression) 

Odds ratio 

(regression) 

Importance 

(ran. for.) 

Coef of v. 

(ran. for.) Instance 

1 NA NA NA 0.001301 0.55488 

2 NA NA NA 0.000872 0.86761 

3 NA NA NA 0.00167 112843 

 

Histogram of righthand 
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standard_trigram_count_log 

Statistics for standard_trigram_count_log 

Metric Log odds 

(regression) 

Coef. of var. 

(regression) 

Odds ratio 

(regression) 

Importance 

(ran. for.) 

Coef of v. 

(ran. for.) Instance 

1 -2.79599 -0.00175 0.0611 0.378005 0.06633 

2 -3.19407 -0.00161 0.0410 0.251139 0.16183 

3 -2.79578 -0.00176 0.0611 0.370387 0.0944 

 

Histogram of standard_tirgram_count 

 

Note that the above graph represents values of standard_trigram_count before a log was 

applied. These values were then fed through the function ln(x+1) to yield a graph that not 

sensitive to outliers and that does not have values below zero.  
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standard_trigram_frequency 

Statistics for standard_trigram_frequency 

Metric Log odds 

(regression) 

Coef. of var. 

(regression) 

Odds ratio 

(regression) 

Importance 

(ran. for.) 

Coef of v. 

(ran. for.) Instance 

1 -2.38678 -0.00147 0.0919 0.139049 0.09957 

2 -2.21148 -0.00168 0.1095 0.111933 0.16815 

3 -2.38667 -0.00149 0.0919 0.15023 0.21317 

 

Histogram of standard_trigram_frequency 
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trema_yn 

Statistics for trema_yn 

Metric Log odds 

(regression) 

Coef. of var. 

(regression) 

Odds ratio 

(regression) 

Importance 

(ran. for.) 

Coef of v. 

(ran. for.) Instance 

1 -12.0795 -0.02636 0.000 3.67×10-5 0.8002 

2 -1625695 -0.03139 0.000 1.83×10-5 0.38524 

3 -1196556 -0.00193 0.000 3.10×10-5 0.58843 

 

Histogram of trema_yn 
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trigram_partial_count 

Statistics for trigram_partial_count 

Metric Log odds 

(regression) 

Coef. of var. 

(regression) 

Odds ratio 

(regression) 

Importance 

(ran. for.) 

Coef of v. 

(ran. for.) Instance 

1 -0.64154 -0.01184 0.5265 0.150242 0.14132 

2 -0.41496 -0.02383 0.6604 0.083449 0.32851 

3 -0.64153 -0.01157 0.5265 0.154183 0.18191 

 

Histogram of trigram_partial_count 

 

Note that the above graph represents trigram_partial_count fed through the function ln(x+1) 

to yield a graph that not sensitive to outliers and that does not have values below zero. 
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tweet_emoji_count 

Statistics for tweet_emoji_count 

Metric Log odds 

(regression) 

Coef. of var. 

(regression) 

Odds ratio 

(regression) 

Importance 

(ran. for.) 

Coef of v. 

(ran. for.) Instance 

1 18.91182 0.04018 1.64×108 0.000493 0.37429 

2 2.76596 0.08296 15.8943 0.000202 0.39865 

3 18.89000 0.04017 1.60×108 0.000482 0.47529 

 

Histogram of tweet_emoji_count 

 

Note that the above graph represents tweet_emoji_count before a log was applied fed through 

the function ln(x+1) to yield a graph that not sensitive to outliers and that does not have values 

below zero.  
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tweet_nonstandard_count 

Statistics for tweet_nonstandard_count 

Metric Log odds 

(regression) 

Coef. of var. 

(regression) 

Odds ratio 

(regression) 

Importance 

(ran. for.) 

Coef of v. 

(ran. for.) Instance 

1 15.66818 0.00619 6.38×106 0.014458 0.20975 

2 18.79374 0.00365 1.45×108 0.010851 0.12796 

3 15.67333 0.00624 6.41×106 0.013427 0.26961 

 

Histogram of tweet_nonstandard_count 

 

Note that the above graph represents standard_trigram_count fed through the function 

ln(x+1) to yield a graph that not sensitive to outliers and that does not have values below zero. 
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tweet_standard_count 

Statistics for tweet_standard_count 

Metric Log odds 

(regression) 

Coef. of var. 

(regression) 

Odds ratio 

(regression) 

Importance 

(ran. for.) 

Coef of v. 

(ran. for.) Instance 

1 -5.78574 -0.00295 0.0031 0.062083 0.18835 

2 -4.59035 -0.00292 0.0101 0.032518 0.47451 

3 -5.78633 -0.00293 0.0031 0.056514 0.2746 

 

Histogram of tweet_standard_count 
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user_gender 

Statistics for user_gender_Mcertain 

Metric Log odds 

(regression) 

Coef. of var. 

(regression) 

Odds ratio 

(regression) 

Importance 

(ran. for.) 

Coef of v. 

(ran. for.) Instance 

1 -0.20163 -0.05163 0.8174 0.001598 0.61452 

2 -0.06459 -0.10259 0.9375 0.000882 0.88652 

3 -0.20408 -0.05018 0.8154 0.001758 0.51268 

 

Statistics for user_gender_Mmaybe 

Metric Log odds 

(regression) 

Coef. of var. 

(regression) 

Odds ratio 

(regression) 

Importance 

(ran. for.) 

Coef of v. 

(ran. for.) Instance 

1 0.268088 0.07637 1.3075 7.71×10-5 0.48799 

2 0.14816 0.09232 1.1597 2.26×10-5 0.73982 

3 0.26366 0.07492 1.3017 6.97×10-5 0.39615 

 

Statistics for user_gender_Vcertain 

Metric Log odds 

(regression) 

Coef. of var. 

(regression) 

Odds ratio 

(regression) 

Importance 

(ran. for.) 

Coef of v. 

(ran. for.) Instance 

1 0.108567 0.12035 1.1147 0.000349 0.73554 

2 0.24242 0.03012 1.2743 0.000131 0.68929 

3 0.10640 0.12104 1.1123 0.000378 0.69675 

 

Statistics for user_gender_Vmaybe 

Metric Log odds 

(regression) 

Coef. of var. 

(regression) 

Odds ratio 

(regression) 

Importance 

(ran. for.) 

Coef of v. 

(ran. for.) Instance 

1 0.431101 0.04621 1.5390 0.000772 0.66743 

2 0.38248 0.03904 1.4659 0.0003 109735 

3 0.42806 0.04604 1.5343 0.000418 0.84284 
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Histogram of user_gender 
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user_tweetcount_log 

Statistics for user_tweetcount_log 

Metric Log odds 

(regression) 

Coef. of var. 

(regression) 

Odds ratio 

(regression) 

Importance 

(ran. for.) 

Coef of v. 

(ran. for.) Instance 

1 -2.51853 -0.02728 0.0806 0.021916 0.33844 

2 -0.23867 -0.06123 0.7877 0.011545 0.2735 

3 -2.51356 -0.02723 0.0810 0.020528 0.27456 

 

Histogram of user_tweetcount 

 

Note that the above graph represents user_tweetcount before a log was applied, but then fed 

through the function ln(x+1) to yield a graph that not sensitive to outliers and that does not 

have values below zero. 
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user_tweetsperday 

Statistics for user_tweetsperday 

Metric Log odds 

(regression) 

Coef. of var. 

(regression) 

Odds ratio 

(regression) 

Importance 

(ran. for.) 

Coef of v. 

(ran. for.) Instance 

1 24.14078 0.1229 3.05×1010 0.005694 0.46678 

2 0.88113 1.28198 2.4136 0.004254 0.51998 

3 23.24333 0.12288 1.24×1010 0.010166 0.44342 

 

Histogram of user_tweetsperday 

 

Note that the above graph represents user_tweetsperday fed through the function ln(x+1) to 

yield a graph that not sensitive to outliers and that does not have values below zero. 
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word_frequency_log 

Statistics for word_frequency_log 

Metric Log odds 

(regression) 

Coef. of var. 

(regression) 

Odds ratio 

(regression) 

Importance 

(ran. for.) 

Coef of v. 

(ran. for.) Instance 

1 0.228711 0.04309 1.2570 0.007608 0.22584 

2 0.18828 0.05434 1.2072 0.008907 0.43149 

3 0.22858 0.04304 1.2568 0.011264 0.5264 

 

Histogram of word_frequency_log 
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year 

Statistics for year_2010 

Metric Log odds 

(regression) 

Coef. of var. 

(regression) 

Odds ratio 

(regression) 

Importance 

(ran. for.) 

Coef of v. 

(ran. for.) Instance 

1 2.186859 0.01273 8.9072 1.31×10-5 2.55055 

2 1.83440 0.01155 6.2614 1.52×10-6 0.54233 

3 2.18856 0.01264 8.9224 8.43×10-7 0.74552 

 

Statistics for year_2011 

Metric Log odds 

(regression) 

Coef. of var. 

(regression) 

Odds ratio 

(regression) 

Importance 

(ran. for.) 

Coef of v. 

(ran. for.) Instance 

1 2.692569 0.00557 14.7696 0.005663 0.6717 

2 1.96940 0.00822 7.1664 0.003347 0.68397 

3 2.69289 0.00549 14.7743 0.005252 0.34273 

 

Statistics for year_2012 

Metric Log odds 

(regression) 

Coef. of var. 

(regression) 

Odds ratio 

(regression) 

Importance 

(ran. for.) 

Coef of v. 

(ran. for.) Instance 

1 2.759282 0.00586 15.7885 0.01341 0.44945 

2 1.84423 0.00941 6.3232 0.006468 0.6378 

3 2.76033 0.00591 15.8051 0.011039 0.32847 

 

Statistics for year_2013 

Metric Log odds 

(regression) 

Coef. of var. 

(regression) 

Odds ratio 

(regression) 

Importance 

(ran. for.) 

Coef of v. 

(ran. for.) Instance 

1 2.477413 0.00603 11.9104 0.005661 0.38289 

2 1.55445 0.01169 4.7325 0.003558 0.56917 

3 2.47822 0.00605 11.9200 0.006852 0.24303 

 

Statistics for year_2014 

Metric Log odds 

(regression) 

Coef. of var. 

(regression) 

Odds ratio 

(regression) 

Importance 

(ran. for.) 

Coef of v. 

(ran. for.) Instance 

1 1.694651 0.01335 5.4447 0.001006 0.73382 

2 1.09796 0.01834 2.9980 0.000283 1.03518 

3 1.69422 0.01341 5.4424 0.000596 0.88746 

 

Statistics for year_2015 

Metric Log odds 

(regression) 

Coef. of var. 

(regression) 

Odds ratio 

(regression) 

Importance 

(ran. for.) 

Coef of v. 

(ran. for.) Instance 

1 0.953185 0.02702 2.5940 0.006864 0.46761 

2 0.68947 0.03257 1.9927 0.003881 0.64151 

3 0.95219 0.02695 2.5914 0.006834 0.45814 
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Statistics for year_2016 

Metric Log odds 

(regression) 

Coef. of var. 

(regression) 

Odds ratio 

(regression) 

Importance 

(ran. for.) 

Coef of v. 

(ran. for.) Instance 

1 0.53752 0.047 1.7118 0.008167  0.51949 

2 0.34984 0.07216 1.4188 0.003545 0.76618 

3 0.53620 0.04699 1.7095 0.008747 0.37239 

 

Statistics for year_2017 

Metric Log odds 

(regression) 

Coef. of var. 

(regression) 

Odds ratio 

(regression) 

Importance 

(ran. for.) 

Coef of v. 

(ran. for.) Instance 

1 0.248404 0.09891 1.2820 0.010603 0.29754 

2 0.11690 0.17063 1.1240 0.003648 0.56714 

3 0.24683 0.09919 1.2800 0.009916 0.3306 

 

Statistics for year_2018 

Metric Log odds 

(regression) 

Coef. of var. 

(regression) 

Odds ratio 

(regression) 

Importance 

(ran. for.) 

Coef of v. 

(ran. for.) Instance 

1 -0.01488 -1.37016 0.9852 0.00986 0.49397 

2 -0.10477 -0.11256 0.9005 0.005208 0.53669 

3 -0.01632 -1.24187 0.9838 0.009098 0.44492 

 

Statistics for year_2019 

Metric Log odds 

(regression) 

Coef. of var. 

(regression) 

Odds ratio 

(regression) 

Importance 

(ran. for.) 

Coef of v. 

(ran. for.) Instance 

1 NA NA NA 0.008412 0.55018 

2 NA NA NA 0.003159 0.62443 

3 NA NA NA 0.005682 0.43766 
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Histogram of year 
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user_deletion 

Statistics for user_deletion 

Metric Log odds 

(regression) 

Coef. of var. 

(regression) 

Odds ratio 

(regression) 

Importance 

(ran. for.) 

Coef of v. 

(ran. for.) Instance 

1      

2 24.59394 0.00739 4.80×1010 0.3437 0.22336 

3      

 

Histogram of user_deletion 
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user_smoothed 

Statistics for user_smoothed 

Metric Log odds 

(regression) 

Coef. of var. 

(regression) 

Odds ratio 

(regression) 

Importance 

(ran. for.) 

Coef of v. 

(ran. for.) Instance 

1 NA NA NA NA NA 

2 NA NA NA NA NA 

3 0.28457 0.14691 1.3292 0.0001700 0.38114 

 

Histogram of user_smoothed 
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Ethics Assessment Committee Humanities
Faculty of Arts and Faculty of Philosophy, Theology and Religious Studies

Radboud University
Faculty of Arts
Attn dr. B.J.M. van Halteren 
Erasmusplein 1
6525 HT  NIJMEGEN

Visiting Address
Erasmusplein 1

6525 HT  Nijmegen

Postal Address
Postbus 9103

6500 HD  Nijmegen

Date Our Reference Contact details
23 February 2022 22U.003656 T: +31 (0)24 361 58 14

E: etc-gw@ru.nl
Subject
Assessment research project 2022-7553 www.ru.nl/etcgw

Dear Mr. van Halteren,

I hereby inform you that the Ethics Assessment Committee Humanities (EACH) of the Faculty of Arts and the 
Faculty of Philosophy, Theology and Religious Studies has evaluated the application of the research project 
Mapping n-deletion in Dutch using tweets (application 2022-7553) and has formulated the following advice on 
21 February 2022:

This research project is approved for a period of five years (from 21 February 2022 to 21 February 2027). 

Please note that any modification to the research project that might warrant review of the ethical approval must 
be submitted to the EACH.

Yours Sincerely,

dr. M.J. Becker  
President of the Ethics Assessment Committee Humanities
Faculty of Arts and Faculty of Philosophy, Theology and Religious Studies


